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Abstract

Several blind source separation algorithms obtain a separating matrix by computing
the congruence transformation that ”best” diagonalizes a collection of covariance matrices.
Recent methods avoid a pre-whitening phase and directly attempt to compute a non-
orthogonal diagonalizing congruence. However, since the magnitude of the sources is
unknown, there is a fundamental indeterminacy on the norm of the rows of the separating
matrix. We show how this indeterminacy can be taken into account by restricting the
separating matrix to the oblique manifold. The geometry of this manifold is developed
and a trust-region-based algorithm for non-orthogonal joint diagonalization is proposed.

1 Introduction

Assume that n measured signals x(t) = [x1(t), . . . , xn(t)]T are instantaneous linear mixtures
of p underlying, statistically independent source signals s(t) = [s1(t), . . . , sp(t)]

T ; this can be
compactly written as

x(t) = As(t),

where the matrix A is an unknown constant mixing matrix containing the mixture coefficients.
We assume throughout that all vectors and matrices are real, and we let the superscript T
denote the matrix transpose. The problem of independent component analysis (ICA) or blind
source separation (BSS) is to identify the mixing matrix A or recover the source signals s(t),
using only the observed signals x(t).

This problem is usually translated to finding a separating matrix (or demixing matrix ) W
such that the signals y(t) given by

y(t) = W T x(t)

are estimates of the signals s(t). It is known that this problem has two basic indetermina-
cies: without any further information, it is impossible to recover the scaling and the order

∗This work was supported by Microsoft Research through a Research Fellowship at Peterhouse, Cambridge,
and by the US National Science Foundation under Grant ACI0324944. This paper is an expanded version
of [AG06].

†Department of Mathematical Engineering, Université catholique de Louvain, 1348 Louvain-la-Neuve, Bel-
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of the source signals [Com94]. For non-Gaussian sources, these are the only indetermina-
cies [TLSH91]; this also holds under mild conditions for sources that are not temporally
white [BAMCM97]. We will say that W is a true separating matrix if W T A can be expressed
as the product of a permutation matrix (order indeterminacy) and a diagonal matrix (scaling
indeterminacy).

In several ICA algorithms, the observed sources x(t) are used to construct a set of “target
matrices” C1, . . . , CN with the following property: all the matrices W T CiW , i = 1, . . . , N
are diagonal if and only if W is a true separating matrix. In practice, due to the presence
of noise and to the limited amount of samples of x(t) available, the target set {C1, . . . , CN}
does not admit exact joint diagonalization (JD), and one must resort to approximate joint
diagonalization, that is, find the matrix W that “best diagonalizes” the target set. The
various JD-based ICA algorithms differ in the choice of the target matrices and in the cost
function used to define the “best diagonalization”. Several possibilities for the choice of the
target matrices are mentioned in [Yer02], and [WSC05] lists a few possible cost functions (see
also [AK05]). A frequently encountered cost function is

f(W ) =
∑

i

‖off(W T CiW )‖2
F ; (1)

here ‖M‖2
F denotes the square Frobenius norm of M (that is, the sum of the squares of the

elements of M) and off(M) := M − ddiag(M), where ddiag(M) denotes the diagonal matrix
whose diagonal elements are those of M . Following the notation in [JR02], we let diag(M)
denote the vector of diagonal elements of M .

Most joint diagonalization algorithms, such as the SOBI algorithm [BAMCM97], start
with a pre-whitening step. First, in order to remove the scaling indeterminacy, it is assumed
that E[s(t)sT (t)] = I. (This is without loss of generality, since the scaling factors can be
absorbed in the columns of A.) A whitening matrix W̃ is then sought such that one of
the target matrices (say C1, usually an estimation of the covariance matrix E[x(t)xT (t)])
is reduced to the identity matrix; that is, W̃ T C1W̃ = Ip. It follows that there exists an
orthogonal matrix U such that UT W̃ T A = I. In a second step, an orthogonal matrix U is
sought that diagonalizes the new target set {W̃ T C1W̃ , . . . , W̃ T C1W̃}. This yields a separating
matrix W = W̃U ; see, for example, [BAMCM97] for details.

