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Abstract

We consider the use of eigenfunctions of polyharmonic operators, accompanied by
Neumann boundary conditions, to expand analytic functions in compact intervals. Such
expansions feature a number of advantages in comparison with classical Fourier series, in
particular they exhibit more rapid decay of expansion coefficients for nonperiodic func-
tions.

Having derived an asymptotic formula for expansion coefficients, we examine in detail
an explicit form of eigenfunctions and the location of eigenvalues. This is followed by an
introduction and analysis of Filon-type quadrature techniques for rapid approximation of
expansion coefficients. Finally, we consider special quadrature methods for eigenfunctions
corresponding to a multiple zero eigenvalue.

1 Introduction

We continue in this paper a theme that we have commenced in (Iserles & Nørsett 2006),
namely the expansion and approximation of nonperiodic analytic functions on bounded real
intervals in eigenfunctions of certain differential operators. Such techniques entertain a num-
ber of advantages, of both theoretical and numerical nature, once compared to classical Fourier
expansions. It thus makes sense to explain briefly the main idea of (Iserles & Nørsett 2006),
an idea that we propose to explore further and generalise in this paper.

Standard Fourier expansions in the interval[−1, 1] use the basis

{cosπnx : n ≥ 0} ∪ {sinπnx : n ≥ 1}
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and they exhibit two remarkable properties once we expand a function which is both ana-
lytic and periodic of period 2. Firstly, expansion coefficients decay exponentially fast and,
secondly, once integral expressions for expansion coefficients are discretized by means of
the Discrete Fourier Transform (DFT), we incur an error which decays exponentially in the
number of expansion coefficients. These two features, in tandem with the availability of the
Fast Fourier Transform to compute the DFT, underlie the astonishing success of Fourier ex-
pansions in an exceedingly wide range of applications in science and engineering. Yet, both
features are no longer valid once the function in question isnonperiodic. In that case thenth
Fourier coefficient decays likeO

(

n−1
)

and the error incurred by DFT isO
(

n−2
)

. In that
instance we have proposed in (Iserles & Nørsett 2006) the alternative of employing the basis
G1 = P0 ⊕H1, wherePm is the set ofmth-degree algebraic polynomials and

H1 = {cosπnx : n ≥ 1} ∪ {sinπ(n− 1
2 )x : n ≥ 1}. (1.1)

We have proved thatG1 is an orthogonal (indeed, orthonormal) basis, which is dense in
L2[−1, 1]. Moreover, statements equivalent to the classical Fejér and de la Valĺee Poussin
theorems are valid in this setting and themodified Fourier expansion

f(x) ∼ 1
2 f̂

C
0 +

∞
∑

n=1

[f̂C
n cosπnx+ f̂S

n sinπ(n− 1
2 )x],

where

f̂C
n =

∫ 1

−1

f(x) cosπnxdx, f̂S
n =

∫ 1

−1

f(x) sinπ(n− 1
2 )xdx,

converges for a Riemann-integrable functionf at anyx ∈ (−1, 1) wheref is Lipschitz.
Convergence at the endpoints is also assured (unlike for theclassical Fourier expansion) for
an analyticf .

Once the coefficientŝfC
n andf̂S

n are expanded asymptotically in powers ofn−1, we ob-
serve that̂fC

n , f̂
S
n = O

(

n−2
)

, a considerably faster decay than that of classical Fourierexpan-
sions for analytic, nonperiodic functions. This asymptotic expansion also provides powerful
means to compute the firstmmodified Fourier coefficientŝfC

n andf̂S
n to high accuracy in just

O(m) operations. This can be further improved by employing Filon-type techniques for the
computation of highly oscillatory integrals, that have been introduced by the current authors
in (Iserles & Nørsett 2005). Finally, the few coefficients corresponding to small values ofn,
before asymptotic behaviour sets, can be approximated by nonstandard quadrature formulæ
that require just a single extra function evaluation.

To recap, standard Fourier coefficients for analytic functions decay likeO
(

n−1
)

, while
modified Fourier coefficients display faster decay ofO

(

n−2
)

. In this paper we demonstrate
that even faster decay of the coefficients can be attained once basis functions are chosen
judiciously. The underlying idea is very simple once we understand why usingG1 leads to
more rapid decay of the coefficients than employing standardFourier basis. The reason is that
bothcosπnx andsinπ(n− 1

2 )x areeigenfunctions of the second-derivative operatord2/dx2

with Neumann boundary conditions.Supposing thatu is such an eigenfunction,u′′+α2u = 0,
u′(±1) = 0, integrate twice by parts and substitute Neumann boundary conditions,

∫ 1

−1

f(x)u(x)dx = − 1

α2

∫ 1

−1

f(x)u′′(x)dx = − 1

α2

[

f(x)u′(x)
1

−1
−

∫ 1

−1

f ′(x)u′(x)dx

]
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=
1

α2

[

f ′(x)u(x)
1

−1
−

∫ 1

−1

f ′′(x)u(x)dx

]

. (1.2)

Since it follows from the standard spectral theory that all eigenvalues are real, positive and
α2

n = O
(

n2
)

for thenth eigenvalue (P̈oschel & Trubowitz 1987), we deduce that

∫ 1

−1

f(x)u(x)dx = O
(

n−2
)

.

Hence the aforementionedO
(

n−2
)

decay of thenth modified Fourier coefficient.
We note in passing another important feature of (1.2), a key to rapid computation of the

coefficients: the expression on the right can be iterated further, a procedure that leads to an
asymptotic expansion of the coefficients in inverse powers of n. Similar idea will be used in
the sequel. Here we just emphasize the crucial importance ofNeumann boundary conditions
in making expansion terms vanish and accelerating convergence. Note in this context that
sinπnx is also an eigenfunction ofd2/dx2, except that with Dirichlet boundary conditions –
this is precisely why ‘its’ coefficients decay likeO

(

n−1
)

.
Had the eigenfunctionu obeyed higher-order Neumann boundary conditions, more terms

would have dropped out in (1.2), resulting in more rapid decay. To be in position to im-
pose more zero derivatives, we consider the eigenfunctionsof the polyharmonic operator
d2q/dx2q, whereq ≥ 1 is an integer. In other words, we seek functionsu and numbersα
such that

u(2q) + (−1)q+1α2qu = 0, −1 ≤ x ≤ 1, (1.3)

in tandem with the Neumann boundary conditions

u(i)(−1) = u(i)(+1) = 0, i = q, q + 1, . . . , 2q − 1. (1.4)

We will prove in Section 2 a number of important features of eigenfunctionsu:

1. There exists a countable number of positive, simple eigenvalues and real eigenfunctions,
except that (1.3–4) also has a zero eigenvalue of multiplicity q.

2. Denote thenth positive eigenvalue byκn = (−1)qα2q
n and the corresponding eigen-

function byun. ThenGq = Pq−1 ⊕Hq, where

Hq = {un : n ≥ 1},

is dense inL2[−1, 1] andun is orthogonal toum for n 6= m with respect to the standard
Euclidean inner product.

3. It is true thatκn ∼ O
(

n2q
)

.

4. Once an analytic function is expanded in the functionsun, thenth expansion coefficient
decays likeO

(

n−q−1
)

for n≫ 1.

5. For largen the functionsun oscillate rapidly. Thus, the task of computing thenth
expansion coefficient̂fn can be tackled by techniques of highly oscillatory quadrature.
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In Section 3 we examine in detail the caseq = 2, the first setting ranging beyond the
work of (Iserles & Nørsett 2006). We show that there exist twofamilies of eigenfunctions
un, corresponding to two transcendental equations for the computation ofαn. This work is
generalised in Section 4 to generalq ≥ 1.

Rapid decay of expansion coefficients is not just a theoretical curiosity, since (like in the
caseq = 1) they can be approximated very rapidly by using techniques originally designed in
the numerical treatment of highly oscillatory integrals. This is the theme of Section 5.

This paper represents an introductory foray into the entirematter of polyharmonic eigen-
functions as a means to approximate analytic functions. An entire raft of questions have not
been addressed here, and in particular we mention the issue of pointwise convergence. In sec-
tion 6 we list a considerably longer list of open problems andissues for further investigation.

An interesting generalisation of our setting occurs when the (2q)th derivative in (1.3) is
replaced by a more general(2q)-degree linear differential operator, i.e. when we consider

2q
∑

l=0

pl(x)u
(l)(x) + (−1)q+1α2qu = 0, −1 ≤ x ≤ 1,

wherep2q > 0, in tandem with the Neumann boundary conditions (1.4). It isnot difficult to
prove that the five aforementioned features of (1.3–4) hold in this, considerably more general
setting. Having said this, it is unclear at this juncture of time whether this “poly-Sturm–
Liouville setting” has any specific advantages. Therefore,we restrict our attention here to the
polyharmonic case (1.3), which exhibits the virtues of simplicity.

Polyharmonic eigenfunctions subjected to Neumann boundary conditions have been con-
sidered by Mark Krein, who analysed their properties and proved Lemma 1 (Krein 1935).
They have been introduced to approximation theory by AndreiKolmogorov in his theory of
n-widths (Kolmogorov 1936). This distinguished pedigree notwithstanding, to the best of our
knowledge they have never been used as a means for practical approximation of functions and
their highly oscillatory nature has never been exploited for rapid computation of expansion
coefficients.

2 Expansions in polyharmonic Neumann eigenfunctions

Since(−1)qd2q/dx2q (with Neumann boundary conditions) is a semipositive-definite differ-
ential operator, we deduce thatα ≥ 0 in (1.3).

We commence by noting that both (1.3) and the boundary conditions (1.4) are satisfied
with α = 0 whenu ∈ Pq−1. We thus deduce that 0 is aq-fold eigenvalue and that the
relevant linear subspace of eigenfunctions is spanned by the Legendre polynomialsPk, k =
0, 1, . . . , q − 1, an orthogonal basis ofPq−1.

