
DAMTP 2007/NA05

Developments of NEWUOA for minimization

without derivatives

M.J.D. Powell

Abstract: The NEWUOA software is described briefly, with some numerical re-
sults that show good efficiency and accuracy in the unconstrained minimization
without derivatives of functions of up to 320 variables. Some preliminary work
on an extension of NEWUOA that allows simple bounds on the variables is also
described. It suggests a variation of a technique in NEWUOA for maintaining
adequate linear independence in the interpolation conditions that are used, which
leads to five versions of the technique including the original one. Numerical ex-
periments suggest that the new versions have some merit, but the details of the
calculations are influenced strongly by computer rounding errors. The depen-
dence of the number of iterations on the number of interpolation conditions is
also investigated numerically. A surprising case with n=160 is found, n being the
number of variables, where the number of iterations is reduced when the number
of conditions is decreased from 2n+1 to n+6. The given conclusions may assist
the development of some new software for unconstrained optimization.

Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA,
England.

November, 2007 (revised).

1. A success of NEWUOA

The NEWUOA Fortran software (Powell, 2006) seeks the minimum of a function
F (x), x ∈ Rn, which is specified by a subroutine, provided by the user, that
calculates the value of F (x) for any given vector of variables x∈Rn. There are
no constraints on the variables and no derivatives of F are required. The user
has to provide too a starting vector x(o)∈Rn, values of the parameters ρbeg and
ρend, and an integer m from the interval [n+2, 1

2
(n+1)(n+2)]. Here ρbeg and ρend

are the Euclidean lengths of changes that are made to the variables initially and
at the end of the calculation, respectively, so ρbeg≥ρend must hold, and ρend can
be used to control the final accuracy. The purpose of m is that each iteration
of NEWUOA employs a quadratic model (quadratic polynomial approximation
to F) that interpolates just m values of the objective function. Each iteration
changes only one (or very occasionally none) of the interpolation points, keeping
m fixed. The value m=2n+1 is recommended. Copies of the software are available
free of charge from the author at the e-mail address mjdp@cam.ac.uk.

Let x(k), k=1, 2, 3, . . ., be the best vector of variables at the beginning of the
k-th iteration, which means that F (x(k)) is the least calculated value of F so far.
Let the quadratic model at the beginning of the k-th iteration be the function

Q(k)(x(k)+ d) = F (x(k)) + dT g(k) + 1
2
dT∇2Q(k)d, d∈Rn, (1.1)

its parameters being the vector g(k)∈Rn and the n×n symmetric matrix ∇2Q(k).

Let the interpolation conditions of Q(k) be the equations

Q(k)(y(k)
j

) = F (y(k)
j

), j =1, 2, . . . ,m, (1.2)

where the points y(k)
j
∈Rn, j =1, 2, . . . ,m, have been chosen automatically, one of

them being x(k) with the property

F (x(k)) = min {F (y(k)
j

) : j =1, 2, . . . ,m}. (1.3)

The parameters ρ(k) and ∆(k) are also required by the k-th iteration, ∆(k) being
a trust region radius that satisfies the bound

∆(k) ≥ ρ(k), k=1, 2, 3, . . . , (1.4)

and ρ(k) being a positive number that is decreased automatically from ρbeg to
ρend. The choice ρ(k+1) =ρ(k) is made on most iterations, because the alternative
ρ(k+1) < ρ(k) is preferred only if the bound (1.4) seems to be preventing further
progress. Thus NEWUOA is suitable for the minimization of noisy objective
functions.

There are two types of iteration, namely “trust region” and “alternative”.
On each “trust region” iteration, the step d(k) from x(k) is a vector d that is
calculated by applying an extension of the truncated conjugate gradient method
to the subproblem

Minimize Q(k)(x(k)+ d) subject to ‖d‖ ≤ ∆(k). (1.5)

2

The extension may improve d by some two dimensional searches if it reaches the
trust region boundary, details being given in Powell (2006). If ‖d(k)‖ < 1

2
ρ(k)

occurs, the view is taken that x(k)+d(k) is too close to x(k), so d(k) is abandoned,
and the current iteration is switched to one of “alternative” type, or a test may
decide that the work with the current ρ(k) is complete. It is usual, however, for
‖d(k)‖≥ 1

2
ρ(k) to hold, and then the new function value F (x(k)+d(k)) is calculated.

Further, ρ(k+1) = ρ(k) is set, the new trust region radius ∆(k+1)≥ ρ(k+1) is chosen
in a usual way that depends on the ratio{

F (x(k))− F (x(k)+ d(k))
}/{

Q(k)(x(k))−Q(k)(x(k)+ d(k))
}

, (1.6)

and x(k+1) is given by the formula

x(k+1) =

 x(k)+ d(k), F (x(k)+ d(k)) < F (x(k)),

x(k), F (x(k)+ d(k)) ≥ F (x(k)).
(1.7)

The new model Q(k+1) has to satisfy the conditions (1.2) with k replaced by k+1,
where the new set of interpolation points has the form

y(k+1)
j

=

 x(k)+ d(k), j = t,

y(k)
j

, j 6= t,
j =1, 2, . . . ,m, (1.8)

for some integer t in [1, m]. The selection of t and the definition of Q(k+1) are
addressed later. A “trust region” iteration is followed by another “trust region”
iteration if the ratio (1.6) is at least 0.1, but otherwise the next iteration is of
“alternative” type.

