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Fast evaluation of polyharmonic splines

in three dimensions
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Abstract: This paper concerns the fast evaluation of radial basis functions.
It describes the mathematics of hierarchical and fast multipole methods for
fast evaluation of splines of the form

s(x) = p(x) +
N∑

j=1

dj |x− xj|2ν−1, x ∈ R3,

where ν is a positive integer, and p is a low degree polynomial. Splines s of this
form are polyharmonic splines in R3 and have been found to be very useful for
providing solutions to scattered data interpolation problems in R3. As is now
well known hierarchical methods reduce the incremental cost of a single extra
evaluation from O(N) to O(log N) operations, and reduce the cost of a matrix
vector product (evaluation of s at all the centres) from O(N2) to O(N log N)
operations. We give appropriate far and near field expansions, together with
error estimates, uniqueness theorems, and translation formulae. A hierarchical
code based on these formulae is detailed and some numerical results are given.

Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA,
England.

April, 2006

1Department of Mathematics and Statistics, University of Canterbury, Private Bag 4800,
Christchurch 8020, New Zealand.



2 Fast evaluation of 3D polyharmonic splines

1 Introduction

Polyharmonic splines in R3 are functions of the form

s(x) = p(x) +
N∑

j=1

dj |x− xj |2ν−1, (1)

with ν a positive integer and p a polynomial of degree at most ν. One justification
for the name polyharmonic spline is that |x|2ν−1 is a multiple of a fundamental
solution Φ to the distributional equation

4ν+1Φ = δ0,

where 4 denotes the Laplacian and δ0 is the Dirac measure at the origin. One of
the attractions of polyharmonic splines is their smoothest interpolation property.
Focusing on the R3 case, given a set of distinct points {xj}N

j=1 in R3 unisolvent for
π3

ν , and corresponding function values fj ∈ R, there is a unique (ν + 1)-harmonic
spline s of the form (1) satisfying the interpolation conditions

s(xj) = fj , j = 1, . . . , N,

and the side conditions

N∑
j=1

dj q(xj) = 0, for all q ∈ π3
ν .

Moreover, this interpolant minimizes the energy functional∑
|α|=ν+1

(ν + 1)!
α1!α2!α3!

∫
R3

(Dαg(x))2 dx

over all suitably smooth interpolants g. In part because of this property 3D poly-
harmonic splines have been employed in a variety of applications including surface
reconstruction from laser and lidar scans (see e.g. [4]), and modeling ore grade from
drill hole data.

One obstacle to the widespread use of polyharmonic splines is speed of evalu-
ation. Thus, at first sight, evaluating the spline (1) at a single point x appears
to require O(N) flops. Similarly the matrix-vector product task of evaluating s
at all the centres xj appears to require O(N2) flops. This task is very important
as iterative methods for finding the coefficients of an interpolant require repeated
evaluation of matrix-vector products (see e.g. [7]). Therefore fast evaluators are es-
sential if polyhharmonic splines are to be used in applications involving large data
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sets. Fortunately, there are now several different fast evaluation methods that can
be applied. This paper concerns hierarchical and fast multipole evaluators.

Far field (multipole) and near field expansions of functions, particularly har-
monic functions, are well known in Potential Theory, Physics and Quantum Chem-
istry (see e.g. Jackson [11]). More recently methods for fast evaluation of functions
have been built by coupling hierarchical subdivisions of space with these expan-
sions. The resulting numerical methods have dramatically lower operation counts
than direct evaluation. Typically the incremental cost of a single extra evaluation is
reduced to O(log N) or O(1), and the work of a matrix vector product is reduced to
O(N log N) or O(N). The hidden order constants depend on many factors including
the precision of evaluation, and the dimension. These fast methods were initially
developed for electrostatic potentials in 2-dimensions and gravitational potentials in
3-dimensions. Pioneering work can be found in Barnes and Hut [1], and Greengard
and Rokhlin [9, 10]. Algorithms of this type have become known as fast multipole
methods. The methods to be developed in this paper are of this type.

This paper is organised as follows. In section 2 the far field expansions are
developed for the simple special case of biharmonic splines. In section 3 the par-
ticular forms of spherical harmonics and inner and outer functions used here are
detailed. In section 4 the outer expansions are developed in the general case of a
(ν + 1)-harmonic spline. In section 5 translation formulae are developed for outer
expansions. In section 6 a uniqueness lemma is given which enables indirect calcula-
tion of outer expansions from expansions for child panels. In section 7 a hierarchical
code based on the outer expansions is detailed and some numerical results given.
In Appendix A outer to inner and inner to inner translation formulae are developed
for a full fast multipole code.

2 The biharmonic case

In this section far field expansions are developed for biharmonic splines in R3, which
is the ν = 1 case of expression (1).

A general point x ∈ R3 can be expressed in both Cartesian coordinates (x, y, z)
and in spherical polar coordinates [r, θ, φ]. The Cartesian and spherical polar rep-
resentations are related by

(x, y, z) = (r sin θ cos φ, r sin θ sinφ, r cos θ), 0 ≤ θ ≤ π, −π < φ ≤ π.

Consider now points x and x< in R3 with Cartesian coordinates (x, y, z) and
(x<, y<, z<) and spherical polar coordinates [r, θ, φ] and [r<, θ<, φ<] respectively.
Assume |x<| < |x| which implies h = r</r < 1. Let γ be the angle between x and
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x<. Then
cos γ = cos θ cos θ< + sin θ sin θ< cos(φ− φ<).

Writing u = cos γ, we find by the cosine rule

1
|x− x<|

=
1

r
√

1− 2uh + h2
.

Now 1/
√

1− 2uh + h2 is the generating function for the Legendre polynomials,
which gives

1
|x− x<|

=
1
r

∞∑
n=0

hnPn(u) , h < 1,

=
∞∑

n=0

r−n−1 rn
< Pn(u), r< < r, (2)

where as usual Pn denotes the Legendre polynomial of degree n normalised so that
Pn(1) = 1. Expression (2) can be usefully employed to form the farfield expansion of
a cluster when all the sources xj and the evaluation point x lie on a single straight
line through the origin. For more general arrangements of sources and evaluation
point, it is necessary to separate the influence of sources and evaluation point which
can be achieved by using the addition formula for the Legendre polynomials (See
for example Jackson [11] and Greengard and Rokhlin [10]).

