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Abstract

We consider the use of eigenfunctions of polyharmonic operatorsngmmied by
Neumann boundary conditions, to expand analytic functions in compt@ectats. Such
expansions feature a number of advantages in comparison with cldssiceer series, in
particular they exhibit more rapid decay of expansion coefficients dopariodic func-
tions.

Having derived an asymptotic formula for expansion coefficients xaenée in detail
an explicit form of eigenfunctions and the location of eigenvalues. Thdliswded by an
introduction and analysis of Filon-type quadrature techniques for ragucbaimation of
expansion coefficients. Finally, we consider special quadrature aietboeigenfunctions
corresponding to a multiple zero eigenvalue.

Introduction

We continue in this paper a theme that we have commencedeérig$s& Ngrsett 2006),
namely the expansion and approximation of nonperiodicygicduinctions on bounded real
intervals in eigenfunctions of certain differential opgera. Such techniques entertain a num-
ber of advantages, of both theoretical and numerical nadmiee compared to classical Fourier
expansions. It thus makes sense to explain briefly the masnad (Iserles & Ngrsett 2006),
an idea that we propose to explore further and generalisesmpaper.

Standard Fourier expansions in the interval, 1] use the basis

{cosmnz : n >0} U{sinmnz : n > 1}



and they exhibit two remarkable properties once we expanthetibn which is both ana-
lytic and periodic of period 2. Firstly, expansion coeffiti® decay exponentially fast and,
secondly, once integral expressions for expansion cogfiisiare discretized by means of
the Discrete Fourier Transform (DFT), we incur an error vahilecays exponentially in the
number of expansion coefficients. These two features, idetanwith the availability of the
Fast Fourier Transform to compute the DFT, underlie thergsiing success of Fourier ex-
pansions in an exceedingly wide range of applications iers@ and engineering. Yet, both
features are no longer valid once the function in questiaroigeriodic. In that case thegh
Fourier coefficient decays lik& (n~') and the error incurred by DFT ©(rn~2). In that
instance we have proposed in (Iserles & Ngrsett 2006) tkeenative of employing the basis
G, = Py @ H;, wherelP,, is the set ofnth-degree algebraic polynomials and

Hy = {cosmnz : n > 1} U {sinw(n— $)z : n > 1}. (1.2)

We have proved thaf; is an orthogonal (indeed, orthonormal) basis, which is dens
Ly[—1,1]. Moreover, statements equivalent to the classicaéiFand de la Va#le Poussin
theorems are valid in this setting and thedified Fourier expansion

o
flx) ~ 158 + Z[ FC cosmnax + f sinm(n — 1)z,
n=1

where ) L
fe = /_1 f(z) cosmnadz, f5= /_1 f(z)sin7(n — §)zdz,

converges for a Riemann-integrable functiprat anyxz € (—1,1) where f is Lipschitz.
Convergence at the endpoints is also assured (unlike farltissical Fourier expansion) for
an analyticf.

Once the coeﬁicientff and ff are expanded asymptotically in powersrof!, we ob-
serve thaf¢, f5 = O(n™?), aconsiderably faster decay than that of classical Foexjean-
sions for analytic, nonperiodic functions. This asymm@xkpansion also provides powerful
means to compute the first modified Fourier c:oefficientﬁnC andff to high accuracy in just
O(m) operations. This can be further improved by employing Filgpe techniques for the
computation of highly oscillatory integrals, that have b@&roduced by the current authors
in (Iserles & Ngrsett 2005). Finally, the few coefficientsresponding to small values af
before asymptotic behaviour sets, can be approximated bgtandard quadrature formulae
that require just a single extra function evaluation.

To recap, standard Fourier coefficients for analytic fuortidecay IikeO(n—l), while
modified Fourier coefficients display faster deca)(’,dfn—Q). In this paper we demonstrate
that even faster decay of the coefficients can be attained basis functions are chosen
judiciously. The underlying idea is very simple once we ustind why usingj; leads to
more rapid decay of the coefficients than employing stanBatdier basis. The reason is that
bothcos Tnx andsin 7 (n — 1)« areeigenfunctions of the second-derivative operaltfda?
with Neumann boundary conditiorSBupposing that is such an eigenfunction,” +a?u = 0,
u’(+1) = 0, integrate twice by parts and substitute Neumann boundaglitons,
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_ 1 [f'(aj)u(x)l_l— /_ 11 f”(x)u(x)dx] (1.2)

a?
Since it follows from the standard spectral theory that mjeavalues are real, positive and
a2 = O(n?) for thenth eigenvalue (Bschel & Trubowitz 1987), we deduce that

n

[1 f(@)u(z)dz = O(n™?).

Hence the aforementionéd(n*) decay of thenth modified Fourier coefficient.

We note in passing another important feature of (1.2), a &ewppid computation of the
coefficients: the expression on the right can be iteratethdéura procedure that leads to an
asymptotic expansion of the coefficients in inverse powérs. Gimilar idea will be used in
the sequel. Here we just emphasize the crucial importanbkomann boundary conditions
in making expansion terms vanish and accelerating conmeggeNote in this context that
sin rnz is also an eigenfunction oF /dx?, except that with Dirichlet boundary conditions —
this is precisely why ‘its’ coefficients decay like(n").

Had the eigenfunction obeyed higher-order Neumann boundary conditions, monester
would have dropped out in (1.2), resulting in more rapid glec® be in position to im-
pose more zero derivatives, we consider the eigenfunctiérike polyharmonic operator
d??/dx?, whereq > 1 is an integer. In other words, we seek functianand numbersy
such that

w9 4 (—1)7 1?1y =0, —-1<z<1, (1.3)
in tandem with the Neumann boundary conditions
u(=1) =uD(+1) =0, i=qq+1,...,2¢—1. (1.4)
We will prove in Section 2 a number of important features geefunctionsu:

1. There exists a countable number of positive, simple @&japs and real eigenfunctions,
except that (1.3—4) also has a zero eigenvalue of multiplici

2. Denote thenth positive eigenvalue by, = (—1)?a2? and the corresponding eigen-
function byu,,. ThenG, =P, & H,, where

Hy ={un : n>1},

is dense if.p[—1, 1] andu,, is orthogonal tas,,, for n # m with respect to the standard
Euclidean inner product.

3. Itis true thats, ~ O(n?7).

4. Once an analytic function is expanded in the functionghenth expansion coefficient
decays likeD (n=771) for n > 1.

5. For largen the functionsu,, oscillate rapidly. Thus, the task of computing thth
expansion coefficienf,, can be tackled by techniques of highly oscillatory quadeatu



In Section 3 we examine in detail the cage= 2, the first setting ranging beyond the
work of (Iserles & Ngrsett 2006). We show that there exist families of eigenfunctions
uy,, corresponding to two transcendental equations for thepadation of«,,. This work is
generalised in Section 4 to genegab 1.

Rapid decay of expansion coefficients is not just a thealetigriosity, since (like in the
caseg = 1) they can be approximated very rapidly by using techniquiggnally designed in
the numerical treatment of highly oscillatory integral$idlis the theme of Section 5.

This paper represents an introductory foray into the entiaéter of polyharmonic eigen-
functions as a means to approximate analytic functions. iimeeraft of questions have not
been addressed here, and in particular we mention the i$pa@ndwise convergence. In sec-
tion 6 we list a considerably longer list of open problems essdes for further investigation.

An interesting generalisation of our setting occurs when(f2)th derivative in (1.3) is
replaced by a more gener@y)-degree linear differential operator, i.e. when we conside

Zpl u(l + (- 1)q+1a2qu =0, -1 <x<1,

wherep,, > 0, in tandem with the Neumann boundary conditions (1.4). fasdifficult to
prove that the five aforementioned features of (1.3—4) hottlis, considerably more general
setting. Having said this, it is unclear at this juncture iofe whether this “poly-Sturm—
Liouville setting” has any specific advantages. Therefaeerestrict our attention here to the
polyharmonic case (1.3), which exhibits the virtues of dioity.

Polyharmonic eigenfunctions subjected to Neumann boynotarditions have been con-
sidered by Mark Krein, who analysed their properties and/gaoL,emma 1 (Krein 1935).
They have been introduced to approximation theory by Andodinogorov in his theory of
n-widths (Kolmogorov 1936). This distinguished pedigreéwithstanding, to the best of our
knowledge they have never been used as a means for pragicakémation of functions and
their highly oscillatory nature has never been exploitedrépid computation of expansion
coefficients.

