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Abstract.

Volume preservation is one of the qualitative characteristics common to many dyna-
mical systems. However, it has been proved by Kang and Shang that e.g. Runge–Kutta
(RK) methods can not preserve volume for all linear source-free ODEs (let alone non-
linear ODEs). On the other hand, certain so-called Exponential Runge–Kutta (ERK)
methods do preserve volume for all linear source-free ODEs. Do such ERK methods
perhaps also preserve volume for all nonlinear ODEs? Here we prove that the answer
to this question is negative; B-series methods (which include RK, ERK and several
more classes of methods) cannot preserve volume for all source-free ODEs. The proof
is presented via the theory of K-loops, which is an extension of the theory of classical
rooted trees.

AMS subject classification (2000): 65L05, 65L06, 65P99.

Key words: geometric integration, volume preservation, B-series methods, modified
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1 Introduction

Volume preservation as a geometric property can be encountered in a large
class of dynamical systems with many applications, for example, it underlies
ergodic theory and thus statistical mechanics, and it appears in the tracking of
particles in incompressible fluid flow. See [7, 15] and many references therein for
recent reviews which discuss the numerical conservation of phase-space volume
as well as many other geometric properties.

One of the common techniques to preserve volume is by using splitting me-
thods [12]. This involves splitting a volume-preserving vector field f(y) into a
sum of essentially two-dimensional Hamiltonian vector fields [4, 12] before any
integration is done.

On the other hand, Kang and Shang in [4] show that for a general (linear)
source-free differential system of more than two dimensions, it is not possible to
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preserve volume by direct integration using classical methods (e.g. RK methods).
This was done by showing that there exists no consistent approximation to the
exponential function sending sl(n) to SL(n), other than the exponential function
itself.

However, if the source-free ODE is of the form

ẏ = Ay + b,

where A ∈ sl(n) and y, b ∈ R
n, then it is known that exponential integrators

such as the explicit ERK methods of Hochbruck, Lubich and Selhofer [9, 10]
produce exact solutions for linear ODEs and hence such numerical methods are
volume-preserving for linear source-free problems. Such methods belong to a
more general class of numerical integration methods known as B-series methods.

In this paper, we consider whether volume-preservation is possible for general
source-free ODEs of more than two dimensions, and in particular, we wish to
consider volume-preservation by B-series methods. The result is presented using
the theory of K-loops, an extension to the classical theory of rooted trees [1].
Note that a similar result has been recently derived independently and using
a different approach by Chartier and Murua in [3]. They show that a volume-
preserving numerical method must also preserve all first integrals, and that the
solution from a B-series method which preserves all cubic polynomial invariants
is formally the exact flow of the vector field. As a consequence of the connection
between cubic invariants and volume, no volume-preserving B-series method can
exist.

2 Modified differential equations for B-series

methods

Suppose that a system of ordinary differential equations is of the form

ẏ = f(y).

In classical numerical analysis, the numerical solution yn+1 (where n is the num-
ber of steps) of a numerical method can usually be represented by a series ex-
pansion in terms of the elementary differentials (derivatives) of f(y). They in
turn can be represented by rooted trees t ∈ T , where T is the set of all rooted
trees, excluding the empty tree ∅, see [1]. Based on rooted trees, we can define
the B-series [7].

Definition 2.1. For a mapping a : T ∪ ∅ → R, a formal series of the form

B(a)(y) = a(∅)y +
∑

t∈T

hr(t)

σ(t)
a(t)F (t)(y),

is called a B-series, where h is the stepsize of the method, F (t)(y) is the ele-
mentary differential of the rooted tree t ∈ T , σ(t) is the symmetry function, and
r(t) is the order of t.

The family of B-series methods refers to numerical integrators whose solution
yn+1 can be expanded in a B-series by Definition 2.1. It encompasses most
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integrators ubiquitous in practical computations, e.g. Runge–Kutta methods [1],
multiderivative methods [8] and Elementary Differential Runge–Kutta methods
[13].

Let the numerical solution be denoted as Φ(y). This is an approximation
to the exact solution ϕ(y) of the vector field f(y), and Φ(y) matches ϕ(y) to
the order p of the numerical integrator. Here, instead of studying the original
differential equation ẏ = f(y), we can consider Φ(y) as the exact solution (up to

exponentially small terms), of the modified differential equation ẏ = f̃(y). The

construction of f̃(y) belongs to the area of numerical analysis called backward
error analysis [6, 7]. This modified differential equation is a perturbation of the
original vector field, where the first term is f(y) and the next term is the leading
term of the local truncation error of the method. This implies that for an order p
B-series method, perturbing terms involve elementary differentials starting from
order p + 1.

For a B-series method, the modified differential equation is given by [7],

(2.1) ẏ = f̃(y) =
∑

t∈T

hr(t)−1

σ(t)
b(t)F (t)(y),

where b : T → R is the coefficient of this modified differential equation, and

b( ) = 1. The calculations of b : T → R for a B-series method with solution
given by B(a)(y) can be found in [7].

3 Volume-preserving B-series method

Suppose that the system of ordinary differential equations to be solved is
source-free, i.e. that f(y) satisfies the divergence-free condition,

∇ · f(y) = 0.

If an integrator – such as a RK method, or more generally, a B-series method
– is to be volume-preserving, its modified differential equation must also be
divergence-free,

∇ · f̃(y) = 0.

From (2.1), the ith component of the modified differential equation is given
by

f̃ i(y) = f i(y) + hb( rr)f i
jf

j(y) + h2b( rrr)f i
jf

j
kfk(y) +

h2

2
b( rr r�� )f i

jkf jfk(y)

+ O(h3),

where elementary differentials are given in summation notation. Note that the
superscript denotes vector field component, while subscript denotes derivatives
in summation notation. We now apply the divergence-free condition to the above
expression,
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0 = f i
i (y) + hb( rr)[f i

ijf
j + f i

jf
j
i ](y) + h2b( rrr)[f i

ijf
j
kfk + f i

jf
j
ikfk(3.1)

+f i
jf

j
kfk

i ](y) +
h2

2
b( rr r�� )[f i

ijkf jfk + f i
jkf j

i fk + f i
jkf jfk

i ](y)

+O(h3).

Recall that the original vector field f(y) is divergence-free. This implies

(3.2) f i
i (y) = f i

ijf
j(y) = f i

ijf
j
kfk(y) = f i

ijkf jfk(y) = · · · = 0.

Hence (3.1) is reduced to,

0 = hb( rr)f i
jf

j
i (y) + h2b( rrr)[f i

jf
j
ikfk + f i

jf
j
kfk

i ](y)(3.3)

+
h2

2
b( rr r�� )[f i

jkf j
i fk + f i

jkf jfk
i ](y) + O(h3).

