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Abstract

The supremum over all knot sequences of the max-norm of the orthogonal spline
projector is studied with respect to the order k of the splines and their smoothness.
It is first bounded from below in terms of the max-norm of the orthogonal projector
onto a space of incomplete polynomials. Then, for continuous and for differentiable
splines, its order of growth is shown to be

√
k.
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1 Introduction

In 2001, Shadrin [10] confirmed de Boor’s long standing conjecture [1] that
the max-norm of the orthogonal spline projector is bounded independently
of the underlying knot sequence. However, the problem was not solved to
complete satisfaction as the behavior of the max-norm supremum remains
unclear. Shadrin conjectured that its actual value is 2k−1, having shown that
it cannot be smaller. Here the integer k represents the order of the splines,
meaning that the splines are of degree at most k − 1.

In this paper, we study the max-norm of the orthogonal projector onto splines
of lower smoothness. For a knot sequence ∆ = (−1 = t0 < t1 < · · · < tN−1 <
tN = 1) and for integers k and m satisfying 0 ≤ m ≤ k − 1, we denote by

Sk,m(∆) :=
{
s ∈ Cm−1[−1, 1] : s|(ti−1,ti) is a polynomial of order k, i = 1, ..., N

}
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the space of splines of order k satisfying m conditions of smoothness at each
breakpoint t1, . . . , tN−1. Thus Sk,0(∆) is the space of piecewise polynomials,
Sk,1(∆) is the space of continuous splines, and so on until Sk,k−1(∆) which is
the usual space of splines with simple knots. The orthogonal projector PSk,m(∆)

onto the space Sk,m(∆) is the only linear map from L2[−1, 1] into Sk,m(∆)
satisfying

〈PSk,m(∆)(f), s 〉 = 〈 f, s 〉, f ∈ L2[−1, 1], s ∈ Sk,m(∆),

where 〈· , ·〉 is the usual inner product on L2[−1, 1]. We are interested in the
norm of this projector when interpreted as a linear map from L∞[−1, 1] into
L∞[−1, 1]. Shadrin established the finiteness of

Λk,m := sup
∆

∥∥∥PSk,m(∆)

∥∥∥
∞

by proving that Λk,k−1 = maxm Λk,m is finite. His proof was based on the
bound ∥∥∥PSk,k−1(∆)

∥∥∥
∞
≤
∥∥∥G−1

∆

∥∥∥
∞

in terms of the `∞-norm of the inverse of the B-spline Gram matrix. But
he also remarked that the order of the bound obtained as such cannot be
better than 4k/

√
k, the order of ‖G−1

δ ‖∞ for the Bernstein knot sequence δ.
Therefore, in order to get closer to the value 2k− 1, it is necessary to propose
a new approach.

The approach we exploit in the second part of this paper originates from the
known behavior of the quantity Λk,0. The orthogonal projector onto Sk,0(∆)
has a local character, hence is deduced from the orthogonal projector onto the
space Pk of polynomials of order k on the interval [−1, 1]. In particular, for
any knot sequence ∆, there holds ‖PSk,0(∆)‖∞ = ‖PPk

‖∞. Then, according to
some properties of the orthogonal projector onto polynomials, see e.g. [5], we
have ∥∥∥PSk,0(∆)

∥∥∥
∞

= sup
‖f‖∞≤1

|PPk
(f)(1)| , so that Λk,0 �

√
k. (1)

We will show that the behavior of Λk,m is not radically changed if we increase
the smoothness to m = 1 and m = 2, thus improving de Boor’s estimate [2]

Λk,1 ≤
∥∥∥G−1

δ

∥∥∥
∞
� 4k/

√
k.

Namely, we will prove that

Λk,m ≤ cst ·
√

k, m = 1, 2.

On the other hand, the order of Λk,m will be shown to be at least
√

k for
m = 1, 2. This is a consequence of a result which gives some insight into the
inequality Λk,k−1 ≥ 2k − 1. Indeed, for any m, we will indicate a connection,
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extending the one of (1), between Λk,m and the orthogonal projector onto
a certain space of incomplete polynomials. To be precise, we introduce the
following space of polynomials on [−1, 1],

Pk,m := span
{
(1 + •)m, . . . , (1 + •)k−1

}
, (2)

and we denote by ρk,m the value at the point 1 of the Lebesgue function of
the orthogonal projector PPk,m

onto the space Pk,m, i.e.

ρk,m := sup
‖f‖∞≤1

∣∣∣PPk,m
(f)(1)

∣∣∣ .
With this terminology, we prove below the inequality

Λk,m ≥ k

k −m
ρk,m. (3)

This lower bound is of order
√

k for small values of m and of order k for
large values of m, which gives some support to the speculative guess Λk,m �
k/
√

k −m.

2 Bounding Λk,m from below

In this section, we formulate a result which readily implies the lower estimate
of (3). Let us introduce the quantity

Υk,m,N := sup
∆=(−1=t0<···<tN=1)

[
sup

‖f‖∞≤1

∣∣∣PSk,m(∆)(f)(1)
∣∣∣] .

We aim to bound Υk,m,N+1 from below in terms of Υk,m,N , following an idea
used for m = k − 1 in [10] and which appeared first in [8] in the case k = 2.
Namely, we prove in subsections 2.1 and 2.2 that

Υk,m,N+1 ≥
m

k
Υk,m,N + ρk,m. (4)

In other words, we have

(Υk,m,N+1 − σk,m) ≥ m

k
(Υk,m,N − σk,m) , where σk,m :=

k

k −m
ρk,m.

In view of Υk,m,1 = ρk,0 = σk,0, we infer

Υk,m,N−σk,m ≥
(

m

k

)N−1

(σk,0 − σk,m) −→
N→∞

0, hence sup
N

Υk,m,N ≥ σk,m.

This translates into the following theorem.
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Theorem 1 There hold the inequalities

sup
∆=(−1=t0<···<tN=1)

∥∥∥PSk,m(∆)

∥∥∥
∞
≥ Υk,m,N ≥

[(
m

k

)N−1
]
σk,0+

[
1−

(
m

k

)N−1
]
σk,m.

In particular, one has

sup
∆

∥∥∥PSk,m(∆)

∥∥∥
∞
≥ σk,m.

We note that, in the case k = 2, Malyugin [7] established that these inequalities
are all equalities.

2.1 Estimating Υk,m,N+1 in terms of Υk,m,N

In order to derive (4), let us fix a knot sequence

∆ = (−1 = t0 < t1 < · · · < tN−1 < tN = 1),

and let us consider the refined knot sequence

∆t := (−1 = t0 < t1 < · · · < tN−1 < t < tN = 1).

We have the splitting

Sk,m(∆t) = Sk,m(∆)⊕Tk,m,t, where Tk,m,t := span
{
(•− t)m

+ , . . . , (•− t)k−1
+

}
.

Let Pt, P and Qt denote the orthogonal projectors onto Sk,m(∆t), Sk,m(∆)
and Tk,m,t respectively, and let 1 denote the function constantly equal to 1.
We are going to establish first that

εt := sup
‖f‖∞≤1

‖Pt(f)− P (f)−Qt(f) + P (f)(1)Qt(1)‖∞ −→
t→1

0. (5)

The following lemma is a kind of folklore.

Lemma 2 The orthogonal projector P from a Hilbert space H onto a finite-
dimensional subspace V = V1⊕V2 can be expressed in terms of the orthogonal
projectors P1 and P2 onto V1 and V2 as

P = (I − P1P2)
−1P1(I − P2) + (I − P2P1)

−1P2(I − P1).