2 Expansions in polyharmonic Neumann eigenfunctions

Since(—1)9d%7/dx?4 (with Neumann boundary conditions) is a semipositive-digfidiffer-
ential operator, we deduce that> 0 in (1.3).

We commence by noting that both (1.3) and the boundary dondi{1.4) are satisfied
with @« = 0 whenu € P,_;. We thus deduce that O isfold eigenvalue and that the
relevant linear subspace of eigenfunctions is spannedebleégendre polynomialBy, k =
0,1,...,¢ — 1, an orthogonal basis df,_;.

The remainingxs are positive, whence we can let

u(z) = 7(;2%(2@ (z).

Therefore, integrating by parts and substituting the Neuntzoundary conditions,

1 +1
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We can next apply similar reasoning to the integral on thetiagd, indeed, prove by induction
that

/1 f(z)u(z)de = ﬂ /1 F8) (@) uPR) (z)d, k=0,1,...,q
—1 —1

a2
In particular, lettingk = ¢ we obtain the important identity

/_1 f(@)u(z)de = 1 /_1 FDO(z)u'D (z)da. (2.1)

024

Lemma 1 The eigenfunctions of (1.3-4) are orthogonal with respec¢hé usual Euclidean
inner product and they are denselin[—1, 1].

Proof Although the lemma follows at once from standard spectebith (Krein 1935,
Levitan & Sargsjan 1975), it is instructive to prove orthoghty from first principles, using
(2.1). According to spectral theory, positive eigenvalaes simple. We denote them by
kn = (—1)7a27 and the corresponding nonzero eigenfunctions. by

It follows at once from (2.1) tha]f_l1 f(x)up(z)dz = 0 for f € P,_4, henceu,, is
orthogonal to all eigenfunctions corresponding to the zégenvalue. Moreover, letting =
Uy, fOor m # nin (2.1) we have

1 1
oziq/ U ()0, (z)d = / wl® (z)ul? (z)da.
-1 -1
However, by symmetry,
1 1
af,‘f/ U (T)up (z)da = / ulD (2)ulD (z)dx
-1 -1
anda,,, # o, a,, a, > 0, imply that necessarily
1
/ U () (z)dz = 0, m#n.
—1
Hence orthogonality. O
We note in passing that it follows from the proof that

1
/ ul? (2)ulD (z)dx = 0, m % n.

-1

Before we are carried away, however, we observe M{\%{t is nothing else but the eigen-
function corresponding to theth eigenvalue of (1.3) with thBirichlet boundary conditions
uD(£1) = 0,7 = 0,1,...,q — 1. (The eigenvalues are the same as in the Neumann case,
except that the Dirichlet problem has no zero eigenvalu€kgrefore, orthogonality ofth
derivatives is another immediate consequence of stangaddral theory.



Lemma 1 justifies the expansion @y = P,_, © H,, whereH, = {u, : n > 1}, of
Lo[—1, 1] functions. We thus let

f,‘i:/l f(z)P,(2)dx, n=0,...,q—1,

/ f(z)up (x)de, n=12...,

whereP,, is the mth degree Legendre polynomial. The underlying orthogomphasion

takes the form .
g

> (n+ ) + Z S (2.2)

n=0
o /_11 ug@dmf

and we recall thaﬁ1 P2(z)dz = (n+ 3)7!

The identity (2.1) can be iterated further and this provideonvenient route toward an
asymptotic expansion of the coefficients and ultimately, in Section 5, their effective com-
putation. We are no longer allowed to eliminate terms usgnolary conditions and repeated
integration by parts yields

1
jo = aig / D@ ()da

1q {f(‘”(x)u%q_l)(x)ll _/1 f<Q+1>(a;)u§g—1>(x)d4
-1

2
Qn

- [ﬂq)(a:)usf—”(x) S )|

where

1

1
L [ @ e
—1

k—1 1
[} : DD (gyula— 1—1)(33)‘71
n

=0
I / f(q+’“)(fv)(w)U§?’“)(x)d4

fork =0,1,...,q. Inparticular, lettingk = ¢ we have

2q—1

fn<§3q{z< DEO (Dt 0() - FO DD -] @)

] nson).

Note, however, that the integral on the right is the geneeeliFourier coefficient of (%),
Therefore, (2.3) can be iterated,

fn _ (_;_3‘1 Z(_l)k[f(k)(l)ugqfkfl)( ) f(k)( ) (2q—k— 1)( 1)]

Qn



i > (DR (ulah D (1) = RO (—1)u (R (<1)]
an’ =
—1)2¢
S E0 [ @@
(e79) —1
and so on.

Theorem 2 Givenf € C*[—1, 1], itis true that

oo

—1)(rt1a 2q—1

fune S S Y DA @)D (1) — O (2 (-,
(0%

r=0 n k=q

(2.4)
Proof Follows at once from (2.3) by repeated iteration. O

To connect (2.4) with the narrative of (Iserles & Ngrsett@Q0ve observe that for = 1
we havea,, = mn,

Ugp_1(7) = sinw(n — )z, Uy (x) = cos Tnx

and

Fomt ~ (—1)n! i (_?T][f(2r+l)(]_) 4 fer (),
r=0

— [(’I’L _ % T 2r+2
; _n — (=17 e 1) _ per g
f2’ﬂ ~ ( ) Z (TLT()QT"'Q [f ( ) f ( )}7
r=0
consistently with Theorem 2.

How fast doesf,, decay forn > 1? It “feels” intuitively right thatu'’ (z) ~ O(ak)

for largen and, indeed, this will be proved in Section 4. Taking thisdoanted for the time
being, we deduce from (2.4) that

fnw(’)(a;q_l), n> 1.
Itis, however, easy to prove that, ~ O(n). To this end we note that
d2

2 d2 2 — 1—5 2q—2—-2j5 d2]
_(1)4429 — _1)ya—1-J ,2q—2-2j
o~ (a2 = (g + a2 S e

Thereforep! + a2v,, = 0, where

[

q—
vp(z) = Z(—l)q*“jafﬂ**%ugﬁ (z).

j=0

Note thatv,, # 0. For suppose that, = 0. In particular, this would have implied,(+1) =
0. This, together with the Neumann boundary conditions (ly#lds an overdetermined



homogeneous linear system fayf,, henceu,, = 0, a contradiction. Consequently, is
the nth eigenfunction (and? the nth eigenvalue) of-d?/dz? with some mixed boundary
conditions at:1. Therefore indeed.,, = O(n) (Poschel & Trubowitz 1987). We thus deduce
that

fa~rOm 7Y, > L (2.5)

This has important consequences to the subject matter op#per: the largey > 1, the
more rapid the decay of expansion coefficients, hence fefvdreo are required once we
wish to approximatg to given precision.

3 Thecaseg =2
The general solution of (1.3) fer= 2 is

u(x) = ¢1 cos ax + co sin ax + ¢3 cosh ax + ¢4 sinh ax.
Imposition ofu”(—1) = «”(1) = 0 results in

COS (v sin o
1 Cyp =Co———.
cosha’ sinh av

We substitute these values @fandc, into u(z) and impose the remaining boundary condi-
tion, v’ (—1) = «/’(1) = 0. Since, after straightforward algebra,

1., " sin « cosh @ — cos asinh v
— (" (1 u’(=1)] = 2¢ - ,
[o%: [ (1) 4w (1) 2 sinh o

1 sin v cosh o + cos arsinh o

73[u///(1) _ u///(_l)] =2,

)

cosh a
we deduce that fott > 0 we have two possibilities.