We refer to the remaining terms in (3.3) as the contracted elementary diffe-
rentials, and note that (3.3) must be satisfied if the associated B-series method
is to preserve volume.

4 K-loops

We commence by defining K-loops, a central concept in our analysis.
Definition 4.1. Given a rooted tree t with the vertices v1, v2, . . . , vr, where

v1 is the root, a K-loop is obtained from t by adding an edge extending from v1

to a vertex vj at a distance K − 1 from the root.
Note that a 1-loop occurs when the root is linked to itself.
As an example, consider the rooted tree

where we have singled out a vertex with an arrow. Once that vertex is joined to
the root, we obtain the 5-loop

(4.1) nr r rr rr ��rr��r BBr 

r rr
K-loops afford a convenient graphical representation of contracted elementary

differentials. It follows from Section 3 that contracted elementary differentials
arise from the divergence operator acting on f̃(y) in the divergence-free condi-
tion. This introduces an extra partial derivative (with respect to component yi)
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Table 4.1: Divergence operator acting on the elementary differential of order 2.

Elementary differential Contracted elementary differentialsrr j i
j i

∇·

−→ nrr + nr r
f i

jf
j(y) f i

ijf
j(y) f i

jf
j
i (y)

1-loop 2-loop

to each elementary differential F (t)(y). The K-loop is formed by joining the
root (corresponding to yi) with the vertex which is being partially differentiated
with respect to yi.

Each tree emerging from a loop retains its natural ordering, hence the concepts
of “father” and “son” vertices will be clear within each subtree. Moreover,
we assume clockwise ordering along the loop: each vertex is the father of its
immediate clockwise neighbour.

For example, the elementary differential of order 2 is f i
jf

j(y). Once the di-
vergence operator is applied, this yields two separate contracted elementary
differentials by the product rule, and they are represented by the 1-loop and the
2-loop in Table 4.1.

Note that all 1-loops are trivial for a divergence-free vector field f(y), because
they represent the contracted elementary differentials in (3.2). As such, the
smallest possible non-zero K-loops are the 2-loops, from order r ≥ 2. Since
trivial terms make no difference to our analysis, we henceforth disregard 1-loops
and assume that K ≥ 2.

4.1 Topologically equivalent K-loops

Definition 4.2. Two K-loops (t1, t2, . . . , tK) and (s1, s2, . . . , sK) are topo-
logically equivalent if there exists an integer m such that sk+m = tk mod K for
k = 1, 2, . . . ,K.

Each K-loop can be pictorially represented as a loop with K vertices and a
tree emerging from each vertex. Given that the trees in question, arranged in
clockwise order along the loop, are t1, t2, . . . , tK , we can alternatively represent
the K-loop in the subtree representation

(t1, t2, . . . , tK).

Note that there is arbitrariness in the choice of t1 but all these choices are
topologically equivalent.

To illustrate these concepts, we revisit the 5-loop (4.1). Its topologically equi-
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valent subtree representations are


 rr, r, rrr r��, r, rrr r r��

 ,


 rrr r r��, rr, r, rrr r��, r ,


 r, rrr r r��, rr, r, rrr r��

 ,


 rrr r��, r, rrr r r��, rr, r and


 r, rrr r��, r, rrr r r��, rr .

Topological equivalence is important since it corresponds to permutation of
indices associated with vector field components in summation notation. For
example

f i
jkf j

lmf l
inF kFmFn = f j

lkf l
imf i

jnF kFmFn.

Topologically equivalent K-loops form an equivalence class and it is conve-
nient to be able to single out its representative (henceforth called the standard
representative) in a unique manner. Let us assume thus that we are given an
order “≻” on trees (cf. [14] for an example, but for our purposes the specific
order is not important). Given a subtree representation (t1, t2, . . . , tK), we let
i ∈ {1, . . . ,K} such that

ti º tj , j = 1, 2, . . . ,K.

If ti ≻ tj for all j 6= i, we let (ti, ti+1, . . . , tK , t1, . . . , ti−1) be the subtree repre-
sentative of the equivalence class. If there exists m 6= i such that ti = tm,
we compare ti+s with tm+s for s = 1, 2, . . ., until ti+s∗ 6= tm+s∗ for some
s∗. If ti+s∗ ≻ tm+s∗ , we choose the former representation, otherwise we take
(tm, tm+1, . . . , tK , t1, . . . , tm−1).

We adopt the convention that the “first” tree in a graphic representation of a
K-loop is on the extreme left, with other trees in a clockwise order.

Table 4.2 displays all topologically non-equivalent K-loops from order 2 to or-
der 4, their associated contracted elementary differentials, and the set of subtrees
for each loop.

4.2 Linearly independent K-loops

It is now important to prove that K-loops are linearly independent of each
other. (Note that when discussing independence of K-loops, we tacitly assume
that they are acting on the space of divergence-free vector fields.) This im-
plies that contracted elementary differentials associated with the K-loops can
be treated as independent terms in the expansion of ∇ · f̃(y) = 0.

The proof of linear independence of K-loops will be by construction of special
systems of differential equations. Firstly, the technique of scaling differential
equation is used to prove that K-loops of distinct orders are linearly independent.
Then, the proof for K-loops of the same order is presented, modelled on the
familiar linear independence proof for rooted trees [2].

Proposition 4.1. K-loops of distinct orders are linearly independent.
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Table 4.2: Topologically non-equivalent K-loops from order 2 to order 4.

Contracted
Order K elementary differential K-Loop Subtrees

2 2 f i
jf

j
i (y) nr r ( r, r)

3 2 f i
jf

j
ikfk(y) nr rr ( rr, r)

3 3 f i
jf

j
kfk

i (y) nr rr ( r, r, r)
4 2 f i

jf
j
ikfk

l f l(y) nr rrr 
 rrr, r

4 2 f i
jf

j
iklf

kf l(y) nr rrr�� ( rr r��, r)
4 2 f i

jkf j
ilf

kf l(y) nr rr r ( rr, rr)
4 3 f i

jf
j
kfk

ilf
l(y) nr rrr ( rr, r, r)

4 4 f i
jf

j
kfk

l f l
i (y) nr rrr ( r, r, r, r)

Proof. This proof is based on scaling of differential equations.
Let Cn(f) and Cn+i(f), where n = 2, 3, . . . and i ∈ Z

+, be two non-identical
(and non-trivial), contracted elementary differentials of orders n and n + i
respectively, applied to an arbitrary source-free differential equation f . From
∇ · f̃(y) = 0, assume that there exists a homogenous relation between Cn and
Cn+i such that

(4.2) αCn(f) + βCn+i(f) = 0, for some α, β ∈ R \ {0}.

Consider a source-free vector field V , itself the scaling of another source-free
vector field v,

(4.3) V = δv, where δ ∈ R\{0,±1}.