PROOF. We remark first that the operator I − P1P2 is invertible, because
‖P1P2‖ < 1 for the operator norm subordinated to the Hilbert norm ‖ · ‖.
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Indeed, for v2 ∈ V2, we have

‖v2‖2 = ‖P1v2‖2 + ‖v2 − P1v2‖2 > ‖P1v2‖2,

and due to the finite dimension of V2, we derive that ‖P1|V2‖ < 1 , hence
that ‖P1P2‖ ≤ ‖P1|V2‖‖P2‖ < 1. Similar arguments prove that the operator
I − P2P1 is invertible. Then, for h ∈ H, we write Ph =: v1 + v2 for v1 ∈ V1

and v2 ∈ V2. We apply P1 and P1P2 to Ph, so that, in view of P1P = P1 and
P2P = P2, we get

P1h = v1 + P1v2,

P1P2h = P1P2v1 + P1v2,
thus P1(I − P2)h = (I − P1P2)v1.

We infer that v1 = (I −P1P2)
−1P1(I −P2)h. The expression for v2 is obtained

by exchanging the indices. 2

In our situation, and in view of (I −QtP )−1 = I + Qt(I − PQt)
−1P , Lemma

2 reads

Pt = (I − PQt)
−1P (I −Qt) + (I −QtP )−1Qt(I − P )

= (I − PQt)
−1(P − PQt) + Qt −QtP + Qt(I − PQt)

−1PQt(I − P ). (6)

We claim that, for the operator norm subordinated to the max-norm, one has

QtP − P (•)(1)Qt(1) −→ 0, PQt −→ 0.

To justify this claim, we remark first that the orthogonal projector Qt is ob-
tained from the orthogonal projector PPk,m

onto the space Pk,m introduced in
(2) by a linear transformation between the intervals [t, 1] and [−1, 1]. Namely,
for u ∈ [t, 1], we have

Qt(f)(u) = PPk,m
(f̃)

(
2u− 1− t

1− t

)
, f̃(x) := f

(
(1− t)x + 1 + t

2

)
.

Then, for s ∈ Sk,m(∆), ‖s‖∞ ≤ 1, we get, as ‖s′‖∞ ≤ C for some constant C,

‖Qt(s)− s(1)Qt(1)‖∞ =
∥∥∥PPk,m

(s̃− s(1)1)
∥∥∥
∞

≤
∥∥∥PPk,m

∥∥∥
∞
‖s− s(1)1‖∞,[t,1] ≤

∥∥∥PPk,m

∥∥∥
∞

C (1− t).

This implies the first part of our claim. Next, fixing an orthonormal basis
(si)

L
i=1 of Sk,m(∆), a function f vanishing on [−1, t] and such that ‖f‖∞ ≤ 1

satisfies

‖Pf‖∞ =

∥∥∥∥∥
L∑

i=1

〈si, f〉si

∥∥∥∥∥
∞
≤

L∑
i=1

∫ 1

t
|si(u)|du · ‖si‖∞ =: ηt.
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The second part of our claim follows from the facts that ηt → 0 as t → 1 and
that the norm of Qt is independent of t.

Now, looking at the limit of each term of (6) with respect to the operator
norm, we derive (5) in the condensed form

Pt − P −Qt + P (•)(1)Qt(1) −→
t→1

0.

From the definition of εt, one has in particular

sup
‖f‖∞≤1

|Pt(f)(1)− [1−Qt(1)(1)] P (f)(1)−Qt(f)(1)| ≤ εt. (7)

Let us stress that the quantity [1−Qt(1)(1)] is independent of t, as it is simply
[1− PPk,m

(1)(1)] =: γk,m. For f, g ∈ L∞[−1, 1], ‖f‖∞ ≤ 1, ‖g‖∞ ≤ 1, and for
ft ∈ L∞[−1, 1] defined by

ft(x) =

f(x) , x ∈ [−1, t],

g(x) , x ∈ [t, 1],

we obtain from (7) the inequality

|Pt(ft)(1)− γk,mP (ft)(1)−Qt(ft)(1)| ≤ εt.

We note that Qt(ft) = Qt(g) and that |P (ft − f)(1)| ≤ ηt to get

Υk,m,N+1 ≥ |Pt(ft)(1)| ≥ |γk,mP (ft)(1) + Qt(ft)(1)| − εt

≥ |γk,mP (f)(1) + Qt(g)(1)| − |γk,m| ηt − εt.

As the functions f and g were arbitrary, we deduce that

Υk,m,N+1 ≥ |γk,m| sup
‖f‖∞≤1

|P (f)(1)|+ sup
‖g‖∞≤1

|Qt(g)(1)| − |γk,m| ηt − εt.

The second supremum is simply the constant ρk,m. In this inequality, we now
take first the limit as t → 1 then the supremum over ∆ to obtain (4) in the
provisional form

Υk,m,N+1 ≥ |γk,m|Υk,m,N + ρk,m.

2.2 The orthogonal projector onto Pk,m

To complete the proof of Theorem 1, we need the value of γk,m, thus the value
of PPk,m

(1)(1). For this purpose, we call upon a few important properties of
Jacobi polynomials which can all be found in Szegö’s monograph [12].
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The Jacobi polynomials P (α,β)
n are defined by Rodrigues’ formula

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n

2n n!

dn

dxn

[
(1− x)n+α(1 + x)n+β

]
. (8)

They are orthogonal on [−1, 1] with respect to the weight (1 − x)α(1 + x)β,
when α > −1 and β > −1 to insure integrability. They obey the symmetry
relation P (α,β)

n (x) = (−1)nP (β,α)
n (−x) and the differentiation formula

d

dx

[
P (α,β)

n (x)
]

=
n + α + β + 1

2
P

(α+1,β+1)
n−1 (x). (9)

Their values at the point 1 are

P (α,β)
n (1) =

(
n + α

n

)
=

(n + α) · · · (α + 1)

n!
. (10)

These properties recalled, we can formulate the following lemma, which implies
in particular that γk,m = (−1)k−mm/k.

Lemma 3 There hold the representation

PPk,m
(f)(1) = 2−m−1(k + m)

∫ 1

−1
(1 + x)mP

(1,2m)
k−1−m(x)f(x)dx

and the equality

PPk,m
(1)(1) = 1− (−1)k−m m

k
.

PROOF. Let us introduce the polynomials pi ∈ Pk,m defined by pi(x) :=

(1 + x)mP
(0,2m)
i (x). The orthogonality conditions

h
(0,2m)
i · δi,j :=

∫ 1

−1
(1 + x)2mP

(0,2m)
i (x)P

(0,2m)
j (x)dx =

∫ 1

−1
pi(x)pj(x)dx

show that system (pi)
k−1−m
i=0 is an orthogonal basis of Pk,m. Therefore the

orthogonal projector onto Pk,m admits the representation

PPk,m
(f) =

k−1−m∑
i=0

〈pi, f〉
‖pi‖2

2

pi.

For y ∈ [−1, 1], it reads

PPk,m
(f)(y) =

k−1−m∑
i=0

1

h
(0,2m)
i

∫ 1

−1
(1 + x)mP

(0,2m)
i (x)f(x)dx · (1 + y)mP

(0,2m)
i (y)

=:
∫ 1

−1
(1 + x)m(1 + y)mK

(0,2m)
k−1−m(x, y)f(x)dx.
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According to [12, p 71], the kernel K
(0,2m)
k−1−m(x, 1) is 2−2m−1(k + m)P

(1,2m)
k−1−m(x),

hence the representation mentioned in the lemma. We then have

PPk,m
(1)(1) = 2−m−1(k + m)

∫ 1

−1
(1 + x)mP

(1,2m)
k−1−m(x)dx

=
(9)

2−m
∫ 1

−1
(1 + x)m d

dx

[
P

(0,2m−1)
k−m (x)

]
dx

= 2−m
([

(1 + x)mP
(0,2m−1)
k−m (x)

] 1

−1
−m

∫ 1

−1
(1 + x)m−1P

(0,2m−1)
k−m (x)dx

)
=

(10)
1− 2−mm

∫ 1

−1
(1 + x)m−1P

(0,2m−1)
k−m (x)dx.