Case 1Letting c, = 0 and normalising; = 1/(v/2 cos ), we have

2 sh
u(z) = £ COs X i cosh ax ’ (3.1)
2 cos & cosh «
anevenfunction, wherex is a positive zero of the transcendental equation
ge() = tana + tanh v = 0. (3.2)
Case 2Alternatively we letc; = 0 and normalise, = 1/(v/2sin ), whence
u(z) = @ si-n ax si-nh ax , (3.3)
2 sin a sinh a

anodd function, wherex is a positive zero of

go(a) = tana — tanh a = 0. (3.4)



To locate zeros of (3.2) and (3.4), we commence witand observe that
g.(a) =2+ tan® a — tanh® a > 0, a>0,

since0 < tanh o < 1 for @ > 0. Thereforey, increases monotonically. Moreover, for every
n=12,...

ge((n— 3)m) = =1+ tanh(n — Hyr <0, ge(nm) = tanhnmw > 0

andg. has a simple pole gt — %)w. We thus deduce that (3.2) has a unique simple zero in
each interval of the fornfiz,,—1 = ((n — %)77, nm) foralln = 1,2,.... As a matter of fact we

can say considerably more: for smalt> 0 we have

cose —sine

ge((n — i)w +e)= + tanh((n — %)W +e)

cose +sine
cose —sine
- "~ i tanh _ 1

coss+sins+ anh((n — 3)m)

=2 — 22— 4 (9(52, e_4("_i)”) .

Therefore, lettingg = e~2(n=1)7 e deduce that for sufficiently largeit is true that the
unique zero of (3.2) if,, can be confined to

j?nfl = ((’I’L — i)’ﬂ', (n — %)T( + 8_2(”_%)71—)7

an interval of exponentially-small length. Computer shatonfirms that there is a zero in
Ip,_1 forall n > 1, not just forn > 1.

Similarly, it is easy to verify thay, is strictly monotonically increasing, with a simple
pole at(n — )7 and that

Jo(nm) <0 < go((n+ i)ﬂ')

for everyn > 1. We thus deduce that, has a single zero in each intenia), = (nr, (n +
1)m) and is nonzero elsewhere. Proceeding as before, this zetmecastricted to

. 1
Ly = ((n+ Hr — 720D (n 4 Lyr).

To sum up, all parametetscan be confined to intervals which become exceedingly small
forn > 1: we leta,, € I,,, n = 1,2,..., and denote the corresponding eigenfunction by
u,. Note that solutions of (3.2) and (3.4) alternate and thatsistently with the analysis of
Section 2o, = O(n).

The functionsu,, are already normalized and the proof involves straightéwdaalgebra.
For example, given

cosaxr  coshax

v(z) = cos o cosha ’

we have, after long calculation,

1
1 1 3
2 —_
[1 vi(z)de = oa + e + a(tana + tanh «).



10

1.0

(2]
Ll

Figure 3.1: The orthogonal functions,, n = 1,2, 3, 4, for g = 2.

Assuming thaty = as,—1 0obeys (3.2), the term in brackets on the right vanishes dtef, a

another easy calculation,
1 1

+
cos2a  cosh?a

=2

Thereforeus, _1(z) = v(z)/v/2 is indeed of unit norm. The calculation fas,, is identical.
Therefore, we may let,, = 1in (2.2). Moreover,

Un(—=1) = (=" V2, w,(1)=v2, n=12....

In Figure 3.1 we display the first four functioms. In conformity with our former observa-
tions, note thatiy,, 1S are even, whileis,,s are odd. It is evident from the figure that each
u, has precisely. simple zeros in(—1,1) and that the zeros interlace. This behaviour is
characteristic of Sturm—Liouville eigenfunctions (Lewrit& Sargsjan 1975) and is evidently
valid also for biharmonic eigenfunctions. We also note isg@g that each,, appears to
haven + 1 zeros. Recall, however, that the functiansneed be complemented hyandz,
the first two Legendre polynomials, with no zeros and a singte, respectively.

In Figure 3.2 we display the absolute values of the first heahdoefficientgfn. It follows
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Figure 3.2: The magnitude of the coefficierfisfor ¢ = 2 and f(z) = e®. On the left we
display|f,,| and on the right scaled values|,|.

from Section 2 thaff,, = (’)(n—?’), and this is confirmed by the figure on the right, which
depict5n3|f7,,\. Note there the very rapid onset of asymptotic behaviour.

Figure 3.3 depicts the pointwise error in the approximatibyi(x) = e* by the truncated
expansion

Fo(z) =370+

D=
ol

m
1T+ Z Jntun(z)
n=1

for m = 10, 20, 40, 80 in the interval(—l%, 19—0). Note that the error decreases roughly by a
factor of eight once the size of is doubled, indicative oO(m—?’) decay. It is instructive
to compare this figure with Figure 2.1 in (Iserles & Ngrse®@)) which displays pointwise
error for modified Fourier expansions (i.e., polyharmomgeafunctions withy = 1), as well
as for classical Fourier expansions. Thus,gfet 1 the pointwise error decay @(m*l) for
classical Fourier expansion®,(m~2) for ¢ = 1 andO(m~?) in the present case, = 2.
Of course, all this refers to numerical results: we have @dow (Iserles & Ngrsett 2006)
that modified Fourier expansions converge pointwise forRigynann integrablg at a point
where it is Lipschitz, but we have not determined there tie o convergence. Far > 2
we lack at present any hard proofs about pointwise convesgeneven summability, not to
mention the rate of convergence.

An important distinction between classical and modified ri@uexpansions is that, for
analytic f, the latter converge pointwise &ll of [—1, 1], inclusive of endpoints. However,
the convergence atl1 is justO(m—l), slower than the conjectured convergence at interior
points (Iserles & Ngrsett 2006). It is thus interesting tareine pointwise convergence of
F,,, at the endpoints. In Figure 3.4 we have done soefo(compare with Figure 2.2 from
(Iserles & Ngrsett 2006)), displaying the quantitie$| F,,, (+1) — e*!| form = 1, ..., 100.
Evidently, it seems that the error at the endpoints dechgﬂ(m*Q), an order of magnitude
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Figure 3.3: The pointwise error in approximatifigr) = e* by F,, for m = 10, 20,40 and
80, respectively.

faster than in the casg= 1. Although it is reasonable to guess that Figure 3.4 is iritliea
of general behaviour, we have to date no hard analysis torpimdis conjecture.

4 Eigenfunction bases for generay > 1

The case; = 1 has been considered in (Iserles & Ngrsett 2006) @nd 2 in the previous
section. Presently we turn our attention to generat 1. In other words, we consider
functionsu such that

w0 4 (—1)7H1020y = 0, —1<x<1, (4.2)
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Figure 3.4: Pointwise error, scaled by, at —1 (left) and+1 in approximatingf (z) = e”
by F,,, form =1,2,...,100.

subject to
uP(=1) = uP(+1) = 0, i=q,q+1,...,2¢—1. (4.2)

We restrict our attention ta # 0, since the case of thefold zero eigenvalue has been dealt
with in Section 2.

An immediate observation is that, regardless of our chofce,ahe ith derivative of
u scales likea® for i > 0. This feature of eigenfunctions has been already employed i
Section 2, to prove (2.5), the asymptotic rate of decay oéagn coefficients.

We commence by considering general solutions of the lingaation (4.1). They are
necessarily of the form

2g—1
u(z) = Z Cpe®MT (4.3)
k=0
where o, ..., A\yq—1 € C are solutions of\?? = (—1)%, while cg, ... ,co4—1 € C are ar-

bitrary constants. The boundary conditions (4.2) will beoiporated once we have brought
(4.1) into a more convenient form.

4.1 Eveng > 2

It is advantageous to separate the discussion of even andatukes ofg and we commence
with eveng. In that case the\;s are roots of unityd, = exp (%’“) k=0,1,...,2¢ — 1,
and we note thak,, = —\;. Therefore (4.1) simplifies to

—1

u(z) = cre @ |cos | axsin — | +isin [ axsin —
k=0 q 4

Q
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ak omk\ L Tk
+ cqprpe” TP @ |:COS (owc sin ) — isin (ax sin )} } .
q q

Since we are interested in expressing terms of real parameters, we consider two cases:

Case AWe letc;, = (ﬁk +ivk), Cqrk = Cr = (ﬁk —iy) fork =0,...,9g— 1. Then,
following elementary algebra,

qg—1

u(z) = Z [ﬁk cos (ax sin ﬂk) cosh (ax cos Wk)
P q q

(e ) (o )}
+ v sin | ax sin — | sinh | ax cos — .
q q

Note thatu is an even function.