Both systems of equations V and v must satisfy the homogenous relation in
(4.2). By (4.3), this yields,

αCn(V ) + βCn+i(V ) = 0

=⇒ αδnCn(v) + βδn+iCn+i(v) = 0,(4.4)

and
αCn(v) + βCn+i(v) = 0

=⇒ Cn+i(v) = −
α

β
Cn(v).(4.5)
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Substituting (4.5) into (4.4) yields

(4.6) αδn(1 − δi)Cn(v) = 0.

From (4.6), it is observed that α = 0, which implies β = 0 by (4.2). Hence, Cn

and Cn+i are linearly independent of each other.
By the existence of such scaled source-free differential equations, it follows

that all K-loops of distinct orders are linearly independent.
If the K-loops are of the same order then the proof of their linear indepen-

dence is modelled on the proof of the independence of elementary differentials
in [2, 8]. Similarly to the classical proof, a source-free differential equation f(y)
can be constructed for each (equivalence class of) K-loops, such that when a
contracted elementary differential evaluates f(y), the result is non-zero only if
the contracted elementary differential is associated with a K-loop which is equi-
valent to the K-loop for the corresponding vector field. Otherwise, the result is
zero.

It is important to note that there exist other constructions of such special types
of vector fields for each K-loop [18]. The important idea is that there is at least
one such type which has the unique properties described above for each loop.
Hence, there can be no linear relation between topologically non-equivalent K-
loops in general, and the assumption that the contracted elementary differentials
are linearly independent is valid.

Proposition 4.2. Topologically non-equivalent K-loops of the same order are
linearly independent.

The proof of Proposition 4.2 is presented in several parts, where the key idea
is the construction of the special vector field for K-loops. This differential-
equation construction in the discussion below is based on the construction in
[2]. For a monotonically labelled [8] rooted tree t ∈ T of order r, the system
of differential equations constructed to prove its independence has dimension r.
Each component of this system is represented by a unique vertex of t, such that
each component is defined by the relation between its father vertex and the son
vertices [2].

Definition 4.3. Let a K-loop, denoted LK , be of order r ≥ K with standard
representative s∗ = (t1, t2, . . . , tK). We denote by Si the set of all the indices
corresponding to sons of a vertex i of LK .

We associate with Lk the r-dimensional differential system,

ẏ1 =
∏

n∈S1

yn∑
(LK)

(4.7)

ẏm =

{ ∏
n∈Sm

yn for m 6= 1 and Sm 6= ∅

1 for m 6= 1 and Sm = ∅ ,

with initial condition at t = 0 given by,

y(0) = (0, . . . , 0).
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The weight
∑

(LK) is given by

∑
(LK) = R(LK)σ(t1)σ(t2) · · ·σ(tK).

Here R(LK) is the order of the rotational symmetry in the sequence of subtrees
is denoted R(LK), and σ(ti) is the symmetry [1] of the rooted subtree ti, for
i = 1, . . . ,K1.

Why is the weight
∑

(LK) necessary? When a contracted elementary differen-
tial is applied to its system of differential equations from Definition 4.3, all of its
indices {i, j, k, . . .} in the differential are summed over, and the resulting number
of non-zero terms in the summation depends on the symmetries of subtrees in
the standard decomposition of LK . Hence,

∑
(LK) acts as a normalization. If

all subtrees of LK are unique then the number of non-zero terms in the eva-
luation is equal to the product σ(t1) · · ·σ(tK) and R(LK) = 1. But, once the
subtrees are not unique, rotational symmetry in the sequence is possible. That
is, i of the contracted elementary differential can start on more than one vertex
in the cycle of the K-loop, resulting in non-zero terms. Hence, an extra factor
of R(LK) representing this rotational symmetry is required.

Table 4.3 displays the source-free systems of differential equations for selected
K-loops from order 2 to order 4.

Now, it can be shown that the existence of the source-free differential equa-
tions as described by Definition 4.3 is the key to proving that two topologically
non-equivalent K-loops of the same order must be linearly independent, by the
proposition stated below.

Proposition 4.3. Consider the initial-value problem (4.7), associated with
the K-loop LK in accordance with Definition 4.3, at t = 0. All K-loops which are
equivalent to LK will evaluate the differential system to one at t = 0. A K-loop
which is topologically non-equivalent to LK will evaluate the same differential
system to zero at t = 0.

That is, if L denotes a K-loop of order r, and F (L)(y) denotes the evaluation
of the differential system by the contracted elementary differential associated with
L, then

F (L)(0) =

{
1, L is in the equivalence class of LK ,
0, otherwise .

Proof. We apply a contracted elementary differential

r∑

J1,...,Jr=1

fJ1

TJ1

fJ2

TJ2

· · · fJr

TJr
,

to the initial value problem in (4.7). Note that TJi
is the set of sons of the

integer index Ji, which runs from 1 to r in the summation. Hence, the search
for a non-zero application of the contracted elementary differential to the initial

1Note that a slightly different vector field, e.g. without normalization factor, is used in [3].
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Table 4.3: Selected K-loops from order 2 to order 4 and their associated source-free
vector fields.

r K-loop f(y) Σ(LK)

2 nr r ẏ1 = 1
2y2

ẏ2 = y1

Σ = 2σ( r) = 2

3 nr rr ẏ1 = y2

ẏ2 = y1y3

ẏ3 = 1

Σ = 1σ( rr)σ( r) = 1

3 nr rr ẏ1 = 1
3y2

ẏ2 = y3

ẏ3 = y1

Σ = 3σ( r)3 = 3

4 nr rrr ẏ1 = y2

ẏ2 = y1y3

ẏ3 = y4

ẏ4 = 1

Σ = 1σ( rrr)σ( r) = 1

4 nr rrr�� ẏ1 = 1
2y2

ẏ2 = y1y3y4

ẏ3 = 1

ẏ4 = 1

Σ = 1σ( rr r�� )σ( r) = 2

4 nr rr r ẏ1 = 1
2y2y3

ẏ2 = y1y4

ẏ3 = 1

ẏ4 = 1

Σ = 2σ( rr)2 = 2

value problem is equivalent to choosing an integer m ∈ {1, . . . , r} for Ji such
that when the contracted elementary differential is applied to the vector field
component ẏm in (4.7), Ji = m and

fJi

TJi
= fm

Tm
6= 0.

The rest of this proof examines the restriction on TJi
such that the above eva-

luation is non-zero.
Suppose that in the terminology of (4.7), Sm = ∅. Then ẏm ≡ 1. In this

case, the only contracted elementary differential which is non-zero, once applied
to ẏm, must contain the integer index Ji which is chosen to be Ji = m, where
TJi

= Tm = ∅. So the contribution of this term is a factor of 1 and Sm = TJi
.