The latter integral equals (−1)k−m2m/k, as the following calculation shows

∫ 1

−1
(1 + x)m−1P

(0,2m−1)
k−m (x)dx

=
(8)

(−1)k−m

2k−m (k −m)!

∫ 1

−1
(1 + x)−m · dk−m

dxk−m

[
(1− x)k−m(1 + x)k+m−1

]
dx

=
1

2k−m (k −m)!

∫ 1

−1

dk−m

dxk−m

[
(1 + x)−m

]
· (1− x)k−m(1 + x)k+m−1dx

=
1

2k−m (k −m)!

(−1)k−m (k − 1)!

(m− 1)!

∫ 1

−1
(1− x)k−m(1 + x)m−1dx

=
(−1)k−m (k − 1)!

2k−m (k −m)! (m− 1)!

2k (k −m)! (m− 1)!

k!
= (−1)k−m 2m

k
. 2

3 On the constant ρk,m

We now justify that the quantity Λk,m is at least of order
√

k for small values
of m and at least of order k for large values of m. Precisely, the behavior of
σk,m is given below.

Proposition 4 The lower bounds σk,m for Λk,m satisfy

σk,k−1 = 2k − 1,

σk,k−2 ∼
k→∞

ck−2 k, ck−2 = 4e−1 ≈ 1.4715,

σk,k−3 ∼
k→∞

ck−3 k, ck−3 ≈ 1.2216,

σk,m ∼
k→∞

c
√

k, c = 2
√

2/π ≈ 1.5957, if m is independent of k.
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This will follow at once when we establish the behavior of the constant ρk,m.
According to Lemma 3, this constant can be expressed as

ρk,m = 2−m−1(k + m)
∫ 1

−1
(1 + x)m

∣∣∣P (1,2m)
k−1−m(x)

∣∣∣ dx. (11)

To the best of our knowledge, whether ρk,m equals the max-norm of the or-
thogonal projector onto Pk,m is an open question, although this is known for
m = 0, is trivial for m = k − 1 and can be shown for m = k − 2. It also
seems that there has been no attempt to evaluate the order of growth of ρk,m

uniformly in m. Nevertheless, for small and large values of m, such evaluations
can be carried out.

Lemma 5 One has

ρk,k−1 = 2− 1/k,

ρk,k−2 −→
k→∞

8e−1 ≈ 2.9430,

ρk,k−3 −→
k→∞

2 + 8(2 +
√

3)e(−3−
√

3)/2 − 8(2−
√

3)e(−3+
√

3)/2 ≈ 3.6649.

PROOF. The fact that P
(1,2k−2)
0 (x) = 1 clearly yields the value of ρk,k−1. We

then compute P
(1,2k−4)
1 (x) = 1

2
[(2k − 1)(1 + x)− 4k + 6] and we subsequently

obtain

ρk,k−2 =
2

k
+

4(2k − 3)

k

(
2k − 3

2k − 1

)k−1

−→
k→∞

8e−1.

Finally, we find that P
(1,2k−6)
2 (x) equals

1

4

[
(k − 1)(2k − 1)(1 + x)2 − 8(k − 1)(k − 2)(1 + x) + 4(k − 2)(2k − 5)

]
.

The roots of this quadratic polynomial are

x1 =
2k − 7− 2

√
3(k−2)

k−1

2k − 1
, x2 =

2k − 7 + 2
√

3(k−2)
k−1

2k − 1
.

After some calculations, we obtain the announced limit from the expression

ρk,k−3 =
2k − 3

k
+

4(2k − 3)

k
[(2− k)(1 + x1) + 2k − 5]

(
1 + x1

2

)k−2

− 4(2k − 3)

k
[(2− k)(1 + x2) + 2k − 5]

(
1 + x2

2

)k−2

. 2

As for small values of m, the behavior of ρk,m follows from a result of Szegö
[11, p 84–86], whose first part was sharpened in [6].
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Proposition 6 ([11]) If 2λ−α+3/2 > 0, there is a constant c
(α,β)
λ,µ such that

∫ 1

0
(1− x)λ(1 + x)µ

∣∣∣P (α,β)
n (x)

∣∣∣ dx ∼
n→∞

c
(α,β)
λ,µ n−

1
2 .

If 2λ− α + 3/2 < 0, there is a constant d
(α,β)
λ,µ such that

∫ 1

0
(1− x)λ(1 + x)µ

∣∣∣P (α,β)
n (x)

∣∣∣ dx ∼
n→∞

d
(α,β)
λ,µ n−2λ+α−2.

Only the formula for the constant c
(α,β)
λ,µ is relevant to us, it is

c
(α,β)
λ,µ =

2λ+µ+2

π
√

π

∫ π
2

0
(sin θ/2)2λ−α+ 1

2 (cos θ/2)2µ−β+ 1
2 dθ.

Lemma 7 If m is independent of k, one has

ρk,m ∼
k→∞

2
√

2√
π

√
k.

PROOF. We split the integral appearing in (11) in two and use the symmetry
relation to obtain∫ 1

−1
(1 + x)m

∣∣∣P (1,2m)
k−1−m(x)

∣∣∣ dx

=
∫ 1

0
(1− x)m

∣∣∣P (2m,1)
k−1−m(x)

∣∣∣ dx +
∫ 1

0
(1 + x)m

∣∣∣P (1,2m)
k−1−m(x)

∣∣∣ dx

∼
k→∞

(
c
(2m,1)
m,0 + c

(1,2m)
0,m

)
k−

1
2 .

Substituting the values of the constants gives

c
(2m,1)
m,0 + c

(1,2m)
0,m

=
2m+2

π
√

π

[∫ π
2

0
(sin θ/2)

1
2 (cos θ/2)−

1
2 dθ +

∫ π
2

0
(sin θ/2)−

1
2 (cos θ/2)

1
2 dθ

]

=
2m+2

π
√

π

[∫ π
2

0
(sin θ/2)

1
2 (cos θ/2)−

1
2 dθ +

∫ π

π
2

(cos η/2)−
1
2 (sin η/2)

1
2 dη

]

=
2m+2

π
√

π

∫ π

0
(sin θ/2)

1
2 (cos θ/2)−

1
2 dθ.

For p, q > 0, it is known that

∫ π

0
(sin θ/2)2p−1 (cos θ/2)2q−1 dθ =

∫ 1

0
up−1(1− u)q−1du =

Γ(p)Γ(q)

Γ(p + q)
.
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Thus, in view of Γ(z)Γ(1− z) = π/ sin(πz), we derive that

c
(2m,1)
m,0 + c

(1,2m)
0,m =

2m+2

π
√

π

Γ
(

3
4

)
Γ
(

1
4

)
Γ(1)

=
2m+2

√
2√

π
,

and the conclusion follows. 2

Some numerical values of the constant ρk,m are indicated in the table below.

ρk,m k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 0 1 1.6666 2.1757 2.6042 2.9815 3.3225 3.6360

m = 1 1.5 2.1066 2.5693 2.9625 3.3120 3.6305

m = 2 1.6666 2.3221 2.8 3.1959 3.5430

m = 3 1.75 2.4493 2.9503 3.3586

m = 4 1.8 2.5332 3.0560

m = 5 1.8333 2.5927

m = 6 1.8571

We observe that ρk,0 increases with k, a fact which has been proved in [9].
It also seems that ρk,m increases with k for any fixed m. On the other hand,
when k is fixed, the quantity ρk,m does not decrease with m, e.g. we have
ρ10,0 ≈ 4.4607 < ρ10,1 ≈ 4.4619. The tentative inequality ρ2k,k ≤ ρ2k,0 may
nevertheless hold and would account for the guess σk,m � k(k−m)−1/2 rather
than the other seemingly natural one, namely σk,m � k(k+m)/2k. Indeed, we
would have σ2k,k = 2k/k · ρ2k,k ≤ 2ρ2k,0 ≤ cst ·

√
k, so that the order of σ2k,k

could not be k3/4.

