
Operator theory and C∗-algebras in infinite
dimensional numerical linear algebra

Anders C. Hansen
University of Cambridge

Abstract

We present several new techniques for approximating spectra of linear operators (not
necessarily bounded) on an infinite dimensional, separable Hilbert space. Our approach is
to take well known techniques from finite dimensional matrix analysis and show how they
can be generalized to an infinite dimensional setting to provide approximations of spectra
of elements in a large class of operators. This includes new results on the finite section
method (and some variants of it) as well as a generalization of the QR algorithm to infinite
dimensions. We conclude by proposing a solution to the general problem of computing
the spectrum of an arbitrary bounded operator by introducing the n-pseudospectrum and
argue how that can be used as an approximation to the spectrum.

1 Introduction
Mathematical scientists have been successfully computing eigenvalues and eigenvectors of
linear operators since the 1950s. Such computations are a mainstay of the fields of acoustics,
computational quantum chemistry through the Schrödinger operator and quantum mechanics.
These are self-adjoint examples, but spectral analysis of non-self-adjoint operators is equally
central to the stability calculations of fluid dynamics and non-hermitian quantum mechanics.
The algorithms involved in applications like these are usually based on discretization of partial
differential equations, and sometimes, though not always, they come with theorems guaran-
teeing convergence to the correct result as the discretization is refined.

A mathematician, however, may ask a broader question: what about the computation of
spectra of arbitrary linear operators, not necessarily defined by derivatives and not necessarily
consisting of just eigenvalues? In this generality much less has been done, even in the self-
adjoint case, especially if one insists upon theorems guaranteeing convergence.

The purpose of this article is to shed light on this fundamental question in operator theory
that has received some attention in the last decade [Arv91] [Arv93b], [Arv93a], [Arv94a],
[Arv94b], [Bro06], [Bro07], [DP04], [Dav00], [Dav98], [Böt00], [HRS01], namely, how to
compute the spectrum of a linear operator on an infinite dimensional, separable Hilbert space.
The question is fundamental in the sense that our understanding of most physical phenomena
in quantum mechanics, both relativistic and non-relativistic, depends on the understanding of
the spectra of linear operators. However, to get a complete understanding of such physical
phenomena we not only need mathematical descriptions of the behavior of spectra of linear
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operators, we also need a mathematical theory on how to find explicit approximations to such
spectra. If we compare our understanding of classical mechanics and quantum mechanics
from computational point of view, there is only one restriction in the classical case, namely,
computing power. In the classical case one needs to integrate a vector field on a manifold
and there is a vast literature on how to prove rigorously that one can get arbitrarily close to
the exact solution given a sufficiently efficient computer. In the quantum case much less is
known, in fact it is a completely open question how to compute the spectrum of an arbitrary
linear operator as pointed out in [Arv94b]: “Unfortunately, there is a dearth of literature on
this basic problem, and so far as we have been able to tell, there are no proven techniques.”
Since this observation was made, there have been new developments in the self-adjoint case
[Dav00], but for the general non-self-adjoint case techniques for computing spectra are not
known. The lack of such techniques presents therefore a serious limitation of our possible
understanding of quantum systems since non-self-adjoint operators are ubiquitous in quantum
mechanics [HN96], [HN97].

We will approach the question from a purely mathematical point of view, however our
framework is meant to provide tools for future computational algorithms.

Let us introduce first the concept of computability. This is a concept that belongs to com-
plexity theory and is not the theme of this article, however we would like the reader to have
some familiarity with this issue. In the finite-dimensional case one can prove the following:
Let A be an N ×N complex matrix and let σ(A) denote the spectrum of A, then one can con-
struct a sequence {σn(A) ⊂ C} of sets such that for any ε > 0 we have dH(σ(A), σn(A)) < ε
for all sufficiently large n, where dH denotes the Hausdorff distance (see Section 2) and the
construction of σn(A) requires only finitely many arithmetic operations. Thus, a reasonable
definition of computability of the spectrum of a bounded linear operator on a separable Hilbert
space could be as the one used in the finite dimensional case above. We will not use this
explicitly in the article, but it is important to keep in mind that any mathematical construc-
tion must be done in finitely many arithmetic operations or if that is not the case one must
be able to approximate the construction with something that requires only finitely many arith-
metic operations. To illustrate this, consider the following example: Let A,B,C ∈ B(H)
where H is some Hilbert space with an orthonormal basis {ej}. Suppose that we know all
the matrix elements aij = 〈Aej, ei〉 and bij = 〈Bej, ei〉, i, j = 1, 2, . . . and that a complex
number ρ can be expressed by finitely many arithmetic operations of elements in the matrix
cij = 〈Cej, ei〉, i, j = 1, 2, . . . , where C = AB. Then it may not be possible to express
ρ in finitely many arithmetic operations using aij and bij, however, by the fact that A,B are
bounded, we can find a sequence ρn such that ρn → ρ and each ρn can be expressed in finitely
many arithmetic operations of the elements aij and bij. Following the same logic, we can ex-
press approximations to any matrix element cij where C = A1 . . . An, Aj ∈ B(H) in finitely
many arithmetic operations of the matrix elements of Aj. Thus, using the same reasoning as
above, if in any construction we restrict ourself to the following operations: operator-vector
product Aξ, ξ ∈ H, operator-operator product AB and weak limits A = WOT-limAn, we can
lay down the ground work for complexity theory-type theorems as in the finite-dimensional
example above as well as actual computational algorithms .

We will in this article present explicit techniques on how to approximate the spectrum of
different classes of linear operators on a separable Hilbert space. The framework is written in
an operator theory language and complexity theory theorems, as mentioned above, and actual
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numerical algorithms and examples will appear elsewhere [AH].
Throughout the article H will always denote a separable Hilbert space, and B(H) will

be the set of bounded linear operators on H. Also, C(H) denotes the set of densely defined,
closed linear operators on H. If T ∈ C(H) the domain of T will be denoted by D(T ), and
if z /∈ σ(T ) then R(z, T ) = (T − z)−1. Also, σ(T ) and σe(T ) denotes the spectrum and the
essential spectrum of T respectively.

2 Quasidiagonality and the Finite-Section Method
The finite-section method for approximating the spectrum of bounded self-adjoint operators on
Hilbert spaces is a well-known method and has been studied in several articles and monographs
[Arv94a], [Bro07], [BS99], [HRS01]. The approach is to first find a sequence of finite rank
projections {Pn} such that Pn+1 ≥ Pn and Pn → I strongly, and then use known techniques
to find the spectrum of the compression An = PnAPn.

The most obvious approach is to use some orthonormal basis {en} for the Hilbert space H
and then let Pn be the projection onto sp{e1, . . . en}. Given a self-adjoint A ∈ B(H) and {en}
we may consider the associate infinite matrix (aij)

aij = 〈Aej, ei〉, i, j = 1, 2, . . . .

In this case the compression becomes An ∈ B(Hn), where Hn = PnH, An = PnAdHn , where
the matrix with respect to {e1, . . . , en} is

An =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

 .

The operator-theoretical question is to analyze how the spectrum σ(PnAdPnH) evolves as n→
∞.

Definition 2.1 Given a sequence {An} ⊂ B(H), define

Λ = {λ ∈ R : ∃λn ∈ σ(An), λn → λ}.

Also, for every set S of real numbers let Nn(S) (and Ñn(S)) denote the number of eigenvalues
counting multiplicity (and not counting multiplicity respectively) of An which belong to S.

Definition 2.2 (i) A point λ ∈ R is called essential if, for every open set U ⊂ R containing
λ, we have

lim
n→∞

Nn(U) = ∞.

The set of essential points is denoted Λe

(ii) λ ∈ R is called transient if there is an open set U ⊂ R containing λ such that

sup
n≥1

Nn(U) <∞.
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Theorem 2.3 (Arveson)[Arv94a] Let A ∈ B(H) and let {Pn} be a sequence of projections
converging strongly to the identity such that Pn+1 ≥ Pn. Define An = PnAdPnH and let Λ and
Λe be as in definitions 2.1 and 2.2. Then σ(A) ⊂ Λ and σe(A) ⊂ Λe.

Definition 2.4 (i) A filtration of H is a sequence F = {H1,H2, . . .} of finite dimensional
subspaces of H such that Hn ⊂ Hn+1 and

∞⋃
n=1

Hn = H

(ii) Let F = {Hn} be a filtration of H and let Pn be the projection onto Hn. The degree of
an operator A ∈ B(H) is defined by

deg(A) = sup
n≥1

rank(PnA− APn).

Arveson gave in [Arv94a], [Arv94b] a fairly complete theory of the finite-section method
applied to operators of finite degree, which is an abstraction of band-limited infinite matrices.
We will not discuss that theory here, but refer the reader to the original articles. We will
however present the following theorem, which is a special case of Theorem 3.8 in [Arv94a],
to give the reader an impression of what one can expect to get when using the finite-section
method.

Theorem 2.5 (Arveson)[Arv94a] Let A ∈ B(H) be self-adjoint and

F = {H1,H2, . . .}

be a filtration with corresponding projections {Pn}. Define An = PnAdPnH and let Λ and Λe

be as in definitions 2.1 and 2.2. Suppose that A has finite degree with respect to F . Then

(i) σe(A) = Λe

(ii) Every point of Λ is either transient or essential.

In this section we will investigate how the finite section method can be applied to quasi-
diagonal operators. First we recall some basic definitions as well as some well know results.

Definition 2.6 An operator A on a separable Hilbert space is diagonal if there exists a com-
plete orthonormal set of eigenvectors of A.

Definition 2.7 An operator A on a separable Hilbert space is quasi-diagonal if there exists
an increasing sequence {Pn} of finite rank projections such that PnH ⊂ D(H), Pn → I,
strongly, and ‖PnA− APn‖ → 0. The sequence {Pn} is said to quasi-diagonalize A.

Definition 2.8 An operator A on a separable Hilbert space is said to be block diagonal with
respect to an increasing sequence {Pn} of finite-dimensional projections converging strongly
to I if A commutes with Pn+1 − Pn for all n.
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The following theorem assures us the existence of a vast set of quasi-diagonal operators.

Theorem 2.9 (Weyl,von Neumann, Berg)[Ber71] LetA be a (not necessarily bounded) normal
operator on the separable Hilbert space H. Then for ε > 0 there exist a diagonal operator D
and a compact operator C such that ‖C‖ < ε and A = D + C.

Corollary 2.10 Every normal operator is quasi-diagonal.

Definition 2.11 (i) For a set Σ ⊂ C and δ > 0 we will let Γδ(Σ) denote the δ-neighborhood
of Σ (i.e. the union of all δ-balls centered at points of Σ).

(ii) Given two sets Σ,Λ ⊂ C we say that Σ is δ-contained in Λ if Σ ⊂ Γδ(Λ).

(iii) Given two compact sets Σ,Λ ⊂ C their Hausdorff distance is

dH(Σ,Λ) = max{sup
λ∈Λ

d(λ,Λ), sup
λ∈Σ

d(λ,Σ)}

where d(λ,Λ) = infρ∈Λ |ρ− λ|.

We will need a couple of basic lemmas.

Lemma 2.12 (Davies, Plum)[DP04] Let A ∈ B(H), P be a projection and ε > 0 such that
‖PAP − AP‖ ≤ ε. If λ ∈ σ(PAP ) then (λ− ε, λ+ ε) ∩ σ(A) 6= ∅.

Lemma 2.13 Let A ∈ B(H) be self-adjoint and compact. Let {Pn} be a sequence of finite-
dimensional projections such that Pn → I strongly. Then PnAPn → A in norm.