Now, let us assume that Sm = {j1, . . . , js} 6= ∅ and TJi
= {Jµ1

, Jµ2
, . . .}.
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Suppose that when the contracted elementary differential is applied to ẏm we can
choose the integer index Ji = m and all sons to be Jµ1

= j1, Jµ2
= j2, . . . , Jµs

=
js such that

Sm = TJi
.

Then,

fJi

TJi
= fm

j1,...,js
=

∂s

∂yj1 · · · ∂yjs

ẏm =
∂s

∂yj1 · · · ∂yjs

s∏

k=1

yjk
= 1.

Note that if the K-loop LK has Σ(LK) > 1 in the vector field construction,
then it may be possible that Ji is one of several integer indices in the contracted
elementary differential which can be set to integer m, and resulting in TJi

= Sm.
In this case,

fJi

TJi
= fm

j1,...,js
=

1

Σ(LK)
6= 0.

Next, suppose that by setting the integer index Ji = m when evaluating ẏm

with the contracted elementary differential, we are unable to choose the indices
Jµ1

, Jµ2
, . . . in TJi

such that this set is equivalent to the set Sm = {j1, . . . , js}.
This restriction can occur if for example, Jµ1

is defined to be an integer jν /∈ Sm

for the evaluation of another vector field component ẏn where n 6= m. For the
integer index Ji, this means that,

Sm 6= TJi
.

In this case there are two possibilities.
Firstly, assume that Jµ1

= jν ∈ TJi
but the integer jν /∈ Sm. Then once we

apply fJi

TJi
= fm

Tm
to ẏm, we differentiate by a variable yjν

which does not feature

in the equation. Hence the outcome is necessarily zero.
Alternatively, there exists an integer jν ∈ Sm such that jν /∈ TJi

(i.e. Jµ1
6=

jν , Jµ2
6= jν , . . .). Once we apply fJi

TJi
= fm

Tm
to the vector field component ẏm,

the variable yjν
survives in the product and the latter becomes zero once the

initial condition at t = 0 is substituted.
We deduce then that the only possibility for a non-zero application of the

contracted elementary differential to the initial value problem at t = 0 is when

TJi
= Sm, where Ji = m and m ∈ {1, . . . , r}.

Now, to show that such integer index Ji (∀i = 1, . . . , r) must be distinct for
r ≥ K > 1, consider the following: K-loops are injective (i.e. each vertex of
the K-loop has exact one father). Then a contracted elementary differential
associated with this K-loop of order r has exactly r father vertices, denoted as
superscripts given by the integer indices {J1, . . . , Jr}. Note that each index Ji

also appears exactly once as a subscript, since the father vertex Ji must in turn,
appear as the son of some other father vertex in the K-loop.

Suppose LK is a K-loop of order r = K and the vertices are labelled dis-
tinctly by integers {1, 2, . . . ,K}. Then in the contracted elementary differential
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which evaluates the vector field non-trivially, each integer {1, . . . ,K} must ap-
pear exactly once as a subscript and superscript in the differential. That is for
example, J1 = 1, J2 = 2, . . . , JK = K. This is because each vertex is the father
of exactly one son. Hence all Ji for all i = 1, . . . r are distinct when r = K and
K ≥ 2.

Suppose now the order is r = K + δ, where δ = 1, 2, . . . . Then there are now
extra integers {K + 1, . . . ,K + δ} which are the labels of the vertices of the
subtrees attached to the loop of LK . For the contracted elementary differential,
there are now K + δ integer indices, of which J1 = 1, . . . , JK = K denoting the
vertices in the loop have been assigned. Hence we are left with integer indices
JK+1, . . . , JK+δ, of which their integer values are determined by the remaining
{K + 1, . . . ,K + δ}. This is because each vertex of the subtree must be joined
to exactly one father, and they themselves can be considered as father vertices
in their own right. Hence, all integer indices Ji must be distinct for r ≥ K.

We have shown that the integer indices Ji must be distinct in the contracted
elementary differential, hence the condition that TJi

= Sm for non-trivial eva-
luation covers all vertices of LK . This occurs only if the K-loop associated with
the contracted elementary differential is topologically equivalent to LK which
generates the initial value problem in (4.7).

Furthermore, such non-trivial evaluation must result in one, even for K-loops
with Σ(LK) > 1. This is because when the contracted elementary differential
evaluates ẏm, the total number of possible choices for integer indices Ji and
permutations of sons of Ji which can be set to integer m ∈ {1, . . . , r} and the
indices in the set Sm, is given by the normalisation Σ(LK). This concludes the
proof.

We are now ready to return to the proof of Proposition 4.2.
Proof. [Proposition 4.2] By Definition 4.3 and Proposition 4.3, since there

exists at least one type of source-free differential equations which result in non-
zero solution only when the system is evaluated by a K-loop which is equivalent
to LK , any two K-loops of the same order which are topologically non-equivalent
must be linearly independent of each other for an arbitrary source-free system
of differential equation.

Furthermore, as opposed to the classical proof of the independence of rooted
trees in [2], Definition 4.3 cannot be used to prove that two non-equivalent
K-loops of distinct orders are linearly independent. This is because certain
contracted elementary differentials of integer multiples of order r also evaluate
the same system of differential equations to one. For example, assume that a
system is constructed for a K-loops of order r. By Proposition 4.3, the evaluation
by LK , to this system yields F (LK)(y) = 1. However, for positive integer
multiples of order r, contracted elementary differentials of the form F (LK)n(y)
(and all their permutations) are also non-trivial. Here, the superscript n denotes
the product of n copies of F (LK). Hence, the technique of scaling differential
equations is required to prove that K-loops of distinct orders are also linearly
independent.
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Combining Proposition 4.1 and Proposition 4.2 results in the following.
Lemma 4.4. All topologically non-equivalent K-loops must be linearly inde-

pendent when evaluating arbitrary source-free vector fields.

5 Coefficients of the volume-preserving B-series method

The impact of the divergence-free condition on the modified differential equa-
tion of a B-series method can be investigated using topological equivalence and
linear independence of K-loops,

5.1 Linear system by the independence of K-loops

Due to topological equivalence, the expansion ∇ · f̃(y) = 0 given in (3.3)
can be rewritten by gathering the coefficients b(t) of rooted trees t that lead to
topologically equivalent K-loops. This yields

0 = hb( )F ( nr r)(y) + h2

(
b( ) + b( )

)
F ( nr rr )(y)

+ h2b( )F ( nr rr)(y) + O(h3).(5.1)

Note that F (·)(y) now denotes the evaluation of the original source-free ODE
f(y) by the associated contracted elementary differentials of the equivalence
classes of K-loops.

For a general source-free system of differential equations, it is assumed that the
contracted elementary differentials F (·)(y) in (5.1) are non-trivial. Furthermore,
by Lemma 4.4, each term in (5.1) can be treated separately, resulting in one
equation (involving the coefficients b(t)), for each K-loop. This set of linear
equations is displayed in Table 5.1, from order 2 to order 5, along with their
associated K-loops.