We display at last some numerical values of the lower bound σk,m.

σk,m k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 0 1 1.6666 2.1757 2.6042 2.9815 3.3225 3.6360

m = 1 3 3.16 3.4258 3.7031 3.9744 4.2356

m = 2 5 4.6443 4.6666 4.7938 4.9603

m = 3 7 6.1233 5.9006 5.8775

m = 4 9 7.5996 7.1308

m = 5 11 9.0745

m = 6 13

11



For a fixed k, it seems that σk,m increases with m. However, for a fixed m, it
appears that σk,m is not a monotonic function of k. The initial decrease of σk,m

could be explained by the facts that σm+1,m = 2m + 1 and that σ2m,m �
√

m,
if confirmed.

4 Bounding Λk,m from above: description of the method

We present here the key steps of the arguments we will use to determine an
upper bound for Λk,m. The idea of orthogonal splitting comes from Shadrin,
who suggested it to us in a private communication.

4.1 Orthogonal splitting

The space Sk,m(∆), of dimension kN −m(N − 1), is a subspace of the space
Sk,0(∆), of dimension kN , hence we can consider the orthogonal splitting

Sk,0(∆) =: Sk,m(∆)
⊥
⊕Rk,m(∆), with dimRk,m(∆) = m(N − 1).

If PSk,0(∆), PSk,m(∆) and PRk,m(∆) represent the orthogonal projectors onto
Sk,0(∆), Sk,m(∆) and Rk,m(∆) respectively, we have

PSk,0(∆) = PSk,m(∆)+PRk,m(∆), thus
∥∥∥PSk,m(∆)

∥∥∥
∞
≤
∥∥∥PSk,0(∆)

∥∥∥
∞

+
∥∥∥PRk,m(∆)

∥∥∥
∞

.

We have already mentioned that ‖PSk,0(∆)‖∞ = ρk,0 for any knot sequence ∆,
therefore our task is to bound the norm ‖PRk,m(∆)‖∞.

In order to describe the space Rk,m(∆), we set

(t0 = · · · = t0︸ ︷︷ ︸
k

< t1 = · · · = t1︸ ︷︷ ︸
k−m

< · · · < tN−1 = · · · = tN−1︸ ︷︷ ︸
k−m

< tN = · · · = tN︸ ︷︷ ︸
k

)

=: (τ1 ≤ · · · ≤ τL+k),

so that Sk,m(∆) admits the basis of L1-normalized B-splines (Mi)
L
i=1, where

Mi := Mτi,...,τi+k
. Using the Peano representation of divided differences, we

have

f ∈ Rk,m(∆) ⇐⇒ f ∈ Sk,0(∆),
∫ 1

−1
Mi · f = 0, all i

⇐⇒ f = F (k), F ∈ S2k,k(∆), [τi, . . . , τi+k]F = 0, all i.

12



It is then derived that

Rk,m(∆) =


F (k), F ∈ S2k,k(∆),

F ≡ 0 k-fold at t0,

F ≡ 0 (k −m)-fold at ti, i = 1, ..., N − 1,

F ≡ 0 k-fold at tN


= R1

k,m(∆)⊕R2
k,m(∆)⊕ · · · ⊕ RN−1

k,m (∆),

where each space Ri
k,m(∆), supported on [ti−1, ti+1] and of dimension m, is

characterized by

f ∈ Ri
k,m(∆) ⇐⇒ f = F (k) for some F ∈ S2k,k(∆), supp F = [ti−1, ti+1],

and


F ≡ 0 k-fold at ti−1,

F ≡ 0 (k −m)-fold at ti,

F ≡ 0 k-fold at ti+1.

4.2 A Gram matrix

The max-norm of the orthogonal projector onto the space Rk,m(∆) will be
bounded with the help of a Gram matrix. We reproduce here an idea that has
been central to the theme of the orthogonal spline projector for some time.

Lemma 8 Let (ϕi)
m(N−1)
i=1 and (ϕ̂j)

m(N−1)
j=1 be bases of Rk,m(∆) and let M :=

[〈ϕi, ϕ̂j〉]m(N−1)
i,j=1 be the Gram matrix with respect to these bases. If, for some

constants κ, γ1 and γ∞, there hold

(i)
∥∥∥M−1

∥∥∥
∞
≤ κ, (ii) ‖ϕi‖1 ≤ γ1, (iii)

∥∥∥∑ ajϕ̂j

∥∥∥
∞
≤ γ∞ ‖a‖∞ ,

then the max-norm of the orthogonal projector onto Rk,m(∆) satisfies∥∥∥PRk,m(∆)

∥∥∥
∞
≤ κ · γ1 · γ∞.

PROOF. Let P denote the projector PRk,m(∆). For f ∈ L∞[−1, 1], ‖f‖∞ = 1,

let us write P (f) =
∑m(N−1)

j=1 ajϕ̂j, so that ‖P (f)‖∞ ≤ γ∞‖a‖∞. The equalities

bi := 〈ϕi, f〉 = 〈ϕi, P (f)〉 =
∑
j

aj〈ϕi, ϕ̂j〉 = (Ma)i

mean that a = M−1b. Since |bi| ≤ ‖ϕi‖1, we infer that ‖a‖∞ ≤ ‖M−1‖∞ ·
‖b‖∞ ≤ κ · γ1. Hence we have ‖P (f)‖∞ ≤ κ · γ1 · γ∞, which completes the
proof, as the function f was arbitrary. 2
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Let us remark that the entries of the Gram matrix will be easily calculated
by applying the following formula, obtained by integration by parts. One has,
for ri := R

(k)
i ∈ Ri

k,m(∆),

〈ri, s〉 =
m−1∑
l=0

(−1)lR
(k−1−l)
i (ti)

[
s(l)(t−i )− s(l)(t+i )

]
, s ∈ Sk,0(∆). (12)

4.3 Bounding the norm of the inverse of some matrices

If we combine bases of the spaces Ri
k,m(∆) to obtain L1 and L∞-normalized

bases of Rk,m(∆), with respect to which we form the Gram matrix, we observe
that the latter is block-tridiagonal, as a result of the disjointness of the sup-
ports of Ri

k,m(∆) and Rj
k,m(∆) when |i − j| > 1. However, we may permute

the elements of the bases to obtain the Gram matrix in the form considered
in the following lemma and to bound the `∞-norm of its inverse accordingly.
Let us recall that a square matrix A is said to be of bandwidth d if Ai,j = 0
as soon as |i− j| > d.

Lemma 9 Let B and C be two matrices such that BC and CB are of band-
width d. If ζ := max(‖BC‖1, ‖CB‖1) < 1, then, with ξ := max(‖B‖∞, ‖C‖∞),
the matrix

N :=

 I B

C I

 has an inverse satisfying
∥∥∥N−1

∥∥∥
∞
≤ (1 + ξ)

1 + (2d− 1)ζ

(1− ζ)2
.

PROOF. First of all, let A be a matrix of bandwidth d satisfying ‖A‖1 < 1.

For indices i and j, let q :=
⌈
|i−j|

d

⌉
represent the smallest integer not smaller

than |i−j|
d

. We borrow from Demko [3] the estimate

∣∣∣(I − A)−1
i,j

∣∣∣ ≤ ‖A‖1
q

1− ‖A‖1

.