Since 3, and 5,_; multiply identical terms folk = 1,2,...,¢/2 — 1, we may assume
without loss of generality that, »,, = 0fork =1,...,¢q/2 — 1. Likewise,v, andv,_ for

k=1,...,¢9/2 — 1 multiply terms that differ just by sign and again they can bgragated
and we may assume thaf,,,, = 0fork = 1,...,¢/2 — 1. Finally, o and~,,, multiply
zero terms, hence we might set them to zero. All that suruives

q/2

u(x) = Z B cos (am sin Wk) cosh (owc cos 7Tk> (4.4)
q q
k=0

q/2—1

k k
+ Z Yk Sin (aaz sin F) sinh (ax cos W) .
q q

k=1

Note that we have in (4.4) exactiycoefficients G,
1, matching the; boundary conditions (4.2).

It is easy to confirm by induction that the derivatives of {shdve the explicit form
—25 (25) (x)

q/2

. 2mks . 7k 7k
= Z B cos + g sin cos | axsin — | cosh | ax cos —
q q

q
2rks
+ (ﬂk sin 22

) s (amsin G sian (azcss )|
sin [ ax sin — | sinh | oz cos —

q q
72371u(2s+1)(x)

q/2

(2 1 k(2 1 k k
= Z [(ﬁk cos L) + vk sin 7T(S+)) cos <aa: sin 7T> sinh (aac cos 7r>
q q q q
k(2 1 k(2 1 k k
+ <—Bk sin (ZH ~+ 7Yk, cos 7T(Z+)> sin (aac sin 7Tq> cosh <aa: cos 7;)] .

Letting z = +1 for theith derivative,i = ¢,q + 1

k=0,...,q/2andy,, k=1,...,q/2—

27
+ Yk cos

.,2q — 1, and equating to zero is



equivalent to the identity

Bo
o, [ 5 } =0, where 3= 6:1
ﬁq/2

where theg x ¢ matrix @, is formed consistently with

15

st
72

Yq/2—1
the identities above. Thusegithat

we seek a nonzero eigenfunction, we obtain the transcesiddgebraic equation

det d, = 0

(4.5)

for the coefficient, Whence{ 5 } is the eigenvector corresponding to the zero eigenvalue

of ¢,.
The first two cases akg= 2, resulting in

e

(the latter is identical to (3.2)) angd= 4, when

cosh «
sinh «

— COS

. =
Sin &«

— cos <= cosh <=

cosh cos a

V2 V2
i V2 @ ginh - —gin o ) g
@4 _ sinh « o) (cos 7 sinh 5 —sin O cosh \/5) sin o
cosh a sin % sinh % —cosa
sinh o g (cos % sinh %Jrsin % cosh %) sin o

yields the equation

det @9 = sin v cosh o + cos a cosh o

sin <= sinh <=

sinh a[sin a(cosh v/2ar + cos vV2a) + g cos a(sinh V2 — sin v2a)]
— cosh a[cos a(cosh V2o — cos V2a) + g sin a(sinh V2 — sin v/2a)].

Case BWe now lete, = 1 (8 + ive) andegsp = —¢, = (=B +im), k=0,...

We now obtain th@dd function

q—1

D

k=0

u(z)

. < 7k >
+ v sin | ax sin — | cosh
q

V2 V2
—(%cos%sinh%—&-sin%cosh%)
[e3 (o3
7cos%coshﬁ
V2 (gip - o @ g o
5 (sm\/icosh\/5 Cosﬁsmh \/5)
,q — 1.

k k
[ﬂk cos <a:c sin 7T> sinh <ax cos 7T>
q q

(o ™)]

We continue along the same lines as for Case A. Thus, aggrgdgdéntical terms, we have

q/2-1

u(z) = Z By cos
k=0
a/2

+ Z Yk Sin

k=1

ax sin — | sinh [ v cos —
q q
ax sin — | cosh | ax cos —
q q

(4.6)
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— in this case the surviving coefficients &g . . ., 3,/2—1 and~i, ..., v,/2. We again form
derivatives,

723 (23) (.’E)

= % Kﬁk cos

q
2mwsk
+ (ﬁk sin T

72571u(2s+1) (J?)

sk . 27
+ Y& sin

2msk
+ Yk cos

sk AN 7k
cos | ax smF sinh | ax cos?

q/2

(2 2 1
= Z {(ﬁk cos s;—)k + Y& sin W(S:)k) cos (ax sin 77;) cosh (ozx cos ﬂ;f)

. m(2s+ 1)k m(2s+ 1)k . AN ok
+ —ﬁksm?—i-fykcos? sin axsm? sinh amcos? .

Imposing the boundary conditions (4.2) leads to

Bo B!
\I/q[g]zo, where (3= ﬁ:l LY = 7:2
ﬁq/271 Yq/2
hence to the transcendental equation
det ¥, = 0. 4.7)

In particular,
det W5 = cosh asin @ — sinh « cos a,
det W, = sinh a[sin a(cos V2 + cosh v2ar) — ? cos a(sin V2o + sinh v2a)]
— cosh afcos a(cos v2a — cosh v2a) + ? sin a(sin V2« + sinh v2a/)].
Note thatdet W5 = 0 is identical to (3.4).

42 0Oddg>1

The treatment of an odd is identical: we formu in terms of real coefficients;, and~y,
whereby there are two cases, even and odd functions. In @aehne aggregate coefficients,
form derivatives explicitly and impose the Neumann boupdanditions (4.2). This results
in each case in a transcendental equation, setting a detmhof a matrix to zero, whereby
the coefficientg3 and~ are components of the eigenvector of the matrix in questiree
sponding to a zero eigenvalue.

The starting point is

N oweon ZED) k)N w(k+3)
:Z coSs axsmT + 1sin axsmT

k=0
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w(ktd) k+ 1 k+ 1
FCqpre 0TS T [cos <a:z: sin M) —isin <a:z: sin M)] } :
q q

Case AUsing the same substitution as before and aggregatingiédéterms, the only sur-
viving coefficients are

Bo Yo
51 Y
8= . and ~= .
Big-1)/2 V(g—3)/2

All the formulae are the same as in the case of eyaxcept that we need to adjust the limits
of summation and repladewith k + % in numerators. This applies both to (4.4) and to the
expressions foe —*u*) (z).

= indet ®; = ®; = —sin o i . =
Forg¢ = 1 we obtaindet ® i) : no surprise here. F 3 we have
—sin § cosh @ sin av cos 5 sinh @
(1)3 = 7% cos § cosh —‘/25” — @ sin § sinh —‘/25"‘ COS & @ cos § cosh —\/25"‘ 7% sin § sinh —‘/25”
—@cos%sinh@—%sin%cosh@ —sin « %cos%sinh@—@sin%cosh@
and

3
det 3 = %(cosacosh V3a — 2+ cos? a).

Case BAgain, we proceed like for evep After aggregation we obtain

Bo Y0
51 et
B = . and = . :
Big-3)/2 Vig-1)/2

while (4.6) and the formulee for derivatives are, again, iidah except for changes in limits
of summation and replacement/oby & + % in numerators.
Forq = 1 we recoverdet ¥; = ¥, = cos «, While forg = 3

— sin § sinh @ cos § cosh % —cos
h @—@ sin § cosh @ § cos § sinh @—% sin § cosh \/‘23“ sin « s
— é cos § cosh —‘/go‘ 7% sin § sinh —\/‘go‘ % cos § cosh —\/go‘ 7§ sin § sinh —‘/‘g“ COS (¥

\I/ = _1 @ o
3 5 cos § sin

3
det U5 = —% sin a(cosh V3o — cos av).

Note thatcosh v/3a > cos o for o > 0, therefore we need to consider only the trivial equation
sina = 0.
4.3 Location of thea,,s

Let us take stock. We have proved in this section tHat(x) = O(a'), a result justifying
the statement in Section 2 thﬁ; = O(n*qfl), and derived the functions in an explicit



18

form as a linear combination of products of trigopnometrid dnyperbolic functions. The
functions depend on a parameterwhich is a solution of a transcendental equation: once
a is known, the coefficients in the linear combination can b&lgaomputed by solving an
algebraic eigenproblem. Regardless of the valug Bf1, such functions and corresponding
transcendental equations always occur in two cases: evkodth

All that remains is to look closer into the solutions of thertscendental equations (4.5)
and (4.7).

For ¢ = 1 the situation is clear: the solutions of (4.5) and (4.7) rareand (n — %)w
respectively. Therefore, the solutions interlace, thed“ogblution comes first, and we let
Q2n—1 = (n — 3)7, a2, = nm and labeks,, accordingly.