There are many different ways to define a collection {Y m
n } of spherical harmonics

for the unit sphere S2 ⊂ R3. Our choice is that of Epton and Dembart [5] and is
specified in the second paragraph of section 3. In this case, the addition formula
for the Legendre polynomials takes the form

Pn(cos γ) =
n∑

m=−n

Y −m
n (θ<, φ<) Y m

n (θ, φ). (3)

Furthermore, the addition formula can be rewritten in terms of inner and outer
harmonic functions, also defined in section 3, as

r−n−1 rn
< Pn(cos γ) = (−1)n

n∑
m=−n

I−m
n (x<) Om

n (x). (4)

It follows from expressions (2) and (4) that

1
|x− x<|

=
∞∑

n=0

(−1)n
n∑

m=−n

I−m
n (x<) Om

n (x), |x| > |x<| . (5)
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This double sum is absolutely convergent in the case |x| > |x<| because inequal-
ity (19) implies the bound∣∣I−m

n (x<)Om
n (x)

∣∣ ≤ |x<|n |x|−n−1 ,

for all the integers m and n that occur.
Summing over a cluster of sources {xj} with associated weights {dj} gives the

expansion
N∑

j=1

dj

|x− xj |
=

∞∑
n=0

n∑
m=−n

Mm
n Om

n (x), (6)

valid everywhere outside the smallest ball about the origin containing all the sources,
where

Mm
n = (−1)n

N∑
j=1

dj I−m
n (xj). (7)

Applying the same idea to |x− x<|, we find

|x− x<| = r
√

1− 2uh + h2 , h < 1 ,

=
r(1− 2uh + h2)√

1− 2uh + h2

= r(1− 2uh + h2)
∞∑

n=0

hnPn(u)

= r
∞∑

n=0

hn [Pn(u)− 2u Pn−1(u) + Pn−2(u)] ,

where P−1 = P−2 = 0. Hence, noting the recurrence relation

(2k + 1)u Pk(u) = (k + 1) Pk+1(u) + k Pk−1(u), k ≥ 0 ,

for the Legendre polynomials, we derive the formula

|x− x<| = r
∞∑

n=0

−hn

2n− 1
[Pn(u)− Pn−2(u)] , (8)

retaining P−1 = P−2 = 0.
We approximate the influence of clusters of sources by far field series based on

this expansion. Consider therefore truncating it by neglecting all terms of order
O(r−p) or smaller as r →∞, obtaining

|x− x<| ≈ r

p∑
n=0

−hn

2n− 1
[Pn(u)− Pn−2(u)] . (9)
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From above, and using |Pn(u)| ≤ 1, −1 ≤ u ≤ 1, the error of the approximation (9)
is bounded by∣∣∣∣|x− x<| − r

p∑
n=0

−hn

2n− 1

[
Pn(u)− Pn−2(u)

]∣∣∣∣
=

∣∣∣∣∣∣r
∞∑

n=p+1

hn

2n− 1

[
Pn(u)− Pn−2(u)

]∣∣∣∣∣∣
≤ 2r

2p + 1
hp+1 1

1− h
≤
(

2r

2p + 1

)(
1

1− R
r

)(
R

r

)p+1

, (10)

for any R that satisfies |x<| ≤ R < |x| = r.
Again the addition formula (4) for Legendre polynomials gives a form that is

useful for clusters of sources in general position. Specifically, we write (9) as the
estimate

|x− x<| ≈ r2

[
−

p∑
n=0

r−1−n rn
<

2n− 1
Pn(u)

]
+

[
p−2∑
n=0

r−1−n rn+2
<

2n + 3
Pn(u)

]

= r2

{
p∑

n=0

n∑
m=−n

NnmOm
n (x)

}
+

{
p−2∑
n=0

n∑
m=−n

MnmOm
n (x)

}
, (11)

where

Nnm = −(−1)n 1
2n− 1

I−m
n (x<) and Mnm = (−1)n r2

<

2n + 3
I−m

n (x<). (12)

Thus, by superposition, a biharmonic radial function of the form

s(x) =
N∑

j=1

dj |x− xj |, (13)

can be approximated by the truncated expansion

r2

{
p∑

n=0

n∑
m=n

NnmOm
n (x)

}
+

{
p−2∑
n=0

n∑
m=−n

MnmOm
n (x)

}
(14)

where now the coefficients Nnm and Mnm are the complex numbers

Nnm = − (−1)n

2n− 1

N∑
j=1

dj I−m
n (xj) and Mnm =

(−1)n

2n + 3

N∑
j=1

dj r2
j I−m

n (xj), (15)
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which do not depend on x. In view of the error bound (10), the expansion (14)
converges to s(x) as p → ∞ for all x outside the smallest closed ball about the
origin containing all the centres xj , 1 ≤ j ≤ N .

This paper concerns the application of the expansion (14) and of the analogous
truncated expansions of (ν + 1)–harmonic splines

s(x) =
N∑

j=1

dj |x− xj |2ν−1 (16)

≈
ν∑

k=0

r2ν−2k
p−2k∑
n=0

n∑
m=−n

N (k)
nmOm

n (x), (17)

to the fast evaluation of polyharmonic splines in R3. Error estimates, uniqueness
theorems, translation theorems, and some numerical results will be given in the
sections to follow.

3 Spherical harmonics, associated Legendre functions,
etc

There are many different formulations and normalizations of spherical harmonics
and associated Legendre functions. Consequently one has to be very careful when
combining formulae from different sources. We follow Epton and Dembart [5] as
their choice helps to simplify the translation formulae.

They employ the associated Legendre functions

Pm
n (u) =

(n + m)!
2nn! (n−m)!

(1− u2)−m/2 dn−m

dun−m
(u2 − 1)n, −1 ≤ u ≤ 1,

for −n ≤ m ≤ n, n ≥ 0. For all other values of n and m, Pm
n is taken to be the

zero function. This specification of the associated Legendre function implies

P−m
n (u) = (−1)m (n−m)!

(n + m)!
Pm

n (u), −n ≤ m ≤ n.

Epton and Dembart then define spherical harmonics Y m
n by

Y m
n (θ, φ) = εm

√
(n−m)!
(n + m)!

Pm
n (cos θ) eimφ, −n ≤ m ≤ n,

where

εm =
{

(−1)m, m ≥ 0
1, m ≤ 0.
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Their properties include conjugate symmetry

Y −m
n (θ, φ) = Y m

n (θ, φ),

and the orthogonality relation∫ π

0

∫ π

−π
Y m

n (θ, φ) Y −j
k (θ, φ) sin θ dφ dθ =

4π

2n + 1
δmj δnk. (18)

The conjugate symmetry with the addition formula (3) gives the identity

1 = Pn(1) =
n∑

m=−n

|Y m
n (θ, φ)|2 ,

for all θ and φ in R. It follows that

|Y m
n (θ, φ)| ≤ 1, (19)

for all θ, φ, n and m. Further Epton and Dembart define outer spherical harmonics
(harmonic functions well behaved away from zero)

Om
n (x) = Om

n (r, θ, φ) =
i |m|(−1)n

Am
n

Y m
n (θ, φ)
rn+1

(20)

and inner spherical harmonics (harmonic functions well behaved away from infinity)

Im
n (x) = Im

n (r, θ, φ) = i−|m|Am
n rn Y m

n (θ, φ)

where
Am

n = A−m
n =

(−1)n√
(n−m)! (n + m)!

,

and where i denotes the square root of −1. These remarks imply the symmetries

Om
n (x) = (−1)mO−m

n (x) and Im
n (x) = (−1)mI−m

n (x). (21)

It is important that Om
n (x) is of exact order |x|−n−1 as |x| → ∞, and that

Im
n (x), x ∈ R3, is a homogeneous polynomial of degree n. Define

Em
n = (−i )m(n−m)! =

(−1)n (−i )m

Am
n

√
(n−m)!
(n + m)!

, (22)

and

Fm
n =

(−1)n i m

(n + m)!
= i mAm

n

√
n−m)!
(n + m)!

