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Abstract We present a method for the numerical quadrature of highly oscillatory
integrals with stationary points. We begin with the derivation of a new asymptotic expan-
sion, which has the property that the accuracy improves as the frequency of oscillations
increases. This asymptotic expansion is closely related to the method of stationary phase,
but presented in a way that allows the derivation of an alternate approximation method
that has the same asymptotic behaviour, but with significantly greater accuracy. This
approximation method does not require moments.

1. Introduction

We are concerned with numerically approximating the highly oscillatory integral

I[f ] =
∫ 1

−1

f(x)eiωg(x) dx,

where ω is large,
0 = g(0) = g′(0) = · · · = g(r−1)(0), g(r)(0) > 0,

and g′(x) 6= 0 for 0 < |x | ≤ 1. Note that the case where g(0) 6= 0 can easily be handled by replacing g with
g − g(0), and multiplying the integral by eiωg(0). The condition that g(r)(0) > 0 implies that g(x) > 0 for
0 < x ≤ 1, and (−1)rg(x) > 0 for −1 ≤ x < 0. This condition, as well as the continuity of g and f can be
relaxed, at the expense of complicating the proofs.

Computing such integrals using traditional techniques, such as Gaussian quadrature, is difficult. Accu-
racy depends on there being several samples per oscillation, which for large frequency is extremely inefficient.
Fixing the number of quadrature points results in an error O(1) as ω →∞, whilst the integral itself decays
like O

(
ω−

1
r

)
[9]. The method of stationary phase [5] provides only an asymptotic result; for fixed frequency

the accuracy of the approximation is limited. It is possible to compute the integrals by moving to the com-
plex plane and integrating along the path of steepest descent [3], however, this suffers from the requirement
that both f and g are analytic, in order to deform the integration path, and requires the knowledge or
computation of the path of steepest descent. Filon-type methods allow efficient approximation [4], however,
they require the knowledge of moments I

[
xk

]
, which in general are unknown.

In this paper we will present a new method such that the accuracy actually improves as the frequency
increases, up to any chosen asymptotic order. We begin by constructing a new asymptotic expansion that
does not require moments. From this asymptotic expansion we can find a basis for a Filon-type method which
can be integrated explicitly in closed form. This allows us to improve the accuracy of the approximation for
fixed asymptotic orders.

2. Asymptotic Expansion

Asymptotic expansions provide an invaluable tool for high frequency integration. For the integral in
question, there exists two existing asymptotic expansions: the Iserles and Nørsett expansion found in [4] and
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the well-known method of stationary phase [5]. The former of these requires knowledge of the moments I[1],
...,I

[
xr−1

]
but leads us to the more powerful numerical approximation of Filon-type methods and Levin-type

methods [6]. Stationary phase does not require moments, yet only provides an asymptotic result, hence for
fixed frequency its usefulness as a numerical quadrature scheme is limited.

In this section, we will derive an asymptotic expansion that bridges the gap between the two: it is
roughly equivalent to the method of stationary phase, in that it does not require moments, but presented in
a way analogous to the Iserles and Nørsett expansion, allowing us to derive a Filon-type method such that
moments are not necessary. We first present the Iserles and Nørsett expansion, to motivate the methodology
behind the new expansion. For simplicity, we take r = 2, though the Iserles and Nørsett expansion exists
for higher order stationary points as well, requiring the knowledge of additional moments. The standard
technique of deriving asymptotic expansions, namely integration by parts, fails due to the introduction of a
singularity at the stationary point. But we can make the singularity removable:

I[f ] = I[f − f(0)] + f(0)I[1] =
1
iω

∫ b

a

f(x)− f(0)
g′(x)

d
dx

eiωg(x) dx+ f(0)I[1]

=
[
f(1)− f(0)

g′(1)
eiωg(1) − f(−1)− f(0)

g′(−1)
eiωg(−1)

]
− 1

iω
I

[
d
dx

[
f(x)− f(0)

g′(x)

]]
+ f(0)I[1] .

Iterating this process results in an asymptotic expansion. However, this suffers from requiring the first
moment, as well as higher order moments when additional derivatives of g vanish at the stationary point.