We have already consider@d= 2 in Section 3 and proved that the solutions of (4.5) and
(4.7) reside in the exponentially small intervdls. Specifically,as corresponding to even
functions arex (n — 1)x, while for oddus we havex ~ (n + §)m. Again, zeros interlace,
except that the order is reversed: we start on the left frorara zorresponding to an even
function. We allocate subscripts accordingdys,, 1 corresponds to an even,,_1 andas,
to an oddus,,.

Forg > 3 we have already seen that (4.7) reducesii@v = 0, with the zerosur. Insofar
as (4.5) is concerned, let

g(x) = cosz coshv/3z — 2 + cos? z, g(x) =

Since

3] 2 2
#(x) = v/3sinh Ve — w
COS“ X

it follows at once thay monotonically increases for sufficiently large as a matter of fact,
by numerical calculation, far > 1.874858. Moreover, computation shows that (4.5) has no
zeros in(0, 2), hence we may assume thiaincreases monotonically. Since it has a simple
polar singularity a{n + 3)7 andg(nm) = coshv/3nm — (—1)" > 0 for everyn > 1, we
deduce that it must have a single zero in every interval ofdatre (nm, (n+ 1)7). Therefore,
zeros of (4.5) and of (4.7) interlace.

Applying a single step of Newton—Raphson iteratioryte) = 0, with starting guess
(n+ $)m, produces

ax(n+ 3T — 4(—1)”67‘/5(’”%)”,

an extraordinarily good approximation: for= 10 andn = 11 we incur an error 06.55 x
10~% and of1.23 x 10~°3, respectively.

In the case; = 4 we have just numerical results, but they fit the general patt€hus,
solutions of (4.5) and of (4.7) tend exponentially fast witkr 1 to (n+ 1) and to(n + 3)x
respectively.

To sum up our results far = 1, 2, 3, 4, we have

Qon—1 Qo the least zero
(n—4)m nm 4.7)
— (n— i)’ﬂ' — ( %)7‘(’ (4.5)
nmw — (n+ g)?‘( 4.7)
— (n+ i)’ﬂ' — ( T (4.5)

B WN R
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The pattern emerges and we conjecture that for gemeral 1 zeros of (4.5) and of (4.7)
interlace, with the leftmost zero being of (4.5) for evgrmof (4.7) otherwise, and moreover

a, — i(?n +q—1)m, qgn>1 (4.8)

exponentially fast fon > 1.

Note that this behaviour is consistent with our remark int®ac2 thata,, = O(n):
actually, there is compelling numerical evidence that= %wn + pg + O(nfl) for some
fg € R.

Another valuable observation is that, given exponentiatiémcy to limit in (4.8), the
computation ofv,, by Newton—Raphson iteration is exceedingly easy: just gleiiteration
is required in IEEE arithmetic for even small valuesnofThus, forqg = 2 a single iteration
produces an error df49 x 10~2" already fom = 4 (n = 3 misses the IEEE machine epsilon
by a whisker, giving an error af.95 x 10716).

5 Rapid computation of expansion coefficients

A major reason for the extraordinary success of classicafi€oexpansions can be attributed
to the very fast and accurate means for the evaluation af toeificients using Fast Fourier
Transform. As we have already explained in (Iserles & N#&#16), modified Fourier expan-
sions provide an alternative means to approximate expassioefficients to high precision,
using asymptotic expansions and other techniques origgnat highly oscillatory quadra-
ture. The outcome is a numerical approach that requiresraedest data — a relatively small
number of function and derivative evaluationsfof and justO(m) flops to evaluate the first
m expansion coefficients. In this section we demonstrateahahis can be generalised to
polyharmonic eigenfunctions, regardless;of 1. Our point of departure is the asymptotic
expansion (2.4) from Theorem 2.

5.1 The asymptotic method

Before we commence our discussion of effective numericpi@pmation of expansion co-
efficients, we need convenient formalism to express dérevatformation. We thus let

N,,={jeN:j=2qr+k<mwherer >0, ¢ <k <2¢—1}

and _
D,(z) = {f(J)(x) 1 j € Ny}
The first step in our design of an effective algorithm for ta&ualation of

1
fo= [ f@un)s, 0zl
-1
consists of truncating (2.4). This results in @mymptotic method

Qloer-pesl f] (5.1)
1

5 CUO S b ayugr k(1) (e -k ()

r=0 (07%) k:q
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(—1)(s+1a atr_l

7{)&(5“)(1 _1)k [f(2qs+k) (1)u(2q7k71) (1) — f(2qs+k) (_l)ugqukfl) (-1)],

n

+
k=q

wheres > 0,p € {0,...,¢— 1} and

) 2¢s -1, p=0,
pS,P_ (23+1)Q+p_17 p:177q_1
is the number of derivatives atl.

Theorem 3 Itis true for everys > 0 andp =0,...,q — 1 that

Qleswperl o f + O(n‘(25+1)‘1—p‘1) , > L (5.2)

Proof Follows at once by direct comparison of (5.1) with the asyatiptexpansion
(2.4), distinguishing between the cages- 0 andp > 1, bearing in mind thatv,, ~ O(n)
andu! ~ O(n?). ]

Once an approximation tg), is O(n~) for n > 1, we say that it is of amsymptotic
order N. Thus, the asymptotic method (5.1) is of asymptotic of@er+ 1)q + p + 1. Note
that asymptotic order refers to absolute error. Sifice- O(n*qfl), therelative asymptotic
orderof (5.1) is2sq + p.

We say that (5.1) employs tluata set

DV=wresl = DyUD,, (-1)UD,, (1),

where - '
D,={f90) :i=0,...,q}.

It will be clear to the observant reader triag is not, actually, used at all in (5.1). The reason
for its inclusion will be apparent in the sequel, in Subsetb.4.
To illustrate (5.1), we consider= 2. We have already noted in Section 3 that

Ugn-1(=1) = V2, Uz 1(1) =V2,  ugn(=1) = —V2, ug,(1) = V2.
Moreover, differentiating:,, and using (3.2) and (3.4), it is easy to verify that
U1 (—1) = V22,1 tan agp 1, b, (1) = —v/20a9,_1 tan ag,_y
and
thy(—1) = uh, (1) = Qﬁﬁ:

(note thaf tan «v,,| ~ 1). Therefore, the first few asymptotic methods ot 2 are

e KURSASY
2] = V2O am gy ey

Qo
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Figure 5.1: Scaled errors! (Q2% — £,), n7(Q!>% — f,.) andn®(Q1% — f,) for f(z) =
andq = 2.

Ll = —W[f”(l) + (1) - aﬂ W = 1D,
1 = Y200 gy 1)) - L2+ -
Ll = —W[f’(l) + (1)) - aﬂ W = 1)
W[W )+ £O (=),
51 = Ww”(l) — /(1) - ;Z[f’”(l) + 1" (=)
4 Y20k o)1) _ 101

a2n

and so on. An important observation is that for any 3 the firstm coefficientsQ!!"’ [f1,
n =1,...,m, can be computed i@ (m) operations.

In Figure 5.1 we display scaled error8 (C &4 [f]—fn), WhereN is the asymptotic order,
for the three choices= 2,3, 6, ¢ = 2 andf(x) = e”: numerous other computer experiments
with other analytic functiong replicate these results. It is clear that computationsaromf
with theory. Absolute and relative (non-scaled) errorsskelected values of are presented
in Table 1. Evidently, the error for smallis unacceptably large, but this is hardly surprising
since the asymptotic method (5.1) is, as its name impliésg&@fe only for largens, whenu,, s
become highly oscillatory and asymptotic behaviour setsrddver, fo)eal clearly delivers
poor relative error even for large This is not surprising either, since its relative asymiptot
order is just one.
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2] o] Ol
n || absolute relative| absolute relative | absolute relative
1] 990_g2 4.40_¢1 | =7.20_g3 —3.20_g2 | 3.17_03 1.41_¢9
2 1.82_02 4.50_01 —1.54_04 —4.21_03 7.66_05 2.08_03
3 3.61_03 1.60_g7 | —2.48_¢5 —1.09_93 | 3.96_gs 1.75_¢4
4 || 1.75_03 2.28_g1 | —=3.07_gs —4.01_¢g4 | 6.99_¢7 9.15_g5

10 || 5.90_p5 &8.65_pg2 | —9.21_g9 —1.35_g5 | 7.97_10 1.69_g¢

20

50

4.06_05 4.25_02 | —8.88_11 —9.30_07 | 3.78_12  3.95_0s
1.10_g7 1.68_g2 | —1.65_15 —2.53_0s | 2.78 15 4.25_19
100 || 7.02_g9 8.39_03 | —1.35_15 —1.60_¢o | 1.13_17 1.35_1,

Table 1: Absolute and relative errogy:" [f] — fn for f(z) = e, ¢ = 2andi = 2,3,6.