Indeed, for any integer p the matrix Ap is of bandwidth pd and, as |i − j| >
(q − 1)d, we get

∣∣∣(I − A)−1
i,j

∣∣∣ = ∣∣∣∣∣
∞∑

p=0

Ap
i,j

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

p=q

Ap
i,j

∣∣∣∣∣ ≤
∞∑

p=q

|Ap
i,j| ≤

∞∑
p=q

‖Ap‖1 ≤
∞∑

p=q

‖A‖p
1,

hence the announced inequality. It then follows that
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∥∥∥(I − A)−1
∥∥∥
∞

= max
i

∑
j

∣∣∣(I − A)−1
i,j

∣∣∣
≤ 1

1− ‖A‖1

1 + 2d
∞∑

q=1

‖A‖q
1

 =
1 + (2d− 1)‖A‖1

(1− ‖A‖1)2
. (13)

We now observe that

 I B

C I


−1

=

 (I −BC)−1 −B(I − CB)−1

−C(I −BC)−1 (I − CB)−1

 .

The estimate of (13) for A = BC and A = CB implies the conclusion. 2

5 Bounding Λk,m from above: the case of continuous splines

We consider here the case m = 1, k ≥ 2. We have already established that the
order of growth of Λk,1 = sup∆ ‖PSk,1(∆)‖∞ is at least

√
k and we prove in this

section that it is in fact
√

k. We exploit the method we have just described to
obtain the following theorem.

Theorem 10 For any knot sequence ∆,

∥∥∥PRk,1(∆)

∥∥∥
∞
≤ 2k(k + 1)

(k − 1)2
σk,0 ,

∥∥∥PSk,1(∆)

∥∥∥
∞
≤ 3k2 + 1

(k − 1)2
σk,0.

First of all, we note that the space Ri
k,1(∆) is spanned by a single function fi

supported on [ti−1, ti+1]. The latter must be the k-th derivative of a piecewise
polynomial Fi of order 2k that vanishes k-fold at ti−1 and at ti+1, (k− 1)-fold
at ti and whose (k− 1)-st derivative is continuous at ti. It is constructed from
the following polynomial of order 2k,

F (x) :=
(−1)k−1

2k−1 k!
(1− x)k−1(1 + x)k,

which vanishes k-fold at −1 and (k − 1)-fold at 1. The notations

hi := ti − ti−1, δi :=
1

hi

, i = 1, ..., N,
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are to be used in the rest of the paper. We define the function Fi by

Fi(x) =



(
hi

2

)k−1

F
(

2x− ti−1 − ti
hi

)
, x ∈ (ti−1, ti),(

−hi+1

2

)k−1

F

(
ti + ti+1 − 2x

hi+1

)
, x ∈ (ti, ti+1),

0 , x 6∈ (ti−1, ti+1).

We renormalize the function fi := F
(k)
i by setting f̂i :=

1

4(δi + δi+1)
fi, where

fi(x) =



2δi F
(k)

(
2x− ti−1 − ti

hi

)
, x ∈ (ti−1, ti),

−2δi+1F
(k)

(
ti + ti+1 − 2x

hi+1

)
, x ∈ (ti, ti+1),

0 , x 6∈ (ti−1, ti+1).

At this point, let us recall the connection [12, p 64] between the Jacobi poly-

nomials P (−l,β)
n and P

(l,β)
n−l ,(

n

l

)
P (−l,β)

n (x) =

(
n + β

l

)(
x− 1

2

)l

P
(l,β)
n−l (x), l = 1, ..., n, (14)

which accounts for the following expression for F (k),

F (k)(x) =
(8)
−2(1− x)−1P

(−1,0)
k (x) =

(14)
P

(1,0)
k−1 (x).

We are now going to establish that the bases (fi)
N−1
i=1 and (f̂j)

N−1
j=1 of Rk,1(∆)

satisfy the three conditions of Lemma 8.

5.1 Condition (i)

First we determine the inner products 〈fi, f̂j〉, non-zero only for |i − j| ≤ 1.
This requires the values of the successive derivatives of Fi at ti−1, at ti and at
ti+1, which are derived from the values of the successive derivatives of F at
−1 and at 1. These are obtained from (9) and (10), namely they are

F (k)(−1) = (−1)k−1,

F (k+1)(−1) = (−1)k k2 − 1

2
,

F (k−1)(1) =
2

k
,

F (k)(1) = k,

F (k+1)(1) =
k(k2 − 1)

4
.
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Equation (12) for ri = fi reads

〈fi, s〉 = F
(k−1)
i (ti)

[
s(t−i )− s(t+i )

]
=

2

k

[
s(t−i )− s(t+i )

]
, s ∈ Sk,0(∆).

We compute the differences

fi(t
−
i )− fi(t

+
i ) = 2δiF

(k)(1) + 2δi+1F
(k)(1) = 2k(δi + δi+1),

fi(t
−
i−1)− fi(t

+
i−1) = 0 − 2δiF

(k)(−1) = 2(−1)kδi.

As a result, we obtain

〈fi, f̂i〉 = 1, 〈fi−1, f̂i〉 =
(−1)k

k

δi

δi + δi+1

, then 〈fi+1, f̂i〉 =
(−1)k

k

δi+1

δi + δi+1

.

The Gram matrix with respect to the bases (fi)
N−1
i=1 and (f̂j)

N−1
j=1 therefore has

the form

M =

f̂1 f̂2 f̂3 f̂4 . . .

f1

f2

f3

f4

...



1
(−1)k

k
α2 0 0 . . .

(−1)k

k
β1 1

(−1)k

k
α3 0 . . .

0
(−1)k

k
β2 1

. . .

0 0
(−1)k

k
β3 1

...
... 0

. . . . . .



where αi :=
δi

δi + δi+1

≥ 0 and βi :=
δi+1

δi + δi+1

≥ 0 satisfy αi + βi = 1. To

bound the `∞-norm of the inverse of this matrix, we could use (13) directly.
However, a result of Kershaw [4] about scaled transposes of such matrices
provide estimates for the entries of M−1 which, when summed, yield the more
accurate bound ∥∥∥M−1

∥∥∥
∞
≤ k2

(k − 1)2
.

5.2 Condition (ii)

From the expression for fi, we get ‖fi‖1 = 2‖F (k)‖1 = 2‖P (1,0)
k−1 ‖1. Therefore,

according to (11), we have

‖fi‖1 =
4

k
σk,0.
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5.3 Condition (iii)

Let us start by establishing the following lemma.

Lemma 11 For any η, ν ∈ R, one has

max
x∈[−1,1]

∣∣∣ηP
(l,0)
k−l (x) + νP

(l,0)
k−l (−x)

∣∣∣ = max
x∈{−1,1}

∣∣∣ηP
(l,0)
k−l (x) + νP

(l,0)
k−l (−x)

∣∣∣ .

PROOF. Without loss of generality, we can assume that η ≥ |ν|. First of all,
the identity

P
(l,0)
k−l (x) =

l∑
j=0

(
l

j

)(
1 + x

2

)j

P
(j,j)
k−l−j(x)

is easily derived using (8), (9) and (14). Indeed, we have

P
(l,0)
k−l (x) = 2l(−1)l(1− x)−lP

(−l,0)
k (x)

=
(k − l)!

k!

(−1)k−l

2k−l (k − l)!

dk

dxk

[
(1 + x)l · (1− x)k−l(1 + x)k−l

]
=

(k − l)!

k!

l∑
j=0

(
k

j

)
dj

dxj

[
(1 + x)l

]
· dl−j

dxl−j

[
P

(0,0)
k−l (x)

]

=
l∑

j=0

(k − l)!

k!

k!

(k − j)! j!

l!

(l − j)!

(k − j)!

(k − l)!

(
1 + x

2

)l−j

P
(l−j,l−j)
k−2l+j (x)

=
l∑

j=0

(
l

j

)(
1 + x

2

)j

P
(j,j)
k−l−j(x).