The idea behind the new expansion is to note that we do not necessarily need to subtract a constant, it
is only necessary that the function we subtract is nonzero at the stationary point. Hence we can replace the
moments I

[
xk

]
, which may not be computable in closed form, with I[ψk], where ψk is constructed in such

a way that the integral is guaranteed to be computable. In order to do this, we first look at the canonical
case of g(x) = xr. Suppose there exists a function F such that

d
dx

[
F (x)eiωg(x)

]
= xkeiωg(x).

We can expand out the left-hand side to obtain the following equation:

L[F ] = F ′ + iωg′F = xk.

Replacing g′ with rxr−1 we obtain the equation F ′ + riωxr−1F = xk. A solution to this equation is known:

F (x) =
ω−

1+k
r

r
e−iωxr+ 1+k

2r iπ

[
Γ
(

1 + k

r
,−iωxr

)
− Γ

(
1 + k

r
, 0

)]
,

where Γ is the incomplete gamma function [1] . Incomplete gamma functions are well-known, and can be
computed efficiently [2]. In fact, modern mathematical program languages, such as Maple, Mathematica and
Matlab (via the mfun function) have very efficient built-in numerical implementations. Intuition suggests
that if we replace xr with g(x), then L[F ] will give us the ψk we were looking for, hopefully independent of
ω. The following lemma shows that our intuition is indeed correct:

Lemma 2.1 Let

φr,k(x) = Dr,k(sgnx)
ω−

k+1
r

r
e−iωg(x)+ 1+k

2r iπ

[
Γ
(

1 + k

r
,−iωg(x)

)
− Γ

(
1 + k

r
, 0

)]
,

where

Dr,k(sgnx) =

 (−1)k sgnx < 0 and r even,

(−1)ke−
1+k

r iπ sgnx < 0 and r odd,
−1 otherwise.

Then φr,k ∈ C∞[−1, 1] and, for L[F ] = F ′ + iωg′F ,

L
[
φr,k

]
(x) = sgn(x)r+k+1 | g(x) |

k+1
r −1

g′(x)
r

.
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Furthermore, L
[
φr,k

]
∈ C∞[−1, 1]. Finally,

I
[
L

[
φr,k

]]
= φr,k(1)eiωg(1) − φr,k(−1)eiωg(−1).

Proof :
The form of L

[
φr,k

]
away from the stationary point follows immediately from the equation for the

derivative of the incomplete Gamma function [1]. The continuity of L
[
φr,k

]
follows from the fact that

d
dx

[
sgn(x)k+1 1

1 + k
| g(x) |

1+k
r

]
= L

[
φr,k

]
(x) x 6= 0,

and

sgn(x)k+1 | g(x) |
1+k

r = sgn(x)k+1

∣∣∣∣ gr(0)
r!

xr +O
(
xr+1

) ∣∣∣∣
1+k

r

=
(
gr(0)
r!

) k+1
r

xk+1(1 +O(x))
k+1

r

is C∞[−1, 1]. Combining this with the fact that φr,k is continuous ensures that φr,k ∈ C∞. The final integral
thus follows from the fundamental theorem of calculus.

Q.E.D.

Remark : The use of sgn and the case statement in the preceding lemma are merely to choose the branch
cut so that (xr)1/r = x for both positive and negative x.

We can also prove that
{
L

[
φr,k

]}
is a Chebyshev set [8], hence can interpolate at any given sequence

of sample points.

Lemma 2.2 The basis
{
L

[
φr,k

]}
is a Chebyshev set.

Proof : Let u = sgn(x) | g(x) |1/r, where u ranges monotonically from − | g(−1) |1/r to | g(1) |1/r. Let
g−1
+ (u) equal x ≥ 0 such that g(x) = u, and g−1

− (u) similarly. When r is odd then g−1
± = g−1. Note that

sgnx = sgnu, hence x = g−1
sgn u(ur). Thus we obtain

∑
ckL

[
φr,k

]
(x) = sgn(x)r+1 g

′(x) | g(x) |
1
r−1

r

∑
ck sgn(x)k | g(x) |

k
r =

g′(x)u1−r

r

∑
cku

k.