5.2 Filon-type methods

The main idea of Filon-type methods is to replgcky an interpolating polynomial inside
the integral. Thus, let1 =¢; < ¢3 < --- < ¢, = 1 be givennodesandmy, ms,...,m, €
N their multiplicities. We interpolate (in a Hermite sensef” (c,) = f¥(c;) for i =
0,....mp,—1,k=1,...,vandlet

X 1
o.lf] = [1 U(x)uy, (x)de, n=12... (5.3)

(Iserles & Ngrsett 2005). Note that (5.3) can be always natiegl exactly, because of the form
(4.3) of u,,. The asymptotic order of (5.3) iain{m, m, }: in other words, it is influenced
solely by function values and derivatives at the endpoitisisistently with the asymptotic
expansion. However, further information at the intermtiaointsc,, ..., c,_1 typically
decreases significantly the size of the error (Iserles & dlEH05).

The Filon method has been reinterpreted in (Iserles & NpP&$I6) in the case of mod-
ified Fourier expansions, our cage= 1, and similar reinterpretation applies in the current,
more general setting, except that it requires some furtlogk w

Once we contemplate the information (in terms of functiod derivative evaluations)
required for the formation of, we are struck by an important observation. The asymptotic
expansion (2.4) requires ongpmederivatives at the endpoints: specifically, we require only
fRar+kR)(£1) forr = 0,1,... andk = q, ..., 2q — 1. In particular,f (V) (+1) is not required
fori = 0,...,q — 1. Itis clearly wasteful to evaluate and interpolate unnsassvalues,
not just in evaluating derivatives that have no direct bwpon the solution but also in in-
creasing unduly the degree of Following the practice of (Iserles & Ngrsett 2006), we use
‘significant’ derivativesf (247 +%) (¢, ) also at the intermediate points=2,...,v — 1.

This practice leads to savings but is potentially dangerdine Birkhoff-Hermite inter-
polation problemwhereby a function is interpolated on a basis of lacunarywatve infor-
mation (i.e., with some derivatives ‘missing’) need notédavsolution or the solution need
not be unique (Lorenz, Jetter & Riemenschneider 1983). Waataake it for granted that
exists for any configuration af,s and derivative information therein. Although this willtno
be a problem in particular examples explicitly worked outtia current paper, it is only fair
to warn the reader.
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Not every multiplicity makes sense in the present contémtesnot every derivative fea-
tures in asymptotic expansion. We say that a natural nunibeigoodif there exists > 0
andp € {0,...,¢ — 1} such that/ = p, , and assume in the sequel that all multiplicities are
good numbers.

We seek a polynomial of degre€d ", _, ¢, — 1, where,, is the number of terms in the
setN,,, such that

V()= f9D(x) je€Np,, k=1,...,v (5.4)
and set

= /1 (x)u, (x)de, n=12,.... (5.5)
—1

Therefore, the data set of the Filon-type method (5.5) is

14

=Dyu U D)

Recalling that the least index iV ,,, is theqth one, it is convenient to replace (5.4) by the
interpolation conditions

O () = fD(ep) JENp, k=1...u

In other wordsy = (9 and trivial calculation yields

,_.

—1 1 @ q_
OO + /0 (2 — )71 p(1)dt. (5.6)

=0

We substitute (5.6) into (5.5) and note that, by Lemma 1,:the are orthogonal to all
polynomials of degre& ¢ — 1. Therefore

Q:Ln = / / (t)dtuy, (z)dx, n=12,....
q—l 0 2 (0) (=)

Theorem 4 Letm; = m, = p,, (recall that all multiplicities are good numbers). The
asymptotic order oD is (2s + 1)g +p + 1.

Proof Identical to the proof of the order of a Filon-type methodiirfiserles & Ngrsett

2005), substitutingy — f into the asymptotic expansion and using Theorem 3 for theraf
the asymptotic method. O

Proposition 5 It is true that

o™f] = 12q /1 o(z)ul? (z)dx, n=1,2.... (5.7)
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Proof We observe that

o [ emema=i [ @-p a0

We replaceu,, with (—1)7a;27u?, using (1.3), and integrate by parts,

ym e T — ql u(2q)
Q7] ql'an// )7 () dtul? (2)dw

S [usq”(n / (1 1) p(t)dt
0

(q— Doy

_ (— 1)1 (- 1)/0 (14 4)7 L p(t)dt

/ / z — )7 2p(t)dtu297Y (2)dz.
'an

Because of (1.4), however'?* " (+1), therefore

Am el o 2, (2¢—1)
qrlfl = q_z'agq//x £)472(t)dtul? (z)dz.

We continue by induction, repeatedly integrating by pants @sing Neumann boundary con-
ditions (1.4). It thus follows that

QI{‘[ﬂ— 'a / / 1)1 Lo () dtu'29R) (z)da

fork =0,1,...,q — 1. Lettingk = ¢ — 1, integrating again by parts and substituting zero
Neumann boundary conditions, we obtain

1
Q = / / ) dtu'dt (z)dx = qu o(z)ul? (z)dx.
This completes the proof. |

Note thatu'?) ~ O(al), thereforeQ™[f] ~ O(a,,971), as expected. Note further that

Uy = =u'?isan eigenfunction of (1.3) corresponding to ieichlet boundary conditions

v (£1) =0, i=0,1,...,q—1

(the eigenvalues for Dirichlet and Neumann conditions laeeseme for (1.3)).
Eachy is a linear combination of derivative values,

D=3 D> en@) (),

k=1j€Nm, (ck)
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where theyp;, ;s are cardinal polynomials of Birkhoff-Hermite interpatai Therefore, let-
ting

1 1
brj(n) = Tq/ or;(@)ul? (2)de,  jE N, k=1,...,v,
an” J-1
we have
}: > b)Y (er) (5.8)
k=1jeN,,,
As an example, we lef = 2, v = 4, ¢ = [-1,—¢,¢, 1] andm = [2,2,2,2], where
¢ € (0,1). Since forg = 2 we havelN, = {}, our data set is
{£(0), £1(0), £7(0), f"(=1), f"(=c), f"(e), £ (1)} (5.9)

Simple calculation confirms that the cardinal polynomiaks a

B (1—2)(c? — 2?)
<P1,2(35) = *%W,
(1 —22)(c—2)

d(1-&)
(A =a?)(cta)
p32(x) = wa
(1+2)(* — 2?)

1—¢2 ’

N

%022( )=

Qap(r) =—3

The fastest way of calculating the weiglis; is probably by treatingy,, as a parameter, cal-
culating the integral and finally using (3.2) and (3.4) tolifiy he expressions. The outcome
is appealing in its simplicity,

\/itan Qon—1 2\/§ 1

b1,2(2n — 1) = b4)2(2n — 1) = —
Oégn,1 1—¢? O‘%nfl

2v2 1

—2oi
L—c*ay, 4

b212(2n — 1) = b3,2(2n - 1) =

V2cotag, V2(3-c?) 1

b172(2n) = — 04% + 1— 02 g, b472(2n) = —b172(2’ﬂ),
2v2 1

b272(2n) = — 6372(271) = 7b2,2(2ﬂ).

e(l—c?)aj,’

Comparing withQ!2? | we thus deduce that

221 = QB - — 2B - 10 - (=) + (1) (6510
Q05[] = Qﬁf][f]—i (1{02)&:( AIW) = (=] = 20" ()

= f'(=a)l}.