The remainingαs are positive, whence we can let

u(x) =
(−1)q

α2q
u(2q)(x).

Therefore, integrating by parts and substituting the Neumann boundary conditions,

∫ 1

−1

f(x)u(x)dx =
(−1)q

α2q

∫ 1

−1

f(x)u(2q)(x)dx =
(−1)q+1

α2q

∫ 1

−1

f ′(x)u(2q−1)(x)dx.
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We can next apply similar reasoning to the integral on the right and, indeed, prove by induction
that

∫ 1

−1

f(x)u(x)dx =
(−1)q+k

α2q

∫ 1

−1

f (k)(x)u(2q−k)(x)dx, k = 0, 1, . . . , q.

In particular, lettingk = q we obtain the important identity

∫ 1

−1

f(x)u(x)dx =
1

α2q

∫ 1

−1

f (q)(x)u(q)(x)dx. (2.1)

Lemma 1 The eigenfunctions of (1.3–4) are orthogonal with respect to the usual Euclidean
inner product and they are dense inL2[−1, 1].

Proof Although the lemma follows at once from standard spectral theory (Krein 1935,
Levitan & Sargsjan 1975), it is instructive to prove orthogonality from first principles, using
(2.1). According to spectral theory, positive eigenvaluesare simple. We denote them by
κn = (−1)qα2q

n and the corresponding nonzero eigenfunctions byun.

It follows at once from (2.1) that
∫ 1

−1
f(x)un(x)dx = 0 for f ∈ Pq−1, henceun is

orthogonal to all eigenfunctions corresponding to the zeroeigenvalue. Moreover, lettingf =
um for m 6= n in (2.1) we have

α2q
n

∫ 1

−1

um(x)un(x)dx =

∫ 1

−1

u(q)
m (x)u(q)

n (x)dx.

However, by symmetry,

α2q
m

∫ 1

−1

um(x)un(x)dx =

∫ 1

−1

u(q)
m (x)u(q)

n (x)dx

andαm 6= αn, αm, αn > 0, imply that necessarily

∫ 1

−1

um(x)un(x)dx = 0, m 6= n.

Hence orthogonality. 2

We note in passing that it follows from the proof that

∫ 1

−1

u(q)
m (x)u(q)

n (x)dx = 0, m 6= n.

Before we are carried away, however, we observe thatu
(q)
n is nothing else but the eigen-

function corresponding to thenth eigenvalue of (1.3) with theDirichlet boundary conditions
u(i)(±1) = 0, i = 0, 1, . . . , q − 1. (The eigenvalues are the same as in the Neumann case,
except that the Dirichlet problem has no zero eigenvalues.)Therefore, orthogonality ofqth
derivatives is another immediate consequence of standard spectral theory.
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Lemma 1 justifies the expansion inGq = Pq−1 ⊕ Hq, whereHq = {un : n ≥ 1}, of
L2[−1, 1] functions. We thus let

f̂o
n =

∫ 1

−1

f(x)Pn(x)dx, n = 0, . . . , q − 1,

f̂n =

∫ 1

−1

f(x)un(x)dx, n = 1, 2, . . . ,

wherePm is themth degree Legendre polynomial. The underlying orthogonal expansion
takes the form

q−1
∑

n=0

(n+ 1
2 )f̂o

nPn(x) +

∞
∑

n=1

f̂n

σn
un(x), (2.2)

where

σn =

[
∫ 1

−1

u2
n(x)dx

]

1
2

and we recall that
∫ 1

−1
P2

n(x)dx = (n+ 1
2 )−1.

The identity (2.1) can be iterated further and this providesa convenient route toward an
asymptotic expansion of the coefficientsf̂n and ultimately, in Section 5, their effective com-
putation. We are no longer allowed to eliminate terms using boundary conditions and repeated
integration by parts yields

f̂n =
1

α2q
n

∫ 1

−1

f (q)(x)u(q)
n (x)dx

=
1

α2q
n

[

f (q)(x)u(q−1)
n (x)

1

−1
−

∫ 1

−1

f (q+1)(x)u(q−1)
n (x)dx

]

=
1

α2q
n

[

f (q)(x)u(q−1)
n (x)

1

−1
− f (q+1)(x)u(q−2)

n (x)
1

−1
+

∫ 1

−1

f (q+2)(x)u(q−2)
n (x)dx

]

= · · · =
1

α2q
n

[

k−1
∑

l=0

(−1)lf (q+l)(x)u(q−1−l)
n (x)

1

−1

+ (−1)k

∫ 1

−1

f (q+k)(x)(x)u(q−k)
n (x)dx

]

for k = 0, 1, . . . , q. In particular, lettingk = q we have

f̂n =
(−1)q

α2q
n







2q−1
∑

k=q

(−1)k[f (k)(1)u(2q−k−1)
n (1) − f (k)(−1)u(2q−k−1)

n (−1)] (2.3)

+

∫ 1

−1

f (2q)(x)un(x)dx

}

.

Note, however, that the integral on the right is the generalized Fourier coefficient off (2q).
Therefore, (2.3) can be iterated,

f̂n =
(−1)q

α2q
n

2q−1
∑

k=q

(−1)k[f (k)(1)u(2q−k−1)
n (1) − f (k)(−1)u(2q−k−1)

n (−1)]
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+
(−1)2q

α4q
n

2q−1
∑

k=q

(−1)k[f (2q+k)(1)u(2q−k−1)
n (1) − f (2q+k)(−1)u(2q−k−1)

n (−1)]

+
(−1)2q

α4q
n

∫ 1

−1

f (4q)(x)un(x)dx

and so on.

Theorem 2 Givenf ∈ C∞[−1, 1], it is true that

f̂n ∼
∞
∑

r=0

(−1)(r+1)q

α
2(r+1)q
n

2q−1
∑

k=q

(−1)k[f (2qr+k)(1)u(2q−k−1)
n (1)− f (2qr+k)(−1)u(2q−k−1)

n (−1)].

(2.4)

Proof Follows at once from (2.3) by repeated iteration. 2

To connect (2.4) with the narrative of (Iserles & Nørsett 2006), we observe that forq = 1
we haveαn = 1

2πn,

u2n−1(x) = sinπ(n− 1
2 )x, u2n(x) = cosπnx

and

f̂2n−1 ∼ (−1)n−1
∞
∑

r=0

(−1)r

[(n− 1
2 )π]2r+2

[f (2r+1)(1) + f (2r+1)(−1)],

f̂2n ∼ (−1)n
∞
∑

r=0

(−1)r

(nπ)2r+2
[f (2r+1)(1) − f (2r+1)(−1)],

consistently with Theorem 2.
How fast doesf̂n decay forn ≫ 1? It “feels” intuitively right thatu(k)

n (x) ∼ O
(

αk
n

)

for largen and, indeed, this will be proved in Section 4. Taking this forgranted for the time
being, we deduce from (2.4) that

f̂n ∼ O
(

α−q−1
n

)

, n≫ 1.

It is, however, easy to prove thatαn ∼ O(n). To this end we note that

d2q

dx2q
− (−1)qα2q

n =

(

d2

dx2
+ α2

n

) q−1
∑

j=0

(−1)q−1−jα2q−2−2j
n

d2j

dx2j
.

Therefore,v′′n + α2
nvn = 0, where

vn(x) =

q−1
∑

j=0

(−1)q−1−jα2q−2−2j
n u(2j)

n (x).

Note thatvn 6≡ 0. For suppose thatvn ≡ 0. In particular, this would have impliedvn(±1) =
0. This, together with the Neumann boundary conditions (1.4), yields an overdetermined
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homogeneous linear system forun, henceun ≡ 0, a contradiction. Consequentlyvn is
thenth eigenfunction (andα2

n thenth eigenvalue) of−d2/dx2 with some mixed boundary
conditions at±1. Therefore indeedαn = O(n) (Pöschel & Trubowitz 1987). We thus deduce
that

f̂n ∼ O
(

n−q−1
)

, n≫ 1. (2.5)

This has important consequences to the subject matter of this paper: the largerq ≥ 1, the
more rapid the decay of expansion coefficients, hence fewer of them are required once we
wish to approximatef to given precision.

3 The caseq = 2

The general solution of (1.3) forq = 2 is

u(x) = c1 cosαx+ c2 sinαx+ c3 coshαx+ c4 sinhαx.

Imposition ofu′′(−1) = u′′(1) = 0 results in

c3 = c1
cosα

coshα
, c4 = c2

sinα

sinhα
.

We substitute these values ofc3 andc4 into u(x) and impose the remaining boundary condi-
tion,u′′′(−1) = u′′′(1) = 0. Since, after straightforward algebra,

1

α3
[u′′′(1) + u′′′(−1)] = 2c2

sinα coshα− cosα sinhα

sinhα
,

1

α3
[u′′′(1) − u′′′(−1)] = 2c1

sinα coshα+ cosα sinhα

coshα
,

we deduce that forα > 0 we have two possibilities.