This identity and the symmetry relation yield

ηP
(l,0)
k−l (x) + νP

(l,0)
k−l (−x)

=
l∑

j=0

(
l

j

)[
η
(

1 + x

2

)j

+ (−1)k−l−jν
(

1− x

2

)j
]
P

(j,j)
k−l−j(x).

Every term in the previous sum is maximized in absolute value at x = 1.
Indeed, according to [12, Theorem 7.32.1], there holds

∣∣∣P (j,j)
k−l−j(x)

∣∣∣ ≤ P
(j,j)
k−l−j(1).

Besides, for j ≥ 1, we have∣∣∣∣∣η
(

1 + x

2

)j

+ (−1)k−l−jν
(

1− x

2

)j
∣∣∣∣∣ ≤ η

[(
1 + x

2

)j

+
(

1− x

2

)j
]
≤ η,

and for j = 0, we have
∣∣∣η + (−1)k−lν

∣∣∣ = η + (−1)k−lν. These facts imply that

∣∣∣ηP
(l,0)
k−l (x) + νP

(l,0)
k−l (−x)

∣∣∣ ≤ ηP
(l,0)
k−l (1) + νP

(l,0)
k−l (−1). 2
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Let us now bound the max-norm of r :=
∑

aj f̂j in terms of ‖a‖∞. This max-

norm is achieved on [tl, tl+1], say, and since r|[tl,tl+1] = alf̂l+al+1f̂l+1, Lemma 11
guarantees that this max-norm is achieved at one of the endpoints of [tl, tl+1],
say at tl. Thus we have

‖r‖∞ ≤
[∣∣∣f̂l(t

+
l )
∣∣∣+ ∣∣∣f̂l+1(t

+
l )
∣∣∣] ‖a‖∞ ≤

[
1

2

∣∣∣F (k)(1)
∣∣∣+ 1

2

∣∣∣F (k)(−1)
∣∣∣] ‖a‖∞,

that is ∥∥∥∑ aj f̂j

∥∥∥
∞
≤ k + 1

2
‖a‖∞.

5.4 Conclusion

The estimates obtained from conditions (i), (ii) and (iii) yield

∥∥∥PRk,1(∆)

∥∥∥
∞
≤ k2

(k − 1)2
· 4

k
σk,0 ·

k + 1

2
=

2k(k + 1)

(k − 1)2
σk,0. (15)

To conclude, we derive the bound

∥∥∥PSk,1(∆)

∥∥∥
∞
≤
∥∥∥PSk,0(∆)

∥∥∥
∞

+
∥∥∥PRk,1(∆)

∥∥∥
∞
≤ σk,0+

2k(k + 1)

(k − 1)2
σk,0 =

3k2 + 1

(k − 1)2
σk,0.

This upper bound is much better than the bound ‖G−1
δ ‖∞, already mentioned

in the introduction, which was given by de Boor in [2], at least asymptotically.
In fact, this becomes true as soon as k = 4, as the following table shows. The
values of ‖G−1

δ ‖∞ are taken from [10].

k 2 3 4 5 6 7 8

3k2+1
(k−1)2

σk,0 21.666 15.230 14.178 14.162 14.486 14.948 15.470

‖G−1
δ ‖∞ 3 13 41.666 171 583.8 2 364.2 8 373.857

Let us finally note that the estimate of (15) is fairly precise in the sense
that it is possible to obtain sup∆ ‖PRk,1(∆)‖∞ ≥ 2σk,0 simply by considering
PRk,1(∆)(•)(t−1 ) when N = 2, t1 → 0. This implies

sup
∆

∥∥∥PSk,1(∆)

∥∥∥
∞
≥ sup

∆

∥∥∥PRk,1(∆)

∥∥∥
∞
−
∥∥∥PSk,0(∆)

∥∥∥
∞
≥ σk,0.

If, as we believe, the lower bound σk,m is the actual value of Λk,m, the pre-
vious inequality reads σk,1 ≥ σk,0. This is in accordance with the expected
monotonicity of σk,m and can be proved as follow. First, we readily check that

Pk,m = Pk,m+1

⊥
⊕ span

[
(1 + •)mP

(0,2m+1)
k−1−m

]
.
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From the representations of the Lebesgue functions at the point 1 of the or-
thogonal projectors onto these spaces, we obtain, for some constant C, the
identity

2−m−1(k + m)(1 + x)mP
(1,2m)
k−1−m(x) = 2−m−2(k + m + 1)(1 + x)m+1P

(1,2m+2)
k−2−m (x)

+ C(1 + x)mP
(0,2m+1)
k−1−m (x).

The value of the constant C is 2−m−1(2m + 1), as seen from the choice x = 1.
With m = 0, we get

k

2
P

(1,0)
k−1 (x) =

k + 1

4
(1 + x)P

(1,2)
k−2 (x) +

1

2
P

(0,1)
k−1 (x).

The inequality σk,0 ≤ σk,1 is then deduced from

σk,0 = ρk,0 =
k

2

∫ 1

−1
|P (1,0)

k−1 (x)|dx

≤ k + 1

4

∫ 1

−1
(1 + x)|P (1,2)

k−2 (x)|dx +
1

2

∫ 1

−1
|P (0,1)

k−1 (x)|dx

= ρk,1 +
1

k
ρk,0 =

k − 1

k
σk,1 +

1

k
σk,0.

6 Bounding Λk,m from above: the case of differentiable splines

We consider here the case m = 2, k ≥ 3, for which the order of growth of
Λk,2 = sup∆ ‖PSk,2(∆)‖∞ is also shown to be

√
k. This section is dedicated to

the proof of the following proposition, where the notation un . vn for two
sequences (un) and (vn) means that there exists a sequence (wn) such that
un ≤ wn, n ∈ N, and wn ∼

n→∞
vn.

Proposition 12 For any knot sequence ∆,

∥∥∥PRk,2(∆)

∥∥∥
∞

.
36
√

2√
π

√
k ,

∥∥∥PSk,2(∆)

∥∥∥
∞

.
38
√

2√
π

√
k.

The function fi previously defined is an element of the 2-dimensional space
Ri

k,2(∆). In this space, we consider an element gi orthogonal to fi. It must
be the k-th derivative of a piecewise polynomial Gi of order 2k supported on
[ti−1, ti+1]. The function Gi must vanish k-fold at ti−1 and at ti+1, (k− 2)-fold
at ti and its (k − 2)-nd and (k − 1)-st derivatives must be continuous at ti.

It is then guaranteed that gi = G
(k)
i belongs to Ri

k,2(∆). To be orthogonal
to fi, the function gi must further be continuous at ti . Let us introduce the
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polynomial G of order 2k,

G(x) :=
(−1)k

2k−2k!
(1− x)k−2(1 + x)k,

which vanishes k-fold at −1 and (k − 2)-fold at 1. Let us remark that

G(k)(x) =
(8)

4(1− x)−2P
(−2,0)
k (x) =

(14)
P

(2,0)
k−2 (x).

We now define the auxiliary function Hi by

Hi(x) :=



(
δi+1 +

k − 1

k + 1
δi

)(
hi

2

)k−1

F
(

2x− ti−1 − ti
hi

)

− 1

k + 1

(
hi

2

)k−2

G
(

2x− ti−1 − ti
hi

)
, x ∈ (ti−1, ti),

−
(
δi +

k − 1

k + 1
δi+1

)(
−hi+1

2

)k−1

F

(
ti + ti+1 − 2x

hi+1

)

− 1

k + 1

(
−hi+1

2

)k−2

G

(
ti + ti+1 − 2x

hi+1

)
, x ∈ (ti, ti+1),

0 , x 6∈ (ti−1, ti+1),

and we set, for some positive constants λ and µ to be chosen later,

Gi :=
λ

δi + δi+1

Hi, gi := G
(k)
i and ĝi :=

µ

δi + δi+1

gi.