26

We deduce that, like in the case of asymptotic meth@§s>>?/[f] forn = 1,2,...,m can
be computed irO(m) operations. Indeed, it is evident from (5.8) that this is¢hse for all
sl

5.3 Another take on Filon-type methods

The method (5.10), as well as several examples of such metlood = 1 in (Iserles &
Ngrsett 2006), can be written in the form

O[] = Qi f) Z S anf ), (5.11)

O[
2n—1
k=1;e N,

DS s

a
2n
k=1 ]eNmk

7] = Ol f] +

wherem; = m, = p,., andN = (2s + 1)¢ + p + 1, while G; andG;, are given func-
tions (G1,G2 = 1in (5.10)). This can be reinterpreted in the following mannee are
using derivative information to approximate théh term in the asymptotic expansion. This
procedure minimises the magnitude of the error by replattiegleading truncated term in
the asymptotic expansion, a linear combination of deresti with an error incurred while
approximating these derivatives.

Thus, lettingh = f”, we can easily verify that

2
1—¢2

(1= C2) ———5{c(B = A)[h(1) = h(=1)] = 2[A(c) — h(=c)]} = I'(1) + 1 (1)

[1(1) = h(e) = h(=c) + h(=1)] = W'(1) = W (1),

is correct for everyr € P3 andh € Py, respectively. (It is impossible to make it correct for
higher order polynomials, since this would have required1.)

The form (5.11) has two crucial advantages. Firstly, it pifes a transparent means to
compute firstn approximated expansion coefficients@(m) operations. Secondly, it is
considerably easier to derive than through an interpaigimynomial and its integration.

Note that we do not claim that every Filon-type metf@ﬁ can be expressed in the form
(5.11). All the cases we have considered fit this pattern amdelieve that this is true in
general, but as things stand we cannot confirm this by a proof.

To illustrate how to form methods (5.11) directly and witlseawithout constructing and
integrating interpolating polynomials, we consider = [3, 3, 3, 3], hence asymptotic order
N =17, psp=3and

Gi(n) = —V2tan ag,_1, Ga(n) = V2 cot auay,.

Letting . = f”, the task in hand is to approximaté’”) (1) 4+ h(i*)(—1) (for odd n) and
R(®) (1) — h() (1) (for evenn) by a linear combination of

h(=1), B (=1), h(—c), b (=c), h(c), I (c), h(1), I/ (1).
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It is easy to find optimal linear combinations of this kindesfiically
1440

R (1) 4+ B (—1) = —m[hu) ~ h(e) = h(—¢) + h(=1)]
%[Ch’(l) +1h/(c) = W (—c) — ch/(—1)]

is correct for everyh € Pz, while

1) =01 = =B - -

60(5 — 28¢2 + 7c*)
- 03(1 — 82)3 [h(C) - h(—C)]

i 1?10(12))[11’( )+ (=1)] + 62(1_062))2[’1’(6) +h (=)

for all h € Pg. Therefore

Q1) = O 1) - Ytz [ Moy (o) - (-
+ f1(=1)] + %[cfm(w +f(e) = " (—¢) — cf”'(—l)]} 7
G333y = QB3 p \/ﬁzogt Q2n {_ 120(1& : z;jg—i— ) ) — (1)

_ 60(563—(128_662—&)-370 )[f”(c) _ f”(—c)] + 1?10(_36_2)62)[f///(1) + f”/(—l)]

60(5 — 02) e "mi_e
F S+ (ol

5.4 Exotic quadrature

our formulzae for0!>**? and 0}***% feature a free parametere (0,1). The reason is
twofold. Firstly, this leads to less cluttered and more s@arent notation. Secondly, we have
not yet formulated a good criterion for the choice of the nade

Once we attempt to construct the expansion (2.2), we neeshtpuate not justf,, for n >
1 but also the nonoscillatory integrafé), cee A;_l. In principle, we could have computed
them with, say, Gaussian quadrature: given that gntpefficients need be computed, the
O(m) operation count remains valid. We can do better, howevergbging derivatives that
have been already used in forming our approximations t(ﬁlsecomplemented by a small
number of lower derivatives. Specifically, we let eaﬁp n =20,...,q — 1, be a linear
combination of values from the data 9et™:

/ Iz z)dz ~ P™[f Z Z Ok, (n n)f9 (er), n=0,...,¢q—1. (5.12)

k= 1]6]\7',,”C
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We call (5.12) arexotic quadratureto underly its difference from more standard computa-
tional methods for nonoscillatory integrals. Note thategoirsor of this idea has been named
in (Iserles & Ngrsett 2006) an “underlying classical quauhel’, surely more of a mouthful
than “exotic”.

The data set fo@2%%% is

D[272’272] - {f(o)v fl(o)a f”(fl)v f//(fc)v f//(o)a f//(c)v f“(l)}
and simple algebra confirms that the exotic quadrature

RIE2211] = 25(0) + by 5 () + P00+ (0]

5 — 63¢?
— 55— —/"(0)

C

is of order 7 (i.e., correct for alf € P7) for genericc and of order 9 forc = 1/210/30.
Likewise,

7)[2222 [f] _ %f/(o) + ﬁ%[fn(l) _ f//(—l)} + %ﬁ[f’/(c) _ f//(_C)]

is in general of order 6, except that= +/187/33 results in order 8. Since we wish to

maximise the least order @***?/[f], k = 0,1, we thus choose = +/187/33 in both
Filon-type and exotic quadrature for = [2,2,2,2].

Longer algebra produces exotic quadrature coefficient@fbr >,

— 2 4 _ 6
B[] = 2£(0) + kg 4046(1+_9§;5)§ 2015 (1) + 1= )

25 — 328¢2 + 506¢*
- 13%60 A1 —¢2)3 [fll(c) + fll(_c)]

25 — 253¢2 + 1914¢*
w550 - f"(0)

C

27 — 154¢% + 330c*
- 5541140 (1— 02)2 [fm(l) - fm(*l)]

50 — 253¢?
+ 5541140 m[f’”(c) - fm(—c)]v

1015 — 6671c? + 19558¢* — 7722c5

PP = 310) + vodsmo = [F(1) = £/ (=1)]
259 — 6707¢2 + 12628¢* ,
- 1661320 03(10_02)3 ‘ [f"(c) = f"(=c)]
115 — 748¢2 + 2178¢*
- 1661320 1 —Cc:;2 ‘ (1) + f"(-1)]

259 — 1804¢2
+ 166132() C2(1 _ 62)2 [f”/(c) - f-///(_c)]’

of orders 11 and 10, respectively. No real value idsults in a higher-order exotic quadrature.
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Figure 5.2: Scaled errors!|Q!2**2[f] — £,| andn?|Q}>*33)[f] — f,| for f(z) = e and

q=2.
757[7{2,2,2,2] [f] 757[L3,3,3,3] [f}
n absolute relative | absolute relative
0 2.11 g 896_g7 | —1.21_19 —5.15_11
1 2.48_07 3.37_07 —3.49_09 —4.74_09
) o3y
n absolute relative | absolute relative
1| —491_g4 —218_p3 | —1.75_gs —7.78_04
2 1.84_¢5 5.00_04 7.59_g5 2.07_03
3 2.05_ 04  9.04_03 | —=5.31_0¢ —2.35_0a
4 1.34,05 1.757(]3 6.887(]7 8.987(]5
10 5.46_g7 8.01_¢4 7.68_1¢ 1.27_o6
20| 3.81_ps  3.99_¢s | 3.51_15  3.68_0s
50 1.04_q9 1.59_o4 2.30_15 3.52_19
100 6.62_1; 7.90_05 7.43_1g 8.87_19

q=2andi =2,3.

Other things being equal, we opt for algebraically simplefficients and let = % in
QAE;,B,B,S] andﬁLS,S,B,B].

Fig. 5.2 depicts scaled errors produced by the two Filore-tygethods that we have de-
scribed earlier and it should be compared with Fig. 5.1. dvislent that, although the asymp-
totic order is the same, the use of additional data ingidé, 1) decreases the error by a
significant factor. The same conclusion emerges from Tahlie Rarticular, the improvement
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for smallns is tangible, although the errors there are still excedsivmany uses. Of course,
they can be decreased further by using larger

Table 2 also presents the error committed by exotic quadrathen approximating the
expansion coefficientﬁg andff. Clearly, the error is very small indeed! It is, as a matter of
fact, significantly smaller than the error of Filon-type m&ds for smalh, when the integrand
is nonoscillatory. Indeed, one possible remedy for smslis to use there appropriate exotic
guadrature (on the same data set) in preference to Filon.