. (23)

Then easy calculations provide the formulae

Om
n (x) = Em

n r−n−1 Pm
n (cos θ) ei mφ and Im

n (x) = Fm
n rn Pm

n (cos θ)ei mφ, (24)

which show the homogeneities explicitly.
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4 Expansions and error estimates

The following theorem is a generalisation of the expansions (2) and (8) of section 2.
Those expansions can be applied to fast evaluation of harmonic and biharmonic
splines on R3, while the theory below covers the general (ν + 1)-harmonic spline
case on R3.

Theorem 4.1. (Generalized Legendre expansion)
Let h and u be real numbers that satisfy 0 ≤ h < 1, −1 ≤ u ≤ 1, and let ν be any
positive integer. Then(

1− 2hu + h2
)ν− 1

2 =
∞∑

n=0

hn
ν∑

k=0

αν,k(n) Pn−2k(u), (25)

where the coefficients have the values

αν,k(n) = (−1)ν+k (2ν − 1)!!
(

ν

k

) ν∏
`=0, 6̀=k

1
2n− 2k − 2` + 1

, (26)

and where, for n < 2k, we set Pn−2k(u) = 0. The term (2ν−1)!! is the product∏ν
j=1(2j−1).

Note: For each choice of ν and for k = 0, 1, . . . , ν, the coefficient αν,k(n) is of
magnitude n−ν for large n. Also the modulus of Pn−2k(u), −1 ≤ u ≤ 1, is at
most one. It then follows from |h| < 1 that the double sum on the right of (25) is
absolutely convergent. All double sums in the proof below have this property.

Proof. When ν = 1, expression (26) gives the coefficients

α1,0(n) =
−1

2n− 1
and α1,1(n) =

1
2n− 1

. (27)

Therefore, after dividing both sides of (8) by r = |x|, we find that the theorem is
true for the biharmonic case ν = 1.

We complete the proof by induction on ν. Let equation (25) hold for the current
ν, beginning with ν = 1. We show that the equation remains true if ν is increased
by one. Starting with (25) we obtain(

1− 2hu + h2
)ν+ 1

2 =
∞∑

n=0

hn
ν∑

k=0

(
1− 2hu + h2

)
αν,k(n) Pn−2k(u)

=
∞∑

n=0

hn
ν∑

k=0

{αν,k(n) Pn−2k(u)− 2u αν,k(n− 1) Pn−2k−1(u)

+ αν,k(n− 2) Pn−2k−2(u)} . (28)



10 Fast evaluation of 3D polyharmonic splines

The three term recurrence relation for the Legendre polynomials provides the iden-
tity

2u Pn−2k−1(u) =
2n− 4k

2n− 4k − 1
Pn−2k(u) +

2n− 4k − 2
2n− 4k − 1

Pn−2k−2(u), (29)

even if some of the subscripts of P are negative. Thus we deduce the expression

(
1− 2hu + h2

)ν+ 1
2 =

∞∑
n=0

hn
ν+1∑
k=0

α̂ν,k(n) Pn−2k(u), (30)

where the new coefficients are the numbers

α̂ν,0(n) = αν,0(n)− 2n

2n− 1
αν,0(n− 1), (31a)

α̂ν,ν+1(n) = αν,ν(n− 2)− 2n− 4ν − 2
2n− 4ν − 1

αν,ν(n− 1), and (31b)

α̂ν,k(n) = αν,k(n)− 2n− 4k

2n− 4k − 1
αν,k(n− 1) (31c)

+ αν,k−1(n− 2)− 2n− 4k + 2
2n− 4k + 3

αν,k−1(n− 1), 1 ≤ k ≤ ν.

It remains to establish algebraically that α̂ν,k(n) = αν+1,k(n).
When k = 0, we find the value

α̂ν,0(n) = (−1)ν

{
ν∏

`=1

2`− 1
2n− 2` + 1

− 2n

2n− 1

ν∏
`=1

2`− 1
2n− 2`− 1

}

= (−1)ν

{
ν∏

`=1

2`− 1
2n− 2` + 1

}{
1− 2n

2n− 2ν − 1

}

= (−1)ν+1
ν+1∏
`=1

2`− 1
2n− 2` + 1

= αν+1,0(n), (32)

and, when k = ν + 1,

α̂ν,ν+1(n) =
2n− 4ν − 3
2n− 2ν − 3

ν∏
`=1

2`− 1
2n− 2ν − 2`− 3

− 2n− 4ν − 2
2n− 2ν − 1

ν∏
`=1

2`− 1
2n− 2ν − 2`− 1

=

{
ν∏

`=1

2`− 1
2n− 2ν − 2`− 1

}{
1− 2n− 4ν − 2

2n− 2ν − 1

}

=
2n− 4ν − 3
2n− 2ν − 1

ν+1∏
`=1

2`− 1
2n− 2ν − 2`− 1

= αν+1,ν+1(n). (33)
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Therefore, in the remainder of the proof, k is any integer from the interval [1, ν].
We substitute the values

αν,k(n) = −ν − k + 1
k

2n− 4k + 1
2n− 4k + 3

αν,k−1(n− 1) (34a)

αν,k(n− 1) = −ν − k + 1
k

2n− 4k − 1
2n− 4k + 3

2n− 2k + 1
2n− 2k − 2ν − 1

αν,k−1(n− 1) (34b)

αν,k−1(n− 2) =
2n− 4k + 1
2n− 4k + 3

2n− 2k + 1
2n− 2k − 2ν − 1

αν,k−1(n− 1) (34c)

into (31c), in order to express α̂ν,k(n) as a multiple of αν,k−1(n− 1). We merge the
second and fourth terms that occur making use of the identity

(ν − k + 1)(n− 2k)(2n− 2k + 1)− k(2n− 2k − 2ν − 1)(n− 2k + 1) (35)

= (2n− 4k + 1)(nν + 2k2 − 2kn− k + n),

because the factor (2n− 4k + 1) occurs in the other two terms. Thus α̂ν,k(n) is the
product of the expressions

(2n− 4k + 1) αν,k−1(n− 1)/ {k(2n− 4k + 3)(2n− 2k − 2ν − 1)} (36)

and

−(ν − k + 1)(2n− 2k − 2ν − 1) + 2(nν + 2k2 − 2kn− k + n) (37)

+ k(2n− 2k + 1) = 2ν2 + 3ν + 1.

It follows from the identity

αν+1,k(n)
αν,k−1(n− 1)

=
ν + 1

k

2n− 4k + 1
2n− 4k + 3

2ν + 1
2n− 2k − 2ν − 1

(38)

that the theorem is true.

We are going to estimate (1−2hu+h2)ν−1/2 by truncating the infinite sum (25).
The inequality∣∣∣∣∣hn

ν∑
k=0

αν,k(n) Pn−2k(u)

∣∣∣∣∣ ≤ hn
ν∑

k=0

|αν,k(n)| = hn Cν(n),

say, is going to provide a useful bound on the terms that are dropped from the
infinite sum. The definition (26) implies the formula

Cν(n) =
ν∑

k=0

|αν,k(n)| =
(2ν−1)!! 2ν

(2n−1)(2n−5) · · · (2n−4ν+3)
, n≥2ν−1, (39)
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which was found originally by straightforward algebra for ν =1, 2, 3, and 4. Then, by
invoking special functions, Iserles (private communication) established the formula
for all positive integers ν, and later the authors devised a proof by induction. The
latter proof is available in the Publications and Downloads section of the web page
www.math.canterbury.ac.nz/~rkb29.