Since U is constrained to be orthogonal, it is a solution of an optimization problem on
a manifold—the orthogonal group, or more generally the compact Stiefel manifold of matri-
ces with orthonormal columns. This calls for the use of differential-geometric optimization
techniques. There has been interest for optimization on manifolds at least since the work of
Luenberger [Lue72] and Gabay [Gab82] in the 1970s and 1980s. Optimization algorithms,
such as the steepest descent, Newton and conjugate gradient methods, were first proposed on
general Riemannian manifolds by Smith [Smi93, Smi94] and Udrişte [Udr94]. Various opti-
mization algorithms on several types of manifolds were further proposed and analysed in sev-
eral papers; see in particular [HM94, Deh95, EAS98, Man02, MM02, AMS04, ABG04, HT04,
ABG05, NA05] and references therein. Applications of differential-geometric methods to the
orthogonal joint diagonalization problem have been proposed by Rahbar and Reilly [RR00],
Douglas [Dou00], Joho and Mathis [JM02], Joho and Rahbar [JR02], Nikpour et al. [NMH02],
Nishimori and Akaho [NA05].

However, the pre-whitening step that yields the orthogonality constraint has the drawback
that it singles out the target matrix C1 of which it would attain exact diagonalization at
the possible cost of poor diagonalization of the other target matrices [Yer02]. Moreover,
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inaccuracies in the computation of W̃ cannot be compensated in the sequel. Therefore, a few
algorithms have been proposed that directly compute a nonorthogonal separating matrix W
without resorting to a pre-whitening process; see for example [ACC00, Pha01, Yer02, AK04].

Amari et al. [ACC00] and Afsari and Krishnaprasad [AK04] use differential-geometric
concepts for nonorthogonal JD. As was pointed out in [AK04], when the off-diagonal cost
function (1) is allowed to take its argument W in the whole set R

n×p of n × p matrices, it
admits a global minimizer at the zero matrix. More generally, the cost function (1) is not scale
invariant; that is, f(WD) is in general different from f(W ) when D is a nonsingular diagonal
matrix. This issue can be tackled by imposing constraints on the power of the separated
signals y(t). However, as argued by Amari et al. [ACC00], this is impractical in frequently
encountered applications where the amplitude of components may change suddenly; therefore,
constraints should be placed instead on the separating matrix W . Amari et al. [ACC00] (see
also Afsari and Krishnaprasad [AK04]) propose to constrain the allowed variations of W to
belong to a subspace orthogonal to the equivalence class {WD : D diagonal}. The notion
of orthogonality used in [ACC00] has been shown to be a nonholonomic (or nonintegrable)
constraint.

Finally, we point out that most algorithms for ICA do not achieve superlinear convergence,
as they are based on steepest-descent or direct-search ideas. Exceptions are the conjugate
gradient on the Stiefel manifold used by Rahbar and Reilly [RR00] and the Newton method
on Stiefel of Joho and Rahbar [JR02] and Nikpour et al. [NMH02]. Superlinear convergence
is useful when a high precision is sought; this applies to situations where the noise level is low
and the source signals (or the mixing matrix) want to be recovered accurately.

In this paper, we propose a superlinearly convergent algorithm for nonorthogonal joint
diagonalization, based on a recently proposed trust-region method on Riemannian mani-
folds [ABG04, ABG05]; we dub the algorithm RTR-ICA. In comparison with the Newton
method, the trust-region approach offers better global convergence properties and similar lo-
cal convergence properties at a lower computational cost [ABG05]. Our approach also departs
from previous work in the way constraints are imposed on the separating matrix W : we re-
quire that W be an oblique rotation [TL02], that is, all the columns of W have unit Euclidean
norm. Instead of being nonholonomic, this constraint defines a submanifold of R

n×p called
the oblique manifold

OB(n, p) = {Y ∈ R
n×p : ddiag(Y T Y ) = Ip}. (2)

Moreover, in contrast to the Stiefel manifold approach, a pre-whitening step is not required.
The rest of the paper is organized as follows. The geometry of the oblique manifold is

described in Section 2. Formulas for the gradient and Hessian of the off-diagonal cost func-
tion (1) are obtained in Section 3. The workings of the RTR algorithm are briefly explained in
Section 4 (we refer to [ABG05] for details). Numerical experiments are presented in Section 5.