6 Conclusions and challenges

This is the moment to take stock and briefly review what havelaree in this paper and what
remains to be done.

Our point of departure being modified Fourier expansiong)setcoefficients decay like
O(n~?) for analytic functions (Iserles & Narsett 2006), we haveagetized the framework to
approximation bases originating in eigenfunctions of palynonic operators with Neumann
boundary conditions. These bases exhibit faster rate afydetexpansion coefficients. In
particular, we have analysed in greater detail bases@/(th—?’) decay. We have expanded the
nth coefficientfn asymptotically in powers of~! and presented the underlying orthogonal
functions in an explicit manner. Such functions always safganto two sets: they are either
even or odd. They depend on a parameter which can be obtajremdMing a scalar nonlinear
algebraic equation.

Theoretical analysis has been followed by the introduatibtinree numerical techniques
for rapid approximation of expansion coefficients.

e Firstly, we have used a truncated asymptotic expansionuiReg a small number of
derivative evaluations and linear cost, it results in inggieely small error once asymp-
totic behaviour sets, but the error might be unacceptabdyeléor smalins.

e Secondly, we have considered Filon-type methods whichdditian to derivatives at
the endpoints, require additional derivatives elsewherthé interval. The outcome
is a family of methods that produce significantly smalleoeralso for lowems. We
have reinterpreted Filon-type methods of (Iserles & N#2@05) as a combination of
an asymptotic method with a scaled approximation to devieat This interpretation
allows for a relatively painless practical derivation o€sumethods in a manner which
is of the right form to allow their implementation in lineamte.

e Thirdly, we have reused derivative information for “exafigadrature” algorithms. The
latter can be used very effectively indeed for the compaoitatif coefficients corre-
sponding to the zero eigenvalue of the polyharmonic operato

Although our examples focused on the cgse- 2, corresponding td?(n—3) decay, the
underlying techniques apply to ajl > 1. It is fair to comment, however, that underlying
functions are becoming increasingly complicated wyith

This paper introduces a new mathematical approach and neweneal techniques. The
treatment of neither mathematical nor computational aspecomprehensive and many sub-
stantive problems remain. Indeed, bearing in mind the m@amiah intellectual effort that
went into the last two centuries of harmonic analysis, it lddwave been surprising had we
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been able to answer similar questions in a considerably meneanding and complicated
framework in a single paper! We wish to single out the follogviproblems and challenges
for future work:

1. Pointwise convergencétis known that classical Fourier expansions, truncatéet at
terms, converge pointwise at the ratd’b(fm—l) away from the boundary for analytic,
nonperiodic functions (Brner 1988). The standard proof consists of two major steps:
proof of summability (the F& Theorem) is used as a stepping stone in the proof of
pointwise convergence (the de la \&dIPoussin Theorem). Both the &eJ heorem and
the de la Valée Poussin Theorem have been generalized in (Iserles & t20&6) for
modified Fourier expansions, the simplest instance of aqpiation bases considered
in this paper.

However, numerical experiments indicate that modified leowxpansions of analytic
functions converge lik& (m*2), yet this has never been proved. Insofar as the more
general approximation bases of this paper are concernedeliee that they con-
verge pointwise inside the interval and uniformly in anyseld subset at the rate of
O(n*‘lfl). Needless to say, this is just a conjecture and we have atrresither
proof nor even a tentative idea how to seek a proof.

An important difference between classical and modified Eeowxpansions is that the
latter converge at the boundary (for nonperiodic analytiecfions) at the decreased
rate Of(’)(n_l) (Iserles & Ngrsett 2006). Based on numerical experimesrtative
believe that bases of polyharmonic eigenfunctions comvatghe endpoints at the rate
of O(n~17), but cannot prove it yet. Note that the method of proof inr{ese& Narsett
2006) relies specifically on the (very simple) form of modifieourier expansions and
cannot be extended to genegab 1.

2. Properties of they,,s. The parameters,, are zeros of the nonlinear algebraic equations
(4.5) and (4.7). The cases= 1,2, 3, as well as numerical investigation for= 4,
indicate that all such zeros are simple, they interlace hadeast zero is that of (4.5)
for eveng and of (4.7) otherwise. Moreover, thes appear to tend t(2n + ¢ — 1)
exponentially fast withz. All this, for generaly > 1, is purely a matter of conjecture.

3. Properties of the functions,,. It is enough to examine Fig. 3.1 to persuade ourselves
of the many features of the eigenfunctians. In particular, each:,, appears to have
n + g simple zeros if—1, 1) and these zeros interlace. Of course, interlace of zeros of
eigenfunctions is well known in the case of Sturm-Liouvdlgerators, but we are not
aware of similar results for polyharmonic operators.

4. Filon-type quadratureThe design of Filon-type quadrature in the form (5.11), eipl
ing its interpretation as “asymptotic method plus scalggk@ximation to derivatives”
is fairly straightforward and can be performed, at leastringiple, for any reasonable
number of nodes,, ¢, ..., ¢,. This can deal with lower accuracy at low frequencies,
apparent in Tables 1 and 2. It is of interest, however, toiokgaod, reliable and
affordable error bounds and error estimates. In (Iserlesz@shit 2004) we have con-
sidered practical means of estimating the error in Filgretyuadrature. However, the
techniques therein are effective mainly for large freqirsiovhile our interest is also
in low frequencies, before the onset of asymptotic behavidle thus need an alterna-
tive approach. An intriguing idea is to use the Peano Kerhelofem (Powell 1981):
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this is fairly standard for derivative approximations bught be more of a challenge
for the asymptotic-expansion part.

A pertinent issue is thstability of Filon-type methods (5.11) for large Approxima-
tion to derivatives is known as an ill-conditioned numerjmablem — does this impact
on the conditioning of Filon-type methods? Does it lead tgédacoefficients and to
loss of accuracy? Clearly, we need to understand such ifise®s better and obtain a
wealth of practical numerical experience with marsyand many functiong.

5. Avoiding the use of derivativegVe have already described in (Iserles & Ngrsett 2006)
how to replace derivatives by finite differences in Filopgéymethods for modified
Fourier expansions. As long as the spacing is sufficienty, fiesults are practically in-
distinguishable from using derivatives. We see absolutelyeason why this approach
cannot be extended to arbitrayy> 1.

6. Alternative highly oscillatory quadrature-our main approaches to highly oscillatory
quadrature came off age in the last few years: asymptoti¢-dod-type methods (Iser-
les & Ngrsett 2005), but also Levin-type methods (Olver 2G0&l the method of nu-
merical stationary phase (Huybrechs & Vandewalle 2006y €i&ch methods provide
a competing, perhaps superior means to evaluate expan:éﬁictentsfn?

7. Exotic quadrature.Classical interpolatory quadrature is exceedingly wetlenstood
(Davis & Rabinowitz 1984). In particular, optimal choiceaqfadrature nodes is easily
explained in terms of orthogonal polynomials. No such thexists for exotic quadra-
ture and we do not even know what is its attainable order. thnaasem = [2, 2, 2, 2],
we were able to optimize order by an appropriate choice @friatl nodes, but for
m = [3,3,3,3] no choice of nodes in the interior of the interval leads tddvatrder.
We believe that such a theory is within reach and are alreaglgrabling preliminary
results.

Another challenge is to produce reliable and tight boundererror. This, we believe,
can be accomplished with the Peano Kernel Theorem in a sthnanner.

Yet another challenge in this context is to use exotic quadeaalso for the first few
coefficientsf,,, before the onset of asymptotic behaviour, where it migbtipce better
outcome than the underlying Filon method. This does not dedme unduly compli-
cated, at least not far = 1, 2, but the underlying ground work needs to be done.

Fourier analysis and fast Fourier transform techniqueg Ipgoved themselves extraor-
dinarily successful in modern mathematics and its apptinat It is neither the intention
nor the message of this paper to challenge this. Expansiopslyharmonic functions ad-
dress themselves to just a single application area of Roteahniques: the expansion of
analytic, nonperiodic functions and its potential useg, ie.the numerical solution of differ-
ential equations. It is a tribute to the breadth and succeBsurier analysis that even this
single application area is so important and has so many atidns.
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