First of all, we have to verify that gi defined in this way is indeed an element
of Ri

k,2(∆) orthogonal to fi, i.e. we have to establish the continuity at ti of
the (k − 2)-nd, (k − 1)-st and k-th derivatives of Gi, or equivalently of Hi.
The values of the successive derivatives of G at −1 and at 1, obtained from
(9) and (10), are needed. They are

G(k)(−1) = (−1)k,

G(k+1)(−1) = (−1)k−1 (k − 2)(k + 1)

2
,

G(k−2)(1) =
4

k(k − 1)
,

G(k−1)(1) = 2,

G(k)(1) =
k(k − 1)

2
,

G(k+1)(1) =
k(k − 2)(k2 − 1)

12
.

As F (k−2)(1) = 0, the continuity of H
(k−2)
i at ti is readily checked. We have

H
(k−2)
i (t−i ) = H

(k−2)
i (t+i ) = − 1

k + 1
G(k−2)(1) = − 4

k(k2 − 1)
.
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As for the continuity of H
(k−1)
i at ti, it follows from

H
(k−1)
i (t−i ) =

(
δi+1 +

k − 1

k + 1
δi

)
· 2

k
− 1

k + 1
· 2δi · 2 =

2

k
(δi+1 − δi),

H
(k−1)
i (t+i ) = −

(
δi +

k − 1

k + 1
δi+1

)
· 2

k
− 1

k + 1
· (−2δi+1) · 2 =

2

k
(δi+1 − δi).

Finally, the continuity of H
(k)
i at ti is a consequence of

H
(k)
i (t−i ) =

(
δi+1 +

k − 1

k + 1
δi

)
· 2δi · k −

1

k + 1
· 4δ2

i ·
k(k − 1)

2
= 2kδiδi+1,

H
(k)
i (t+i ) = −

(
δi +

k − 1

k + 1
δi+1

)
· (−2δi+1) · k −

1

k + 1
· 4δ2

i+1 ·
k(k − 1)

2

= 2kδiδi+1.

This justifies the definition of gi. We are now going to establish that the bases
(fi, gi)

N−1
i=1 and (f̂i, ĝi)

N−1
i=1 of Rk,2(∆) satisfy the three conditions of Lemma 8.

6.1 Condition (i)

First we determine the entries of the Gram matrix. The values of H
(k+1)
i (t−i )

and H
(k+1)
i (t+i ) are required, they are

H
(k+1)
i (t−i ) =

(
δi+1 +

k − 1

k + 1
δi

)
· 4δ2

i ·
k(k2 − 1)

4

− 1

k + 1
· 8δ3

i ·
k(k − 2)(k2 − 1)

12
=

k(k2 − 1)

3
[δ3

i + 3δ2
i δi+1],

H
(k+1)
i (t+i ) = −

(
δi +

k − 1

k + 1
δi+1

)
· 4δ2

i+1 ·
k(k2 − 1)

4

− 1

k + 1
· (−8δ3

i+1) ·
k(k − 2)(k2 − 1)

12
= −k(k2 − 1)

3
[δ3

i+1 + 3δiδ
2
i+1].

Equation (12) yields, in view of the continuity of H
(k)
i at ti,

〈gi, ĝi〉 =
λ2µ

(δi + δi+1)3
·
(
−H

(k−2)
i (ti)

)
·
[
H

(k+1)
i (t−i )−H

(k+1)
i (t+i )

]
=

λ2µ

(δi + δi+1)3
· 4

k(k2 − 1)
· k(k2 − 1)

3
(δi + δi+1)

3 =
4λ2µ

3
.

We impose from now on 4λ2µ = 3, so that 〈gi, ĝi〉 = 1. Consequently, after a
reordering of the bases, the Gram matrix has the form
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M =

f̂1 ĝ1 f̂3 ĝ3 . . . f̂2 ĝ2 f̂4 ĝ4 . . .

f1

g1

f3

g3

...

f2

g2

f4

g4

...



I B

C I



.

The matrices B and C are respectively lower and upper bidiagonal by blocks
of size 2 × 2. Their entries are given in Lemma 13 below and their `1-norms
satisfy max (‖B‖1, ‖C‖1) = maxi max(Φi, Ψi), where

Φi := |〈fi−1, f̂i〉|+ |〈gi−1, f̂i〉|+ |〈fi+1, f̂i〉|+ |〈gi+1, f̂i〉|,
Ψi := |〈fi−1, ĝi〉|+ |〈gi−1, ĝi〉|+ |〈fi+1, ĝi〉|+ |〈gi+1, ĝi〉|.

Lemma 13 With αi =
δi

δi + δi+1

and βi =
δi+1

δi + δi+1

, one has

〈fi−1, f̂i〉 =
(−1)k

k
αi,

〈gi−1, f̂i〉 = λ
(−1)k−1

k
αi,

〈fi−1, ĝi〉 =
3

λ

(−1)k

k
αi,

|〈gi−1, ĝi〉| ≤
3

k
αi,

〈fi+1, f̂i〉 =
(−1)k

k
βi,

〈gi+1, f̂i〉 = λ
(−1)k

k
βi,

〈fi+1, ĝi〉 =
3

λ

(−1)k−1

k
βi,

|〈gi+1, ĝi〉| ≤
3

k
βi.

PROOF. 1) The inner products 〈fi−1, f̂i〉 and 〈fi+1, f̂i〉 have been computed
in the previous section.
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2) We now calculate

〈fi, gi−1〉 =
λ

δi−1 + δi

· 2

k
·
[
H

(k)
i−1(t

−
i )−H

(k)
i−1(t

+
i )
]

=
λ

δi−1 + δi

· 2

k
·[

−
(
δi−1 +

k − 1

k + 1
δi

)
· (−2δi) · (−1)k−1 − 1

k + 1
· 4δ2

i · (−1)k

]

= 4λ
(−1)k−1

k
δi,

〈fi, gi+1〉 =
λ

δi+1 + δi+2

· 2

k

[
H

(k)
i+1(t

−
i )−H

(k)
i+1(t

+
i )
]

=
λ

δi+1 + δi+2

· 2

k
·[

−
(
δi+2 +

k − 1

k + 1
δi+1

)
· 2δi+1 · (−1)k−1 +

1

k + 1
· 4δ2

i+1 · (−1)k

]

= 4λ
(−1)k

k
δi+1.

The values of the inner products 〈gi−1, f̂i〉, 〈gi+1, f̂i〉, 〈fi+1, ĝi〉 and 〈fi−1, ĝi〉
are easily deduced, keeping in mind that 4λ2µ = 3.

3) As for the inner products 〈gi−1, ĝi〉 and 〈gi+1, ĝi〉, we determine first the

value of H
(k+1)
i−1 (t−i ). We have

H
(k+1)
i−1 (t−i ) = −

(
δi−1 +

k − 1

k + 1
δi

)
· 4δ2

i · (−1)k k2 − 1

2

− 1

k + 1
· (−8δ3

i ) · (−1)k−1 (k − 2)(k + 1)

2
= 2(−1)k−1(k2 − 1)(δi−1 + δi)δ

2
i + 4(−1)kδ3

i .