The next theorem addresses the truncation of the infinite sum involving inner
and outer functions derived from (25) by use of the addition formula.

Theorem 4.2. Let ν ∈ N be fixed, and let N centres xj ∈ R3, 1 ≤ j ≤ N ,
with |xj | ≤ R, and N corresponding real coefficients dj be given. Then, whenever
r = |x| > R, the (ν + 1)-harmonic spline

s(x) =
N∑

j=1

dj |x− xj |2ν−1, x ∈ R3 , (40)

can be written as the convergent series

s(x) =
ν∑

k=0

|x|2ν−2k
∞∑

n=0

n∑
m=−n

N (k)
nmOm

n (x), (41)

the coefficients being

N (k)
nm = (−1)n αν,k(n + 2k)

N∑
j=1

dj r2k
j I−m

n (xj), 0 ≤ |m| ≤ n, 0 ≤ k ≤ ν, (42)

where αν,k(n + 2k) is defined in Theorem 4.1 and rj = |xj |. Furthermore, if p ∈ N
and p ≥ 2ν − 1, then∣∣∣∣ N∑

j=1

dj |x− xj |2ν−1 −
ν∑

k=0

|x|2ν−2k
p−2k∑
n=0

n∑
m=−n

N (k)
nmOm

n (x)
∣∣∣∣

≤ Mr2ν−1 Cν(p + 1)
(

R

r

)p+1
(

1
1− R

r

)
(43)

where M =
∑N

j=1 |dj | and Cν(p + 1) is defined by (39).

Remark: An empty sum of the form
∑−1

n=0

∑n
m=−n . . . occurs in (43) when p = 2ν−1

and k = ν. All such empty sums are to be taken as zero.

Proof. Consider the special case of a single centre at x< and weight unity

s(x) = |x− x<|2ν−1 .
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As before, we write h for |x<|/|x| < 1 and u for cos γ, where γ is the angle between
x< and x. Then by the cosine formula

|x− x<|2ν−1 =
(
|x|2 − 2|x||x<| cos γ + |x<|2

)ν− 1
2

= r2ν−1
(
1− 2hu + h2

)ν− 1
2

= r2ν−1
∞∑

n=0

hn
ν∑

k=0

αν,k(n) Pn−2k(u)

=
ν∑

k=0

r2ν−2k r2k
<

∞∑
n=0

αν,k(n + 2k) r−n−1 rn
< Pn(u)

=
ν∑

k=0

r2ν−2k r2k
<

∞∑
n=0

(−1)n αν,k(n + 2k)
n∑

m=−n

I−m
n (x<)Om

n (x), (44)

where we have used Theorem 4.1, the note following it, the property Pn−2k(u) = 0,
n < 2k, and equation (4). This shows (41) and (42) in the special case. They follow
by superposition for the general case.

We now turn to the error estimate. Consider again the special case s(x) =
|x − x<|2ν−1 where r = |x| > R ≥ |x<| . From the reasoning leading to (44), the
left hand side of (43) is∣∣∣∣∣∣r2ν−1

∞∑
n=p+1

(
|x<|

r

)n ν∑
k=0

αν,k(n) Pn−2k(u)

∣∣∣∣∣∣ =: E.

Recalling |Pn(u)| ≤ 1 and (39), we obtain

E ≤ r2ν−1
∞∑

n=p+1

(
R

r

)n ν∑
k=0

|αν,k(n)| = r2ν−1
∞∑

n=p+1

(
R

r

)n

Cν(n), (45)

for p ≥ 2ν − 1, which gives the bound

E ≤ r2ν−1 Cν(p + 1)
(

R

r

)p+1 1
1−

(
R
r

) , (46)

because expression (39) is a decreasing function of n.
This shows (43) in the special case. Since the right hand side of the error

estimate (46) is increasing in h = R/r, the error estimate (43) for the general case
follows by superposition.
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5 Uniqueness of outer expansions

This section contains a uniqueness result for truncated outer expansions. It shows
that the truncated expansion of equation (43) is the only expansion of that form
achieving asymptotic accuracy o

(
|x|(2ν−1)−p

)
for large |x|. This result will later

allow coefficients of the outer series for a panel to be calculated from the outer
series for child panels by an indirect method that is inexpensive.

Lemma 5.1. Let ν and p be any nonnegative integers, and let a function gp, defined
for all x ∈ R3\{0}, be written in the form

gp(x) =
ν∑

k=0

|x|2ν−2k
p−2k∑
n=0

n∑
m=−n

N (k)
nmOm

n (x), (47)

for some complex coefficients
{

N
(k)
nm

}
, the inner double sum being taken as zero

whenever 2k > p occurs. Then

(i) the coefficients
{

N
(k)
nm

}
are uniquely determined by the function gp,

(ii) if |gp(x|) = o
(
|x|(2ν−1)−p

)
as |x| → ∞, then gp is the zero function.

Proof of (i). Recall from (18) that the functions {Y m
n : −n ≤ m ≤ n, 0 ≤ n ≤ p}

are an orthogonal set of nontrivial spherical harmonics on the unit sphere S2 with
respect to the inner product

〈f, g〉 =
∫
S2

f(x) g(x) dσ(x) .

Further recall from (20) that Om
n is homogeneous of degree −n − 1 on R3\{0},

meaning
Om

n (λx) = λ−n−1Om
n (x), for all x 6= 0 and λ > 0.

It follows, from this homogeneity property and expression (47) for gp, that the
decay rates of the terms of gp(x) as |x| → ∞ are between |x|2ν−1 and |x|2ν−1−p.
Therefore gp can be decomposed into an expansion

gp(x) = T0(x) + T1(x) + · · ·+ Tp(x),

where each function Tq is either identically zero or nonzero and homogeneous of
degree (2ν − 1)− q. For u with |u| = 1 the Tq’s are given by the recurrence

Tq(u) = lim
λ→∞

gp(λu)−
∑q−1

k=0 Tk(λu)
λ(2ν−1)−q

, q = 0, 1, . . . , p.
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Now fix q, 0 ≤ q ≤ p. Then expression (47) for gp gives the formula

Tq(x) =
min{ν,[q/2]}∑

k=0

r2ν−2k
q−2k∑

m=−(q−2k)

N
(k)
q−2k,mO

m
q−2k(x), r = |x| > 0, (48)

where [q/2] is the integer part of q/2. In this expression each Om
n occurs at most

once. Hence, taking r = |x| = 1, the orthogonality of the {Om
n } on S2 implies that

the coefficients
{

N
(k)
q−2k,m

}
occurring on the right of (48) are uniquely determined

by Tq. Combining this with the recursive definition of the Tq’s from limits of gp, we
find that the first claim of the lemma is true.
Proof of (ii) From the proof of part (i) of the lemma gp = T0+T1+· · ·+Tp, where each
Tq is homogeneous of degree (2ν−1)−q. The decay of gp at infinity is dominated by
the first nonzero term of this expansion. Hence |gp(x)| = o

(
|x|(2ν−1)−p

)
as |x| → ∞

implies T0, T1, . . . , Tp are all identically zero. Hence gp also is identically zero.