It follows that interpolating f by L
[
φr,k

]
is equivalent to interpolating

rur−1f(x)
g′(x)

by the polynomial
∑
cku

k. This function is clearly well-defined for u 6= 0, hence we must show that it is
also well-defined for u = x = 0. But this follows since

ur−1

g′(x)
=

sgn(x)r+1 | g(x) |1−1/r

g′(x)
=

sgn(x)g(x)

| g(x) |1/r
g′(x)

=

(
grx

r +O
(
xr+1

))
xr(gr +O(x))1/r)(rgr +O(xr))

=

(
gr +O

(
xr+1

))
(gr +O(x))1/r)(rgr +O(xr))

.

The limit of this as x goes to zero, hence also as u goes to zero, is 1
rgr

. Thus L
[
φr,k

]
is a Chebyshev

set. Q.E.D.

Using L
[
φr,k

]
in place of xk, we can derive an alternative to the asymptotic expansion in [4], which

does not depend on any moments:
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Theorem 2.3 Define µ[f ] =
∑r−2

k=0 ckφr,k so that

L[µ[f ]](0) = f(0), . . . ,L[µ[f ]](r−2) (0) = f (r−2)(0).

Furthermore, let

σ0(x) = f(x), σk+1(x) =
d
dx

σk(x)− L[µ[σk]] (x)
g′(x)

.

Then

I[f ] ∼
∞∑

k=0

1
(−iω)k

{
µ[σk](1)eiωg(1) − µ[σk](−1)eiωg(−1)

}
−

∞∑
k=0

1
(−iω)k+1

{
σk(1)− L[µ[σk]] (1)

g′(1)
eiωg(1) − σk(−1)− L[µ[σk]] (−1)

g′(−1)
eiωg(−1)

}
.

Proof : The proof is based on the proof of Theorem 3.2 in [4]. Note that the existence of such a µ follows
from Lemma 2.2. We find that σk ∈ C∞[0, 1], since

σk(x)− L[µ[σk]] (x)
g′(x)

=
O

(
xr−1

)
gr(0)
(r−1)!x

r−1 +O(xr)
=

O(1)
gr(0)
(r−1)! +O(x)

is C∞[0, 1]. Then

I[σk] = I[σk − L[µ[σk]]] + I[L[µ[σk]]]

=
1
iω

∫ 1

−1

σk − L[µ[σk]]
g′

d
dx

eiωg dx+
{
µ[σk](1)eiωg(1) − µ[σk](−1)eiωg(−1)

}
=

1
iω

{
σk(1)− L[µ[σk]] (1)

g′(1)
eiωg(1) − σk(−1)− L[µ[σk]] (−1)

g′(−1)
eiωg(−1)

}
+

{
µ[σk](1)eiωg(1) − µ[σk](−1)eiωg(−1)

}
− 1

iω
I
[
σk+1

]
.

The theorem follows from induction.
Q.E.D.

The method of stationary phase can be derived as a consequence of Theorem 2.3. Consider the case of

r equal to two. Then µ[f ](x) =
√

2
g′′(0)f(0)φ2,0(x), since L

[
φ2,0

]
(0) =

√
g′′(0)

2 . If we assume that g(x) ∼ x2

as x→ ±∞, then
∫ ±∞
±1

feiωg dx = O
(
ω−1

)
[5]. Thus formally we obtain

I[f ] =
∫ ∞

−∞
feiωg dx+O

(
ω−1

)
=

∫ ∞

−∞
(f − L[µ[f ]])eiωg dx+

∫ ∞

−∞
L[µ[f ]] eiωg dx+O

(
ω−1

)
=

e
iπ
4

2
√
ω

√
2

g′′(0)
f(0)

{[
lim

x→∞
Γ
(

1
2
,−iωg(x)

)
− Γ

(
1
2
, 0

)]

−
[

lim
x→−∞

Γ
(

1
2
,−iωg(x)

)
− Γ

(
1
2
, 0

)]}
+O

(
ω−1

)
= e

iπ
4

√
2π

ωg′′(0)
f(0) +O

(
ω−1

)
.