Case 1Letting c2 = 0 and normalisingc1 = 1/(
√

2 cosα), we have

u(x) =

√
2

2

(

cosαx

cosα
+

coshαx

coshα

)

, (3.1)

anevenfunction, whereα is a positive zero of the transcendental equation

ge(α) = tanα+ tanhα = 0. (3.2)

Case 2Alternatively we let,c1 = 0 and normalisec2 = 1/(
√

2 sinα), whence

u(x) =

√
2

2

(

sinαx

sinα
+

sinhαx

sinhα

)

, (3.3)

anodd function, whereα is a positive zero of

go(α) = tanα− tanhα = 0. (3.4)
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To locate zeros of (3.2) and (3.4), we commence withge and observe that

g′e(α) = 2 + tan2 α− tanh2 α > 0, α > 0,

since0 < tanhα < 1 for α > 0. Thereforege increases monotonically. Moreover, for every
n = 1, 2, . . .

ge((n− 1
4 )π) = −1 + tanh(n− 1

4 )π < 0, ge(nπ) = tanhnπ > 0

andge has a simple pole at(n − 1
2 )π. We thus deduce that (3.2) has a unique simple zero in

each interval of the formI2n−1 = ((n− 1
4 )π, nπ) for all n = 1, 2, . . .. As a matter of fact we

can say considerably more: for smallε > 0 we have

ge((n− 1
4 )π + ε) = −cos ε− sin ε

cos ε+ sin ε
+ tanh((n− 1

4 )π + ε)

≥ −cos ε− sin ε

cos ε+ sin ε
+ tanh((n− 1

4 )π)

= 2ε− 2e−2(n− 1
4 )π + O

(

ε2, e−4(n− 1
4 )π

)

.

Therefore, lettingε = e−2(n− 1
4 )π, we deduce that for sufficiently largen it is true that the

unique zero of (3.2) inIn can be confined to

Ĩ2n−1 = ((n− 1
4 )π, (n− 1

4 )π + e−2(n− 1
4 )π),

an interval of exponentially-small length. Computer search confirms that there is a zero in
Ĩ2n−1 for all n ≥ 1, not just forn≫ 1.

Similarly, it is easy to verify thatgo is strictly monotonically increasing, with a simple
pole at(n− 1

2 )π and that
go(nπ) < 0 < go((n+ 1

4 )π)

for everyn ≥ 1. We thus deduce thatgo has a single zero in each intervalI2n = (nπ, (n +
1
4 )π) and is nonzero elsewhere. Proceeding as before, this zero can be restricted to

Ĩ2n = ((n+ 1
4 )π − e−2(n+

1
4 )π, (n+ 1

4 )π).

To sum up, all parametersα can be confined to intervals which become exceedingly small
for n ≫ 1: we letαn ∈ Ĩn, n = 1, 2, . . ., and denote the corresponding eigenfunction by
un. Note that solutions of (3.2) and (3.4) alternate and that, consistently with the analysis of
Section 2,αn = O(n).

The functionsun are already normalized and the proof involves straightforward algebra.
For example, given

v(x) =
cosαx

cosα
+

coshαx

coshα
,

we have, after long calculation,

∫ 1

−1

v2(x)dx =
1

cos2 α
+

1

cosh2 α
+

3

α
(tanα+ tanhα).
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Figure 3.1: The orthogonal functionsun, n = 1, 2, 3, 4, for q = 2.

Assuming thatα = α2n−1 obeys (3.2), the term in brackets on the right vanishes and, after
another easy calculation,

1

cos2 α
+

1

cosh2 α
= 2.

Thereforeu2n−1(x) = v(x)/
√

2 is indeed of unit norm. The calculation foru2n is identical.
Therefore, we may letσn = 1 in (2.2). Moreover,

un(−1) = (−1)n−1
√

2, un(1) =
√

2, n = 1, 2, . . . .

In Figure 3.1 we display the first four functionsun. In conformity with our former observa-
tions, note thatu2n−1s are even, whileu2ns are odd. It is evident from the figure that each
un has preciselyn simple zeros in(−1, 1) and that the zeros interlace. This behaviour is
characteristic of Sturm–Liouville eigenfunctions (Levitan & Sargsjan 1975) and is evidently
valid also for biharmonic eigenfunctions. We also note in passing that eachun appears to
haven + 1 zeros. Recall, however, that the functionsun need be complemented by1 andx,
the first two Legendre polynomials, with no zeros and a singlezero, respectively.

In Figure 3.2 we display the absolute values of the first hundred coefficientŝfn. It follows
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Figure 3.2: The magnitude of the coefficientsf̂n for q = 2 andf(x) = ex. On the left we
display|f̂n| and on the right scaled valuesn3|f̂n|.

from Section 2 that̂fn = O
(

n−3
)

, and this is confirmed by the figure on the right, which

depictsn3|f̂n|. Note there the very rapid onset of asymptotic behaviour.
Figure 3.3 depicts the pointwise error in the approximationof f(x) = ex by the truncated

expansion

Fm(x) = 1
2 f̂

o
0 + 3

2 f̂
o
1x+

m
∑

n=1

f̂nun(x)

for m = 10, 20, 40, 80 in the interval(− 9
10 ,

9
10 ). Note that the error decreases roughly by a

factor of eight once the size ofm is doubled, indicative ofO
(

m−3
)

decay. It is instructive
to compare this figure with Figure 2.1 in (Iserles & Nørsett 2006), which displays pointwise
error for modified Fourier expansions (i.e., polyharmonic eigenfunctions withq = 1), as well
as for classical Fourier expansions. Thus, forq = 1 the pointwise error decay isO

(

m−1
)

for
classical Fourier expansions,O

(

m−2
)

for q = 1 andO
(

m−3
)

in the present case,q = 2.
Of course, all this refers to numerical results: we have proved in (Iserles & Nørsett 2006)
that modified Fourier expansions converge pointwise for anyRiemann integrablef at a point
where it is Lipschitz, but we have not determined there the rate of convergence. Forq ≥ 2
we lack at present any hard proofs about pointwise convergence or even summability, not to
mention the rate of convergence.

An important distinction between classical and modified Fourier expansions is that, for
analyticf , the latter converge pointwise inall of [−1, 1], inclusive of endpoints. However,
the convergence at±1 is justO

(

m−1
)

, slower than the conjectured convergence at interior
points (Iserles & Nørsett 2006). It is thus interesting to examine pointwise convergence of
Fm at the endpoints. In Figure 3.4 we have done so forex (compare with Figure 2.2 from
(Iserles & Nørsett 2006)), displaying the quantitiesm2|Fm(±1) − e±1| for m = 1, . . . , 100.
Evidently, it seems that the error at the endpoints decays likeO

(

m−2
)

, an order of magnitude
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Figure 3.3: The pointwise error in approximatingf(x) = ex by Fm for m = 10, 20, 40 and
80, respectively.

faster than in the caseq = 1. Although it is reasonable to guess that Figure 3.4 is indicative
of general behaviour, we have to date no hard analysis to underpin this conjecture.

4 Eigenfunction bases for generalq ≥ 1

The caseq = 1 has been considered in (Iserles & Nørsett 2006) andq = 2 in the previous
section. Presently we turn our attention to generalq ≥ 1. In other words, we consider
functionsu such that

u(2q) + (−1)q+1α2qu = 0, −1 ≤ x ≤ 1, (4.1)
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Figure 3.4: Pointwise error, scaled bym2, at−1 (left) and+1 in approximatingf(x) = ex

by Fm for m = 1, 2, . . . , 100.

subject to
u(i)(−1) = u(i)(+1) = 0, i = q, q + 1, . . . , 2q − 1. (4.2)

We restrict our attention toα 6= 0, since the case of theq-fold zero eigenvalue has been dealt
with in Section 2.

An immediate observation is that, regardless of our choice of α, the ith derivative of
u scales likeαi for i ≥ 0. This feature of eigenfunctions has been already employed in
Section 2, to prove (2.5), the asymptotic rate of decay of expansion coefficients.

We commence by considering general solutions of the linear equation (4.1). They are
necessarily of the form

u(x) =

2q−1
∑

k=0

ckeαλkx, (4.3)

whereλ0, . . . , λ2q−1 ∈ C are solutions ofλ2q = (−1)q, while c0, . . . , c2q−1 ∈ C are ar-
bitrary constants. The boundary conditions (4.2) will be incorporated once we have brought
(4.1) into a more convenient form.

4.1 Evenq ≥ 2

It is advantageous to separate the discussion of even and oddvalues ofq and we commence

with evenq. In that case theλks are roots of unity,λk = exp
(

πik
q

)

, k = 0, 1, . . . , 2q − 1,

and we note thatλq+k = −λk. Therefore (4.1) simplifies to

u(x) =

q−1
∑

k=0

{

ckeαx cos πk
q

[

cos

(

αx sin
πk

q

)

+ i sin

(

αx sin
πk

q

)]}
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+ cq+ke−αx cos πk
q

[

cos

(

αx sin
πk

q

)

− i sin

(

αx sin
πk

q

)]}

.

Since we are interested in expressingu in terms of real parameters, we consider two cases:

Case AWe let ck = 1
2 (βk + iγk), cq+k = c̄k = 1

2 (βk − iγk) for k = 0, . . . , q − 1. Then,
following elementary algebra,

u(x) =

q−1
∑

k=0

[

βk cos

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)

+ γk sin

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)}

.

Note thatu is an even function.
Sinceβk andβq−k multiply identical terms fork = 1, 2, . . . , q/2 − 1, we may assume

without loss of generality thatβq/2+k = 0 for k = 1, . . . , q/2− 1. Likewise,γk andγq−k for
k = 1, . . . , q/2 − 1 multiply terms that differ just by sign and again they can be aggregated
and we may assume thatγq/2+k = 0 for k = 1, . . . , q/2 − 1. Finally, γ0 andγq/2 multiply
zero terms, hence we might set them to zero. All that survivesis

u(x) =

q/2
∑

k=0

βk cos

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)

(4.4)

+

q/2−1
∑

k=1

γk sin

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)

.

Note that we have in (4.4) exactlyq coefficients,βk, k = 0, . . . , q/2 andγk, k = 1, . . . , q/2−
1, matching theq boundary conditions (4.2).