PROOF. The fact that PnAPn and A are both compact and self-adjoint assures us that
we can find a sequence {ξn} ⊂ H of unit vectors such that (PnAPn − A)ξn = λnξn where
|λn| = ‖PnAPn − A‖. We will show that λn → 0. Note that the uniform boundedness of
‖PnAPn −A‖ implies that there exists a subsequence {λnk

} such that λnk
→ λ The assertion

follows if λ = 0. Suppose that this is not the case. We will show that the subsequence {ξnk
}

corresponding to {λnk
} is precompact. Let gnk,1 = Pnk

APnk
ξnk

and gnk,2 = Aξnk
. Now

{gnk,2} is precompact since A is compact and since λ 6= 0 it suffices to show that {gnk,1} is
precompact, which again is easily seen since ‖Pnk

‖ = 1 and A is compact. By assumption
Pnk

APnk
→ A strongly so by possibly passing to another subsequence (Pnk

APnk
−A)ξnk

→
0, and we have reached the contradiction.

Lemma 2.14 Let A be a self-adjoint (not necessarily bounded) operator on a separable Hill-
bert space H with domain D(A) and a quasidiagonalizing sequence {Pn}. Then A = D + C
where D is self-adjoint with domain D(D) = D(A) and block diagonal with respect to some
subsequence {Pnk

}. Also, C is compact and self-adjoint.

PROOF. To see this we can extend Halmos’ proof in [Hal70] to unbounded operators.
Now, by possibly passing to a subsequence, we may assume that

∑
n ‖PnA − APn‖ < ∞.

The fact that Pn ≥ Pn−1 assures us that Pn − Pn−1 is a projection. Thus, we may decompose
H =

⊕∞
n=1(Pn+1 − Pn)H and define D on

D(D) = sp{ξ ∈ H : ξ ∈ (Pn+1 − Pn)H}
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to be the block diagonal matrix with the diagonal blocks (Pn+1 − Pn)A(Pn+1 − Pn). Define
the operator C on D(C) = D(D) by C = A − D. We will show that C is compact on H.
Indeed, by letting

Cn = Pn+1(APn − PnA)Pn − Pn(APn − PnA)Pn+1

we can form the operator C̃ =
∑

nCn since ‖Cn‖ ≤ 2‖APn−PnA‖ and
∑

n ‖PnA−APn‖ <
∞, hence the previous sum is norm convergent. Also, since Cn is finite dimensional and
therefore compact it follows that C̃ is compact. A straightforward calculation shows that
C̃ = C on D(C) which is dense, thus we can extend C to C̃ on H. It is easy to see that Cn

is self-adjoint since A is self-adjoint and hence C is self-adjoint. By a slight abuse of notation
we letD = A−C. ThenD(D) = D(A) andD is self-adjoint. Also, by the previous reasoning
D is block diagonal with respect to {Pn}.

Theorem 2.15 Let A be a self-adjoint operator (not necessary bounded) on the separable
Hilbert space H and let {Pn} be a sequence of projections that quasi-diagonalizes A. If K ⊂
R is a compact set such that σ(A) ∩K 6= ∅, then

σ(PnAdPnH) ∩K −→ σ(A) ∩K, n→∞

in the Hausdorff distance.

PROOF. To prove the assertion we need to establish the following; given δ > 0 then

σ(PnAdPnH) ∩K ⊂ Γδ(σ(A) ∩K)

and
Γδ(σ(PnAdPnH) ∩K) ⊃ σ(A) ∩K

for all sufficiently large n. The second inclusion follows by Theorem VIII.24 ([RS72], p. 290)
if we can show that PnAPn → A in the strong resolvent sense. By Theorem VIII.25 ([RS72],
p. 292) it suffices to show that PnAPnξ → Aξ for ξ ∈ D(A), which is a common core for
{PnAPn} and A, and this is easily seen.

To see the first inclusion note that it will follow if we can show that

σ(Pnk
AdPnk

H) ∩K ⊂ Γδ/2(σ(A) ∩K) (2.1)

when k is large, for some subsequence {Pnk
}. Indeed, if that is the case we only need to show

that
σ(PmAdPmH) ⊂ Γδ/2(σ(Pnk

AdPnk
H))

for large m and nk where m ≤ nk. Now this is indeed the case because we may assume,
by appealing to Lemma 2.14 and possibly passing to another subsequence, that A is block
diagonal with respect to {Pnk

}. Thus,

‖PmPnk
APnk

Pm − Pnk
APnk

Pm‖ = ‖PmAPm − APm‖ −→ 0, m→∞,

by assumption, and hence the desired inclusion follows by appealing to Lemma 2.12.
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Now we return to the task of showing (2.1). Note that by the spectral mapping theorem,
the spectra σ(PnAdPnH) and σ(A) are the images of σ((Pn(A+ i)dPnH)−1) and σ((A+ i)−1),
respectively, under the mapping f(x) = 1/x− i. Note that

f−1(σ(PnAdPnH) ∩K), f−1(Γδ((σ(A) ∩K)))

are both compact and neither contain zero. Thus, by the continuity of f on C \ {0} and again
the spectral mapping theorem, the assertion follows if we can prove that

σ((Pn(A+ i)dPnH)−1) ⊂ Γδ(σ((A+ i)−1)) (2.2)

for arbitrary δ > 0 and large n. By Lemma 2.14 we have that A = D + C where D is self-
adjoint and block diagonal with respect to some subsequence {Pnk

} and C is compact and
self-adjoint. To simplify the notation we use the initial indexes for the subsequence. We first
observe that

(D + PnCPn + i)−1 → (D + C + i)−1 (2.3)

in norm. Indeed, an easy manipulation gives us

‖(D+C + i)−1 − (D + PnCPn + i)−1‖
≤ ‖(D + C + i)−1‖‖C − PnCPn‖‖(D + PnCPn + i)−1‖,

where ‖(D + PnCPn + i)−1‖ is bounded by the spectral mapping theorem since C − PnCPn

is self-adjoint. Since, by Theorem 2.13, ‖C − PnCPn‖ → 0 (2.3) follows. The normality of
(D + C + i)−1 and (D + PnCPn + i)−1 assures us that for any δ > 0 we have

σ((D + PnCPn + i)−1) ⊂ Γδ(σ((D + C + i)−1))

for sufficiently large n. Hence, to finish the proof we have to show that

σ((Pn(A+ i)dPnH)−1) ⊂ σ((D + PnCPn + i)−1).

In fact we have

σ((D + PnCPn + i)−1) = σ((Pn(A+ i)dPnH)−1) ∪ σ(((D + i)dP⊥n H)−1).

Indeed,
(D + PnCPn + i) = ((D + PnCPn + i)dPnH)⊕ (D + i)dP⊥n H.

So

(D + PnCPn + i)−1 = ((D + PnCPn + i)dPnH)−1 ⊕ ((D + i)dP⊥n H)−1

= (Pn(A+ i)dPnH)−1 ⊕ ((D + i)dP⊥n H)−1,

implying the assertion.
As for the convergence of eigenvectors of the finite-section method, very little has been

investigated, however we have the following:

Proposition 2.16 Let {An} be a sequence of self-adjoint bounded operators on H such that
An → A strongly. Then if {λn} is a sequence of eigenvalues of An such that λn → λ ∈ σ(A),
and if {ξn} is a sequence of unit eigenvectors corresponding to {λn}, such that {ξn} does not
converge weakly to zero, then there is a subsequence {ξnk

} such that ξnk

w→ ξ where Aξ = λξ

7



PROOF. Since {ξn} does not converge weakly to zero and by weak compactness of the
unit ball in H we can find a weakly convergent subsequence such that ξnk

w−→ ξ 6= 0. To
see that Aξ = λξ we observe that this will follow if we can show that λnk

ξ
w−→ Aξ. But

the latter follows easily if we can show that λnk
ξnk

− λnk
ξ

w−→ 0, Ank
ξ − Aξ

w−→ 0 and
Ank

ξ − Ank
ξnk

w−→ 0. The first two are obvious and the last follows from the fact that for
η ∈ H we have

〈Ank
(ξ − ξnk

), η〉 = 〈ξ − ξnk
, Ank

η〉
= 〈ξ − ξnk

, Aη〉+ 〈ξ − ξnk
, (Ank

− A)η〉 −→ 0,

as k →∞.

3 Divide and conquer
The divide-and-conquer method has its origin in finite-dimensional matrix analysis and nu-
merical linear algebra. The idea was originally to divide the problem into smaller problems
for efficiency reasons, a concept we will not discuss here. Since the crucial assumption for
the actual algorithm is that the operator acts on a finite dimensional space, we can not use it
directly and we will not discuss its details here, but refer the reader to [Cup81]. However, one
can use the concept of the method to improve the results of Theorem 2.5 for tridiagonal infi-
nite matrices. How to reduce the original spectral problem to a spectral problem for tridiagonal
operators is discussed in section 5.

Definition 3.1 Let A ∈ B(H) and {ej} be an orthonormal basis for H. A is said to be tridi-
agonal with respect to {ej} if 〈Aej, ei〉 = 0 for |i− j| ≥ 2.

Let A ∈ B(H) be self-adjoint and {ej} be an orthonormal basis for H. Suppose that A is
tridiagonal with respect to {ej} and suppose that aij = 〈Aej, ei〉 for i, j = 1, 2, . . . is real. It
is easy to see that this is no restriction. Let Pn be the projection onto sp{e1, . . . , en}. In the
finite-section method one decomposes A into

A = PnAPn ⊕ P⊥
n AP

⊥
n + T, T ∈ B(H),

and then computes the spectrum of PnAPn. The idea of the divide-and-conquer approach is to
decompose A into

A = A1,n ⊕ A2,n + βη ⊗ η, η ∈ H,

where A1,n ∈ B(PnH), A2,n ∈ B(P⊥
n H), η = en + en+1 and then compute σ(A1,n). It is easy

to see that the divide and conquer technique is very close to the finite-section method i.e. we
have 〈PnAPnej, ei〉 = 〈A1,nej, ei〉 for all i, j except for i = j = n. The goal is to improve the
results in Theorem 2.5.

In finite dimensions one has the following theorem [Cup81] which gave us the idea to a
more general theorem in infinite dimensions.

Theorem 3.2 (Cuppen) Let D be a diagonal (real) matrix,

D = diag(d1, . . . , dn)
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where n ≥ 2 and d1 < d2 < . . . < dn. Let η ∈ Rn with ηi 6= 0 for i = 1, . . . , n and β > 0 be
a scalar. Then the eigenvalues {λ1, . . . , λn} of the matrix D + βη ⊗ η satisfy

d1 < λ1 < d2 < λ2 < . . . < dn < λn < dn + β‖η‖2.

Some of the techniques in the proof of the next theorem are inspired by the proof of Theorem
3.2 which can be found in [Cup81]. Before we can state and prove the main theorem we need
to introduce the concept of Householder reflections in an infinite-dimensional setting.

Definition 3.3 A Householder reflection is an operator S ∈ B(H) of the form

S = I − 2

‖ξ‖2
ξ ⊗ ξ̄, ξ ∈ H.

In the case where H = H1 ⊕H2 and Ii is the identity on Hi then

U = I1 ⊕
(
I2 −

2

‖ξ‖2
ξ ⊗ ξ̄

)
ξ ∈ H2.

will be called a Householder transformation.

A straightforward calculation shows that S∗ = S−1 = S and thus also U∗ = U−1 = U. An
important property of the operator S is that if {ej} is an orthonormal basis for H and η ∈ H
then one can choose ξ ∈ H such that

〈Sη, ej〉 = 〈(I − 2

‖ξ‖2
ξ ⊗ ξ̄)η, ej〉 = 0, j 6= 1.

Indeed, if η1 = 〈η, e1〉 6= 0 one may choose ξ = η ± ‖η‖ζ, where ζ = η1/|η1|e1 and if if
η1 = 0 choose ξ = η±‖η‖e1, The verification of the assertion is a straightforward calculation.

Theorem 3.4 Let A1,n be defined as above and let {dj}k
j=1 = σ(A1,n) be arranged such that

dj < dj+1.