2 Geometry of the Oblique manifold

We refer the reader to [ABG05] and references therein for the relevant notions of Riemannian
geometry. Let

OB := {Y ∈ R
n×p : ddiag(Y T Y ) = Ip}

denote the set of all n × p matrices with normalized columns. With its usual vector space
structure, R

n×p is trivially a manifold. It is possible to show that OB is a regular submanifold
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(or embedded submanifold) of R
n×p, that is, there exists a differentiable structure on OB that

makes the inclusion mapping i : OB → R
n×p an immersion. The theory of submanifolds

states that such a differentiable structure is unique.

Proposition 2.1 The set OB is a regular submanifold of R
n×p.

Proof. Consider the function F : R
n×p → R

p : Y 7→ diag(Y T Y ) − e, where e is the vector of
all ones. Notice that OB = F−1(0) and that F is full rank on OB. The result follows from a
classical characterization of regular submanifolds; see [Boo75, Th. III.5.8]. �

We consider the canonical inner product

〈Z1, Z2〉 := trace(ZT
1 Z2) (3)

in R
n×p and view OB as an embedded Riemannian submanifold of R

n×p. Notice that OB is
then isometric to the product of p unit spheres in R

n with its standard Riemannian structure.
The tangent space to OB at Y (which is defined independently of the metric) is

TY OB = {Z : ddiag(Y T Z) = 0}

which means that yT
i zi = 0, i = 1, . . . , p, where yi denotes the ith column of Y . The dimension

of OB is dim(OB) = p(n − 1). The normal space (which depends on the embedding in the
Euclidean space R

n×p) is

NY OB = {Y D : D ∈ R
p×p diagonal}.

Projections of Z ∈ TY R
n×p into a normal and tangent component are

PNY
(Z) = Y ddiag(Y T Z) and PTY

(Z) = Z − Y ddiag(Y T Z).

Finally, in order to apply the RTR schemes on OB, we must define a retraction, which
establishes a correspondence between tangent vectors and points on the manifolds. A natural
choice that satisfies the required properties [ABG05] is

RY (Z) = (Y + Z)(ddiag((Y + Z)T (Y + Z)))−1/2, (4)

which simply consists of adding Z to Y and scaling the columns of the result.

3 The off-diagonal cost function on the oblique manifold

We compute the gradient and the Hessian of f = f̃ |OB where f̃ is the function on R
n×p

defined as

f̃(Y ) =

N
∑

i=1

‖Y T CiY − ddiag(Y T CiY )‖2
F

= trace((Y T CiY )2 − ddiag2(Y T CiY ))

=
N

∑

i=1

trace(off(Y T CiY )Y T CiY ),
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Ci symmetric. Notice that f is a function on OB; its gradient and Hessian are thus defined
in the sense of the manifold OB endowed with its Riemannian metric (3).

The following identities will be useful:

ddiag(AD) = ddiag(A)D, D ∈ D

trace(A) = trace(AT )

trace(AB) = trace(BA)

trace(aA) = atrace(A)

det(AB) = det(A) det(B).

The gradient of f at Y , denoted by grad f(Y ), is defined as the element of TY OB such
that 〈grad f(Y ), ξ〉 = Df(Y )[ξ] for all ξ in TY OB, where Df(Y )[ξ] denotes the directional
derivative of f in the direction of ξ (or the differential of f at Y applied to ξ, which is often
denoted as ξf). We obtain

Df(Y )[ξ] =
N

∑

i=1

trace(off(ZT CiY )Y T CiY ) + trace(off(Y T CiZ)Y T CiY )

+ trace(off(Y T CiY )ZT CiY ) + trace(off(Y T CiY )Y T CiZ)

=
N

∑

i=1

4trace(ZT CiY (off(Y T CiY ).