It is easy to confirm by induction that the derivatives of (4.4) have the explicit form

α−2su(2s)(x)

=

q/2
∑

k=0

[(

βk cos
2πks

q
+ γk sin

2πks

q

)

cos

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)

+

(

−βk sin
2πks

q
+ γk cos

2πks

q

)

sin

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)]

,

α−2s−1u(2s+1)(x)

=

q/2
∑

k=0

[(

βk cos
πk(2s+ 1)

q
+ γk sin

πk(2s+ 1)

q

)

cos

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)

+

(

−βk sin
πk(2s+ 1)

q
+ γk cos

πk(2s+ 1)

q

)

sin

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)]

.

Letting x = ±1 for the ith derivative,i = q, q + 1, . . . , 2q − 1, and equating to zero is
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equivalent to the identity

Φq

[

β

γ

]

= 0, where β =











β0

β1

...
βq/2











, γ =











γ1

γ2

...
γq/2−1











,

where theq × q matrix Φq is formed consistently with the identities above. Thus, given that
we seek a nonzero eigenfunction, we obtain the transcendental algebraic equation

det Φq = 0 (4.5)

for the coefficientα, whence

[

β

γ

]

is the eigenvector corresponding to the zero eigenvalue

of Φq.
The first two cases areq = 2, resulting in

Φ2 =

[

coshα − cosα
sinhα sinα

]

⇒ det Φ2 = sinα coshα+ cosα coshα

(the latter is identical to (3.2)) andq = 4, when

Φ4 =









cosh α − cos α
√

2
cosh α

√

2
cos α sin α

√

2
sinh α

√

2

sinh α −
√

2
2

(

cos α
√

2
sinh α

√

2
−sin α

√

2
cosh α

√

2

)

− sin α −
(
√

2
2 cos α

√

2
sinh α

√

2
+sin α

√

2
cosh α

√

2

)

cosh α sin α
√

2
sinh α

√

2
− cos α − cos α

√

2
cosh α

√

2

sinh α
√

2
2

(

cos α
√

2
sinh α

√

2
+sin α

√

2
cosh α

√

2

)

sin α
√

2
2

(

sin α
√

2
cosh α

√

2
−cos α

√

2
sinh α

√

2

)









yields the equation

sinhα[sinα(cosh
√

2α+ cos
√

2α) +
√

2
2 cosα(sinh

√
2α− sin

√
2α)]

− coshα[cosα(cosh
√

2α− cos
√

2α) +
√

2
2 sinα(sinh

√
2α− sin

√
2α)].

Case BWe now letck = 1
2 (βk + iγk) andcq+k = −c̄k = 1

2 (−βk + iγk), k = 0, . . . , q − 1.
We now obtain theodd function

u(x) =

q−1
∑

k=0

[

βk cos

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)

+ γk sin

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)]

.

We continue along the same lines as for Case A. Thus, aggregating identical terms, we have

u(x) =

q/2−1
∑

k=0

βk cos

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)

(4.6)

+

q/2
∑

k=1

γk sin

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)



16

– in this case the surviving coefficients areβ0, . . . , βq/2−1 andγ1, . . . , γq/2. We again form
derivatives,

α−2su(2s)(x)

=

q/2
∑

k=0

[(

βk cos
2πsk

q
+ γk sin

2πsk

q

)

cos

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)

+

(

−βk sin
2πsk

q
+ γk cos

2πsk

q

)

sin

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)]

,

α−2s−1u(2s+1)(x)

=

q/2
∑

k=0

[(

βk cos
π(2s+ 1)k

q
+ γk sin

π(2s+ 1)k

q

)

cos

(

αx sin
πk

q

)

cosh

(

αx cos
πk

q

)

+

(

−βk sin
π(2s+ 1)k

q
+ γk cos

π(2s+ 1)k

q

)

sin

(

αx sin
πk

q

)

sinh

(

αx cos
πk

q

)]

.

Imposing the boundary conditions (4.2) leads to

Ψq

[

β

γ

]

= 0, where β =











β0

β1

...
βq/2−1











, γ =











γ1

γ2

...
γq/2











hence to the transcendental equation

det Ψq = 0. (4.7)

In particular,

det Ψ2 = coshα sinα− sinhα cosα,

det Ψ4 = sinhα[sinα(cos
√

2α+ cosh
√

2α) −
√

2
2 cosα(sin

√
2α+ sinh

√
2α)]

− coshα[cosα(cos
√

2α− cosh
√

2α) +
√

2
2 sinα(sin

√
2α+ sinh

√
2α)].

Note thatdet Ψ2 = 0 is identical to (3.4).

4.2 Oddq ≥ 1

The treatment of an oddq is identical: we formu in terms of real coefficientsβk andγk,
whereby there are two cases, even and odd functions. In each case we aggregate coefficients,
form derivatives explicitly and impose the Neumann boundary conditions (4.2). This results
in each case in a transcendental equation, setting a determinant of a matrix to zero, whereby
the coefficientsβ andγ are components of the eigenvector of the matrix in question corre-
sponding to a zero eigenvalue.

The starting point is

u(x) =

q−1
∑

k=0

{

ckeαx cos
π(k+ 1

2
)

q

[

cos

(

αx sin
π(k + 1

2 )

q

)

+ i sin

(

αx sin
π(k + 1

2 )

q

)]
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+ cq+ke−αx cos
π(k+ 1

2
)

q

[

cos

(

αx sin
π(k + 1

2 )

q

)

− i sin

(

αx sin
π(k + 1

2 )

q

)]}

.

Case AUsing the same substitution as before and aggregating identical terms, the only sur-
viving coefficients are

β =











β0

β1

...
β(q−1)/2











and γ =











γ0

γ1

...
γ(q−3)/2











.

All the formulæ are the same as in the case of evenq, except that we need to adjust the limits
of summation and replacek with k + 1

2 in numerators. This applies both to (4.4) and to the
expressions forα−su(s)(x).

For q = 1 we obtaindet Φ1 = Φ1 = − sinα: no surprise here. Forq = 3 we have

Φ3 =





− sin α
2 cosh

√
3α
2 sinα cos α

2 sinh
√

3α
2

− 1
2 cos α

2 cosh
√

3α
2 −

√

3
2 sin α

2 sinh
√

3α
2 cosα

√

3
2 cos α

2 cosh
√

3α
2 − 1

2 sin α
2 sinh

√

3α
2

−
√

3
2 cos α

2 sinh
√

3α
2 − 1

2 sin α
2 cosh

√

3α
2 − sinα 1

2 cos α
2 sinh

√

3α
2 −

√

3
2 sin α

2 cosh
√

3α
2





and

det Φ3 =

√
3

4
(cosα cosh

√
3α− 2 + cos2 α).

Case BAgain, we proceed like for evenq. After aggregation we obtain

β =











β0

β1

...
β(q−3)/2











and γ =











γ0

γ1

...
γ(q−1)/2











,

while (4.6) and the formulæ for derivatives are, again, identical, except for changes in limits
of summation and replacement ofk by k + 1

2 in numerators.
For q = 1 we recoverdet Ψ1 = Ψ1 = cosα, while for q = 3

Ψ3 =





− sin α
2 sinh

√
3α
2 cos α

2 cosh
√

3α
2 − cosα

− 1
2 cos α

2 sinh
√

3α
2 −

√

3
2 sin α

2 cosh
√

3α
2

√

3
2 cos α

2 sinh
√

3α
2 − 1

2 sin α
2 cosh

√

3α
2 sinα

−
√

3
2 cos α

2 cosh
√

3α
2 − 1

2 sin α
2 sinh

√

3α
2

1
2 cos α

2 cosh
√

3α
2 −

√

3
2 sin α

2 sinh
√

3α
2 cosα



 ,

detΨ3 = −
√

3

4
sinα(cosh

√
3α− cosα).

Note thatcosh
√

3α > cosα for α > 0, therefore we need to consider only the trivial equation
sinα = 0.

4.3 Location of theαns

Let us take stock. We have proved in this section thatu(i)(x) = O
(

αi
)

, a result justifying

the statement in Section 2 thatf̂n = O
(

n−q−1
)

, and derived the functionsu in an explicit
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form as a linear combination of products of trigonometric and hyperbolic functions. The
functions depend on a parameterα, which is a solution of a transcendental equation: once
α is known, the coefficients in the linear combination can be easily computed by solving an
algebraic eigenproblem. Regardless of the value ofq ≥ 1, such functions and corresponding
transcendental equations always occur in two cases: even and odd.

All that remains is to look closer into the solutions of the transcendental equations (4.5)
and (4.7).

For q = 1 the situation is clear: the solutions of (4.5) and (4.7) arenπ and (n − 1
2 )π

respectively. Therefore, the solutions interlace, the “odd” solution comes first, and we let
α2n−1 = (n− 1

2 )π, α2n = nπ and labelun accordingly.
We have already consideredq = 2 in Section 3 and proved that the solutions of (4.5) and

(4.7) reside in the exponentially small intervalsĨn. Specifically,αs corresponding to even
functions are≈ (n − 1

4 )π, while for oddus we haveα ≈ (n + 1
4 )π. Again, zeros interlace,

except that the order is reversed: we start on the left from a zero corresponding to an even
function. We allocate subscripts accordingly:α2n−1 corresponds to an evenu2n−1 andα2n

to an oddu2n.
Forq ≥ 3 we have already seen that (4.7) reduces tosinα = 0, with the zerosnπ. Insofar

as (4.5) is concerned, let

g(x) = cosx cosh
√

3x− 2 + cos2 x, g̃(x) =
g(x)

cosx
.