(i) If dl, dl+1 /∈ σ(A), for some l < k, then there is a λ ∈ σ(A) such that dl < λ < dl+1.

(ii) If dj ∈ σ(A1,n) has multiplicity m ≥ 2 then dj ∈ σ(A) and dj is an eigenvalue. Also,
mA1,n(dj) ≤ mA(dj) + 1, where mA1,n(dj) and mA(dj) denote the multiplicity of dj as
an element of σ(A1,n) and σ(A) respectively.

PROOF. We will start with (i). Suppose that dl, dl+1 /∈ σ(A). We will show that σ(A) ∩
(dl, dl+1) 6= ∅. We argue as follows. Let ε > 0, Ia = (−a, a] be an interval containing σ(A2,n)
and let g be a step function on Ia of the form g =

∑m
j=1 χ(aj ,bj ] such that supx∈Ia

|x−g(x)| < ε.

Let Ã2,n = g(A2,n). Then σ(Ã2,n) contains only isolated eigenvalues and ‖Ã2,n − A2,n‖ < ε.
Also, let

Ã = A1,n ⊕ Ã2,n + βη ⊗ η.

Then Ã is self-adjoint and ‖Ã− A‖ < ε so

dH(σ(Ã), σ(A)) < ε
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where dH denotes the Hausdorff metric. Also, by choosing ε small enough we have dl, dl+1 /∈
σ(Ã). Note that, since ε is arbitrary and σ(A) is closed, the assertion that σ(A)∩ (dl, dl+1) 6= ∅
will follow if we can show that σ(Ã) ∩ (dl, dl+1) 6= ∅.

Let Pn be the projection onto sp{ej}n
j=1. Now, choose a unitary operator Q1 on PnH

such that Q1A1,nQ
∗ = D1 where D1 is diagonal with respect to {ej}n

j=1. Since σ(Ã2,n)
contains only finitely many eigenvalues we may choose a unitary Q2 on ranP⊥

n such that
Q2Ã2,nQ

∗
2 = D2 is diagonal with respect to {ej}∞j=n+1. Thus,

(Q1 ⊕Q2)(A1,n ⊕ Ã2,n + βη ⊗ η)(Q∗
1 ⊕Q∗

2) = D1 ⊕D2 + βξ ⊗ ξ̄,

where a straightforward calculation shows that ξ = Q1en ⊕Q2en+1. Let D = D1 ⊕D2.
Claim1: There exists a unitary operator U and an integer N such that

〈Uξ, ei〉 = 0

for i ≥ N + 1 and 〈Uξ, ei〉 6= 0 for i ≤ N, and also that UDU∗ is diagonal with respect to
{ej}. Note that the claim will follow if we can show that there is a unitary operator V such
that 〈V ξ, ej〉 6= 0 only for finitely many js and that V DV ∗ = D. Indeed, if we have such a
V then we can find a unitary operator Ṽ that permutes {ej} such that U = Ṽ V is the desired
unitary operator mentioned above.

To construct V we first note that, since D is diagonal with respect to {ej}, the spectral
projections χλ(D), λ ∈ σ(D) are also diagonal with respect to {ej}. Note that

D =
⊕

λ∈σ(D)

λχλ(D).

We will use this decomposition to construct V. Let

iλ = inf{j : χλ(D)ej 6= 0}.

If χλ(D)ξ = 0 let Vλ = I on χλ(D)H. If not, choose a Householder reflection on χλ(D)H,

S = I − 2

‖ζ‖2
ζ ⊗ ζ̄ , ζ ∈ χλ(D)H,

such that
〈Sχλ(D)ξ, eiλ〉 6= 0 and 〈Sχλ(D)ξ, ei〉 = 0, i ≥ iλ + 1. (3.1)

Let Vλ = S. The fact that χλ(D) for λ ∈ σ(D) is diagonal with respect to {ej} gives
Vλχλ(D)V ∗

λ = χλ(D). Letting
V =

⊕
λ∈σ(D)

Vλ (3.2)

we get V DV ∗ = D and thus we have constructed the desired unitary operator V whose
existence we asserted. As argued above, this yields existence of the unitary operator U asserted
in Claim1. Let N = max{j : 〈Uξ, ej〉 6= 0}, let PN be the projection onto sp{ej}N

j=1 and
D̃ = UDU∗.

Claim2: If λ ∈ σ(PND̃dPNH) then λ has multiplicity one. We argue by contradiction. Sup-
pose that λ ∈ σ(PND̃dPNH) has multiplicity greater than one. Then 〈D̃ep, ep〉 = 〈D̃eq, eq〉 =
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λ for some p, q ≤ N. Also, 〈Uξ, ep〉 6= 0 and 〈Uξ, eq〉 6= 0. Thus, it follows from the
construction of U that 〈Dep̃, ep̃〉 = 〈Deq̃, eq̃〉 = λ for some integers p̃ and q̃, and hence
ep̃, eq̃ ∈ ranχλ(D). Also 〈V ξ, ep̃〉 6= 0 and 〈V ξ, eq̃〉 6= 0 and thus it follows that

〈Vλχλ(D)ξ, ej〉 = 〈
⊕

λ∈σ(D)

Vλξ, ej〉 6= 0, j = p̃, q̃,

and this contradicts (3.1). Armed with the results from Claim1 and Claim2 we can now con-
tinue with the proof.

Let ζ = Uξ. We then have

U(D + βξ ⊗ ξ̄)U∗ = (PND̃PN + βPNζ ⊗ PNζ)dPNH⊕P⊥
N D̃dP⊥NH

,

since P⊥
N (ζ ⊗ ζ̄) = (ζ ⊗ ζ̄)P⊥

N = 0. So, with a slight abuse of notation we will denote PNζ
just by ζ. Note that

σ(Ã) = σ((PND̃PN + βζ ⊗ ζ̄)dPNH) ∪ σ(P⊥
N D̃dP⊥NH

) (3.3)

and hence our primary goal to prove that σ(Ã) ∩ (dl, dl+1) 6= ∅ has been reduced to showing
that

σ((PND̃PN + βζ ⊗ ζ̄)dP⊥NH
) ∩ (dl, dl+1) 6= ∅. (3.4)

Before continuing with that task note that

dl, dl+1 ∈ σ(PND̃dPNH). (3.5)

Indeed, it is true, by the construction of D̃, that dl, dl+1 ∈ σ(D̃). But by (3.3) it follows that
σ(P⊥

N D̃P
⊥
N ) ⊂ σ(Ã) and since dl, dl+1 /∈ σ(Ã) the assertion follows. This observation will be

useful later in the proof.
Now returning to the task of showing (3.4), let D̂ = PND̃dPNH and then let λ be an

eigenvalue of D̂+βζ⊗ ζ̄ with corresponding nonzero eigenvector η. Here ζ⊗ ζ̄ denotes, with
a slight abuse of notation, the operator (ζ ⊗ ζ̄)dPNH. Then we have

(D̂ + βζ ⊗ ζ̄)η = λη so (D̂ − λI)η = −β〈η, ζ〉ζ. (3.6)

Note that D̂ − λI is nonsingular. Indeed, had it been singular, we would have had λ = d̂i for
some i ≤ N, where {d̂j}N

j=1 = σ(D̂). Hence, by (3.6), we have

〈(D̂ − λI)η, ei〉 = −β〈η, ζ〉〈ζ, ei〉 = 0.

But, since ζ = Uξ and by Claim1, it is true that 〈ζ, ei〉 6= 0, so 〈η, ζ〉 = 0. Thus, by (3.6),
it follows that (D̂ − λI)η = 0, so 〈(D̂ − λ)η, ej〉 = 0 for j ≤ N. Note that, by Claim2,
σ(D̂) contains only eigenvalues with multiplicity one, thus we have λ = d̂i only for one such
i. Thus, 〈η, ej〉 = 0 for j 6= i, so

〈η, ζ〉 = 〈ζ, ei〉〈η, ei〉 = 0.

But we have assumed that η 6= 0 so 〈η, ei〉 6= 0 and therefore 〈ζ, ei〉 = 0, a contradiction. We
therefore deduce that D̂ − λI is nonsingular and 〈η, ζ〉 6= 0. Thus, by (3.6), it follows that

η = −β〈η, ζ〉(D̂ − λI)−1ζ

11



and
〈η, ζ〉(1 + β〈(D − λI)−1ζ, ζ〉) = 〈η, ζ〉f(λ) = 0,

where

f(λ) = 1 + β

N∑
j=1

|ζj|2

d̂j − λ
, ζj = 〈ζ, ej〉.

Since 〈η, ζ〉 6= 0 it follows that f(λ) = 0. Note that, by (3.5), it is true that dl, dl+1 ∈ {d̂j}N
j=1

and so by the properties of f it follows that there is at least one

λ ∈ σ(D̂ + βζ ⊗ ζ̄)

such that dl < λ < dl+1, proving (3.4).
To show (ii) we need to prove that if σ(A1,n) has an eigenvalue d with multiplicity m > 1

then d ∈ σ(A) and mA1,n(d) ≤ mA(d) + 1. To prove that we proceed as in the proof of (i).
Let Pn be the projection onto sp{ej}n

j=1. Now, choose a unitary operator Q1 on PnH such that
Q1A1,nQ

∗
1 = D1 where D1 is diagonal with respect to {ej}n

j=1 so that

(Q1 ⊕ I2)(A1,n ⊕ A2,n+βη ⊗ η)(Q∗
1 ⊕ I2)

= D1 ⊕ A2,n + β(ζ ⊕ en+1)⊗ (ζ̄ ⊕ en+1),

where I2 is the identity on P⊥
n H and ζ = Q1en. For any set S let #S denote the number of

elements in S.Note that the assertion will follow if we can show that there is a unitary operator
V on PnH, such that V D1V

∗ = D1, and that

#{ej : 〈χd(D1)V ζ, ej〉 6= 0, 1 ≤ j ≤ n} ≤ 1. (3.7)

Indeed, if so is true, we have that

D1 ⊕ A2,n + β(ζ ⊕ en+1)⊗ (ζ̄ ⊕ en+1)

is unitarily equivalent to

B = D1 ⊕ A2,n + β(V ζ ⊕ en+1)⊗ (V ζ ⊕ en+1),

and Λ = {ej : 〈V ζ, ej〉 = 0} are all eigenvectors of B. Also, the eigenvalue corresponding to
the set

Λ̃ = {ej ∈ Λ : χd(D1)ej 6= 0}
is d. Thus, by (3.7), we get the following estimate

mA(d) ≥ #Λ̃

≥ dim(ranχd(D1))−#{ej : 〈χd(D1)V ζ, ej〉 6= 0, 1 ≤ j ≤ n}
≥ mA1,n(d)− 1,

and this proves the assertion. The existence of V follows by exactly the same construction as
done in the proof of Claim1 in the proof (i) by using Householder reflections.

Note that the following theorem is similar to Theorem 2.3 and Theorem 3.8 in [Arv94a]
and the proof requires similar techniques. Since the divide-and-conquer method is different
form the finite-section method, we cannot use the theorems in [Arv94a] directly. However,
one should note that the following theorem gives much stronger estimates on the behavior of
the false eigenvalues that may occur.
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Theorem 3.5 Let {A1,n} be the sequence obtained from A as in Theorem 3.4 (recall also
definitions 2.1 and 2.2).

(i) σ(A) ⊂ Λ.

(ii) Let a ∈ σe(A)c. Then a is transient.

(iii) If U ⊂ R is an open interval such that U ∩ σ(A) = ∅ then Nn(U) ≤ 1. If U ∩ σ(A)

contains only one point then Ñn(U) ≤ 3.

(iv) Let λ be an isolated eigenvalue of A with multiplicity m. If U ⊂ R is an open interval
containing λ such that U \ {λ} ∩ σ(A) = ∅ then Nn(U) ≤ m+ 3.