For the gradient of f̃ , we thus get

grad f̃(Y ) =
N

∑

i=1

4CiY off(Y T CiY ).

It is easy to check that PTY
grad f̃(Y ), the projection of grad f̃(Y ) onto TY OB, satisfies the

defining properties of grad f(Y ), hence

grad f(Y ) = PTY
grad f̃(Y )

=
N

∑

i=1

4CiY off(Y T CiY ) − 4Y ddiag(Y T CiY off(Y T CiY )).

Following [dC92, ABG05], we define the Hessian of f at Y as the linear operator

Hess f(Y ) : TY OB → TY OB : Z 7→ ∇Zgrad f,

where ∇ denotes the Riemannian connection (also called Levi-Civita connection). Since OB is
a Riemannian submanifold of the Euclidean space R

n×p, the Riemannian connection satisfies

∇ηξ = PTY
(Dξ(Y )[η])

where Y is the foot of η. It follows that

Hess f(Y )[Z] = PTY
Dgrad f(Y )[Z]

= PTY
Dgrad f̃(Y )[Z] − Zddiag(Y T grad f̃(Y ))
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with

Dgrad f̃(Y )[Z] =
N

∑

i=1

4CiZoff(Y T CiY ) + 4CiY off(ZT CiY )

+ 4CiY off(Y T CiZ).

4 The RTR-ICA approach

We now have the necessary ingredients to apply the Riemannian trust-region (RTR) approach
to the problem of minimizing the cost function (1) on the oblique manifold OB endowed with
the Riemannian metric (3) and the retraction (4). The general idea is as follows. The
RTR scheme is an iterative process that, from a current iterate W on the oblique manifold,
produces a next iterate W+ on the oblique manifold. First, a model mW of the cost function
f is constructed around W ; more precisely, mW (Z) approximates f(RW (Z)). When not too
expensive computationally (which is the case here), it is useful to choose mW as the Newton
model, i.e., second-order Taylor expansion of f ◦ RW :

mW (Z) = f(W ) + 〈grad f(W ), Z〉 +
1

2
〈Hess f(W )[Z], Z〉.

Next, an (approximate) minimizer of the model is sought within a region where the model is
“trusted” (hence the name of the method). The size of the trust-region has to be externally
specified for the first iterate; it is subsequently automatically updated: if there is a good
agreement between the cost function and the model at the proposed next iterate, then the
proposed iterate is accepted and the size of the trust region is possibly increased. If the
agreement is poor, the size of the trust region can be reduced and the proposed iterate can
even be discarded. For more details on the trust-region concept, which originates from the
work of Powell in the 1970s, we refer to [ABG05] and references therein. Finally, we point out
that there are several ways to approximately solve trust-region subproblems, i.e., to compute
an approximate minimizer of a quadratic model within a trust region. Usually, finding a
high-precision solution of each subproblem is not necessary and would constitute a waste of
computational effort; on the other hand, the approximate solution has to be sufficiently precise
so that strong local and global convergence properties hold. To handle this tradeoff, the use
of Steihaug’s truncated CG method is advocated in [ABG05], and we use it in the numerical
experiments reported on in the next section. We also refer to [ABG05] for a convergence
analysis of the general RTR schemes.

We now describe the resulting algorithm in detail. The trust-region subproblems take the
form

min
η∈TWk

M
mWk

(η) = f(Wk) + 〈grad f(Wk), η〉Wk
+

1

2
〈HWk

η, η〉Wk
s.t. 〈η, η〉Wk

≤ ∆2
k (5)

with HY := Hess f(Y ), and we have the following outer iteration.

Algorithm 1 (RTR-ICA) Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ [0, 1
4).