Let us note that the value of H
(k)
i−1(t

−
i ) has just been determined in stage 2)

when we computed 〈fi, gi−1〉. Then, according to (12), we obtain

〈gi,gi−1〉 =
λ2

(δi−1 + δi)(δi + δi+1)
·
{
H

(k−1)
i (ti) ·

[
H

(k)
i−1(t

−
i )−H

(k)
i−1(t

+
i )
]

−H
(k−2)
i (ti) ·

[
H

(k+1)
i−1 (t−i )−H

(k+1)
i−1 (t+i )

] }
=

λ2

(δi−1 + δi)(δi + δi+1)
·
{

2

k
(δi+1 − δi) · 2(−1)k−1δi(δi−1 + δi)

+
4

k(k2 − 1)
·
(
2(−1)k−1(k2 − 1)(δi−1 + δi)δ

2
i + 4(−1)kδ3

i

)}

=
λ2

(δi−1 + δi)(δi + δi+1)
· 4(−1)k−1

k
·
[
(δi−1 + δi)(δi + δi+1)δi −

4

k2 − 1
δ3
i

]

= 4λ2 (−1)k−1

k

[
1− 4βi−1αi

k2 − 1

]
δi.
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Remembering that 4λ2µ = 3, it now follows that

〈gi−1, ĝi〉 = 3
(−1)k−1

k

[
1− 4βi−1αi

k2 − 1

]
αi

and that 〈gi+1, ĝi〉 = 3
(−1)k−1

k

[
1− 4βiαi+1

k2 − 1

]
βi.

To complete the proof, we just have to remark that the two expressions in
square brackets are not greater than 1 in absolute value. 2

We infer from Lemma 13 that Φi ≤
1 + λ

k
and Ψi ≤

3
λ

+ 3

k
, so that

max (‖B‖1, ‖C‖1) ≤
1

k
max(1 + λ,

3

λ
+ 3).

The latter is minimized for 1 + λ = 3/λ + 3, i.e. for λ = 3. In view of Lemma
9, the `∞-norm of M−1 can be bounded provided that k > 4. Precisely, since

BC and CB are of bandwidth 3 and since max (‖B‖∞, ‖C‖∞) ≤ 12

k
, we have

∥∥∥M−1
∥∥∥
∞
≤ k(k + 12)(k2 + 80)

(k2 − 16)2
. (16)

6.2 Condition (ii)

From the expression of Hi, we obtain

‖gi‖1 =
3

δi + δi+1

∥∥∥∥∥
(
δi+1 +

k − 1

k + 1
δi

)
F (k) − 2δi

k + 1
G(k)

∥∥∥∥∥
1

+
3

δi + δi+1

∥∥∥∥∥−
(
δi +

k − 1

k + 1
δi+1

)
F (k) +

2δi+1

k + 1
G(k)

∥∥∥∥∥
1

= 3
∥∥∥∥F (k) − 2αi

k + 1

(
F (k) + G(k)

)∥∥∥∥
1
+ 3

∥∥∥∥∥F (k) − 2(1− αi)

k + 1

(
F (k) + G(k)

)∥∥∥∥∥
1

≤ 3
∥∥∥F (k)

∥∥∥
1
+ 3

∥∥∥∥F (k) − 2

k + 1

(
F (k) + G(k)

)∥∥∥∥
1
,

the last inequality holding due to the convexity with respect to αi ∈ [0, 1]
of the function involved. We remark that, according to Proposition 6, the
quantity ‖G(k)‖1 = ‖P (2,0)

k−2 ‖1 tends to a constant as k tends to infinity. This
accounts for the rough estimate

‖gi‖1 ≤
6k

k + 1

∥∥∥F (k)
∥∥∥
1
+

6

k + 1

∥∥∥G(k)
∥∥∥
1

=
12

k + 1
σk,0 +

6

k + 1

∥∥∥G(k)
∥∥∥
1

.
24
√

2
√

π
√

k
.
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The same estimate holds for ‖fi‖1, as can be inferred from subsection 5.2.

6.3 Condition (iii)

Let us now consider the max-norm of r :=
∑

aj f̂j +
∑

bj ĝj, which we want to
bound in terms of maxj(|aj|, |bj|). The function r achieves its max-norm on
[tl, tl+1], say, where the form of r(x), x ∈ (tl, tl+1), is

ηP
(1,0)
k−1 (u) + νP

(1,0)
k−1 (−u) + η′P

(2,0)
k−2 (u) + ν ′P

(2,0)
k−2 (−u), u :=

2x− tl − tl+1

hl+1

.

Such a function of u does not necessarily achieve its max-norm at u = ±1,
e.g. η = ν = 2 and η′ = ν ′ = −1 provides a counter-example when k = 5.
However, the separate contributions C1(u) = ηP

(1,0)
k−1 (u) + νP

(1,0)
k−1 (−u) and

C2(u) = η′P
(2,0)
k−2 (u) + ν ′P

(2,0)
k−2 (−u) do. The first contribution is

C1(u) =
−alδl+1

2(δl + δl+1)
F (k)(−u) +

al+1δl+1

2(δl+1 + δl+2)
F (k)(u)

+
bl

(
δl + k−1

k+1
δl+1

)
δl+1

2(δl + δl+1)2
F (k)(−u) +

bl+1

(
δl+2 + k−1

k+1
δl+1

)
δl+1

2(δl+1 + δl+2)2
F (k)(u).

The max-norm of C1 is achieved at 1, say, and we have

|C1(u)| ≤ |C1(1)| ≤
[

δl+1

2(δl + δl+1)
+

δl+1

2(δl+1 + δl+2)
k

+

(
δl + k−1

k+1
δl+1

)
δl+1

2(δl + δl+1)2
+

(
δl+2 + k−1

k+1
δl+1

)
δl+1

2(δl+1 + δl+2)2
k

]
max

j
(|aj|, |bj|)

=


(
δl + k

k+1
δl+1

)
δl+1

(δl + δl+1)2
+

(
δl+2 + k

k+1
δl+1

)
δl+1

(δl+1 + δl+2)2
k

max
j

(|aj|, |bj|).

We use the fact that, for t ≥ 0, one has [t + k/(k + 1)]/(t + 1)2 ≤ k/(k + 1)
with t = δl/δl+1 and t = δl+2/δl+1 to obtain |C1(u)| ≤ k maxj(|aj|, |bj|).

As for the second contribution, we get

|C2(u)| =
∣∣∣∣∣− bl δ

2
l+1

(k + 1)(δl + δl+1)2
G(k)(−u)−

bl+1 δ2
l+1

(k + 1)(δl+1 + δl+2)2
G(k)(u)

∣∣∣∣∣
≤ 1

k + 1

(
1 +

k(k − 1)

2

)
max

j
(|aj|, |bj|) =

k2 − k + 2

2(k + 1)
max

j
(|aj|, |bj|).

Putting these two contributions together, we deduce that

∥∥∥∑ aj f̂j +
∑

bj ĝj

∥∥∥
∞
≤ 3k2 + k + 2

2(k + 1)
max

j
(|aj|, |bj|) ∼

k→∞

3k

2
max

j
(|aj|, |bj|).
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6.4 Conclusion

The estimates obtained from conditions (i), (ii) and (iii) yield

∥∥∥PRk,2(∆)

∥∥∥
∞

. 1 · 24
√

2
√

π
√

k
· 3k

2
=

36
√

2√
π

√
k, thus

∥∥∥PSk,2(∆)

∥∥∥
∞

.
38
√

2√
π

√
k.

In contrast with the case of continuous splines, the numerical values of our
upper bound are unsatisfactory, e.g. we obtain roughly 1574 for k = 6. When
k is small, this is partly due to the poor estimate of (16). One way to improve
it would be to consider bases of Rk,2(∆) better suited to the evaluation of
the inverse of the Gram matrix, providing in particular a bound also valid for
k = 3 and k = 4.

Let us finally remark that if we consider PRk,2(∆)(•)(t−1 ) in the case N =
2, t1 → 0, we can again show that sup∆ ‖PRk,2(∆)‖∞ ≥ 2σk,0, hence that
sup∆ ‖PSk,2(∆)‖∞ ≥ σk,0. If the lower bound σk,m is indeed the value of Λk,m,
this reads σk,2 ≥ σk,0, in accordance with the expected monotonicity of σk,m.
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