(v) σe(A) = Λe,

(vi) Every point of R is either transient or essential.

PROOF. Now, (i) follows from the fact that A1,n → A strongly (see Theorem VIII.24 in
[RS72], p. 290), which is easy to see. Also, (iii) follows immediately by Theorem 3.4 and
(ii) follows by (iii) and (iv). Indeed, assuming (iv) we only have to show that if a ∈ σ(A)c

then a is transient and this follows from (iii). Hence, we only have to prove (iv). Let λ be an
isolated eigenvalue of A with multiplicity m. If U ⊂ R is an open interval containing λ such
that U \{λ}∩σ(A) = ∅ then, by (iii), we have Ñn(U) ≤ 3. But, by Theorem 3.4, we can have
Ñn(U) ≤ 3 and Nn(U) > 3 only if λ ∈ σ(A1,n). Also, by Theorem 3.4, mA1,n(λ) ≤ m + 1,
and this yields the assertion.

To get (v) and (vi) we only have to show that σe(A) ⊂ Λe. Indeed, by (ii), we have
σe(A)c ⊂ Λc

e, so if σe(A) ⊂ Λe then (v) follows. But then R \ Λe = R \ σ(A)e and the left
hand side of the equality is, by (ii), contained in the set of transient points, thus we obtain (vi).

To show that σe(A) ⊂ Λe we will show that Λc
e ⊂ σe(A)c. Let λ ∈ Λc

e. We will show that
λ ∈ σe(A)c. Note that, by the definition of the essential spectrum, this follows if we can show
that there is an operator T ∈ B(H) such that T (A − λI) = (A − λI)T = I + C, where C is
compact.

Since λ ∈ Λc
e there is a subsequence {nk} ⊂ N, an ε > 0, and an integer K such that

for Ω = (λ − ε, λ + ε) then Nnk
(Ω) ≤ K. Let Pk be the projection onto sp{ej}nk

j=1 and
Ek = χΩ(A1,nk

). Then A1,nk
, Pk and Ek all commute, so we can let Bk = (A1,nk

− λI)|Hk

where Hk = ran(PkE
⊥
k ). Note that Bk must be invertible with ‖B−1

k ‖ ≤ ε−1. Since PkE
⊥
k =

Pk − Ek, we deduce that

(A1,nk
− λI)B−1

k (Pk − Ek) = B−1
k (Pk − Ek)(A1,nk

− λI) = Pk − Ek. (3.8)

Since {B−1
k } is bounded and norm closed, while bounded sets of B(H) are weakly sequentially

compact, we may assume, by possibly passing to a new subsequence that

WOT lim
k→∞

B−1
k (Pk − Ek) = T ∈ B(H), WOT lim

k→∞
Ek = C ∈ B(H).

The fact that A1,n −→ A strongly together with the uniform boundedness of B−1
k (Pk − Ek)

allow us to take weak limits in (3.8) and we get T (A− λI) = (A− λI)T = I + C.
Note that C is compact, in fact it is trace class. For dimEk ≤ K so trace(Ek) ≤ K and

{H ∈ B(H) : trace(H) ≤ K} is weakly closed.
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Corollary 3.6 Let λ ∈ σ(A)e be an isolated eigenvalue. Then λ ∈ σ(A1,n) for all sufficiently
large n. Moreover, mn(λ) −→ ∞, where mn(λ) is the multiplicity of λ as an element of
σ(A1,n).

PROOF. Since, by Theorem 3.5, σe(A) = Λe, for any open neighborhood U around λ we
have Nn(U) → ∞. Let U be an open interval containing λ such that (U \ {λ}) ∩ σ(A) = ∅.
Then, by Theorem 3.4, U ∩ σ(A1,n) cannot contain more that three distinct points, and since
Nn(U) → ∞ it follows that A1,n must have eigenvalues in U with multiplicity larger than
two. Using Theorem 3.4 again it follows that λ ∈ σ(A1,n) for all sufficiently large n. The last
assertion of the corollary follows by similar reasoning.

4 Detecting false eigenvalues
Let A ∈ B(H) be self-adjoint. The fact that both the finite-section method and the divide and
conquer method may produce points that are not in the spectrum of A poses the question; can
one detect false eigenvalues? The phenomenon of false eigenvalues is well known and is often
referred to as spectral pollution.

Let λ ∈ R. The easiest way to determine whether λ ∈ σ(A) is to estimate

dist(λ, σ(A)) = inf
ξ∈H,‖ξ‖=1

〈(A− λ)2ξ, ξ〉.

Let {Pn} be an increasing sequence of finite-dimensional projections converging strongly to
the identity. Let γ(λ) = dist(λ, σ(A)) and

γn(λ) = inf
ξ∈PnH,‖ξ‖=1

〈(A− λ)2ξ, ξ〉.

It is easy to show that γ and γn are Lipchitz continuous with Lipchitz constant bounded by one.
This implies that γn → γ locally uniformly and hence one can use γn(λ) as an approximation
to dist(λ, σ(A)). Obtaining γn(λ) is done by finding the smallest eigenvalue of a self-adjoint
(finite rank) matrix. In fact γn can be used alone to estimate σ(A) and that has been investigated
in [DP04]. However, it seems that a combination of the finite-section method or the divide-
and-conquer method, accompanied by estimates as in the previous sections and in [Arv94a],
with some computed values of γn will give more efficient computational algorithms, especially
for detecting isolated eigenvalues.

5 Tridiagonalization
In the previous section the crucial assumption was that the operator was tridiagonal with re-
spect to some basis. We will in this section show how we can reduce the general problem to
a tridiagonal one. In the finite-dimensional case every self-adjoint matrix is tridiagonalizable.
This is not the case in infinite dimensions, however, it is well known that if a self-adjoint op-
erator A ∈ B(H) has a cyclic vector ξ then A is tridiagonal with respect to the basis {ej}
constructed by using the Gram-Schmidt procedure to {Anξ}∞n=0. The problem is that our op-
erator may not have a cyclic vector, however the following lemma is well known.
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Lemma 5.1 LetA ∈ B(H) and letA be the complex algebra generated byA,A∗ and the iden-
tity. Then there is a (finite or infinite) sequence of nonzero A-invariant subspaces H1,H2 . . .
such that:

(i) H = H1 ⊕H2 ⊕ · · ·

(ii) Each Hn contains a cyclic vector ξn for A: Hn = Aξn, n = 1, 2, . . . .

Thus, if we knew the decomposition above we could decompose our operator A into A =
H1 ⊕ H2 ⊕ · · · where Hn would have a cyclic vector and hence be tridiagonalizable. Also,
we would have σ(A) =

⋃
j σ(Hj). The problem is: how do we compute Hn? This is what we

will discuss in this section.

Definition 5.2 Let A ∈ B(H) and let {ej} be an orthonormal basis for H. A is said to be
Hessenberg with respect to {ej} if 〈Aej, ei〉 = 0 for i ≥ j + 2.

Theorem 5.3 Let A be a bounded operator on a separable Hilbert space H and let {ej} be
an orthonormal basis for H. Then there exists an isometry V such that V ∗AV = H where H
is Hessenberg with respect to {ej}. Moreover V = SOT-lim

n→∞
Vn where Vn = U1 · · ·Un and Uj

is a Householder transformation. Also, the projection P = V V ∗ satisfies PAP = AP.

PROOF. We will obtain H as the strong limit of a sequence {V ∗
nAVn} where Vn =

U1 · · ·Un is a unitary operator and Uj is a Householder transformation. The procedure is
as follows: Let Pn be the projection onto sp{e1, . . . , en}. Suppose that we have the n elements
in the sequence and that the n-th element is an operator Hn = V ∗

nAVn that with respect to
H = PnH⊕ P⊥

n H has the form

Hn =

(
H̃n Bn

Cn Nn

)
, H̃n = PnHnPn, Bn = PnRnP

⊥
n , Cn = P⊥

n RnPn,

where Nn = P⊥
n RnP

⊥
n , H̃n is Hessenberg and Cnej = 0 for j < n. Let ζ = Cnen. Choose

ξ ∈ P⊥
n H such that the Householder reflection S ∈ B(P⊥

n H) defined by

S = I − 2

‖ξ‖2
ξ ⊗ ξ̄, and Un = Pn ⊕ S, (5.1)

gives Sζ = {ζ̃1, 0, 0, . . .}, and let Rn+1 = UnRn. Hence,

Hn+1 = UnRnUn =

(
R̃n BnS
SCn SNnS

)
=

(
R̃n+1 Bn+1

Cn+1 Nn+1

)
, (5.2)

where the last matrix is understood to be with respect to the decomposition H = Pn+1H ⊕
P⊥

n+1H. Note that, by the choice of S, it is true that H̃n+1 is Hessenberg and Cn+1ej = 0 for
j < n + 1. Defining H1 = A and letting Vn = U1 · · ·Un we have completed the construction
of the sequence {V ∗

nAVn}.
Note that Hn = V ∗

nAVn is bounded, since Vn is unitary (since Uj is unitary). And since a
closed ball in B(H) is weakly sequentially compact, there is an H ∈ B(H) and a subsequence
{Hnk

} such that Hnk

WOT−→ H . But by (5.2) it is clear that for any j we have Hnej = Hmej for
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sufficiently large m and n. It follows that SOT-limnHn = H. Also, by(5.2) H is Hessenberg.
By similar reasoning, using the previous compactness argument (since Vn is bounded) and the
fact that, by (5.1), Vnej = Vmej for any j and m and n sufficiently large, we deduce that there
exists a V ∈ B(H) such that

SOT-lim
n→∞

Vn = V, WOT-lim
n→∞

V ∗
n = V ∗.

Since V is the strong limit of a sequence of unitary operators, it follows that V is an isometry.
We claim that V ∗AV = H. Indeed, since multiplication is jointly continuous in the strong
operator topology on bounded sets we haveAV = V H and since V is an isometry the assertion
follows. Note that PAP = AP also follows since PAP = V V ∗AV V ∗ = V HV ∗ = PA.

Corollary 5.4 Suppose that the assumptions in Theorem 5.3 are true, and suppose also that
A is self-adjoint. Then there exists an isometry V such that V ∗AV = H where H is tridi-
agonal with respect to {ej}. Moreover V = SOT-lim

n→∞
Vn where Vn = U1 · · ·Un and Uj is a

Householder transformation. Also, the projection P = V V ∗ satisfies PA = AP.

PROOF. Follows immediately from the previous theorem.
In the case whereA is self-adjoint, by the previous corollary we have that PA = AP,where

P = V V ∗. Now, the “part” of A, namely P⊥A, that we do not capture with the construction in
the proof of Theorem 5.3 can be computed by the already constructed operators i.e. we have

P⊥A = A− V HV ∗.

Thus, we may apply Theorem 5.3 again to P⊥A.And, of course this can be applied recursively.
In other words; consider V ∗

1 AV1 = H1, where H1 is tridiagonal w.r.t {ej}. Let P1 = V1V
∗
1 .

Then P1A = AP1 and P⊥
1 A = A− V ∗

1 H1V1. Let H2 = V ∗
2 P

⊥
1 AV2. In general we have

Hn+1 = V ∗
n+1(A− V1H1V

∗
1 − · · · − VnHnV

∗
n )Vn+1.

Using the previous construction we can actually recover the whole spectrum of A. More pre-
cisely we have the following:

Theorem 5.5 Let A be self-adjoint and let

Hn+1 = V ∗
n+1(A− V1H1V

∗
1 − · · · − VnHnV

∗
n )Vn+1

be defined as above. Then

σ(A) =
⋃
n∈N

σ(Hn).

Proposition 5.6 Let {Pj} be a sequence of projections described above i.e. Pj = V ∗
j Vj . Then

sp{e1, . . . , en} ⊂ ran(Pm) for m ≥ n.