Since

g̃′(x) =
√

3 sinh
√

3x− sinx(2 + cos2 x)

cos2 x
,

it follows at once that̃g monotonically increases for sufficiently largex: as a matter of fact,
by numerical calculation, forx ≥ 1.874858. Moreover, computation shows that (4.5) has no
zeros in(0, 2), hence we may assume thatg̃ increases monotonically. Since it has a simple
polar singularity at(n + 1

2 )π and g̃(nπ) = cosh
√

3nπ − (−1)n > 0 for everyn ≥ 1, we
deduce that it must have a single zero in every interval of theform (nπ, (n+1)π). Therefore,
zeros of (4.5) and of (4.7) interlace.

Applying a single step of Newton–Raphson iteration tog(x) = 0, with starting guess
(n+ 1

2 )π, produces

α ≈ (n+ 1
2 )π − 4(−1)ne−

√
3(n+ 1

2 )π,

an extraordinarily good approximation: forn = 10 andn = 11 we incur an error of6.55 ×
10−49 and of1.23 × 10−53, respectively.

In the caseq = 4 we have just numerical results, but they fit the general pattern. Thus,
solutions of (4.5) and of (4.7) tend exponentially fast withn ≥ 1 to (n+ 1

4 )π and to(n+ 3
4 )π

respectively.
To sum up our results forq = 1, 2, 3, 4, we have

q α2n−1 α2n the least zero
1 (n− 1

2 )π nπ (4.7)
2 → (n− 1

4 )π → (n+ 1
4 )π (4.5)

3 nπ → (n+ 1
2 )π (4.7)

4 → (n+ 1
4 )π → (n+ 3

4 )π (4.5)
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The pattern emerges and we conjecture that for generalq ≥ 1 zeros of (4.5) and of (4.7)
interlace, with the leftmost zero being of (4.5) for evenq, of (4.7) otherwise, and moreover

αn → 1
4 (2n+ q − 1)π, q, n ≥ 1 (4.8)

exponentially fast forn≫ 1.
Note that this behaviour is consistent with our remark in Section 2 thatαn = O(n):

actually, there is compelling numerical evidence thatαn = 1
2πn + µq + O

(

n−1
)

for some
µq ∈ R.

Another valuable observation is that, given exponential tendency to limit in (4.8), the
computation ofαn by Newton–Raphson iteration is exceedingly easy: just a single iteration
is required in IEEE arithmetic for even small values ofn. Thus, forq = 2 a single iteration
produces an error of1.49×10−20 already forn = 4 (n = 3 misses the IEEE machine epsilon
by a whisker, giving an error of7.95 × 10−16).

5 Rapid computation of expansion coefficients

A major reason for the extraordinary success of classical Fourier expansions can be attributed
to the very fast and accurate means for the evaluation of their coefficients using Fast Fourier
Transform. As we have already explained in (Iserles & Nørsett 2006), modified Fourier expan-
sions provide an alternative means to approximate expansions coefficients to high precision,
using asymptotic expansions and other techniques originating in highly oscillatory quadra-
ture. The outcome is a numerical approach that requires verymodest data – a relatively small
number of function and derivative evaluations off – and justO(m) flops to evaluate the first
m expansion coefficients. In this section we demonstrate thatall this can be generalised to
polyharmonic eigenfunctions, regardless ofq ≥ 1. Our point of departure is the asymptotic
expansion (2.4) from Theorem 2.

5.1 The asymptotic method

Before we commence our discussion of effective numerical approximation of expansion co-
efficients, we need convenient formalism to express derivative information. We thus let

Nm = {j ∈ N : j = 2qr + k ≤ m wherer ≥ 0, q ≤ k ≤ 2q − 1}

and
Dm(x) = {f (j)(x) : j ∈ Nm}.

The first step in our design of an effective algorithm for the calculation of

f̂n =

∫ 1

−1

f(x)un(x)dx, n ≥ 1,

consists of truncating (2.4). This results in theasymptotic method

Q̂[ρs,p,ρs,p]
n [f ] (5.1)

=
s−1
∑

r=0

(−1)(r+1)q

α
2(r+1)q
n

2q−1
∑

k=q

(−1)k[f (2qr+k)(1)u(2q−k−1)
n (1) − f (2qr+k)(−1)u(2q−k−1)

n (−1)]



20

+
(−1)(s+1)q

α
2(s+1)q
n

q+p−1
∑

k=q

(−1)k[f (2qs+k)(1)u(2q−k−1)
n (1) − f (2qs+k)(−1)u(2q−k−1)

n (−1)],

wheres ≥ 0, p ∈ {0, . . . , q − 1} and

ρs,p =

{

2qs− 1, p = 0,
(2s+ 1)q + p− 1, p = 1, . . . , q − 1

is the number of derivatives at±1.

Theorem 3 It is true for everys ≥ 0 andp = 0, . . . , q − 1 that

Q̂[ρs,p,ρs,p]
n ∼ f̂n + O

(

n−(2s+1)q−p−1
)

, n≫ 1. (5.2)

Proof Follows at once by direct comparison of (5.1) with the asymptotic expansion
(2.4), distinguishing between the casesp = 0 andp ≥ 1, bearing in mind thatαn ∼ O(n)

andu(i)
n ∼ O

(

ni
)

. 2

Once an approximation tôfn is O
(

n−N
)

for n ≫ 1, we say that it is of anasymptotic
orderN . Thus, the asymptotic method (5.1) is of asymptotic order(2s + 1)q + p + 1. Note
that asymptotic order refers to absolute error. Sincef̂n = O

(

n−q−1
)

, therelative asymptotic
order of (5.1) is2sq + p.

We say that (5.1) employs thedata set

D[ρs,p,ρs,p] = D̃q ∪ Dρs,p
(−1) ∪ Dρs,p

(1),

where
D̃q = {f (i)(0) : i = 0, . . . , q}.

It will be clear to the observant reader thatD̃q is not, actually, used at all in (5.1). The reason
for its inclusion will be apparent in the sequel, in Subsection 5.4.

To illustrate (5.1), we considerq = 2. We have already noted in Section 3 that

u2n−1(−1) =
√

2, u2n−1(1) =
√

2, u2n(−1) = −
√

2, u2n(1) =
√

2.

Moreover, differentiatingun and using (3.2) and (3.4), it is easy to verify that

u′2n−1(−1) =
√

2α2n−1 tanα2n−1, u′2n−1(1) = −
√

2α2n−1 tanα2n−1

and

u′2n(−1) = u′2n(1) =

√
2α2n

tanα2n

(note that| tanαn| ≈ 1). Therefore, the first few asymptotic methods forq = 2 are

Q̂
[2,2]
2n−1[f ] = −

√
2 tanα2n−1

α3
2n−1

[f ′′(1) + f ′′(−1)]

Q̂
[2,2]
2n [f ] =

√
2 cotα2n

α3
2n

[f ′′(1) − f ′′(−1)],
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Figure 5.1: Scaled errorsn4(Q̂
[2,2]
n − f̂n), n7(Q̂

[3,3]
n − f̂n) andn8(Q̂

[6,6]
n − f̂n) for f(x) = ex

andq = 2.

Q̂
[3,3]
2n−1[f ] = −

√
2 tanα2n−1

α3
2n−1

[f ′′(1) + f ′′(−1)] −
√

2

α4
2n−1

[f ′′′(1) − f ′′′(−1)],

Q̂
[3,3]
2n [f ] =

√
2 cotα2n

α3
2n

[f ′′(1) − f ′′(−1)] −
√

2

α4
2n

[f ′′′(1) + f ′′′(−1)],

Q̂
[6,6]
2n−1[f ] = −

√
2 tanα2n−1

α3
2n−1

[f ′′(1) + f ′′(−1)] −
√

2

α4
2n−1

[f ′′′(1) − f ′′′(−1)]

−
√

2 tanα2n−1

α7
2n−1

[f (6)(1) + f (6)(−1)],

Q̂
[6,6]
2n [f ] =

√
2 cotα2n

α3
2n

[f ′′(1) − f ′′(−1)] −
√

2

α4
2n

[f ′′′(1) + f ′′′(−1)]

+

√
2 cotα2n

α7
2n

[f (6)(1) − f (6)(−1)]

and so on. An important observation is that for anyi ≥ 3 the firstm coefficientsQ̂[i,i]
n [f ],

n = 1, . . . ,m, can be computed inO(m) operations.

In Figure 5.1 we display scaled errorsnN (Q̂[i,i]
n [f ]−f̂n), whereN is the asymptotic order,

for the three choicesi = 2, 3, 6, q = 2 andf(x) = ex: numerous other computer experiments
with other analytic functionsf replicate these results. It is clear that computations conform
with theory. Absolute and relative (non-scaled) errors forselected values ofn are presented
in Table 1. Evidently, the error for smalln is unacceptably large, but this is hardly surprising
since the asymptotic method (5.1) is, as its name implies, effective only for largens, whenuns
become highly oscillatory and asymptotic behaviour sets. Moreover,Q̂[2,2]

n clearly delivers
poor relative error even for largen. This is not surprising either, since its relative asymptotic
order is just one.
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Q̂[2,2]
n [f ] Q̂[3,3]

n [f ] Q̂[6,6]
n [f ]

n absolute relative absolute relative absolute relative

1 9.90−02 4.40−01 −7.20−03 −3.20−02 3.17−03 1.41−02

2 1.82−02 4.50−01 −1.54−04 −4.21−03 7.66−05 2.08−03

3 3.61−03 1.60−01 −2.48−05 −1.09−03 3.96−06 1.75−04

4 1.75−03 2.28−01 −3.07−06 −4.01−04 6.99−07 9.15−05

10 5.90−05 8.65−02 −9.21−09 −1.35−05 7.97−10 1.69−06

20 4.06−06 4.25−02 −8.88−11 −9.30−07 3.78−12 3.95−08

50 1.10−07 1.68−02 −1.65−13 −2.53−08 2.78−15 4.25−10

100 7.02−09 8.39−03 −1.35−15 −1.60−09 1.13−17 1.35−11

Table 1: Absolute and relative errorŝQ[i,i]
n [f ] − f̂n for f(x) = ex, q = 2 andi = 2, 3, 6.