6 Outer to outer translation formulae

This section concerns translation formulae for various truncated outer function ex-
pansions. For a (ν + 1)-harmonic spline

N∑
j=1

dj |x− xj |2ν−1,

s they allow the truncated expansion about one origin, say 0, to be derived from the
truncated expansion about another origin t. It is important that the operation count
for the translation depends only on the number of terms in the original expansion
and not on the number of centres/sources underlying it. Such indirect calculation
of series can be very efficient when the number of centres is large. In the algorithm
to come a panel T is an object, or structure, with many characteristics, foremost
amongst which is its correspondence to a rectangular subset of R3. Subpanels
formed by partitioning the rectangular subset are called the children of T . The
translation formulae of this section can be applied to obtain outer, or far field,
expansions for a parent panel T inexpensively from those of T ’s children.

Consider a harmonic function s expressed as an outer series about t,

s(x) =
∞∑

n=0

n∑
m=−n

Cm
n O−m

n (x− t), |x− t| > R ≥ 0, (49)

where the convergence is uniform on the set UR+ε := {x : |x− t| ≥ R + ε} for any
ε > 0. Then from Epton and Dembart [5, Section 2.3] and well known homogeneity



16 Fast evaluation of 3D polyharmonic splines

arguments, s(x) can be rewritten as an outer series about 0,

s(x) =
∞∑

`=0

∑̀
j=−`

D`
j O

−j
` (x), |x| > R + |t|, (50)

where now the convergence is uniform on the set {x : |x| ≥ R + |t| + ε} for any
ε > 0 and where

Dj
` =

∑̀
n=0

n∑
m=−n

Cm
n Ij−m

`−n (−t). (51)

Now consider a truncated outer series for s,

hp(x) =
ν∑

k=0

|x− t|2ν−2k
p−2k∑
n=0

n∑
m=−n

M (k)
nmOm

n (x− t), (52)

formed as in Theorem 4.2 but with the origin shifted to t. According to Theorem 4.2
this series about t approximates s(x) with error |s(x)− hp(x)| = O

(
|x|`
)

as |x| →
∞, the value of ` being (2ν − 1)− (p + 1). Applying (49), (50) and (51), hp can be
expressed in the partially translated form

hp(x) =
ν∑

k=0

|x− t|2ν−2k
∞∑

n=0

n∑
m=−n

M̃ (k)
nmOm

n (x), |x| > |t|.

We drop all terms in this expression of magnitude at most |x|` for large |x|, which
gives the truncated expansion

g̃p(x) =
ν∑

k=0

|x− t|2ν−2k
p−2k∑
n=0

n∑
m=−n

M̃ (k)
nmOm

n (x), (53)

again approximating s(x) with accuracy O
(
|x|`
)

as |x| → ∞.
Formulae will now be developed that express the function

q(x) = |x− t|2
j∑

n=0

n∑
m=−n

AnmOm
n (x), (54)

in the form

j−2∑
n=0

n∑
m=−n

UnmOm
n (x) + |x|2

j∑
n=0

n∑
m=−n

VnmOm
n (x) +O(|x|−j), |x| > |t|. (55)
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By applying this remark ν − k times to the factor |x− t|2ν−2k in (53), we complete
the translation of the truncated outer series (52) about t, into a truncated outer
series about 0, of form (47). The final truncated expansion approximates s(x)
with accuracy O

(
|x|`
)

as |x| → ∞. Moreover, according to Theorem 4.2 the
truncated expansion obtained by direct calculation of coefficients gives the same
order of convergence. Therefore, by the uniqueness result of Lemma 5.1, the two
truncated expansions are identical.

It remains only to describe the process for rewriting expression (54) in the form
(55). We employ some recurrence relations, taken from [6, Section 3.8], namely that
the associated Legendre functions satisfy

cos θ Pm
n (cos θ) =

(
n + m

2n + 1

)
Pm

n−1 (cos θ) +
(

n−m + 1
2n + 1

)
Pm

n+1 (cos θ) , (56)

sin θ Pm
n (cos θ) =

1
2n + 1

{
Pm+1

n−1 (cos θ)− Pm+1
n+1 (cos θ)

}
, (57)

and

sin θ Pm
n (cos θ) =

1
2n + 1

{
(n−m + 1)(n−m + 2)Pm−1

n+1 (cos θ) (58)

− (n + m)(n + m− 1)Pm−1
n−1 (cos θ)

}
,

where −n ≤ m ≤ n. We deduce from (56), (57), (58), (22) and the first part of (24)
that

r cos θOm
n (x) =

1
2n + 1

{
(n + m)(n−m)Om

n−1(x) + r2Om
n+1(x)

}
, (56′)

r sin θ ei φOm
n (x) =

i

2n + 1

{
(n−m)(n−m− 1)Om+1

n−1 (x)− r2Om+1
n+1 (x)

}
, (57′)

and

r sin θ e−i φOm
n (x) =

i

2n + 1

{
(n + m)(n + m− 1)Om−1

n−1 (x)− r2Om−1
n+1 (x)

}
, (58′)

where Ok
` (x) is defined to be zero for all integers k and ` that satisfy |k| > `.

Then, letting t have spherical polar coordinates [ρ, α, β] and x have spherical
polar coordinates [r, θ, φ], we use the cosine formula

|x− t|2 = r2 + ρ2 − 2rρ cos γ , (59)
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where γ is the angle between vectors x and t. Substituting (59) into (54), and re-
calling that Om

n (x) is O(|x|−n−1) as |x| → ∞, the terms arising from multiplication
by r2 and ρ2 are already in the desired form (55), because when n = j − 1 and
n = j, we include ρ2AnmOm

n (x) in the O
(
|x|−j

)
term of (55). The product

−2rρ cos γ

{
j∑

n=0

n∑
m=−n

AnmOm
n (x)

}
, (60)

however, gives rise to terms that require further attention. By substituting the
identity

cos γ = cos θ cos α + sin θ sinα cos(φ− β)

= cos θ cos α + sin θ sinα

[
ei (φ−β) + e−i (φ−β)

2

]
, (61)

into (60), we obtain a series in which the dependence on x of each term is a linear
combination of (56′), (57′), or (58′). Using these last three equations recasts the
sum into the required form (55).

Combining the results above, we deduce the fully translated form (55) from the
partially translated series (54), where the new coefficients take the values

Unm = ρ2Anm − 2ρ cos α

2n + 3
(n + m + 1)(n−m + 1)An+1,m (62)

− i ρ sinα e−i β

2n + 3
(n−m + 2)(n−m + 1)An+1,m−1

− i ρ sinα ei β

2n + 3
(n + m + 2)(n + m + 1)An+1,m+1,

and

Vnm = Anm − 2ρ cos α

2n− 1
An−1,m +

i ρ sinα e−i β

2n− 1
An−1,m−1 (63)

+
i ρ sinα ei β

2n− 1
An−1,m+1,

where A`k is defined to be zero for all integers k and ` that satisfy |k| > `.

7 A binary tree based hierarchical fast evaluator

In this section we outline a simple binary tree based hierarchical fast evaluator for
the (ν + 1)-harmonic spline

s(x) =
N∑

j=1

dj |x− xj |2ν−1. (64)
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This evaluator is built upon the far field expansions developed in the previous
sections. Hierarchical fast evaluators are relatively easy to implement, and are also
suitable for nonuniform distributions of centres. Nonuniform distributions occur in
many applications, including surface reconstruction from laser and lidar scans and
modeling ore grade from drill hole data. Powell [12] describes a hierarchical fast
evaluator for biharmonic splines in R2.