PROOF. The proof is an easy induction using the fact that e1 ∈ ran(P1), which follows by
the construction of V1.

PROOF. Proof of Theorem 5.5 Let Pj = V ∗
j Vj and recall that by the construction of Hn we

have
Hn = V ∗

nP
⊥
n−1 · · ·P⊥

1 AVn, (5.3)
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where we have defined recursively

P⊥
n−1 · · ·P⊥

1 A = A− V1H1V
∗
1 − · · · − Vn−1Hn−1V

∗
n−1,

and by Corollary 5.4 it follows that

PnP
⊥
n−1 · · ·P⊥

1 A = P⊥
n−1 · · ·P⊥

1 APn. (5.4)

Note that σ(Hn) = σ(P⊥
n−1 · · ·P⊥

1 AdPnH). Indeed, by Corollary 5.4, Vn is an isometry onto
PnH, thus {Vnej} is a basis for PnH, so for

Ã = (P⊥
n−1 · · ·P⊥

1 A)dPnH

it follows, by (5.3), that

〈ÃVnej, Vnei〉 = 〈P⊥
n−1 · · ·P⊥

1 AVnej, Vnei〉 = 〈Hnej, ei〉,

yielding that σ(Hn) = σ(P⊥
n−1 · · ·P⊥

1 AdPnH). Let us define the projection

En = Pn ∧ P⊥
n−1 ∧ · · · ∧ P⊥

1 , E1 = P1,

and note thatEj ⊥ Ei for i 6= j.Now the theorem will follow if we can show thatAEn = EnA,

A =
⊕
n∈N

EnA

and
PnP

⊥
n−1 · · ·P⊥

1 A = EnA.

We will start with the former assertion (this is immediate for n = 1 by Corollary 5.4). Indeed,
if ξ ∈ ran(En) for n ≥ 2 then, by Corollary 5.4,

Aξ = AP⊥
1 · · ·P⊥

n−1Pnξ = PnP
⊥
n−1 · · ·P⊥

1 Aξ = P⊥
n−1 · · ·P⊥

1 APnξ

= P⊥
n−2 · · ·P⊥

1 AP
⊥
n−1Pnξ = · · · etc.

(5.5)

Thus, it follows that A ran(En) ⊂ ran(En). Since A is self-adjoint we have that AEn = EnA.
We can now show that A = E1A⊕ E2A⊕ · · · . First, an easy induction demonstrates that for
any n ∈ N we have

A = E1A⊕ · · · ⊕ EnA⊕ P⊥
n · · ·P⊥

1 A.

Note that, by Proposition 5.6 and (5.4), it follows that P⊥
n · · ·P⊥

1 Aej = 0 for j ≤ n thus
Aen = (E1A ⊕ · · · ⊕ EnA)en. Also, En+1Aej = 0 for j ≤ n. This gives us that if T =
E1A⊕ E2 ⊕ · · · . Then

Ten = E1A⊕ · · · ⊕ EnAen = Aen

yielding the assertion.
Finally, we will show that PnP

⊥
n−1 · · ·P⊥

1 A = EnA. Note that in (5.5) we have also shown
that PnP

⊥
n−1 · · ·P⊥

1 Aξ = Aξ when ξ ∈ ran(En). So, to show that PnP
⊥
n−1 · · ·P⊥

1 A = EnA,
we only have to show that PnP

⊥
n−1 · · ·P⊥

1 Aη = 0 when η ∈ ran(E⊥
n ). But, by the definition

of En we have η ∈
⋃n−1

j=1 PjH ∪ P⊥
n H and an easy application of Corollary 5.4 gives

PnP
⊥
n−1 · · ·P⊥

1 A = PnP
⊥
n−2 · · ·P⊥

1 AP
⊥
n−1 = PnP

⊥
n−1P

⊥
n−3 · · ·P⊥

1 AP
⊥
n−2 = · · · etc,

which combined with (5.5) results in PnP
⊥
n−1 · · ·P⊥

1 Aη = 0.
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6 The QR algorithm
The crucial assumption in the previous sections has been self-adjointness of the operator. Even
when detecting false eigenvalues the tools we use rely heavily on self-adjointness. When we
do not have self-adjointness the finite-section method may fail dramatically, the shift operator
being a well known example. In fact the finite section method can behave extremely badly as
the following theorem shows. First we need to recall a definition.

Definition 6.1 Let A be a bounded operator on a Hilbert space H. Then the numerical range
of A is defined as

W (A) = {〈Aξ, ξ〉 : ‖ξ‖ = 1},
and the essential numerical range is defined as

We(A) =
⋂

K compact

W (A+K)

Theorem 6.2 (Pokrzywa)[Pok79] LetA ∈ B(H) and {Pn} be a sequence of finite-dimensional
projections converging strongly to the identity. Suppose that S ⊂ We(A) then there exists a
sequence {Qn} of finite-dimensional projections such that Pn < Qn (so Qn → I) strongly)
and

dH(σ(An) ∪ S, σ(Ãn)) → 0, n→∞,

where
An = PnAdPnH, Ãn = QnAdQnH

and dH denotes the Hausdorff metric.

What Theorem 6.2 says is that if the essential range of a bounded operator A contains more
than just elements from the spectrum, the finite section method may produce spectral pollution.
As there is no restriction on the set S in Theorem 6.2 (e.g. S could be isolated points or open
sets), there is no hope that the finite section method can give any information about either the
essential spectrum or isolated eigenvalues.

The next question is therefore; is there an alternative to the finite-section method in the
case where the operator is not self-adjoint? Another important question is; can one find eigen-
vectors? These are the issues we will address when introducing the QR algorithm in infinite
dimensions.

6.1 The QR decomposition
The QR algorithm is the standard tool for finding eigenvalues and eigenvectors in finite dimen-
sions. We will discuss the method in detail, but first we need to extend the well known QR
decomposition in finite dimensions to infinite dimensions.

Theorem 6.3 Let A be a bounded operator on a separable Hilbert space H and let {ej} be
an orthonormal basis for H. Then there exist an isometry Q such that A = QR where R is
upper triangular with respect to {ej}. Moreover

Q = SOT-lim
n→∞

Vn

where Vn = U1 · · ·Un and Uj is a Householder transformation.
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PROOF. We will obtain R as the weak limit of a sequence {V ∗
nA} where Vn is unitary

and the unitary operator is Q = SOT-limn→∞Vn. The procedure is as follows: Let Pn be the
projection onto {e1, . . . , en} and suppose that we have the n elements in the sequence and
that the n-th element is an operator Rn = V ∗

nA such that, with respect to the decomposition
H = PnH⊕ P⊥

n H, we have

Rn =

(
R̃n Bn

Cn Nn

)
, R̃n = PnRnPn, Bn = PnRnP

⊥
n , Cn = P⊥

n RnPn,

where Nn = P⊥
n RnP

⊥
n and R̃ is upper triangular and Cej = 0 for j ≤ n − 1. Let ζ = Cen.

Choose ξ ∈ P⊥
n H and define the Householder reflection S ∈ B(P⊥

n H),

S = I − 2

‖ξ‖2
ξ ⊗ ξ̄, and Un = Pn ⊕ S, (6.1)

such that Sζ = {ζ̃1, 0, 0, . . .}. Finally let Rn+1 = UnRn. Hence,

Rn+1 = UnRn =

(
R̃n Bn

SCn SNn

)
=

(
R̃n+1 Bn+1

Cn+1 Nn+1

)
, (6.2)

where the last matrix is understood to be with respect to the decomposition H = Pn+1H ⊕
P⊥

n+1H. Note that, by the choice of S it is true that R̃n+1 is upper triangular and Cn+1ej = 0
for j ≤ n. Defining R1 = A and letting Vn = U1 . . . Un, we have completed the construction
of the sequence {V ∗

nA}.
Note that Rn = V ∗

nA is bounded, since Vn is unitary (since Uj is unitary). And since a
closed ball in B(H) is weakly sequentially compact, there is an R ∈ B(H) and a subsequence
{Rnk

} such that Rnk

WOT−→ R. But by (6.2) it is clear that for any integer j we have PjRnPj =
PjRmPj for sufficiently large n and m. Hence WOT-limnRn = R. Now, by (6.2) R is upper
triangular with respect to {ej} and also Rej = Rnej for large n, thus SOT-limnRn = R. By
similar reasoning, using the previous compactness argument (since Vn is bounded) and the fact
that, by (6.1), for any integer j we have Vnej = Vmej for sufficiently large m and n, it follows
that there is a V ∈ B(H) such that Vn

SOT−→ V and, being a strong limit of unitary operators; V
is an isometry. Let Q = V. Therefore, A = QR since A = VnRn and multiplication is jointly
strongly continuous on bounded sets.

6.2 The QR algorithm
Let A ∈ B(H) be invertible and let {ej} be an orthonormal basis for H. By Theorem 6.3 we
have A = QR, where Q is unitary and R is upper triangular with respect to {ej}. Consider the
following construction of unitary operators {Q̂k} and upper triangular (w.r.t. {ej}) operators
{R̂k}. Let A = Q1R1 be a QR decomposition of A and define A2 = R1Q1. Then QR factorize
A2 = Q2R2 and define A3 = R2Q2. The recursive procedure becomes

Am−1 = QmRm, Am = RmQm. (6.3)

Now define
Q̂m = Q1Q2 . . . Qm, R̂m = RmRm−1 . . . R1. (6.4)
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Definition 6.4 Let A ∈ B(H) be invertible and let {ej} be an orthonormal basis for H.
Sequences {Q̂j} and {R̂j} constructed as in (6.3) and (6.4) will be called a Q-sequence and
an R-sequence of A with respect to {ej}.

The following observation will be useful in the later developments. From the construction in
(6.3) and (6.4) we get

A = Q1R1 = Q̂1R̂1,

A2 = Q1R1Q1R1 = Q1Q2R2R1 = Q̂2R̂2,

A3 = Q1R1Q1R1Q1R1 = Q1Q2R2Q2R2R1 = Q1Q2Q3R3R2R1 = Q̂3R̂3.

An easy induction gives us that
Am = Q̂mR̂m.

Note that R̂m must be upper triangular with respect to {ej} sinceRj, j ≤ m is upper triangular
with respect to {ej}.Also, by invertibility ofA, 〈Rei, ei〉 6= 0. From this it follows immediately
that

sp{Amej}N
j=1 = sp{Q̂mej}N

j=1, N ∈ N. (6.5)

In finite dimensions we have the following theorem:

Theorem 6.5 Let A be a normal matrix with eigenvalues satisfying |λ1| > . . . > |λN |. Let
{Q̂m} be a Q-sequence of unitary operators. Then Q̂mAQ̂

∗
m → D, as m → ∞, where D is

diagonal.

We will prove an analogue of this theorem in infinite dimensions, but first we need to state
some presumably well-known results.

6.3 The distance and angle between subspaces
We follow the notation in [Kat95]. Let E ⊂ B and F ⊂ B be closed subspaces of a Banach
space B. Define

δ(E,F ) = sup
x∈E

‖x‖=1

inf
y∈F

‖x− y‖

and
δ̂(E,F ) = max[δ(E,F ), δ(F,E)].

Given subspaces E and {Ek} such that δ̂(Ek, E) → 0 we will sometimes use the notation

Ek
δ̂−→ E.

If we replace B with a Hilbert space H we can define the angle between E and F .

Definition 6.6 Let E ⊂ H and F ⊂ H be closed subspaces of a Hilbert space H. Then the
angle c(E,F ) is given by

c(E,F ) = sup{|〈x, y〉| : x ∈ E ∩ (E ∩ F )⊥, ‖x‖ = 1, y ∈ F ∩ (E ∩ F )⊥, ‖y‖ = 1, }.