Input: initial iterate W0 ∈ OB.
Output: sequence of iterates {Wk}.
for k = 0, 1, 2, . . .
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Obtain ηk by (approximately) solving (5);

Evaluate ρk :=
f(Wk)−f(RWk

(ηk))

mWk
(0Wk

)−mWk
(ηk) .

if ρk < 1
4

∆k+1 = 1
4∆k

else if ρk > 3
4 and ‖ηk‖ = ∆k

∆k+1 = min(2∆k, ∆̄)
else

∆k+1 = ∆k;
if ρk > ρ′

Wk+1 = RWk
ηk

else
Wk+1 = Wk;

end (for).

In order to approximately solve the trust-region subproblems (5), we suggest using the
truncated CG algorithm of Steihaug [Ste83] and Toint [Toi81].

Algorithm 2 (tCG) Set η0 = 0, r0 = grad f(Wk), δ0 = −r0;
for j = 0, 1, 2, . . . until a stopping criterion is satisfied, perform the iteration:

if 〈δj ,HWk
δj〉Wk

≤ 0
Compute τ such that η = ηj + τδj minimizes mWk

(η) in (5)
and satisfies ‖η‖ = ∆;

return η;
Set αj = 〈rj , rj〉Wk

/〈δj ,HWk
δj〉Wk

;
Set ηj+1 = ηj + αjδj;
if ‖ηj+1‖ ≥ ∆

Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖ = ∆;
return η;

Set rj+1 = rj + αjHWk
δj;

Set βj+1 = 〈rj+1, rj+1〉Wk
/〈rj , rj〉Wk

;
Set δj+1 = −rj+1 + βj+1δj;

end (for).

With a view towards achieving superlinear convergence, we stop as soon as an iteration j is
reached for which

‖rj‖ ≤ ‖r0‖min(‖r0‖
θ, κ). (6)

Concerning the computation of τ , it can be shown that when 〈δj ,HWk
δj〉 ≤ 0, arg minτ∈R mk(η

j+
τδj) is equal to the positive root of ‖ηj + τδj‖ = ∆, which is explicitly given by

−〈ηj , δj〉x +
√

〈ηj , δj〉2x − (∆2 − 〈ηj , ηj〉x)〈δj , δj〉x
〈δj , δj〉x

.

5 Simulation results

The following simulation follows closely the one in [RR00]; we simply increased the number
of data points and modified some of the signals to improve the spatial uncorrelatedness of
the sources. We use four synthetic signals with 106 sample points, whose 100 first points
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are shown on Figure 1. The sources are mixed using a four-by-four randomly generated
mixing matrix A (Figure 2). Three target matrices C1, C2, C3 are chosen as lagged sample
covariance matrices of x(t). The iteration is initialized with W equal to the identity matrix.
The performance of separation displayed in Figure 4 is measured using the formula

Pindex = 20 log10





1

n





n
∑

i=1





n
∑

j=1

|qij |

maxℓ |qiℓ|
− 1











 ,

where qij is the (i, j)th element of Q := W T A. The source signals are recovered precisely,
modulo the scaling and ordering indeterminacies (Figure 3).

To illustrate the benefit of taking the model mW as the Newton model, we applied to
the same problem the linearly convergent method obtained by defining mW as the first-order
Taylor expansion; the algorithm then took more than 6000 (inner) iterations to only reach a
performance index of −100.
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Figure 1: The four source signals.

With a view towards a comparison with the simulation results in [RR00, JR02], notice that
one iteration of nonlinear CG involves a line-search process with possibly several evaluations
of the cost function, and that an iteration of Newton’s method involves solving the Newton
equation. In contrast, in the truncated CG process, the major work consists in one application
of the Hessian operator per inner iteration.

6 Discussion and future work

We have proposed a Riemannian trust-region method on the oblique manifold to perform joint
diagonalization with superlinear convergence. Numerical experiments have shown the efficacy
of the method for high accuracy blind source separation with few sources and mixtures. The
observed behaviour, however, became less satisfactory as the number of sources and mixtures
grew. In future work, we will study the properties of the off-diagonal cost function (1)
and other cost functions, and investigate the numerical stability of the truncated CG inner
iteration.
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Figure 2: The four mixed signals.
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