The coefficients b(t) which satisfy the divergence-free condition can be solved
by studying the linear equations for each order r. For example, for order two

b( ) = 0.

Similarly, for order three,

b( ) + b( ) = 0,

b( ) = 0,

and we observe that the system is satisfied only when both coefficients for order-3
rooted trees are trivial.

We can continue in this vein for higher orders. However, the number of linear
equations for each order corresponds to the number of K-loops, while the number
of unknown coefficients b(t) is the number of rooted trees for that order. So for
higher order the linear system becomes overdetermined. For example, at order
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Table 5.1: Linear equations for topologically non-equivalent K-loops.

Order Linear Equations K-loops

2 b( ) = 0 nr r
3 b( ) + b( ) = 0 nr rr

b( ) = 0 nr rr
4 b( ) + b( ) = 0 nr rrr

1
2b( ) + 1

2b( ) = 0 nr rrr��
b( ) = 0 nr rr r

b( ) + b( ) + b( ) = 0 nr rrr
b( ) = 0 nr rrr

5 b( ) + b( ) = 0 nr rrrr
1
2b( ) + 1

2b( ) = 0 nr rrr r��
b( ) + b( ) = 0 nr rrrr ��

1
6b( ) + 1

6b( ) = 0 nr rrrr��
b( ) + b( ) = 0 nr rrr r

1
2b( ) + 1

2b( ) = 0 nr rrr r��
b( ) + b( ) + b( ) = 0 nr rrrr

1
2b( ) + 1

2b( ) + 1
2b( ) = 0 nr rrrr��

b( ) + b( ) + b( ) = 0 nr rrr r


b( ) + b( ) + b( ) + b( ) = 0 nr r rr r

b( ) = 0 nr rrrr
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10, there are 1592 linear equations and just 719 rooted tree coefficients [18].
Hence the likelihood of non-trivial solutions b(t) is very small. This argument,
however, falls short of a formal proof.

It would have been useful if the above method of proof could be extended
to all orders, but it is clear that it faces substantial difficulty since a general
expansion of ∇ · f̃(y) = 0 can not be written for an infinite number of terms.
So, recursive relations for the K-loops and their associated coefficients must be
developed, and this is possible by considering in the first instance the relations
between the linear equations from the 2-loops and symplectic conditions for a
general B-series method.

5.2 2-loop equations and symplectic conditions

It was proved in Hairer’s paper on the backward analysis of symplectic methods
[5] that for a Hamiltonian differential equations f(y) in the canonical form

ẏ = J−1∇H(y),

where H is the Hamiltonian function, the modified differential equation in (2.1)
is Hamiltonian if and only if

(5.2) b(u ◦ v) + b(v ◦ u) = 0 for u, v ∈ T .

Note that ◦ is the Butcher product [1], and b : T 7→ R are the coefficients in the
modified differential equation for the B-series method.

Interestingly, this condition corresponds precisely to linear 2-loop equations
in Table 5.1 from Section 5.1. This holds for all orders r ≥ 2, and we have the
following lemma.

Lemma 5.1. Linear 2-loop equations from Section 5.1 are equivalent to the
application of the symplectic condition given by (5.2), to rooted trees u ◦ v and
v ◦ u ∈ T where r(u) + r(v) ≥ 2.

Proof. For order 2 it can be observed directly that the symplectic condition
given by (5.2) results in the 2-loop equation for a rooted tree of order 2. For
order q ≥ 3 consider an equivalence class of 2-loops of the form

t1 t2

where t1, t2 ∈ T ∪ {∅} are such that r(t1) + r(t2) + 2 ≥ 3. Recall that the extra
path forming the cycle in the K-loop always ends at the root of the original
rooted tree t, where r(t) = q. Hence, one of the two vertices in the cycle of the
2-loop must be the root of t, and the 2-loop can be derived from at most two
different rooted trees c and d, where r(c) = r(d) = q, namely

c =
t2

t1

and d =
t1

t2

.

As such, c and d must correspond to the same free tree tf = t1 t2 , and c
differs from d by at most an adjacent root. Hence by topological equivalence of
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K-loops, the coefficients of rooted trees c and d obey

k1b(c) + k2b(d) = 0, ∀k1, k2 ∈ R.

The rest of this proof involves showing that k1 = k2 for rooted trees c and d so
that the symplectic condition in (5.2) is recovered. We refer to [16, 17] for the
theory of free (un-rooted) trees.

For u, v ∈ T and m,n ∈ Z
+, let (u1, . . . , um) and (v1, . . . , vn) denote the

remaining forest of rooted trees when the roots are removed from u and v [1],
such that

u = [u1, u2, . . . , um], v = [v1, v2, . . . , vn].

Then rooted trees c and d can be defined as

c = u ◦ v = [u1, u2, . . . , um, v] : u1

u2 um

v
. . .

,

d = v ◦ u = [v1, v2, . . . , vn, u] : v1

v2 vn

u
. . .

.

The corresponding free tree tf at order q for both c and d is given by

tf = ...
...

u1 v1

u2 v2

um vn

Because of (2.1), f̃(y) for the B-series method now contains two terms invol-
ving the two rooted trees c and d,

(5.3) hq−1 b(c)

σ(c)
F (c)(y) + hq−1 b(d)

σ(d)
F (d)(y).

Once the divergence-free condition is imposed on f̃(y), elementary differentials
F (t)(y) (for rooted tree t) become contracted elementary differentials F (L)(y)
(for K-loop L). Since the rooted trees c and d differ by an adjacent root, the
2-loop equation involving coefficients b(c) and b(d) is derived when the 2-loop
Lc from tree c is topologically equivalent to the 2-loop Ld from tree d. That is,

Lc = Ld =⇒ F (Lc)(y) = F (Ld)(y).

Hence, (5.3) can be rewritten in the form

(5.4) hq−1

[
α(c)

b(c)

σ(c)
+ α(d)

b(d)

σ(d)

]
F (Lc)(y).

Note that α : T → R is an extra factor dependent on the symmetries of the
rooted trees c and d, because it might be possible to construct multiple copies
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of isomorphic 2-loops from the same rooted tree. By linear independence of
K-loops, (5.4) yields the 2-loop equation

(5.5) α(c)
b(c)

σ(c)
+ α(d)

b(d)

σ(d)
= 0.

For Lemma 5.1 to hold, it is required that

(5.6)
α(c)

σ(c)
=

α(d)

σ(d)
.