It is obvious from the definition that c(E,F ) = c(F,E).
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Proposition 6.7 Let A,B be subspaces of a Hilbert space H such that A ∩ B = {0} and
c(a,B) < 1. Then if ξ ∈ A and η ∈ B such that ‖ξ+η‖ = 1 then ‖ξ‖, ‖η‖ ≤ 1/

√
1− c(A,B).

PROOF. Let ξ ∈ A and η ∈ B such that ‖ξ + η‖ = 1. Now ‖ξ + η‖2 = ‖ξ‖2 +
Cξ,η‖ξ‖‖η‖+‖η‖2,where |Cξ,η| ≤ c(A,B).Also for real x,y then the equation x2+2Cξ,ηxy+
y2 = 1 describes an ellipse with maximum distance to the origin being 1/

√
1− |Cξ,η| ≤

1/
√

1− c(A,B) which yields the assertion.

Proposition 6.8 Let {An} be a sequence of N -dimensional subspaces of a Hilbert space H
and let B ⊂ H be an N -dimensional subspace. If δ(An, B) → 0 or δ(B,An) → 0 then
δ̂(An, B) → 0.

PROOF. Suppose that δ(An, B) → 0. Needing to show that δ(B,An) → 0, we argue by
contradiction. Suppose that

sup
x∈B,‖v‖=1

inf
y∈An

‖x− y‖ = δ(B,An) 9 0.

Then, by possibly passing to a subsequence, there is a 1 > r > 0 such that δ(B,An) > r
for all sufficiently large n. Thus we can for each n choose a unit vector ηn ∈ B such that
infx∈An ‖ηn − x‖ > r/2. Let Ãn = An + sp{ηn}. It is clear by previous reasoning that
ηn /∈ An. So dim(Ãn) = dim(An)+1. To arrive at the desired contradiction we will show that
by choosing n large enough we get δ(Ãn, B) < 1, which implies by Corollary 2.6 (p. 200,
[Kat95]) that dim(Ãn) ≤ dim(B) and this contradicts dim(Ãn) = dim(An)+1 = dim(B)+1.

First we need the fact that there is an a < 1 such that c(An, sp{ηn}) ≤ a. Indeed, for unit
vectors η̃ ∈ sp{ηn} and x ∈ An we have

‖η̃ ± x‖ ≥ inf
y∈An

‖η̃ − y‖ > r/2.

Thus, it follows that |〈η̃, x〉| ≤ a = 1− r2/4, yielding the assertion. By the last equation and
Proposition (6.7) it follows that if Ãn 3 y = ξ+ η̃ and ‖y‖ = 1 where ξ ∈ An and η̃ ∈ sp{ηn}
we have

max(‖ξ‖, ‖η̃‖) ≤ K = 1/
√

2(1− a).

Choose therefore n so large that δ(An, B) < 1/(4K). Then, for such y = ξ + η̃ we can find
x ∈ B such that ‖ξ/‖ξ‖ − x‖ ≤ 1/(2K). Now η̃ ∈ B so choosing ‖ξ‖x+ η̃ ∈ B we get

‖y − (‖ξ‖x+ η̃)‖ = ‖ξ − ‖ξ‖x‖ ≤ ‖ξ‖/(2K) ≤ 1/2.

Since y was arbitrary we get δ(Ãn, B) ≤ 1/2. The proof that if δ(B,An) → 0 then δ̂(An, B) →
0 is similar to the previous argument.

Proposition 6.9 Let E = E1⊕ . . .⊕EM where the Ejs are finite-dimensional subspaces of a
Hilbert space H. Let Fk = E1,k + . . .+EM,k where δ̂(Ej,k, Ej) → 0 as k →∞. Suppose that

dim(E) = dim(Fk). Then Fk
δ̂−→ E.
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PROOF. Note that, by Proposition (6.8), since dim(E) = dim(Fk), we only need to show
that

δ(E,Fk) → 0.

To prove that, let {ξk} ⊂ E be a sequence of unit vectors such that

inf
y∈Fk

‖ξk − y‖ = sup
x∈E

‖x‖=1

inf
y∈Fk

‖x− y‖+ εk,

where εk → 0 as k → ∞. The assertion follows if we can prove that there exists a sequence
{ηk}, where ηk ∈ Fk, such that ‖ξk − ηk‖ → 0. To show the latter, note that, since E is finite
dimensional, we may assume that ξk → ξ. Now, ξ =

∑M
i=1 αiξi where ξi ∈ Ei is a unit vector

and
∑M

i=1 |αi|2 = 1. By assumption, we can find ηi,k ∈ Ei,k such that ‖ξi − ηi,k‖ → 0. Letting
ηk =

∑M
i=1 αiηi,k finishes the proof.

Theorem 6.10 Let A ∈ B(H) be an invertible normal operator. Suppose that σ(A) = ω ∪
Ω is a disjoint union such that ω = {λi}N

i=1 and the λis are isolated eigenvalues of finite
multiplicity satisfying |λ1| > . . . > |λN |. Suppose further that sup{|γ| : γ ∈ Ω} < |λN |.
Let {ξi}M

i=1 be a collection of linearly independent vectors in H such that {χω(A)ξi}M
i=1 are

linearly independent. The following observations are true.

(i) There exists an M -dimensional subspace B ⊂ ranχω(A) such that

sp{Akξi}M
i=1

δ̂−→ B, k →∞.

(ii) If

sp{Akξi}M−1
i=1

δ̂−→ D ⊂ H, k →∞,

where D is an (M − 1)-dimensional subspace, then

sp{Akξi}M
i=1

δ̂−→ D ⊕ sp{ξ}, k →∞,

where ξ ∈ ranχω(A) is an eigenvector of A.

PROOF. We will first prove (i). Consider the following construction ofB: Let λ̃1 ∈ {λi}N
i=1

be the largest (in absolute value) element such that

{χλ̃1
(A)ξi}M

i=1 6= {0}.

If {χλ̃1
(A)ξi}M

i=1 are linearly independent let B = {χλ̃1
(A)ξi}M

i=1. If not, then {χλ̃1
(A)ξi}M

i=1

are linearly dependent spanning a space of dimension k1 < M. By taking linear combi-
nations of elements in {ξi}M

i=1 we can find a new basis {ξ1,i}M
i=1 for sp{ξi}M

i=1 such that
sp{χλ̃1

(A)ξ1,i}k1
i=1 = sp{χλ̃1

(A)ξi}M
i=1 and χλ̃1

(A)ξ1,i = 0, for k1 + 1 ≤ i ≤ M. Let λ̃2 ∈
{λi}N

i=1\{λ̃1} be the largest element such that {χλ̃2
(A)ξ1,i}M

i=k1+1 6= {0}. If {χλ̃2
(A)ξ1,i}M

i=k1+1

are linearly independent let

B = sp{χλ̃1
(A)ξ1,i}k1

i=1 ⊕ sp{χλ̃2
(A)ξ1,i}M

i=k1+1.
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If {χλ̃2
(A)ξ1,i}M

i=k1+1 are linearly dependent, spanning a space of dimension k2, we proceed
exactly as in the previous step. Repeating this process until {χλ̃n+1

(A)ξn,i}M
i=kn+1 is linearly

independent (note that this is possible by the assumption that {χω(A)ξi}M
i=1 are linearly inde-

pendent) we get

B =
n⊕

j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 ⊕ sp{χλ̃n+1
(A)ξn,i}M

i=kn+1, n ≤ N − 1,

where k0 = 0. We claim that sp{Akξi}M
i=1

δ̂−→ B as k →∞. Since

dim(sp{Akξi}M
i=1) = M = dim(B),

(recall that A is invertible) and

sp{Akξi}M
i=1 =

n∑
j=1

sp{Akξj,i}
kj

i=kj−1+1 + sp{Akξn,i}M
i=kn+1

by Proposition 6.9, we only have to demonstrate that

sp{Akξj,i}
kj

i=kj−1+1

δ̂−→ sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1, k →∞, j ≤ n, (6.6)

and
sp{Akξn,i}M

i=kn+1
δ̂−→ sp{χλ̃n+1

(A)ξn,i}M
i=kn+1. (6.7)

To prove (6.6), by Proposition 6.8, we only need to show that

sup
ζ∈E

‖ζ‖=1

inf
η∈Ek

‖ζ − η‖ = δ(E,Ek) −→ 0, k →∞,

Ek = sp{Akξj,i}
kj

i=kj−1+1, E = sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1,

(6.8)

since dimE = dimEk.As in the proof of Proposition 6.9, it is easy to see that (6.8) will follow
if for any sequence {ζk} ⊂ E of unit vectors there exists a sequence {ηk}, where ηk ∈ Ek,
such that ‖ζk − ηk‖ → 0. To show this, note that by compactness of the unit ball in E we can
assume, possibly passing to a subsequence, that ζk → ζ. Thus, the task is reduced to showing
that we can find {ηk} such that ‖ζ − ηk‖ → 0. Now, ζ =

∑
i αiχλ̃j

(A)ξj,i, for some complex
numbers {αi}, and we claim that the right choice of {ηk} is

ηk =
∑

i

αiA
kξj,i/λ̃

k
j .

Indeed, by the previous construction, ξj,i ⊥ ranχλ̃l
(A) for l > j. Thus,

ξj,i = (χλ̃j
(A) + χθ(A))ξj,i, θ = {λ ∈ σ(A) : |λ| < |λ̃j|}.

This gives Akξj,i = λ̃k
jχλ̃j

(A)ξj,i + Akχθ(A)ξj,i. Now, by the assumption on σ(A), we have

ρ = sup{|z| : z ∈ θ} < |λ̃j|.
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Thus, since
‖Akχθ(A)ξj,i‖/|λ̃k

j | < |ρ/λ̃j|k‖χθ(A)ξj,i‖,
we have

Akξj,i/λ̃
k
j = (λ̃k

jχλ̃j
(A)ξj,i + Akχθ(A)ξj,i)/λ̃

k
j −→ χλ̃j

(A)ξj,i, k →∞,

which yields our claim. Now (6.7) follows by a similar argument.
To show (ii), note that, by the argument in the proof of (i) and our assumption, we have

sp{Akξi}M−1
i=1

δ̂−→ D =
n⊕

j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1, k →∞,

(6.9)

for n ≤ N − 2, where k0 = 0, {λ̃j} and {ξj,i} are constructed as in the proof of (i). Now,
there are two possibilities:

(1) There exists λ ∈ Λ = ω \ {λ̃j}n+1
j=1 such that χλ(A)ξM 6= 0.

(2) We have that χΛ(A)ξM = 0.

Starting with Case 1 we may argue as in the proof of (i) to deduce that

sp{Akξi}M
i=1

δ̂−→
n⊕

j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1 ⊕ sp{χλ̃n+2
(A)ξM}, k →∞,

where λ̃n+2 ∈ ω \ {λ̃j}n+1
j=1 is the largest element such that χλ̃n+2

(A)ξM 6= 0, (note that the
existence of λ̃n+2 is guaranteed by the assumption that {χω(A)ξi}M

i=1 are linearly independent)
and this yields the assertion.

Note that Case 2 has two subcases, namely,

(I) χΛ(A)ξM = 0, but {χλ̃n+1
(A)ξn+1,i}M−1

i=kn+1 and χλ̃n+1
(A)ξM are linearly independent.

(II) χΛ(A)ξM = 0 and {χλ̃n+1
(A)ξn+1,i}M−1

i=kn+1 and χλ̃n+1
(A)ξM are linearly dependent, but

there exists a λ̃l, the largest eigenvalue in {λ̃j}n+1
j=1 such that {χλ̃l

(A)ξl,i}kl
i=kl−1+1 and

χλ̃l
(A)ξM are linearly independent.