5.2 Filon-type methods

The main idea of Filon-type methods is to replacef by an interpolating polynomialψ inside
the integral. Thus, let−1 = c1 < c2 < · · · < cν = 1 be givennodesandm1,m2, . . . ,mν ∈
N their multiplicities. We interpolate (in a Hermite sense)ψ(i)(ck) = f (i)(ck) for i =
0, . . . ,mk − 1, k = 1, . . . , ν and let

Q̂n[f ] =

∫ 1

−1

ψ(x)un(x)dx, n = 1, 2, . . . (5.3)

(Iserles & Nørsett 2005). Note that (5.3) can be always integrated exactly, because of the form
(4.3) ofun. The asymptotic order of (5.3) ismin{m1,mν}: in other words, it is influenced
solely by function values and derivatives at the endpoints,consistently with the asymptotic
expansion. However, further information at the intermediate pointsc2, . . . , cν−1 typically
decreases significantly the size of the error (Iserles & Nørsett 2005).

The Filon method has been reinterpreted in (Iserles & Nørsett 2006) in the case of mod-
ified Fourier expansions, our caseq = 1, and similar reinterpretation applies in the current,
more general setting, except that it requires some further work.

Once we contemplate the information (in terms of function and derivative evaluations)
required for the formation ofψ, we are struck by an important observation. The asymptotic
expansion (2.4) requires onlysomederivatives at the endpoints: specifically, we require only
f (2qr+k)(±1) for r = 0, 1, . . . andk = q, . . . , 2q − 1. In particular,f (i)(±1) is not required
for i = 0, . . . , q − 1. It is clearly wasteful to evaluate and interpolate unnecessary values,
not just in evaluating derivatives that have no direct bearing on the solution but also in in-
creasing unduly the degree ofψ. Following the practice of (Iserles & Nørsett 2006), we use
‘significant’ derivativesf (2qr+k)(ck) also at the intermediate pointsk = 2, . . . , ν − 1.

This practice leads to savings but is potentially dangerous. TheBirkhoff–Hermite inter-
polation problem,whereby a function is interpolated on a basis of lacunary derivative infor-
mation (i.e., with some derivatives ‘missing’) need not have a solution or the solution need
not be unique (Lorenz, Jetter & Riemenschneider 1983). We cannot take it for granted thatψ
exists for any configuration ofcks and derivative information therein. Although this will not
be a problem in particular examples explicitly worked out inthe current paper, it is only fair
to warn the reader.
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Not every multiplicity makes sense in the present context, since not every derivative fea-
tures in asymptotic expansion. We say that a natural numberJ is good if there exists ≥ 0
andp ∈ {0, . . . , q − 1} such thatJ = ρs,p and assume in the sequel that all multiplicities are
good numbers.

We seek a polynomialψ of degree
∑ν

k=1 ιmk
− 1, whereιm is the number of terms in the

setNm, such that

ψ(j)(ck) = f (j)(ck) j ∈ Nmk
, k = 1, . . . , ν (5.4)

and set

Q̂m

n [f ] =

∫ 1

−1

ψ(x)un(x)dx, n = 1, 2, . . . . (5.5)

Therefore, the data set of the Filon-type method (5.5) is

Dm = D̃q ∪
ν
⋃

k=1

Dmk
(ck).

Recalling that the least index inNm is theqth one, it is convenient to replace (5.4) by the
interpolation conditions

ϕ(j−q)(ck) = f (i)(ck) j ∈ Nmk
, k = 1, . . . , ν.

In other words,ϕ = ψ(q) and trivial calculation yields

ψ(x) =

q−1
∑

l=0

1

l!
f (l)(0)xl +

1

(q − 1)!

∫ x

0

(x− t)q−1ϕ(t)dt. (5.6)

We substitute (5.6) into (5.5) and note that, by Lemma 1, theuns are orthogonal to all
polynomials of degree≤ q − 1. Therefore

Q̂m

n [f ] =
1

(q − 1)!

∫ 1

−1

∫ x

0

(x− t)q−1ϕ(t)dtun(x)dx, n = 1, 2, . . . .

Theorem 4 Let m1 = mν = ρs,p (recall that all multiplicities are good numbers). The
asymptotic order of̂Qm

n is (2s+ 1)q + p+ 1.

Proof Identical to the proof of the order of a Filon-type method from (Iserles & Nørsett
2005), substitutingψ− f into the asymptotic expansion and using Theorem 3 for the order of
the asymptotic method. 2

Proposition 5 It is true that

Q̂m

n [f ] =
1

α2q
n

∫ 1

−1

ϕ(x)u(q)
n (x)dx, n = 1, 2, . . . . (5.7)
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Proof We observe that

d

dx

∫ x

0

(x− t)jϕ(t)dt = j

∫ x

0

(x− t)j−1ϕ(t)dt, j ≥ 1.

We replaceun with (−1)qα−2q
n u

(2q)
n , using (1.3), and integrate by parts,

Q̂m

n [f ] =
(−1)q

(q − 1)!α2q
n

∫ 1

−1

∫ x

0

(x− t)q−1ϕ(t)dtu(2q)
n (x)dx

=
(−1)q

(q − 1)!α2q
n

[

u(2q−1)
n (1)

∫ 1

0

(1 − t)q−1ϕ(t)dt

− (−1)qu(2q−1)
n (−1)

∫ 0

−1

(1 + t)q−1ϕ(t)dt

]

+
(−1)q−1

(q − 2)!α2q
n

∫ 1

−1

∫ x

0

(x− t)q−2ϕ(t)dtu(2q−1)
n (x)dx.

Because of (1.4), however,u(2q−1)
n (±1), therefore

Q̂m

n [f ] =
(−1)q−1

(q − 2)!α2q
n

∫ 1

−1

∫ x

0

(x− t)q−2ϕ(t)dtu(2q−1)
n (x)dx.

We continue by induction, repeatedly integrating by parts and using Neumann boundary con-
ditions (1.4). It thus follows that

Q̂m

n [f ] =
(−1)q−k

(q − k)!α2q
n

∫ 1

−1

∫ x

0

(x− t)q−k−1ϕ(t)dtu(2q−k)
n (x)dx

for k = 0, 1, . . . , q − 1. Lettingk = q − 1, integrating again by parts and substituting zero
Neumann boundary conditions, we obtain

Q̂m

n [f ] = − 1

α2q
n

∫ 1

−1

∫ x

0

ϕ(t)dtu(q+1)
n (x)dx =

1

α2q
n

∫ 1

−1

ϕ(x)u(q)
n (x)dx.

This completes the proof. 2

Note thatu(q)
n ∼ O(αq

n), thereforeQ̂m

n [f ] ∼ O
(

α−q−1
n

)

, as expected. Note further that

vn = u
(q)
n is an eigenfunction of (1.3) corresponding to theDirichlet boundary conditions

v(i)
n (±1) = 0, i = 0, 1, . . . , q − 1

(the eigenvalues for Dirichlet and Neumann conditions are the same for (1.3)).
Eachϕ is a linear combination of derivative values,

ϕ(x) =

ν
∑

k=1

∑

j∈Nmk
(ck)

ϕk,j(x)f
(j)(ck),
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where theϕk,js are cardinal polynomials of Birkhoff–Hermite interpolation. Therefore, let-
ting

bk,j(n) =
1

α2q
n

∫ 1

−1

ϕk,j(x)u
(q)
n (x)dx, j ∈ Nmk

, k = 1, . . . , ν,

we have

Q̂m

n [f ] =

ν
∑

k=1

∑

j∈Nmk

bk,j(n)f (j)(ck) (5.8)

As an example, we letq = 2, ν = 4, c = [−1,−c, c, 1] andm = [2, 2, 2, 2], where
c ∈ (0, 1). Since forq = 2 we haveN2 = {}, our data set is

{f(0), f ′(0), f ′′(0), f ′′(−1), f ′′(−c), f ′′(c), f ′′(1)}. (5.9)

Simple calculation confirms that the cardinal polynomials are

ϕ1,2(x) = − 1
2

(1 − x)(c2 − x2)

1 − c2
,

ϕ2,2(x) = 1
2

(1 − x2)(c− x)

c(1 − c2)
,

ϕ3,2(x) = 1
2

(1 − x2)(c+ x)

c(1 − c2)
,

ϕ4,2(x) = − 1
2

(1 + x)(c2 − x2)

1 − c2
.

The fastest way of calculating the weightsbk,j is probably by treatingαn as a parameter, cal-
culating the integral and finally using (3.2) and (3.4) to simplify he expressions. The outcome
is appealing in its simplicity,

b1,2(2n− 1) = b4,2(2n− 1) = −
√

2 tanα2n−1

α3
2n−1

− 2
√

2

1 − c2
1

α4
2n−1

,

b2,2(2n− 1) = b3,2(2n− 1) =
2
√

2

1 − c2
1

α4
2n−1

;

b1,2(2n) = −
√

2 cotα2n

α3
2n

+

√
2(3 − c2)

1 − c2
1

α4
2n

, b4,2(2n) = −b1,2(2n),

b2,2(2n) = − 2
√

2

c(1 − c2)

1

α4
2n

, b3,2(2n) = −b2,2(2n).