To demonstrate that (5.6) is true, the functions α and σ must be expressed in
terms of the forests of rooted trees from c and d. To begin, let u, v ∈ T be
denoted as

u=[u1, u2, . . . , um] = [ũk1

1 , ũk2

2 , . . . , ũks
s ],

v=[v1, v2, . . . , vn] = [ṽl1
1 , ṽl2

2 , . . . , ṽlp
p ],

where ũ1, . . . , ũs and ṽ1, . . . , ṽp are distinct rooted trees from the forests of
[u1, . . . , um] and [v1, . . . , vn]. The positive integers k1, . . . , ks and l1, . . . , lp de-
note multiple copies of the distinct rooted trees ũi and ṽj , for i = 1, . . . , s, and
j = 1, . . . , p, respectively [1]. Then, rooted trees c and d are given by

c = u ◦ v =
ũs

ũi
ũ1

ṽ1
ṽi

ṽp

x

y

and

d = v ◦ u =
ṽp

ṽi
ṽ1

ũ1
ũi

ũs

y
x ,

where thick lines indicate trees that might be of nontrivial multiplicity. The root
of u (and hence c) is denoted by x, and the root of v (and hence d) by y. To
study the relations between c and d, it is useful to consider two separate cases:
when ũi 6= v for i = 1, . . . , s; and when ũi = v for some i ∈ {1, . . . , s}.

For the rooted tree c, when ũi 6= v for i = 1, . . . , s, it is true that α(c) = 1
with respect to vertex y and root x. Its symmetry is σ(c) = σ(u)σ(v). Similarly
for rooted tree d, the two cases are

1. If ṽi 6= u for i = 1, . . . , p, then α(d) = 1 with respect to vertex x and root
y. Its symmetry is given by

σ(d) = σ(u)l1!σ(ṽ1)
l1 · · · lp!σ(ṽp)

lp = σ(u)σ(v).

In this case
α(d)

σ(d)
=

1

σ(u)σ(v)
=

α(c)

σ(c)
.
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2. If ṽi = u for i ∈ {1, . . . , p}, then α(d) = li +1 with respect to vertex x and
root y. Its symmetry is given by

σ(d) = l1!σ(ṽ1)
l1 · · · (li + 1)!σ(ṽi)

li+1 · · · lp!σ(ṽp)
lp .

In this case

α(d)

σ(d)
=

li + 1

l1!σ(ṽ1)l1 · · · (li + 1)!σ(ṽi)li+1 · · · lp!σ(ṽp)lp
=

1

σ(v)σ(ṽi)

=
1

σ(v)σ(u)
=

α(c)

σ(c)
.

Hence, (5.6) holds when ũi 6= v for i = 1, . . . , s.
The second case, when ũi = v for some i ∈ {1, . . . , s}, follows along similar

lines, and it can be shown that (5.6) also holds. Hence, (5.5) is equivalent to the
symplectic condition (5.2) applied to rooted trees c = u ◦ v and d = v ◦ u which
differ by an adjacent root.

Table 5.2 displays the 2-loop equations from order 2 to order 5, which can
be extracted from Table 5.1. Conversely, by the application of the symplectic
condition (5.2), it is possible to derive all 2-loop equations for orders r ≥ 2. This
is done by considering the standard decomposition of a rooted tree t = (u, v),
then constructing c = u ◦ v and d = v ◦ u by the Butcher product. For example,
the following rooted tree at order 4 has the given standard decomposition [14],

= ( , ). Let u = and v = .

=⇒ b(u ◦ v) + b(v ◦ u) = b( ) + b( ) = 0.

5.3 B-series coefficients via the recursive relations on free trees

We know from the previous section that the 2-loop linear equations are the
conditions for the modified differential equation to be Hamiltonian. Therefore,
the modified vector field in (2.1) must be made up of Hamiltonian combinations

of elementary differentials [13], and we can now rewrite f̃(y) accordingly. Once
this modified differential equation is constructed, the divergence-free condition
can be applied for volume-preserving B-series methods.

Hamiltonian combinations of elementary differentials defined in [13] are based
on the (non-superfluous) free trees tf of each order. Free trees tf ∈ F (where F
denotes the set of all free trees) are the un-rooted trees, where the root of each
tree is no longer distinguished from other vertices [16, 17]. If the free tree tf is
constructed by joining two copies of the same rooted tree by their roots, then
this free tree is said to be superfluous [16]. Otherwise, it is non-superfluous.

Furthermore, the set of rooted trees generated by any non-superfluous free
tree tf sub-divides into two different parities [16], which can be denoted with
“+” and “−” signs. For each non-superfluous free tree tf the centroid vertex
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[11] has a “+” sign. Likewise, vertices with an even number of shifts away from
the centroid are denoted with “+” signs. All other vertices are assigned a “−”
sign. According to the respective signs associated with the roots of the rooted
trees, they can be separated into their respective + and − parity classes P+ and
P−, respectively. Table 5.3 displays the free trees and their associated rooted
trees from order 1 to order 5. Free trees without ± signs are superfluous.

Each non-superfluous free tree corresponds to a Hamiltonian combination of
elementary differentials [13]. This linear combination is denoted H(tf )(y) for
each tf .

Definition 5.1. The Hamiltonian combination of elementary differentials
H(tf )(y) of a non-superfluous free tree tf ∈ F is the linear combination

H(tf )(y) =
∑

u∈P+

1

σ(u)
F (u)(y) −

∑

v∈P−

1

σ(v)
F (v)(y),

where the sums are taken over all rooted trees u, v ∈ T generated by the free tree
tf ∈ F in the two parity classes P+ and P− of the rooted trees in T .

Table 5.4 displays the Hamiltonian combinations of elementary differentials of
order 1 to 5.

Once the Hamiltonian combinations are constructed, the modified differential
equation is given by

(5.7) ẏ = f̃(y) = f(y) +

∞∑

r=3

∑

tf∈Fr

hr−1c(tf )H(tf )(y),

Table 5.2: 2-loop equations from topologically non-equivalent K-loops, from order 2
to order 5.

Order 2-loop equations

2 b( ) = 0

3 b( ) + b( ) = 0

4
b( ) + b( ) = 0 b( ) + b( ) = 0

b( ) = 0

5

b( ) + b( ) = 0 b( ) + b( ) = 0

b( ) + b( ) = 0 b( ) + b( ) = 0

b( ) + b( ) = 0 b( ) + b( ) = 0
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Table 5.3: Free trees (vertices denoted by circles) and their associated rooted trees
(vertices denoted by discs) from order 1 to 5. Superfluous free trees are without ±.

r(t) Free tree tf ∈ F Rooted trees t ∈ T

1 +

2

3
−

+

−

4

4
+

−

− −

5
+

−

+

−

+

5
+

−

+

− −

5
+

− −

− −

where c : T 7→ R are the coefficients associated with free trees tf . Note that for

order 1, c( ) = 1.
For volume preservation, the divergence-free condition must be applied to

(5.7), forming K-loops from the rooted trees as in Section 5.1. By the linear
independence and topological equivalence of K-loops, similarly to Section 5.1,
a system of linear equations for each order can be extracted, and it can be
concluded that only trivial coefficients can satisfy the divergence-free condition.
However, this technique restricts the calculation to a finite order. To overcome
this restriction, the discussion below presents another proof which shows that
all coefficients in (5.7) must be trivial for all orders if the B-series method is to
preserve volume exactly.