We can demonstrate this asymptotic expansion in action. Note that µ[σk](±1) = O
(
ω−1/r

)
, thus

the partial sum up to s − 1 of the asymptotic expansion has an asymptotic order O
(
ω−s−1/r

)
. Consider

the case where f(x) = cosx with the polynomial oscillator g(x) = 4x2 + x3. The moments cannot be
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Figure 1: The error scaled by ω3/2 of the one-term asymptotic expansion (left-hand figure), versus the error
scaled by ω5/2 of the two-term asymptotic expansion (right-hand figure), for

∫ 1

−1
cosx eiω(4x2+x3).
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Figure 2: The error scaled by ω4/3 of the one-term asymptotic expansion (left-hand figure), versus the error
scaled by ω7/3 of the two-term asymptotic expansion (right-hand figure), for

∫ 1

−1
1

x+2eiω(1−cos x− 1
2 x2+x3) dx.

integrated in closed form, hence the Iserles and Nørsett expansion is not applicable to this integral. On the
other hand, Figure 1 demonstrates numerically that Theorem 2.3 does indeed give an asymptotic expansion.
For a more complicated example, consider the integral where f(x) = (x + 2)−1 with the oscillator g(x) =
1−cosx− 1

2x
2+x3. Figure 2 demonstrates that the expansion does indeed work with higher order stationary

points, in this case r is three, and with nonpolynomial oscillators.
The following corollary, originally stated in [4], follows from the asymptotic expansion. It is used in the

proof of Filon-type methods.

Corollary 2.4 Suppose that
0 = f(−1) = · · · = f (s−1)(−1),

0 = f(0) = · · · = f (2s(r−1)−r)(0),

0 = f(1) = · · · = f (s−1)(1).

Then
I[f ] ∼ O

(
ω−s−1/r

)
, ω →∞.

Proof : Note that σk depends on f and its first k derivatives, hence the requirement at the boundary
points. We prove the requirement on the number of derivatives at the stationary point by induction. The
case where s = 1 is clear: we need f and its first r − 2 derivatives to be zero in order for µ[σ0] = µ[f ] = 0.
The corollary thus follows from L’Hôpital’s rule, and the fact that g′ has a zero of order r − 1.

Q.E.D.
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3. Moment-free Filon-type methods

The major failing of using an asymptotic expansion as a numerical approximation is that for fixed
frequency the expansion in general does not converge. To combat this problem Filon-type methods were
developed in [4]. A Filon-type method is constructed by interpolating the function f , using the basis functions
{ψk}, at a sequence of nodes {x1, . . . , xν} and multiplicities {m1, . . . ,mν}.

The following theorem is from [4]. It states that we obtain the same asymptotic behaviour as the
asymptotic expansion when we use the same number of derivatives at the endpoints of the interval. Unlike
an asymptotic expansion, we can add additional interpolation points within the interval to reduce the error
for a fixed asymptotic order. In fact, if the interpolant converges uniformly to f , then it follows necessarily
that the quadrature converges to the exact value of the integral, for fixed ω.

Theorem 3.1 Let v(x) =
∑n

k=1 ckψk, where ψk is independent of ω and n =
∑ν

k=1mk. Assume that
x1 = −1, xη = 0 and xν = 1. If ck are chosen so that

v(xk) = f(xk), . . . , v(mk−1)(xk) = f (mk−1)(xk), k = 1, 2, . . . , ν,

then, assuming this system is nonsingular,

I[f ]−QF [f ] ∼ O
(
ω−s−1/r

)
when m1,mν ≥ s, mη ≥ (2s− 1)(r − 1) and

QF [f ] = I[v] =
n∑

k=1

ckI[ψk] .

Proof : The theorem follows as a direct consequence of Corollary 2.4:

I[f ]−QF [f ] = I[f − v] ∼ O
(
ω−s−1/r

)
.

Q.E.D.

In practice, ψk is typically defined to be xk, i.e., we use standard polynomial interpolation. The reason is
two-fold: polynomial interpolation is well understood and guaranteed to interpolate at the given nodes and
multiplicities, and the simplicity of the integrand suggests that the moments I

[
xk

]
are likely to be known.

However, when the moments are unknown, Filon-type methods with the polynomial basis cannot provide an
approximation.