Comparing withQ̂[2,2]
n , we thus deduce that

Q̂[2,2,2,2]
2n−1 [f ] = Q̂[2,2]

2n−1[f ] − 1

α4
2n−1

2
√

2

1 − c2
[f ′′(1) − f ′′(c) − f ′′(−c) + f ′′(−1)], (5.10)

Q̂[2,2,2,2]
2n [f ] = Q̂[2,2]

2n [f ] − 1

α4
2n

√
2

c(1 − c2)
{c(3 − c2)[f ′′(1) − f ′′(−1)] − 2[f ′′(c)

− f ′′(−c)]}.
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We deduce that, like in the case of asymptotic methods,Q̂[2,2,2,2]
n [f ] for n = 1, 2, . . . ,m can

be computed inO(m) operations. Indeed, it is evident from (5.8) that this is thecase for all
Q̂m

n [f ].

5.3 Another take on Filon-type methods

The method (5.10), as well as several examples of such methods for q = 1 in (Iserles &
Nørsett 2006), can be written in the form

Q̂m

2n−1[f ] = Q̂[ρp,s,ρp,s]
2n−1 [f ] +

G1(n)

αN
2n−1

ν
∑

k=1

∑

j∈Nmk

ak,jf
(j)(ck), (5.11)

Q̂m

2n[f ] = Q̂[ρp,s,ρp,s]
2n [f ] +

G2(n)

αN
2n

ν
∑

k=1

∑

j∈Nmk

dk,jf
(j)(ck),

wherem1 = mν = ρp,m andN = (2s + 1)q + p + 1, while G1 andG2 are given func-
tions (G1, G2 ≡ 1 in (5.10)). This can be reinterpreted in the following manner: we are
using derivative information to approximate theN th term in the asymptotic expansion. This
procedure minimises the magnitude of the error by replacingthe leading truncated term in
the asymptotic expansion, a linear combination of derivatives, with an error incurred while
approximating these derivatives.

Thus, lettingh = f ′′, we can easily verify that

2

1 − c2
[h(1) − h(c) − h(−c) + h(−1)] ≈ h′(1) − h′(−1),

1

c(1 − c2)
{c(3 − c2)[h(1) − h(−1)] − 2[h(c) − h(−c)]} ≈ h′(1) + h′(−1)

is correct for everyh ∈ P3 andh ∈ P4, respectively. (It is impossible to make it correct for
higher order polynomials, since this would have requiredc = 1.)

The form (5.11) has two crucial advantages. Firstly, it provides a transparent means to
compute firstm approximated expansion coefficients inO(m) operations. Secondly, it is
considerably easier to derive than through an interpolation polynomial and its integration.

Note that we do not claim that every Filon-type methodQ̂m

n can be expressed in the form
(5.11). All the cases we have considered fit this pattern and we believe that this is true in
general, but as things stand we cannot confirm this by a proof.

To illustrate how to form methods (5.11) directly and with ease, without constructing and
integrating interpolating polynomials, we considerm = [3, 3, 3, 3], hence asymptotic order
N = 7, ρs,p = 3 and

G1(n) = −
√

2 tanα2n−1, G2(n) =
√

2 cotα2n.

Letting h = f ′′, the task in hand is to approximateh(iv)(1) + h(iv)(−1) (for odd n) and
h(iv)(1) − h(iv)(−1) (for evenn) by a linear combination of

h(−1), h′(−1), h(−c), h′(−c), h(c), h′(c), h(1), h′(1).
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It is easy to find optimal linear combinations of this kind: specifically

h(iv)(1) + h(iv)(−1) = − 1440

(1 − c2)3
[h(1) − h(c) − h(−c) + h(−1)]

+
360

c(1 − c2)2
[ch′(1) + h′(c) − h′(−c) − ch′(−1)]

is correct for everyh ∈ P7, while

h(iv)(1) − h(iv)(−1) = −120(14 − 7c2 + c4)

(1 − c2)3
[h(1) − h(−1)]

− 60(5 − 28c2 + 7c4)

c3(1 − c2)3
[h(c) − h(−c)]

+
120(3 − c2)

(1 − c2)2
[h′(1) + h′(−1)] +

60(5 − c2)

c2(1 − c2)2
[h′(c) + h′(−c)]

for all h ∈ P8. Therefore

Q̂[3,3,3,3]
2n−1 [f ] = Q̂[3,3]

2n−1[f ] −
√

2 tanα2n−1

α7
2n−1

{

− 1440

(1 − c2)3
[f ′′(1) − f ′′(c) − f ′′(−c)

+ f ′′(−1)] +
360

c(1 − c2)2
[cf ′′′(1) + f ′′′(c) − f ′′′(−c) − cf ′′′(−1)]

}

,

Q̂[3,3,3,3]
2n [f ] = Q̂[3,3]

2n [f ] −
√

2 cotα2n

α7
2n

{

−120(14 − 7c2 + c4)

(1 − c2)3
[f ′′(1) − f ′′(−1)]

− 60(5 − 28c2 + 7c4)

c3(1 − c2)3
[f ′′(c) − f ′′(−c)] +

120(3 − c2)

(1 − c2)2
[f ′′′(1) + f ′′′(−1)]

+
60(5 − c2)

c2(1 − c2)2
[f ′′′(c) + f ′′′(−c)]

}

.

5.4 Exotic quadrature

Our formulæ forQ̂[2,2,2,2]
n andQ̂[3,3,3,3]

n feature a free parameterc ∈ (0, 1). The reason is
twofold. Firstly, this leads to less cluttered and more transparent notation. Secondly, we have
not yet formulated a good criterion for the choice of the nodec.

Once we attempt to construct the expansion (2.2), we need to compute not just̂fn for n ≥
1 but also the nonoscillatory integralŝf0

0 , . . . , f̂
o
q−1. In principle, we could have computed

them with, say, Gaussian quadrature: given that onlyq coefficients need be computed, the
O(m) operation count remains valid. We can do better, however, byreusing derivatives that
have been already used in forming our approximations to thef̂ns, complemented by a small
number of lower derivatives. Specifically, we let eachf̂o

n, n = 0, . . . , q − 1, be a linear
combination of values from the data setDm:
∫ 1

−1

f(x)Pn(x)dx ≈ P̂m

n [f ] =
ν

∑

k=1

∑

j∈Nmk

δk,j(n)f (j)(ck), n = 0, . . . , q − 1. (5.12)
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We call (5.12) anexotic quadrature,to underly its difference from more standard computa-
tional methods for nonoscillatory integrals. Note that a precursor of this idea has been named
in (Iserles & Nørsett 2006) an “underlying classical quadrature”, surely more of a mouthful
than “exotic”.

The data set for̂Q[2,2,2,2]
n is

D[2,2,2,2] = {f(0), f ′(0), f ′′(−1), f ′′(−c), f ′′(0), f ′′(c), f ′′(1)}

and simple algebra confirms that the exotic quadrature

P̂ [2,2,2,2]
0 [f ] = 2f(0) + 1

420

2 − 7c2

1 − c2
[f ′′(1) + f ′′(−1)] + 1

84

1

c2(1 − c2)
[f ′′(c) + f ′′(−c)]

− 1
210

5 − 63c2

c2
f ′′(0)

is of order 7 (i.e., correct for allf ∈ P7) for genericc and of order 9 forc =
√

210/30.
Likewise,

P̂ [2,2,2,2]
1 [f ] = 2

3f
′(0) + 1

420

3 − 14c2

1 − c2
[f ′′(1) − f ′′(−1)] + 11

420

1

c(1 − c2)
[f ′′(c) − f ′′(−c)]

is in general of order 6, except thatc =
√

187/33 results in order 8. Since we wish to
maximise the least order of̂P [2,2,2,2]

k [f ], k = 0, 1, we thus choosec =
√

187/33 in both
Filon-type and exotic quadrature form = [2, 2, 2, 2].

Longer algebra produces exotic quadrature coefficients forQ̂[3,3,3,3]
n ,

P̂ [3,3,3,3]
0 [f ] = 2f(0) + 1

13860

68 − 404c2 + 935c4 − 396c6

(1 − c2)3
[f ′′(1) + f ′′(−1)]

− 1
13860

25 − 328c2 + 506c4

c4(1 − c2)3
[f ′′(c) + f ′′(−c)]

+ 1
6930

25 − 253c2 + 1914c4

c4
f ′′(0)

− 1
55440

27 − 154c2 + 330c4

(1 − c2)2
[f ′′′(1) − f ′′′(−1)]

+ 1
55440

50 − 253c2

c3(1 − c2)2
[f ′′′(c) − f ′′′(−c)],

P̂ [3,3,3,3]
1 [f ] = 2

3f
′(0) + 1

166320

1015 − 6671c2 + 19558c4 − 7722c6

(1 − c2)3
[f ′′(1) − f ′′(−1)]

− 1
166320

259 − 6707c2 + 12628c4

c3(1 − c2)3
[f ′′(c) − f ′′(−c)]

− 1
166320

115 − 748c2 + 2178c4

(1 − c2)2
[f ′′′(1) + f ′′′(−1)]

+ 1
166320

259 − 1804c2

c2(1 − c2)2
[f ′′′(c) − f ′′′(−c)],

of orders 11 and 10, respectively. No real value ofc results in a higher-order exotic quadrature.
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Figure 5.2: Scaled errorsn4|Q̂[2,2,2,2]
n [f ] − f̂n| andn7|Q̂[3,3,3,3]

n [f ] − f̂n| for f(x) = ex and
q = 2.

P̂ [2,2,2,2]
n [f ] P̂ [3,3,3,3]

n [f ]
n absolute relative absolute relative

0 2.11−06 8.96−07 −1.21−10 −5.15−11

1 2.48−07 3.37−07 −3.49−09 −4.74−09

Q̂[2,2,2,2]
n [f ] Q̂[3,3,3,3]

n [f ]
n absolute relative absolute relative

1 −4.91−04 −2.18−03 −1.75−04 −7.78−04

2 1.84−05 5.00−04 7.59−05 2.07−03

3 2.05−04 9.04−03 −5.31−06 −2.35−04

4 1.34−05 1.75−03 6.88−07 8.98−05

10 5.46−07 8.01−04 7.68−10 1.27−06

20 3.81−08 3.99−04 3.51−12 3.68−08

50 1.04−09 1.59−04 2.30−15 3.52−10

100 6.62−11 7.90−05 7.43−18 8.87−12

Table 2: Absolute and relative errorŝP [i,i,i,i]
n [f ] − f̂o

n andQ̂[i,i,i,i]
n [f ] − f̂n for f(x) = ex,

q = 2 andi = 2, 3.