Before this proof is presented, several issues related to free trees tf ∈ F need
be discussed, and they are presented in the following propositions and lemma.

Definition 5.2. A vertex of a free tree has degree s = m if there are m edges
incident with it.

A tall free tree is a free tree where each vertex has degree s ≤ 2.
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Table 5.4: Hamiltonian combinations H(tf )(y) of elementary differentials for non-su-
perfluous free trees from order 1 to 5.

r(t) Hamiltonian vector field

1 H( +)(y) = F ( )(y) = f(y)

2 ———

3 H(
−

+

−

)(y) = −F ( )(y) + 1
2F ( )(y)

4 H(
+

−

− −

)(y) = − 1
2F ( )(y) + 1

3!F ( )(y)

5 H(
+

−

+

−

+

)(y) = F ( )(y) − F ( )(y) + 1
2F ( )(y)

5 H(
+

−

+

− −

)(y) = 1
2F ( )(y) − F ( )(y) − 1

2F ( )(y)

+ 1
2F ( )(y)

5 H(
+

− −

− −

)(y) = − 1
3!F ( )(y) + 1

4!F ( )(y)

A vertex of degree s ≥ 3 is called a junction.

A junction is called terminal if it has at least two tall trees incident with it.
Proposition 5.2. Every free tree with a junction has at least one terminal

junction.
Proof. For a finite free tree with at least one junction we begin by picking

an arbitrary junction. The proposition holds if this junction has at least two tall
trees incident with it. Otherwise, this junction has at most one tall tree incident
with it, and is incident with at least two other edges leading to another junction
each. This process continues and the number of tall trees incident with each new
junction can be examined. Eventually, because the free tree is finite and has no
cycles, one arrives at a junction made up of at least two tall trees (which might
be leaves of the free tree). Hence it is a terminal junction.

Proposition 5.3. For order r ≥ 2 the coefficient associated with the tall free
tree of each order r is zero. That is,

c( ) = c(
−

+

−

) = c( ) = c(
+

−

+

−

+

) = · · · = 0.

Proof. Recall that the coefficients b of tall rooted trees of order r ≥ 2
appear in the modified differential equation in (5.1). For each order r ≥ 2, the
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r-loops are topologically non-equivalent to any other K-loops of the same order.
By linear independence of K-loops and non-trivial evaluation of a source-free
system, the associated tall tree coefficients b of order r ≥ 2 must be zero. Since
the modified differential equation (2.1) is equal to (5.7), coefficients c of the tall
free trees of order r ≥ 2 must also vanish.

For example, the following modified differential equation up to order 3 can be
constructed from (5.7).

f̃(y) = f(y) + h2c(
−

+

−

)H(
−

+

−

)(y) + O(h3)

= f(y) + h2c(
−

+

−

)

[
−F ( )(y) +

1

2
F ( )(y)

]
+ O(h3)

=⇒ ∇ · f̃(y) = h2c(
−

+

−

)

[
− F ( nr rr )(y)

]
+ O(h3).

Note that 2-loops are not present in the expansion since 2-loop equations vanish
by virtue of Lemma 5.1. Then up to O(h3),

∇ · f̃(y) = 0 =⇒ c(
−

+

−

) = 0.

Next, we present Lemma 5.4. This result allows us to reduce by one, the
degree s (i.e. the number of incident edges) of any given terminal junction of a
free tree.

Lemma 5.4. Let t1, t2 ∈ {tall trees in T} ∪ {∅} and u denote a forest of
rooted trees in T . Then a recursion exists between the coefficient of the free tree
containing t1, t2 and the forest u, and the coefficient associated with the free tree
constructed by attaching a tall free tree in T to the root of forest u. That is,

coefficient
of

u

t1 t2

is a multiple of
coefficient

of

...

u

.

Note that “
...” indicates the possibility of multiple vertices, all of degrees s = 2.

The forest u is grafted to the top vertex of the free trees in the relation, and this
root of u is also terminal junction by Definition 5.2.

Proof.
Consider a 3-loop of the form

u

t1 t2
.

The given 3-loop is produced by at most three distinct free trees, not counting
symmetries. Such free trees can be recovered if each edge of the 3-loop is dis-
connected separately. Then by linear independence of K-loops, a homogenous
linear relation can be stated between the coefficients of such free trees.
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The Lemma is proved by induction on the sum of the number of vertices along
the separate branches of t1 and t2, up to, but excluding, the terminal junction
itself. Now, let

r1 = r(t1) + 1 and r2 = r(t2) + 1,

where r1 ≥ 1 (respectively, r2 ≥ 1) denote the order of the tree t1 (respectively,
t2) and the vertex connecting the tall tree with the 3-loop. Define

v = r1 + r2.

Since both t1 and t2 can be the empty tree ∅, min(v) = 2. The proof is then
given by induction on v.

• For v = 2, this implies t1 = t2 = ∅ and r1 = r2 = 1. When the divergence-
free condition is applied to the corresponding 3-loop, we have the following

linear combination of free trees coefficients for

u

= 0.

The possible free trees can be identified, and this yields

coefficient
of

u

∈ span

{
coefficient

of

u

,
coefficient

of

u }

∈ span

{
coefficient

of

u }
.

Hence the lemma holds for v = 2.

• To prove the lemma for all free trees with r1 ≥ 1 and r2 ≥ 1 we use
induction on v. Note that in the following if r1 = 0 then the branch
attached to t1 disappears, resulting in a single tall tree connected to the
root of forest u. Similarly this is true when r2 = 0.

Assume that the lemma holds for v = r1 + r2 = N ≥ 2. Then, given
p + q = N + 1, for a free tree with r1 = p and r2 = q we have

coefficient
of t1 t2

u

p q

∈ span

{
coefficient

of t1 t2

u

p q − 1

,
coefficient

of t1 t2

u

p − 1 q

}
.

Note that for each of the free trees in the span on the right hand side, the
terminal junction has shifted along one, from the root of forest u to either
the left or right vertex connecting t1 or t2. That is, the terminal junction
of the first tree is the vertex connecting t2 to the root of u, so r1 = p,
r2 = q − 1 and v = p + q − 1 = N . Similarly the terminal junction of the
second tree is now the vertex connecting t1 to the root of u, so r1 = p,
r2 = q and v = p + q − 1 = N . By the induction hypothesis the lemma is
true for v = N ,and this implies that it is true also for v = N+1. Therefore,
Lemma 5.4 holds for all v ≥ 2 such that r1 ≥ 1, r2 ≥ 1.
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Note that this result is referred to as edge reduction of a terminal junction,
since the relation in Lemma 5.4 yields free trees in the span, where for each free
tree the degree s of the root of u is reduced by one. For example, one of the
O(h4) terms in ∇ · f̃(y) = 0 involving a contracted elementary differential of
order 5 is 

−c(
+

−

+

−

+

) − 2c(
+

−

+

− −

)


 F ( nr rrr r



)(y) = 0.