The key to the fast evaluator is a tree data structure. Each node of the tree
corresponds to a rectangular panel in R3 containing centres/sources. The root
node is placed at the top of the tree and is a panel containing all the centres. The
relevant information for each node will be stored in a structure containing at least
the following items:

• c ∈ R3 contains the midpoint of the axis oriented rectangular panel.

• h ∈ R3 contains the half side lengths of the panel.

• child either contains pointers to two child panels, child[0] and child[1],
or is null if the current panel has no children.

• leftcent, rightcent: Two integers indicating which centres lie in the panel,
their values being the start and end index (plus one) in a final sorted list of
centres, which evolves as the tree is created.

• far_series: An array containing the coefficients N
(k)
nm of a far field expansion

about the midpoint c of the panel of the form specified in Theorem 4.2. The
expansion takes the form

rT , p(x) =
ν∑

k=0

|x− c|2ν−2k
p−2k∑
n=0

n∑
m=−n

N (k)
nmOm

n (x− c), (65)

which is an approximation to

sT (x) =
∑

j:xj∈T
dj |x− xj |2ν−1,

where T ⊂ R3 is the current panel. According to Theorem 4.2, the error
|sT (x)− rT , p(x)| is O

(
|x− c|(2ν−1)−(p+1)

)
as |x| → ∞.

• use_at_dist_sq: A vector containing entries for some selected positive in-
tegers q not exceeding p. The entry corresponding to q is the square of the
distance from c at which the truncated series rT , q is estimated to achieve the
per panel absolute accuracy δ, when used as an approximation to sT (x). The
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per panel accuracy, and its estimation, are described later. Given the desired
accuracy δ and x, these entries may reduce the work of employing the approx-
imation rT , p(x) ≈ sT (x), by allowing the use of the approximation rT , q with
q < p. This saving is made in the evaluation procedure that is given later.

A hierarchical fast evaluator for polyharmonic splines in R3

INPUT
Input the set of N nodes X = {xj}, the corresponding coefficients {dj} of

|x−xj |2ν−1, and the expansion order p. Also input the desired absolute accuracy ε
and a positive integer threshhold controlling the splitting of panels. Only panels
with more than 2 ∗ threshhold points will become parents, and all panels created
will contain at least threshhold centres.

DOWNWARD SWEEP CREATING A BINARY TREE OF SOURCE PANELS

Step 1. Find the smallest axis oriented closed rectangular box containing all the cen-
tres. This is the root panel at level 0. Associate with this box the full list
of centres.

Step 2 For level= 0, 1, 2, . . . in turn.
Work though all the panels at the level. Split all of those containing more
than 2*threshhold centres into two child panels, each centre being assigned
to just one of the children. Usually child panels are created by splitting the
parent panel at the midpoint of its longest side, and assigning the centres of
each piece to the appropriate child. However, if this procedure would give
a child panel with fewer than threshhold points, then the plane boundary
between the child panels is moved the minimum amount, so that exactly
threshhold points are allocated to one of the children. Child panels are then
shrunk to become the smallest axis oriented rectangular boxes containing all
their centres. After shrinking, the vectors c and h are calculated and stored.

The procedure generates a binary tree of total panels where total lies in the
interval [(N − threshold)/threshhold, (2 ∗N − threshhold)/threshhold].
Details of the method in the R2 case can be found in Powell [12].

UPWARD SWEEP CALCULATING FAR FIELD EXPANSIONS
Work up the tree level by level, ending at level 1 where there are two panels.

For each panel T at the current level:
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Step 1 Calculate the far field series (65) for the panel. That is calculate the coeffi-
cients for the far field approximation rT ≈ sT . If the panel is childless, the
coefficients are given by the formula

N (k)
nm = (−1)n αν,k(n + 2k)

∑
j:xj∈T

dj |xj − c|2k I−m
n (xj − c),

as in Theorem 4.2. Otherwise, if the panel is a parent, then perform the
calculation by the more efficient of direct calculation or translation of child
panel coefficients, as described in section 6.

Step 2 Calculate use_at_dist_sq entries for the panel, the procedure in Section 7.1
being recommended.

EVALUATION AT A POINT x
The evaluation of the RBF at a point x can be performed by recursive code.

Such a code descends the tree from level one . The approximation associated with
a panel is used when it gives sufficient accuracy, but otherwise better accuracy is
achieved by descending to the children. Details of such an evaluation algorithm,
including C++ like pseudo code, are given in [3]. Instead we prefer a stack based
code that avoids the use of recursive function calls.

Initialize the stack by setting stack[0] and stack[1] equal to the two panels of
the binary tree at level one. Set count= 1 and val= 0.0.

while count ≥ 0
T = stack[count].
Calculate the square of the distance from x to the midpoint c of T .
Compare with the entry in use_at_dist_sq corresponding to using
the full series (65).
if (The longest truncated series gives sufficient accuracy) then

Derive an efficient length of series to use from the
use_at_dist_sq entries.
Calculate the approximation to sT (x) and add it to val.
Decrease count by one.

else if (T is childless)
Calculate sT (x) directly and add it to val.
Decrease count by one.

else (Descent to the children of T )
Assign the two child panels of T to stack[count]
and stack[count+1].
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Increase count by one.
end if

end while

On exit val is the required approximation to s(x).

It is easy to see that, throughout this evaluation, the number of elements in the
stack is at most the number of levels in the binary tree.

7.1 An adaptive method for accuracy estimation

The error bound (43) of Theorem 4.2 tends to be highly pessimistic when most
of the distances |xj | , j = 1, 2, . . . , N are much less than R. Therefore, in the
numerical tests that are reported later, the use_at_dist_sq entries are calculated
by the following adaptive method.

Consider a panel T with midpoint c and radius R = max {|xj − c| : xj ∈ T }.
The truncated series rT , q(x) of (65), 0 < q ≤ p, is used as an approximation to the
function

sT (x) =
∑

j:xj∈T
dj |x− xj |2ν−1

=
ν∑

k=0

|x− c|2ν−2k
∞∑

n=0

n∑
m=−n

N (k)
nmOm

n (x− c), |x− c| > R.

Denoting |x−c| by r, it follows from the homogeneity of the Om
n functions that the

error |sT (x)− rT , q(x)| is bounded by

ν∑
k=0

r2ν−2k
∞∑

n=q+1−2k

n∑
m=−n

|N (k)
nm|Ωnm r−n−1,

where Ωnm is the number max{|Om
n (x)| : |x| = 1}. We approximate this infinite

sum by

ET , q(r) =
ν∑

k=0

r2ν−2k
p+3−2k∑

n=q+1−2k

n∑
m=−n

|N (k)
nm|Ωnm r−n−1, r > R, (66)

and use this as our estimate of |sT (x) − rT , q(x)|, 0 < q ≤ p. It requires the
calculation initially of three safety layers of coefficients, namely the coefficients
N

(k)
nm of the terms for p− 2k < n ≤ p + 3− 2k. As with adaptive quadrature rules
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the error estimation method described above could fail for contrived input data.
However, in our computational experience, it has never failed. We also note that
the error estimate has the desirable property of being more conservative for smaller
values of q, as then it uses many safety layers of coefficients N

(k)
nm.