Note that we cannot have χΛ(A)ξM = 0 and also have that

{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 and χλ̃j
(A)ξM , j ≤ n,

are linearly dependent as well as {χλ̃n+1
(A)ξn,i}M−1

i=kn+1 and χλ̃n+1
(A)ξM are linearly depen-

dent at the same time because that would violate the linear independence assumption on
{χω(A)ξi}M

i=1.
To prove (II) we may argue as in the proof of (i) and deduce that

sp{Akξl,i}kl
i=kl−1+1

δ̂−→ sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1, k →∞
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and

sp{Akξl,i}kl
i=kl−1+1+sp{AkχΓ(A)ξM}

δ̂−→ sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1 + sp{χλ̃l
(A)ξM}, k →∞

where Γ = ω \ {λ̃j}l−1
j=1. Thus, using (6.9), it is easy to see that this gives

sp{Akξi}M
i=1

δ̂−→
l−1⊕
j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕
(
sp{χλ̃l

(A)ξl,i}kl
i=kl−1+1 + sp{χλ̃l

(A)ξM

)
}

n⊕
j=l+1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 ⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1.

Thus, letting P be the projection onto sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1, it follows that

sp{Akξi}M
i=1

δ̂−→
l−1⊕
j=1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1

⊕ sp{χλ̃l
(A)ξl,i}kl

i=kl−1+1 ⊕ P⊥sp{χλ̃l
(A)ξM}

n⊕
j=l+1

sp{χλ̃j
(A)ξj,i}

kj

i=kj−1+1 ⊕ sp{χλ̃n+1
(A)ξn,i}M−1

i=kn+1.

Now Case (I) follows by similar reasoning.

Theorem 6.11 Let A ∈ B(H) be an invertible normal operator and let {ej} be an orthonor-
mal basis for H. Let {Qk} and {Rk} be a Q- and R-sequences of A with respect to {ej}.
Suppose also that σ(A) = ω ∪ Ω such that ω ∩ Ω = ∅ and ω = {λi}N

i=1, where the λis are
isolated eigenvalues with finite multiplicity satisfying |λ1| > . . . > |λN |. Suppose further that
sup{|θ| : θ ∈ Ω} < |λN |. Then there is a subset {êj}M

j=1 ⊂ {ej} such that sp{Qkêj} → sp{q̂j}
where q̂j is an eigenvector of A and M = dim(ranχω(A)). Moreover, sp{q̂j}M

j=1 = ranχω(A).
Also, if ej /∈ {êj}M

j=1, then χω(A)Qkej → 0.

The theorem will be proven in several steps. First we need a definition.

Definition 6.12 Suppose that the hypotheses in Theorem 6.11 are true and let K be the small-
est integer such that dim(sp{χω(A)ej}K

j=1) = M. Define

Λω = {ej : χω(A)ej 6= 0, j ≤ K} ΛΩ = {ej : χω(A)ej = 0, j ≤ K}

and Λ̃ω = {ej ∈ Λω : χω(A)ej ∈ sp{χω(A)ei}j−1
i=1}.

The decomposition of A into

A =

(
M∑

j=1

λj ξj ⊗ ξ̄j

)
⊕ χΩ(A)A, λj ∈ ω.

where {ξj}m
j=1 is an orthonormal set of eigenvectors ofA as well as the following two technical

lemmas will be useful in the proof.
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Lemma 6.13 Let {ê1, . . . , êM} = Λω \ Λ̃ω. If em ∈ ΛΩ ∪ Λ̃ω, then

sp{χω(A)qk,j}m
j=1 = sp{χω(A)q̂k,j}s(m)

j=1 , qk,j = Qkej, q̂k,j = Qkêj,

where s(m) is the largest integer such that {êj}s(m)
j=1 ⊂ {ej}m

j=1.

PROOF. We will show this by induction on the set {ẽ1, . . . , ẽp} = ΛΩ ∪ Λ̃ω. Consider
ẽµ ∈ {ẽ1, . . . , ẽp}. Then ẽµ = em̃ for some integer m̃. Suppose that sp{χω(A)qk,j}m̃

j=1 =

sp{χω(A)q̂k,j}s(m̃)
j=1 . We will show that

sp{χω(A)qk,j}m
j=1 = sp{χω(A)q̂k,j}s(m)

j=1 ,

where em = ẽµ+1.

First, note that sp{χω(A)qk,j}m−1
j=1 = sp{χω(A)q̂k,j}s(m)

j=1 follows from the induction hy-
pothesis. Indeed, let β be the largest integer such that β < m and eβ ∈ Λω \ Λ̃ω i.e. if êt = eβ

then t = s(m). Observe that since em̃ = ẽµ and em = ẽµ+1, it follows that if m̃ < α < m then
eα ∈ Λω \ Λ̃ω. So if β < m − 1 then there is no eα ∈ Λω \ Λ̃ω such that m̃ < α < m. Thus,
m̃ = m− 1 and so t = s(m) = s(m̃), yielding the assertion.

If β = m − 1 then for every ej where m̃ < j ≤ m − 1 we have ej ∈ Λω \ Λ̃ω. So
em̃+ν = ês(m̃)+ν for m̃+ ν ≤ m− 1 and ν ≥ 1, hence, qk,m̃+ν = q̂k,s(m̃)+ν for m̃+ ν ≤ m− 1.
Also, em−1 = ês(m) so qk,m−1 = q̂k,s(m). Thus,

sp{χω(A)qk,j}m−1
j=1 = sp{χω(A)qk,j}m̃

j=1 + sp{χω(A)qk,j}m−1
j=m̃+1

= sp{χω(A)qk,j}m̃
j=1 + sp{χω(A)q̂k,j}s(m)

j=s(m̃)+1,

and by recalling the induction hypothesis this yields the assertion. Thus, we only need to prove
that χω(A)qk,m ∈ sp{χω(A)qk,j}m−1

j=1 . To show this, note that

χω(A)Akem =
m∑

j=1

rk,jχω(A)qk,j, rk,j = 〈Rkem, ej〉.

Note further that, since A is invertible, we have rk,m 6= 0. In the case em ∈ ΛΩ we have
χω(A)Akem = 0. So, since rk,m 6= 0, it follows that χω(A)qk,m is a linear combination of
elements in sp{χω(A)qk,j}m−1

j=1 . In the case em ∈ Λ̃ω note that, by again using the fact that
χω(A)Akem =

∑m
j=1 rk,jχω(A)qk,j and rk,m 6= 0, we only have to show that χω(A)Akem ∈

sp{χω(A)qk,j}m−1
j=1 . Now, this is indeed the case. Since em ∈ Λ̃ω we have that χω(A)em ∈

sp{χω(A)ej}m−1
j=1 . Thus, since A is invertible

χω(A)Akem ∈ sp{χω(A)Akej}m−1
j=1 .

Also, observe that, by (6.5),

sp{Akej}m−1
j=1 = sp{qk,j}m−1

j=1 .

Hence,
sp{χω(A)Akej}m−1

j=1 = sp{χω(A)qk,j}m−1
j=1 ,

and this yields the assertion.
The initial induction step follows from a similar argument and we are done.
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Lemma 6.14 Let {ê1, . . . , êM} = Λω \ Λ̃ω. Suppose that sp{q̂k,j} → sp{q̂j} for all j ≤ µ for
some µ < M, where q̂k,j = Qkêj and q̂j is an eigenvector of

∑M
j=1 λj ξj ⊗ ξ̄j. Let el = êµ+1. If

em ∈ ΛΩ ∪ Λ̃ω, where m < l then

χω(A)qk,m → 0, k →∞, qk,m = Qkem.

PROOF. Arguing by contradiction, suppose that χω(A)qk,m 9 0. Since χω(A) has finite
rank we may assume that χω(A)qk,m → q. Note that by using the assumptions stated and the
fact that Qk is unitary (since A is invertible) it is straightforward to show that

sp{χω(A)q̂k,j}µ
j=1

δ̂−→ sp{χω(A)q̂j}µ
j=1, k →∞.

Also, by using the notation and results from Lemma 6.13 we have that s(m) = µ and

sp{χω(A)qk,j}m
j=1 = sp{χω(A)q̂k,j}s(m)

j=1 ,

and thus it follows that
q ∈ sp{χω(A)q̂j}µ

j=1.

Now
|〈χω(A)qk,m, q̂k,j〉| → |〈χω(A)q, q̂j〉|, k →∞, j ≤ µ.

Also, observe that
〈χω(A)qk,m, q̂k,j〉 → 0, k →∞, j ≤ µ.

Indeed, this is true by the facts that qk,m ⊥ q̂k,j and 〈χΩ(A)qk,m, q̂k,j〉 → 0 for all j ≤ µ,
where the latter follows since sp{q̂k,j} → sp{q̂j} and χΩ(A)q̂j = 0. Hence, it follows that
〈χω(A)q, q̂j〉 = 0 for j ≤ µ. So since q ∈ sp{χω(A)q̂j}µ

j=1, we have that q = 0, and we have
reached the contradiction.

PROOF. Proof of Theorem 6.11 Let {ê1, . . . , êM} = Λω \ Λ̃ω. We claim that this is the
desired subset of {ej} described in the theorem, i.e. we claim that for êj ∈ Λω \ Λ̃ω it is true
that sp{q̂k,j} → sp{q̂j}, where q̂k,j = Qkêj and q̂j is an eigenvector of

∑M
j=1 λj ξj ⊗ ξ̄j. We

will prove this by induction.
Suppose that sp{q̂k,j} → sp{q̂j} for j ≤ µ. Suppose also that

sp{Akêi}µ
i=1

δ̂−→ sp{q̂i}µ
i=1, k →∞. (6.10)

We will show that sp{q̂k,µ+1} → sp{q̂µ+1} and sp{Akêi}µ+1
i=1

δ̂→ sp{q̂i}µ+1
i=1 where q̂µ+1 is

the desired eigenvector of
∑M

j=1 λj ξj ⊗ ξ̄j. By using (6.10) and appealing to Theorem 6.10 it
follows that

sp{Akêi}µ+1
i=1

δ̂−→ sp{q̂i}µ
i=1 ⊕ sp{ξ}, ξ ∈ ranχω(A), (6.11)

where ξ is an eigenvector of A. Hence, to prove the induction assertion we need to show that
sp{q̂µ+1,k} → sp{ξ}.

Let el = êµ+1. Note that δ̂(sp{q̂i}µ
i=1 ⊕ sp{ξ}, sp{Akêi}µ+1

i=1 ) → 0 implies

δ(sp{q̂i}µ
i=1 ⊕ sp{ξ}, sp{Akei}l

i=1) → 0,
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since sp{Akêi}µ+1
i=1 ⊂ sp{Akei}l

i=1. Thus, it follows that

δ(sp{q̂i}µ
i=1⊕sp{ξ}, sp{qk,i}l

i=1)

= δ(sp{q̂i}µ
i=1 ⊕ sp{ξ}, sp{Akei}l

i=1) −→ 0, k →∞,
(6.12)

since A is invertible, Ak = QkRk and Rk is upper triangular with respect to {ej}. We will
use this to prove that sp{q̂µ+1,k} = sp{ql,k} → sp{ξ}. Note that this, by Proposition 6.8, is
equivalent to proving δ(sp{ξ}, sp{ql,k}) → 0, which we henceforth do. Note also that

sup
ζ∈sp{ξ}
‖ζ‖=1

inf
η∈sp{ql,k}

‖ζ − η‖ = δ(sp{ξ}, sp{ql,k}),

thus the latter assertion follows if we can show that for any sequence {ζk} of unit vectors in
sp{ξ} there exists a sequence {ηk} of vectors in sp{ql,k} such that ‖ζk − ηk‖ → 0. We will
demonstrate this. It is easy to see that we can, without loss of generality, assume that ζk = ζ
where ζ ∈ sp{ξ} is a unit vector. Let ε > 0. By (6.12) we can find η̃k ∈ sp{qi,k}l

i=1 such that
‖ζ − η̃k‖ < ε/2 for sufficiently large k. Now, η̃k =

∑l
i=1 αi,kqi,k where

∑l
i=1 |αi,k|2 = 1. So

‖ζ − η̃k‖2 = ‖ζ − αl,kql,k‖2 − 2Re〈ζ − αl,kql,k,
l−1∑
i=1

αi,kqi,k〉+
l−1∑
i=1

|αi,k|2

= ‖ζ − αl,kql,k‖2 − 2Re〈ζ,
l−1∑
i=1

αi,kqi,k〉+
l−1∑
i=1

|αi,k|2.