For a general volume-preserving differential equation this implies

(5.8) c(
+

−

+

− −

) = −
1

2
c(

+

−

+

−

+

).

To recover this linear dependence by Lemma 5.4, it is observed that the 3-loop
can be represented if u and t1 are order-1 rooted trees, and t2 = ∅. Disconnec-
ting each edge of the 3-loop separately, the following free trees of order 5 are
recovered,

+

−

+

−

+

, +

−

+

− −

, +

−

+

− −

.

Hence,

coefficient
of

+

−

+

− −

is a multiple of
coefficient

of
+

−

+

−

+

and the linear dependence expressed in (5.8) is recovered.
It is important to note that we can apply Lemma 5.4 to an arbitrary terminal

junction at any position of a free tree of order r ≥ 4. This allows us to consider
the situation in Lemma 5.5, which removes a particular type of terminal junction
from a free tree, thereby reducing the total number of terminal junctions of the
free tree by one.

Lemma 5.5. Consider a free tree of order r ≥ 4 with a terminal junction of
degree si = ξ ≥ 3, of which ξ − 1 edges are connected to tall trees. Then

coefficient
of

τ

t1 tξ−1

. . . is a multiple of
coefficient

of

...

τ

,

where {t1, . . . , tξ−1} are tall trees in T of order r ≥ 1, and τ is a rooted tree of
order r ≥ 1 such that the root of τ is attached to the terminal junction i.

Proof.
Proceeds at once by repeated application of lemma 5.4.
We refer to Lemma 5.5 as the reduction of terminal junctions of a free tree,

since it is clear that for a free tree with terminal junction i of degree si = ξ,
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the tall trees {t1, . . . , tξ−1} attached to terminal i are effectively merged into a
single tall tree by the relation in the lemma. Hence the vertex i is no longer a
terminal junction and so the total number of terminal junctions in the free tree
is reduced by one. This consequence of Lemma 5.5 is important in the proof of
Theorem 5.6.

Theorem 5.6. Let a volume-preserving differential equation be denoted by
ẏ = f(y). For order r ≥ 2, the coefficient c(tf ) of each free tree tf ∈ F in the
modified vector field (5.7) of a volume-preserving B-series method, must be zero.
That is

f̃(y) = f(y).

The proof of this theorem consists of two parts: in the first part we prove that
the coefficient c(tf ) of any free tree of order r(tf ) ≥ 2 is recursively related to
the coefficient of the tall free tree of the same order; and in the second part we
show that all coefficients c(tf ) in (5.7) must be trivial, apart from the coefficient
of the order-1 free tree.

In the discussion below, free trees are studied according to the number of
terminal junctions they contain, rather than by their order. Classifying them in
this manner covers all free trees of order r ≥ 2, apart from the tall free trees.

Proof. Part One: There exists a recursion between the coefficient

of any free tree of order r ≥ 2 and the coefficient of the tall free tree

of the same order.

It is clear that Part One holds for free trees of order two and order three, since
there exist no free trees at these values which are not tall free trees .

Beginning the proof for free trees of order r ≥ 4, it is important to note that
all free trees which are not tall free trees must contain at least one terminal
junction (by Proposition 5.2), which is of degree s = ξ (where s ≥ 3), such that
ξ − 1 incident edges are attached to tall trees of order r ≥ 1. This is obvious
for a free tree with one or two terminal junctions. For a free tree with more
than two terminal junctions, suppose that we start from a terminal junction
connected to at least two other terminal junctions of the free tree, and move
along branches of the free tree to the next terminal junction. Since the number
of vertices of the free tree is finite, then, moving from one terminal junction to
another terminal junction, we eventually shall trace an edge in the free tree that
leads to a terminal junction where its remaining edges are connected to no other
terminal junctions. That is, its remaining edges are connected (eventually) to
leaves of the free tree. Such a terminal junction must be of degree s = ξ where
ξ − 1 edges are connected to tall trees.

Hence, Lemma 5.5 can be applied repeatedly to any (finite) free trees which
are not tall trees, such that by recursion, the number of terminal junctions of
the free tree eventually reduces to zero (i.e. a tall tree). This yields the desired
result for Part One.

Part Two: If the modified differential equation ẏ = f̃(y) for a B-

series method is to satisfy the volume-preserving condition then the

coefficients c(tf ) for all free trees of orders r(tf ) ≥ 2 in (5.7) are zero.
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By Proposition 5.3, all tall free tree coefficients (both superfluous and non-
superfluous), are trivial. Since Part One establishes a recursion between any
coefficients of free trees and the coefficients of tall free trees, all coefficients for
r(tf ) ≥ 2 must be zero.

This completes the proof of Theorem 5.6.

5.4 Consequence of Theorem 5.6 for general
volume-preserving B-series methods

Recall that Theorem 5.6 states that all coefficients c(tf ) in (5.7) must be trivial
if a B-series method is to integrate a general source-free differential equation
whilst preserving volume. This means that the modified differential equation
must be exactly the same as the original differential equation,

ẏ = f̃(y) = f(y).

Note that this requirement is impossible to satisfy in general because it implies
that the B-series method should have truncation errors smaller than any power
of h, and in the general case, the exact solution y of a volume-preserving system
ẏ = f(y) is not known. This is summarised in the following theorem, which is
the main result of this paper.

Theorem 5.7. B-series methods cannot preserve volume directly for a general
volume-preserving differential equation2.

Since B-series methods are the main methods that preserve all linear sym-
metries of ODEs, the above result also sheds further doubt on the existence of
integrators that simultaneously preserve volume and all linear symmetries [12].

It is perhaps important to reiterate that Theorem 5.7 applies to a general
source-free differential equation. There are in fact source-free systems with spe-
cial structure for which volume-preserving B-series methods can be constructed.
Examples of such systems can be found in [3].

6 Conclusion

This article presents a proof that B-series methods cannot preserve volume
for general source-free differential equations in more than two dimensions, by
applying the divergence-free condition to the modified differential equation of
a volume-preserving B-series method. The divergence operator leads to the
construction of the contracted elementary differentials and their graphical re-
presentations, the K-loops. By studying the relations between K-loops and
their rooted (and free) trees, it is concluded that it is not possible to construct
a volume-preserving geometric integrator by B-series methods.

2A picky reader might argue that this result is not correct, since the exact solution is a
B-series. Our response to this would be that the exact solution is not a numerical method, i.e.
it is not given for arbitrary vector fields.
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