Now given a desired overall absolute error ε we choose to partially compensate
for the number of levels by setting the per panel error tolerance as δ = ε/ max(0.3 ∗
log(numbcent/threshold), 1.0). This heuristic has worked well in our numerical
experiments. Finding an entry of the use_at_dist_sq vector involves solving the
equation ET , q(r) = δ for r, which is easily done by Newton iteration, because the
dependence on r of (66) has the form

∑2ν−q−2
j=2ν−p−4 Aj rj , r > R. Indeed the convexity

of ET , q(r) as a function of r implies that this method converges monotonically after
the first iteration.

7.2 Exploiting symmetry

In implementing the above code, storage requirements and operation counts can be
reduced substantially by exploiting symmetry. We consider the usual case in which
all the coefficients dj of the spline (64) are real. Then (42) and the second part of
(21) imply the symmetry

N
(k)
n,−m = (−1)mN

(k)
nm.

It follows that

N (k)
nmOm

n (x) + N
(k)
n,−mO−m

n (x) = 2<
{

N (k)
nmOm

n (x)
}

, m > 0,

and that N
(k)
n0 and O0

n(x) are real. Thus the truncated far field expansion (65) can
be rewritten in the form

rT , p(x) =
ν∑

k=0

|x− c|2ν−2k
p−2k∑
n=0

{
N

(k)
n0 O0

n(x− c) + 2<

(
n∑

m=1

N (k)
nmOm

n (x− c)

)}
.

Using this form approximately halves the coefficient storage requirements of the
fast evaluator. It also lowers significantly the computational cost of forming and
evaluating the series expansions.

7.3 Computing the inner and outer functions

The formation of the far field series, directly or indirectly, requires the calculation
of inner functions, and thus of associated Legendre functions. One way to formu-
late the calculation of the latter functions efficiently and stably is given in Press,
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Achieved accuracy Fast eval time Direct
N τ = 10−3 τ = 10−6 τ = 10−3 τ = 10−6 time

4, 000 2.52(−4) 2.90(−7) 1.36(−1) 2.47(−1) 2.68(−1)
8, 000 3.86(−4) 5.26(−7) 3.30(−1) 7.09(−1) 1.05(0)

16, 000 3.72(−4) 3.98(−7) 8.06(−1) 1.89(0) 4.27(0)
32, 000 3.83(−4) 4.47(−7) 1.67(0) 4.45(0) 2.20(1)
64, 000 3.75(−4) 5.31(−7) 3.66(0) 1.08(1) 9.06(1)

128, 000 3.72(−4) 4.57(−7) 8.25(0) 2.56(1) 3.90(2)

Table 1: Time in seconds to compute a matrix-vector product – centres uniformly
distributed within a cube.

Flannery, Teukolsky and Vetterling [13]. They combine a variant of the recurrence
relation (56) with the initial value

Pm
m (u) = (−1)m(2m− 1)!!

(
1− u2

)m/2
, u = cos θ.

Furthermore, the first part of expression (24) shows that the associated Legendre
functions Pm

n (u) are also required when formula (65) is used for the evaluation of
far field expansions, m and n being from the intervals [−n, n] and [0, p] respectively.
Therefore the work of evaluating a truncated far field expansion (65) at a single
point x is O

(
(ν + 1)p2

)
flops. If, however, we find from use_at_dist_sq that (65)

can be replaced by rT , q(x) with q < p, then the amount of computation is reduced
to O((ν + 1)q2) flops.

The evaluation formula (65) exploits polyharmonicity to gain speed. Since the
outer harmonic functionOm

n (x−c) is a polynomial of degree n divided by |x−c|2n+1,
there is an alternative evaluation formula consisting of a single polynomial of degree
2p + 2ν in x divided by |x − c|2p+1. It would be less efficient than the given
method for calculating rT , p(x), because it would require O(

(
p + ν)3

)
flops instead

of O
(
(ν + 1)p2

)
flops.

7.4 Numerical experiments

We now present some numerical results obtained by a C implementation of the
algorithm above. A very similar C implementation was used for the surface recon-
structions reported in Carr et al [4]. In that paper the hierarchical fast evaluation
technique was coupled with domain decomposition and a greedy algorithm to fit
surfaces to meshes and lidar scans with hundreds of thousands of points.

Our numerical experiments here concern the matrix vector product task, that
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Achieved accuracy Fast eval time Direct
N τ = 10−3 τ = 10−6 τ = 10−3 τ = 10−6 time

4, 000 3.44(−4) 3.97(−7) 1.39(−1) 2.47(−1) 2.68(−1)
8, 000 3.24(−4) 4.15(−7) 3.02(−1) 6.11(−1) 1.05(0)

16, 000 3.26(−4) 3.90(−7) 6.77(−1) 1.47(0) 4.27(0)
32, 000 3.05(−4) 4.09(−7) 1.44(0) 3.33(0) 2.20(1)
64, 000 2.95(−4) 3.95(−7) 3.11(0) 7.45(0) 9.06(1)

128, 000 2.65(−4) 3.83(−7) 6.78(0) 1.66(1) 3.90(2)

Table 2: Time in seconds to compute a matrix-vector product – centres uniformly
distributed on the sphere S2.

is the fast evaluation of the biharmonic spline

s(x) =
N∑

j=1

λj |x− xj |,

at all the centres xi.
Table 1 shows times in seconds for computing matrix vector products for bihar-

monic splines with N centres distributed uniformly at random in the cube [−1, 1]3.
The coefficients λj were chosen uniformly at random from [−1, 1]. A timing in the
table is the average over 10 replications. In conducting the experiments we compen-
sated for the increasing infinity norm of the spline s as N increased by calculating to
given relative accuracy. Thus, given a desired relative accuracy τ , we first computed
‖s‖∞ = max1≤j≤N |s(xj)|, and then we picked the absolute accuracy ε = τ‖s‖∞ for
the fast evaluation algorithm. Similarly, letting g be the vector of values computed
by the fast evaluation algorithm, the relative accuracy is ‖s − g‖∞/‖s‖∞. The
achieved accuracy reported in the table is the average relative accuracy over the 10
replications. In no replication did the achieved accuracy exceed the desired relative
accuracy τ . The numerical experiments were carried out on a generic Athlon XP
2600 personal computer. In the numerical experiments the parameter p of the far
field series (65) was chosen as 15, and the parameter threshhold controlling the
paneling was chosen as 100. An entry of the form x.yz(b) in the table indicates
the number x.yz × 10b. It is clear from the table that the time for approximate
evaluation grows at a rate that is substantially slower than N2.