Now ζ ⊥ q̂i for i ≤ µ and also ζ ∈ ranχω(A). These observations together with the induction
hypothesis sp{q̂k,i} → sp{q̂i} for i ≤ µ and the fact that, by Lemma 6.14, if em ∈ ΛΩ ∪ Λ̃ω,

where m < l then χω(A)qk,m → 0, imply that 〈ζ,
∑l−1

i=1 αi,kqi,k〉 becomes arbitrarily small for
large k. Thus for sufficiently large k we have

‖ζ − αl,kql,k‖2 +
l−1∑
i=1

|αi,k|2 < ε2.

By choosing ηk = αl,kqk,l ∈ sp{qk,l}, we have proved the assertion and hence the induction
hypothesis. The initial step is straightforward.

We are left with two things to prove. Firstly we demonstrate that sp{q̂j}M
j=1 = sp{ξj}M

j=1. It
is easily seen, from orthonormality of {q̂k,i}M

i=1, that {q̂i}M
i=1 are all orthonormal. Hence, since

they are eigenvectors of
∑M

j=1 λj ξj ⊗ ξ̄j it follows that sp{q̂j}M
j=1 = sp{ξj}M

j=1 = ranχω(A).

Finally, we need to show that ej /∈ {êj}M
j=1, then χω(A)Qkej → 0, and this follows easily

from Lemma 6.14.

7 Convergence of Densities
We finish by extending some of the results in [Arv94a] from bounded to unbounded operators.
In this section we change the point of view from single operators to algebras of operators. Let
us recall some basics and useful facts.
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By a state τ on a C∗-algebra A with identity we mean a positive linear functional on the
positive elements of A such that τ(I) = 1 (I denoting the identity). The state τ is tracial if
τ(BB∗) = τ(B∗B) for all positive B ∈ A and faithful if B = 0 when τ(B) = 0.

If A ⊂ B(H) is a C∗-algebra and τ is a state on A, then each self-adjoint element A ∈ A
induces a unique Borel probability measure µτ

A on R with the property that∫ ∞

−∞
f(x)dµτ

A(x) = τ(f(A)), f ∈ C0(R). (7.1)

Also, if τ is a faithful tracial state we have supp(µτ
A) = σ(A). Thus, if {An} is a sequence

of self-adjoint elements in A converging in some sense to a self-adjoint element A ∈ A and
we are interested in determining the behavior of σ(An) as n → ∞, the behavior of µτ

An
is of

great interest. In particular, we consider under which conditions can we guarantee that∫ ∞

−∞
f(x)dµτ

An
(x) −→

∫ ∞

−∞
f(x)dµτ

A(x),

for all f ∈ C0(R).
As our goal is to extend some of the theorems in [Arv94a] from bounded to unbounded op-

erators, the C∗-algebra framework sketched above must be modified slightly. Since collections
of unbounded operators can never form a C∗-algebra we have to look at C∗-algebras affiliated
with unbounded operators.

Definition 7.1 Let A be a self-adjoint, unbounded operator on H. The operator A is affiliated
with the C∗-algebra A if and only if A ⊃ {f(A) : f ∈ C0(R)}.

Note that (7.1) can be extended to unbounded operators. In particular if A is a C∗-algebra
with a state τ and if A is a self-adjoint operator affiliated with A then there is a probability
measure µτ

A on R such that (7.1) is valid. Before we can prove the results we need some
preliminary theory.

Definition 7.2 LetA ⊂ B(H) be aC∗-algebra. AnA-filtration is a filtration (recall Definition
2.4) of H such that the ∗-subalgebra of all finite degree operators in A is norm dense in A.

Proposition 7.3 (Arveson) Let A ⊂ B(H) be a C∗-algebra with a unique tracial state τ and
suppose that {Hn} is an A-filtration. Let τn be the state of A defined by

τn(A) =
1

dn

trace(PnA), dn = dim(Hn).

Then
τn(A) → τ(A), for all A ∈ A.

The next theorem will be crucial in the sequel. Firstly, some notation. We let trace denote
the trace on the set of trace class operators and ‖ · ‖2 denote the Hilbert-Schmidt norm. Let
also W 2

∞ denote the Sobolev space of measurable functions on R with second derivative (in
the distributional sense) being L∞.
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Theorem 7.4 (Laptev, Safarov)[LS96] Let A be a self-adjoint, unbounded operator on H and
let P be projection such that PA is a Hilbert-Schmidt operator. Then for any ψ ∈ W 2

∞ we
have that

|tr(Pψ(A)P − Pψ(PAP )P )| ≤ ‖ψ′′‖∞‖PA(I − P )‖2
2.

The next theorem is an extension of Theorem 4.5 in [Arv94a] to unbounded operators.

Theorem 7.5 Let A be a self-adjoint, unbounded operator with domain D(A) and let A
be a C∗-algebra with a unique tracial state τ. Suppose that {Hn} is an A-filtration, where
Hn ⊂ D(A), and that A is affiliated with A. Let dn = dim(Hn) and λ1, λ2, . . . , λdn be the
eigenvalues of An = PnAdHn , repeated according to multiplicity. Suppose that one of the
following is true.

(i) ‖PnA(I − Pn)‖2/
√
dn → 0, as n→∞.

(ii) A = D + C, where D commutes with Pn and C ∈ Ã ⊂ B(H) and Ã is a C∗-algebra
such that {Hn} is also an Ã-filtration.

Then for every f ∈ C0(R),

lim
n→∞

1

dn

(f(λ1) + f(λ2) + . . .+ f(λdn)) =

∫
R
f(x) dµA(x),

where µA denotes the Borel measure induced by τ.

PROOF. Define
τn(T ) =

1

dn

trace(PnT ), T ∈ A.

Since τn restricts to the normalized trace on PnB(H)Pn and since, by Proposition 7.3

τn(B) −→ τ(B), n→∞, B ∈ A

it follows that, in both cases (i) and (ii), it suffices to show that

τn(f(A))− τn(f(PnAPn)) → 0, n→∞. (7.2)

To show this for (i), note that we can approximate f in the L∞ norm by elements from W 2
∞.

Combining that fact with the observation that the linear functional

f 7→ τn(f(A))− τn(f(PnAPn))

has norm less than two, we reduce the problem to showing (7.2) when f ∈ W 2
∞. Now, by

Theorem 7.4,

|τn(f(A))− τn(f(PnAPn))| = 1

dn

|trace(Pnf(A)Pn)− trace(Pnf(PnAPn)Pn)|

≤ 1

2dn

‖f ′′‖∞‖PnA(I − Pn)‖2
2,

where the right hand side of the inequality tends to zero by assumption.
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To prove the theorem when (ii) is assumed, note that, by the Stone-Weierstrass theorem,
polynomials in (x + i)−1 and (x − 1)−1 are dense in C0(R). Thus, by arguing as above, we
can assume that f(x) = (x+ i)−k(x− i)−l for some positive integers k, l. It is not too hard to
show that (D+C ± i)−1 − (D+B ± i)−1 is small when ‖C −B‖ is small and B ∈ B(H) is
self-adjoint. Thus, for ε > 0 we have

‖f(Pn(D + C)Pn)− f(Pn(D +B)Pn)‖ ≤ ε, ‖f(D + C)− f(D +B)‖ ≤ ε,

for B ∈ Ã and when ‖C − B‖ is sufficiently small. Hence, since τn is uniformly bounded,
we can assume that C has finite degree. Arguing as above we get

|τn(f(A))− τn(f(PnAPn))| ≤ 1

2dn

‖f ′′‖∞‖Pn(D + C)(I − Pn)‖2
2

≤ 1

2dn

‖f ′′‖∞ deg(C)‖C‖2,

and this yields the assertion. The proof of the fact that ‖PnC(I − Pn)‖2
2 ≤ deg(C)‖C‖2 can

be found in the proof of Lemma 3.6 in [Arv94a].

8 The General Problem
So far in this article we have considered approximations of spectra of self-adjoint and normal
operators. We will in this section sketch some ideas on how to approach the task in general.
To compute the spectrum of an arbitrary operator T ∈ B(H) one has to take care of a slightly
unpleasant problem, namely the fact that the spectrum is very sensitive to perturbations. The
well known example is if we let Aε : l2(Z) → l2(Z) be defined by

(Aεf)(n) =

{
εf(n+ 1) n = 0

f(n+ 1) n 6= 0.

Now for ε 6= 0 we have σ(Aε) = {z : |z| = 1} but for ε = 0 then σ(A0) = {z : |z| ≤ 1}. In
fact, because of this example, Davies questions in [Dav05] whether one can actually compute
the spectrum of a bounded operator with the existing model of a computer we have today.
The problem is that due to the inexact arithmetic one may actually compute the spectrum
of a slightly perturbed problem. And as shown, that can have dramatic consequences. We
therefore suggest that instead of approximating the spectrum one should approximate a set
which is close to (here close means in the Hausdorff metric) the spectrum and also has nice
continuity properties.

Definition 8.1 Let T ∈ B(H) and let n ∈ Z+ and ε > 0. The (n, ε)-pseudo- spectrum of T is
defined as the set

σn,ε(T ) = σ(T ) ∪ {z /∈ σ(T ) : ‖R(z, T )2n‖1/2n ≥ ε−1}.

As the following theorem shows the n-pseudospectrum is an excellent approximation to the
spectrum and in the same time it has the desired continuity properties.
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Theorem 8.2 Let T ∈ B(H) and define for z ∈ C and n ∈ Z+. Then the following is true.

(i) The n-pseudospectra are nested i.e.

σn+1,ε(T ) ⊂ σn,ε(T ).

(ii) Also,
dH(σn,ε(T ),Γε(σ(T ))) −→ 0, n→∞,

where Γε(σ(T )) denotes the ε-neighborhood around σ(T ).

(iii) If {Tk} ⊂ B(H) and Tk → T in norm, it follows that

dH(σn,ε(Tk), σn,ε(T )) −→ 0, k →∞,

where dH denotes the Hausdorff metric.

Hence, the previous theorem suggests that to approximate the spectrum it is enough to approx-
imate the n-pseudospectrum. The following theorem gives an idea on how to do that.

Theorem 8.3 Let T ∈ B(H) and define for z ∈ C and n ∈ Z+

γn(z) = min
(
( inf
‖ξ‖=1,ξ∈H

〈((T − z)∗)2n

(T − z)2n

ξ, ξ〉)1/2n+1

,

( inf
‖ξ‖=1,ξ∈H

〈(T − z)2n

((T − z)2n

)∗ξ, ξ〉)1/2n+1)
.

Let {Pj} be an increasing sequence of projections converging strongly to the identity, and
define

γn,m(z)

= min
(

min{λ1/2n+1

: λ ∈ σ
(
Pm((T − z)∗)2n

(T − z)2n
⌈

PmH

)
},

min{λ1/2n+1

: λ ∈ σ
(
Pm(T − z)2n

((T − z)∗)2n
⌈

PmH

)
}
)
.

Then the following is true.

(i) σn,ε(T ) = {z ∈ C : γn(z) ≤ ε}.

(ii) {z : γn,m(z) ≤ ε} ∩K −→ σn,ε(T ) ∩K, m→∞,

for any compact set K ⊃ σn,ε(T ), where the convergence is understood to be in the Hausdorff
metric.

Proofs of the previous theorems can be found in [Han] as well as a more comprehensive anal-
ysis of properties of the n-pseudospectra.
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