Other things being equal, we opt for algebraically simple coefficients and letc = 1
2 in

Q̂[3,3,3,3]
n andP̂ [3,3,3,3]

n .
Fig. 5.2 depicts scaled errors produced by the two Filon-type methods that we have de-

scribed earlier and it should be compared with Fig. 5.1. It isevident that, although the asymp-
totic order is the same, the use of additional data inside(−1, 1) decreases the error by a
significant factor. The same conclusion emerges from Table 2. In particular, the improvement
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for smallns is tangible, although the errors there are still excessivefor many uses. Of course,
they can be decreased further by using largerν.

Table 2 also presents the error committed by exotic quadrature when approximating the
expansion coefficientŝfo

0 andf̂o
1 . Clearly, the error is very small indeed! It is, as a matter of

fact, significantly smaller than the error of Filon-type methods for smalln, when the integrand
is nonoscillatory. Indeed, one possible remedy for smallns is to use there appropriate exotic
quadrature (on the same data set) in preference to Filon.

6 Conclusions and challenges

This is the moment to take stock and briefly review what have wedone in this paper and what
remains to be done.

Our point of departure being modified Fourier expansions, whose coefficients decay like
O

(

n−2
)

for analytic functions (Iserles & Nørsett 2006), we have generalized the framework to
approximation bases originating in eigenfunctions of polyharmonic operators with Neumann
boundary conditions. These bases exhibit faster rate of decay of expansion coefficients. In
particular, we have analysed in greater detail bases withO

(

n−3
)

decay. We have expanded the

nth coefficientf̂n asymptotically in powers ofn−1 and presented the underlying orthogonal
functions in an explicit manner. Such functions always separate into two sets: they are either
even or odd. They depend on a parameter which can be obtained by solving a scalar nonlinear
algebraic equation.

Theoretical analysis has been followed by the introductionof three numerical techniques
for rapid approximation of expansion coefficients.

• Firstly, we have used a truncated asymptotic expansion. Requiring a small number of
derivative evaluations and linear cost, it results in impressively small error once asymp-
totic behaviour sets, but the error might be unacceptably large for smallns.

• Secondly, we have considered Filon-type methods which, in addition to derivatives at
the endpoints, require additional derivatives elsewhere in the interval. The outcome
is a family of methods that produce significantly smaller error, also for lowerns. We
have reinterpreted Filon-type methods of (Iserles & Nørsett 2005) as a combination of
an asymptotic method with a scaled approximation to derivatives. This interpretation
allows for a relatively painless practical derivation of such methods in a manner which
is of the right form to allow their implementation in linear time.

• Thirdly, we have reused derivative information for “exoticquadrature” algorithms. The
latter can be used very effectively indeed for the computation of coefficients corre-
sponding to the zero eigenvalue of the polyharmonic operator.

Although our examples focused on the caseq = 2, corresponding toO
(

n−3
)

decay, the
underlying techniques apply to allq ≥ 1. It is fair to comment, however, that underlying
functions are becoming increasingly complicated withq.

This paper introduces a new mathematical approach and new numerical techniques. The
treatment of neither mathematical nor computational aspects is comprehensive and many sub-
stantive problems remain. Indeed, bearing in mind the monumental intellectual effort that
went into the last two centuries of harmonic analysis, it would have been surprising had we
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been able to answer similar questions in a considerably moredemanding and complicated
framework in a single paper! We wish to single out the following problems and challenges
for future work:

1. Pointwise convergence.It is known that classical Fourier expansions, truncated afterm
terms, converge pointwise at the rate ofO

(

m−1
)

away from the boundary for analytic,
nonperiodic functions (K̈orner 1988). The standard proof consists of two major steps:
proof of summability (the Fejér Theorem) is used as a stepping stone in the proof of
pointwise convergence (the de la Vallée Poussin Theorem). Both the Fejér Theorem and
the de la Valĺee Poussin Theorem have been generalized in (Iserles & Nørsett 2006) for
modified Fourier expansions, the simplest instance of approximation bases considered
in this paper.

However, numerical experiments indicate that modified Fourier expansions of analytic
functions converge likeO

(

m−2
)

, yet this has never been proved. Insofar as the more
general approximation bases of this paper are concerned, webelieve that they con-
verge pointwise inside the interval and uniformly in any closed subset at the rate of
O

(

n−q−1
)

. Needless to say, this is just a conjecture and we have at present neither
proof nor even a tentative idea how to seek a proof.

An important difference between classical and modified Fourier expansions is that the
latter converge at the boundary (for nonperiodic analytic functions) at the decreased
rate ofO

(

n−1
)

(Iserles & Nørsett 2006). Based on numerical experimentation, we
believe that bases of polyharmonic eigenfunctions converge at the endpoints at the rate
of O(n−q), but cannot prove it yet. Note that the method of proof in (Iserles & Nørsett
2006) relies specifically on the (very simple) form of modified Fourier expansions and
cannot be extended to generalq ≥ 1.

2. Properties of theαns. The parametersαn are zeros of the nonlinear algebraic equations
(4.5) and (4.7). The casesq = 1, 2, 3, as well as numerical investigation forq = 4,
indicate that all such zeros are simple, they interlace and the least zero is that of (4.5)
for evenq and of (4.7) otherwise. Moreover, theαns appear to tend to14 (2n+ q − 1)π
exponentially fast withn. All this, for generalq ≥ 1, is purely a matter of conjecture.

3. Properties of the functionsun. It is enough to examine Fig. 3.1 to persuade ourselves
of the many features of the eigenfunctionsun. In particular, eachun appears to have
n+ q simple zeros in(−1, 1) and these zeros interlace. Of course, interlace of zeros of
eigenfunctions is well known in the case of Sturm–Liouvilleoperators, but we are not
aware of similar results for polyharmonic operators.

4. Filon-type quadrature.The design of Filon-type quadrature in the form (5.11), exploit-
ing its interpretation as “asymptotic method plus scaled approximation to derivatives”
is fairly straightforward and can be performed, at least in principle, for any reasonable
number of nodesc1, c2, . . . , cν . This can deal with lower accuracy at low frequencies,
apparent in Tables 1 and 2. It is of interest, however, to obtain good, reliable and
affordable error bounds and error estimates. In (Iserles & Nørsett 2004) we have con-
sidered practical means of estimating the error in Filon-type quadrature. However, the
techniques therein are effective mainly for large frequencies, while our interest is also
in low frequencies, before the onset of asymptotic behaviour. We thus need an alterna-
tive approach. An intriguing idea is to use the Peano Kernel Theorem (Powell 1981):
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this is fairly standard for derivative approximations but might be more of a challenge
for the asymptotic-expansion part.

A pertinent issue is thestability of Filon-type methods (5.11) for largeν. Approxima-
tion to derivatives is known as an ill-conditioned numerical problem – does this impact
on the conditioning of Filon-type methods? Does it lead to large coefficients and to
loss of accuracy? Clearly, we need to understand such issuesthese better and obtain a
wealth of practical numerical experience with manyνs and many functionsf .

5. Avoiding the use of derivatives.We have already described in (Iserles & Nørsett 2006)
how to replace derivatives by finite differences in Filon-type methods for modified
Fourier expansions. As long as the spacing is sufficiently fine, results are practically in-
distinguishable from using derivatives. We see absolutelyno reason why this approach
cannot be extended to arbitraryq ≥ 1.

6. Alternative highly oscillatory quadrature.Four main approaches to highly oscillatory
quadrature came off age in the last few years: asymptotic andFilon-type methods (Iser-
les & Nørsett 2005), but also Levin-type methods (Olver 2006) and the method of nu-
merical stationary phase (Huybrechs & Vandewalle 2006). Can such methods provide
a competing, perhaps superior means to evaluate expansion coefficientsf̂n?

7. Exotic quadrature.Classical interpolatory quadrature is exceedingly well understood
(Davis & Rabinowitz 1984). In particular, optimal choice ofquadrature nodes is easily
explained in terms of orthogonal polynomials. No such theory exists for exotic quadra-
ture and we do not even know what is its attainable order. In one case,m = [2, 2, 2, 2],
we were able to optimize order by an appropriate choice of internal nodes, but for
m = [3, 3, 3, 3] no choice of nodes in the interior of the interval leads to better order.
We believe that such a theory is within reach and are already assembling preliminary
results.

Another challenge is to produce reliable and tight bounds onthe error. This, we believe,
can be accomplished with the Peano Kernel Theorem in a standard manner.

Yet another challenge in this context is to use exotic quadrature also for the first few
coefficientsf̂n, before the onset of asymptotic behaviour, where it might produce better
outcome than the underlying Filon method. This does not seemto be unduly compli-
cated, at least not forq = 1, 2, but the underlying ground work needs to be done.

Fourier analysis and fast Fourier transform techniques have proved themselves extraor-
dinarily successful in modern mathematics and its applications. It is neither the intention
nor the message of this paper to challenge this. Expansions in polyharmonic functions ad-
dress themselves to just a single application area of Fourier techniques: the expansion of
analytic, nonperiodic functions and its potential uses, e.g. in the numerical solution of differ-
ential equations. It is a tribute to the breadth and success of Fourier analysis that even this
single application area is so important and has so many ramifications.
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