Analogous computations were carried out for centres distributed uniformly at
random on the 2-sphere S2 = {x ∈ R3 : |x| = 1}. Once more the coefficients were
chosen uniformly at random from [−1, 1]. The results of these computations are
recorded in Table 2.
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We note that the timings for the fast method improve considerably in this points
on a two dimensional manifold situation. One reason is the curse of dimensionality,
which in our case implies that random points are in a sense closer together within
a cube than on a two dimensional manifold. For example in a uniform partitioning
of a cube into subcubes a typical subcube has 26 neighbours, while in a uniform
tiling of a square into subsquares a typical subsquare has 8 neighbours. Thus there
is a tendency for more centres to be relatively far away from each centre in the two
dimensional manifold situation, which allows the hierarchical evaluator to perform
better.
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Appendix A: Outer to inner and inner to inner transla-
tion formulae

This appendix gives some mathematics that would be required if one developed the
hierarchical code of section 7 into a full fast multipole code. Specifically both outer
series about t and inner series about t are translated into inner series about 0.

There are two reasons for describing a hierarchical code rather than a full fast
multipole code in section 7. Firstly, a hierarchical code is an order of magnitude
simpler to write. Secondly, in our scattered data applications, our experience com-
paring the hierarchical code with an octtree based full fast multipole code is that
the latter will only perform significantly better for very large numbers of centres
and evaluation points.

The difference between a hierarchical code and a full fast multipole code is
that in a full fast multipole code the far field outer expansions are converted to
inner expansions in a pass descending down a tree of evaluation panels. Typi-
cally, when the distributions of centres and evaluation points are nearly uniform, to
achieve accuracy ε in a matrix vector product a hierarchical 3D code would require
O
(
(1 + | log ε|)2N log N

)
flops while a full fast multipole code would require only

O
(
(1 + | log ε|)2N

)
flops. Here the factors (1+| log ε|)2 come from the polyharmonic

series, O
(
(ν + 1)(1 + | log ε|)2

)
terms being sufficient to give the required accuracy.

The additional factor log N in the estimate for the hierarchical code is due to using
far field series from log N different levels for each evaluation, which is avoided in
the full fast multipole code by collecting the contributions of all panels sufficiently
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far from the current evaluation panel into a single inner series (polynomial). Thus,
as the number N of centres becomes very large, a full fast multipole code will do
better than a hierarchical code. See [3] for details of the difference between hierar-
chical and full multipole codes. A fast multipole code for biharmonic splines in R2

is described in [2].
To see why outer to inner conversion can be useful think of a target, or evaluation

panel E , at a fine scale. Shift the origin so that this target panel is centered at 0.
Then the outer series of a distant source panel T , centered at t, is very smooth
everywhere in the target panel E . Therefore it can be approximated within E by an
inner series valid for small |x|. Since the form of the inner series remains constant
as the source panel T changes, we can sum and approximate the influence within E
of many distant panels with a single truncated inner series.

We now discuss some of the details needed to implement the above idea. Epton
and Dembart [5] give the outer to inner translation formula

s(x) =
k∑

n=0

n∑
m=−n

Dm
n O−m

n (x− t)

=
∞∑

`=0

∑̀
j=−`

Ej
` I

j
` (x) , |x| < |t|,

where

Ej
` =

k∑
n=0

n∑
m=−n

Dm
n O−m−j

n+` (−t) .

When |t| is sufficiently large, we approximate the truncated outer expansion about
t 6= 0

hp(x) =
ν∑

k=0

|x− t|2ν−2k
p−2k∑
n=0

n∑
m=−n

M (k)
nmOm

n (x− t), (67)

by a polynomial of the form

ĝq(x) =
ν∑

k=0

|x− t|2ν−2k
q∑

n=0

n∑
m=−n

M̃ (k)
nm Im

n (x), |x| < |t|, (68)

for a suitable choice of q, the coefficients M̃
(k)
nm being derived from the above defini-

tion of Ej
` . Recalling that Im

n (x) is a homogenous polynomial of degree n, we see
that the term multiplying |x− t|2ν−2k in (68) is a Taylor polynomial approximation
to the corresponding term in (67). Hence ĝq has the property |hp(x) − ĝq(x)| =
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O
(
|x|q+1

)
as x → 0. We are going to deduce from ĝq a Taylor polynomial ap-

proximation to hp, that retains the O
(
|x|q+1

)
accuracy, and that has coefficients

that include all the dependencies on t. A similar task was addressed in section 6,
expression (53) being analogous to (68). Therefore now it is sufficient to express
the product

q(x) = |x− t|2
q∑

n=0

n∑
m=−n

Anm Im
n (x), (69)

in the form
q+1∑
n=0

n∑
m=−n

Unm Im
n (x) + |x|2

q∑
n=0

n∑
m=−n

Vnm Im
n (x). (70)

This construction can be applied repeatedly to the (ν + 1)-harmonic polynomial
(68), discarding the O

(
|x|q+1

)
and O

(
|x|q+2

)
terms of expression (70), in order to

obtain the required Taylor polynomial.
Let x and t be as in the paragraph that includes equations (59) and (61). We

recall the identity

|x− t|2 = r2 + ρ2 − 2rρ

{
cos θ cos α + sin θ sinα

[
ei (φ−β) + e−i (φ−β)

2

]}
.

Moreover we deduce from (56), (57), (58), (23) and the second part of (24) that

r cos θ Im
n (x) =

−1
2n + 1

{
(n−m + 1)(n + m + 1) Im

n+1(x) + r2 Im
n−1(x)

}
, (56′′)

r sin θ ei φ Im
n (x) =

i

2n + 1

{
r2 Im+1

n−1 (x)− (n+m+2)(n+m+1) Im+1
n+1 (x)

}
, (57′′)

and

r sin θ e−i φ Im
n (x) =

i

2n + 1

{
r2 Im−1

n−1 (x)−(n−m+1)(n−m+2) Im−1
n+1 (x)

}
. (58′′)

It follows that the coefficients of the form (70) take the values

Unm = ρ2Anm +
2ρ cos α

2n− 1
(n−m)(n + m)An−1,m (71)

+
i ρ sinαe−i β

2n− 1
(n + m)(n + m− 1)An−1,m−1

+
i ρ sinαei β

2n− 1
(n−m− 1)(n−m)An−1,m+1,
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and

Vnm = Anm +
2ρ cos α

2n + 3
An+1,m − i ρ sinα e−i β

2n + 3
An+1,m−1 (72)

− i ρ sinα ei β

2n + 3
An+1,m+1,

where A`k is defined to be zero for all integers k and ` that satisfy |k| > `.
Inner series about t can be translated to inner series about 0, by employing the

formula [5],

h(x) =
q∑

n=0

n∑
m=−n

Enm Im
n (x− t) =

q∑
`=0

∑̀
k=−`

F`k Ik
` (x),

where

F`k =
q∑

n=`

n∑
m=−n

Enm Im−k
n−` (−t).

Combining this with the expressions (69), (70), (71) and (72) above allows the
translation of an inner series, a (ν + 1)-harmonic polynomial, of the form

ν∑
k=0

|x− t|2ν−2k
q+2k∑
n=0

n∑
m=−n

M̃ (k)
nm Im

n (x− t),

into an inner series
ν∑

k=0

|x|2ν−2k
q+2k∑
n=0

n∑
m=−n

M (k)
nm Im

n (x),

centered at 0. This inner to inner translation can be used to recenter inner ex-
pansions associated with parent panels in order to initialize the inner expansions of
children, in a fast multipole implementation.

As was discussed in section 7 for the outer series, in the usual case when the
coefficients dj in the spline (64) are real, symmetry can be exploited to allow carrying
only the terms with m ≥ 0 in a truncated inner series.