In Lemma 2.1, we determined a basis of functions such that the moments are guaranteed to be known,
hence it makes sense to choose ψk = L

[
φr,k

]
in a Filon-type method. Moreover, it was proved in Lemma 2.2

that ψk is a Chebyshev set, hence we know that it can interpolate at the given nodes and multiplicities.
Thus using this basis we obtain the following theorem:

Theorem 3.2 Let ψk = L
[
φr,k

]
. Then

I[f ]−QF [f ] ∼ O
(
ω−s−1/r

)
,

where

QF [f ] =
n∑

k=1

ck

[
φr,k(1)eiωg(1) − φr,k(−1)eiωg(−1)

]
.
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Figure 3: The error scaled by ω3/2 of a Filon-type method with endpoints and zero for nodes and multiplic-
ities all one (left figure, top) and a Filon-type method with nodes

{
−1,− 1

2 , 0,
1
2 , 1

}
and multiplicities all one

(left figure, bottom), and the error scaled by ω5/2 of the two-term asymptotic expansion (right figure, top)
and a Filon-type method with nodes {−1, 0, 1} and multiplicities {2, 3, 2}, for I[f ] =

∫ 1

−1
cosx eiω(4x2+x3) dx.
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Figure 4: The error scaled by ω4/3 of the one-term asymptotic expansion (left figure, top), a Filon-type
method with nodes {−1, 0, 1} and multiplicities {1, 2, 1} (left figure, middle) and a Filon-type method with
nodes

{
−1,− 1

2 , 0,
1
2 , 1

}
and multiplicities {1, 1, 2, 1, 1} (left figure, bottom), and the error scaled by ω7/3 of

the two-term asymptotic expansion (right figure, top) and a Filon-type method with nodes {−1, 0, 1} and
multiplicities {2, 5, 2} (right figure, bottom), for I[f ] =

∫ 1

−1
1

x+2eiω(1−cos x− 1
2 x2+x3) dx.

Unlike the asymptotic expansion, a Filon-type method allows increasing the accuracy for fixed order.
Figure 3 demonstrates this with the same integral as in Figure 1. Note that the errors in the left figure
are of the same asymptotic order as the left figure of Figure 1, however the error is significantly less. This
is despite the fact that we are using exactly the same information abount f as we are in the asymptotic
expansion. Furthermore, this figure demonstrates how adding interpolation points can further reduce the
error. The right figure shows how adding sufficient multiplicities to a Filon-type method does indeed increase
the asymptotic order, and compares the resulting quadrature with the equivalent asymptotic expansion. We
obtain similar results for the integral with a higher-order stationary point found in Figure 2, as seen in
Figure 4.

Remark : We purposely chose oscillators such that g′′(x) 6= 0 for 0 < |x | < 1. Without this, g′(x) would
no longer be monotone and the basis L

[
φr,k

]
would differ greatly in behaviour from the polynomial basis.

Though the theorems remain valid, numerical results suggest that L
[
φr,k

]
becomes much less accurate for

interpolation, hence a larger amount of sample points would be required. A simple workaround is to choose
a sufficiently small neighbourhood around zero such that this condition is satisfied, and use a Moment-
free Filon-type method within this neighborhood. We could then approximate the integral outside this
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neighbourhood using a Levin-type method [6]. Like Moment-free Filon-type methods, Levin-type methods
do not require moments, however, they cannot be used in the presence of stationary points. They are not
affected numerically by g′′ vanishing.

4. Future work

It might be possible to generalize these results in the multivariate setting, namely integrating∫
Ω

f(x)eiωg(x) dV,

where Ω is piecewise smooth. In [7], the current author derived a quadrature method by using the operator

L[v] = ∇ · v + iω∇g · v

to push the value of the highly oscillatory integral over a domain to a highly oscillatory integral over the
boundary, assuming that there are no critical points within the domain: ∇g 6= 0. Initial numerical results
suggest that it should be possible to combine these results with the results from this paper in order to
derive a numerical approximation in the presence of critical points. We would thus obtain the integral as an
integral of incomplete gamma functions over the boundary. There are, however, several major issues. The
first problem is that the asymptotics of such integrals is not known in all cases. Indeed, critical points need
not be isolated: there can be curves of critical points within the domain. Furthermore, greater care must
be taken so that our constructed basis is C∞. Finally, once the integral is pushed to the boundary, there is
still the question of how one might integrate the resulting incomplete gamma functions.
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