Usually an “alternative” iteration tries to improve the quadratic model by
moving the interpolation point that is furthest from x(k), where k is still the
iteration number. It begins by calculating an integer t from [1, m] that satisfies
the equation

‖y(k)
t
− x(k)‖ = max {‖y(k)

j
− x(k)‖ : j =1, 2, . . . ,m}. (1.9)

If ‖y(k)
t
‖ ≤ 2∆(k) holds, however, then it is assumed that there is no need to

move y(k)
t

. Instead, the iteration is switched to one of “trust region” type or the

sequence of iterations with the current ρ(k) is terminated. A trust region iteration
is preferred without reducing ρ(k) if one or both of the conditions ∆(k) >ρ(k) and
F (x(k)) < F (x(k−1)) is satisfied. If both these conditions fail, however, the next
action depends on whether or not ρ(k) has reached its lower bound. Specifically,
termination occurs in the case ρ(k) = ρend, and otherwise both ρ(k) and ∆(k) are
reduced before the switch to an iteration of “trust region” type.

When the point y(k)
t

of equation (1.9) satisfies ‖y(k)
t
‖>2∆(k) on an “alternative”

iteration, the new interpolation points have the form (1.8), so d(k) is selected for
the definition of y(k+1)

t
, and then F (x(k) +d(k)) is calculated. The choice of d(k)

3

depends on the Lagrange function Λ
(k)
t (x), x∈Rn, which is a quadratic polynomial

that takes the values

Λ
(k)
t (y(k)

j
) = δjt, j =1, 2, . . . ,m, (1.10)

where δjt is the Kronecker delta. These equations define all the coefficients of

Λ
(k)
t in the case m = 1

2
(n+1)(n+2), but otherwise the freedom is taken up by

the method of the updating of the quadratic model, which is the subject of the
next two paragraphs. A large value of |Λ(k)

t (x(k) +d(k))| is helpful to the linear
independence of the constraints on Q(k+1), namely the equations (1.2) with k
increased by one. Therefore the d(k) of an “alternative” iteration is obtained by
applying to the subproblem

Maximize |Λ(k)
t (x(k)+ d)| subject to ‖d‖ ≤ ∆(k) (1.11)

the extension to the truncated conjugate gradient method that has been men-
tioned for subproblem (1.5), except that the calculation does not begin at d=0.
After choosing t and d(k), the updating of the model is the same on “alternative”
and “trust region” iterations. Formula (1.7) is also applied in both cases. The
“alternative” iteration of this paragraph sets ∆(k+1) =∆(k) and ρ(k+1) = ρ(k), and
is followed always by an iteration of “trust region” type.

Let D(k)(x)=Q(k+1)(x)−Q(k)(x), x∈Rn, be the change to the model that is
made on the k-th iteration. We write it as the quadratic function

D(k)(x) = D(k)(x̂) + (x−x̂)T h(k) + 1
2
(x−x̂)T ∇2D(k) (x−x̂), x∈Rn, (1.12)

where x̂ is a fixed vector that has been chosen already, which is useful because
shifts of origin avoid some losses of accuracy. Further, for a reason given below,
we let ∇2D(k) have the symmetric form

∇2D(k) =
∑m

j=1 µj (y(k+1)
j

− x̂) (y(k+1)
j

− x̂)T , (1.13)

for certain parameters µj, j =1, 2, . . . ,m, that have the properties∑m
j=1 µj = 0 and

∑m
j=1 µj y(k+1)

j
= 0. (1.14)

Thus the construction of D(k) requires m+n+1 numbers to be found, namely
D(k)(x̂), the components of h(k) ∈ Rn, and the parameters µj, j = 1, 2, . . . ,m.
Besides the n+1 constraints (1.14), these numbers are required to satisfy the
interpolation conditions

D(k)(y(k+1)
j

) = Q(k+1)(y(k+1)
j

)−Q(k)(y(k+1)
j

) = F (y(k+1)
j

)−Q(k)(y(k+1)
j

)

=
{
F (y(k+1)

t
)−Q(k)(y(k+1)

t
)
}

δjt, j =1, 2, . . . ,m, (1.15)

the last line being derived from equations (1.2) and (1.8). Thus the change to the
model is defined by a square system of linear equations of dimension m+n+1,

4

although a general quadratic polynomial in n variables has 1
2
(n+1)(n+2) degrees

of freedom. This feature of NEWUOA is very welcome, because it allows the
routine work of each iteration to be only O(n2) when m is of magnitude n.

The given method for updating the quadratic model is the solution of a vari-
ational problem. Specifically, after satisfying the interpolation conditions (1.15),
the freedom in Q(k+1) is taken up by minimizing ‖∇2Q(k+1)−∇2Q(k)‖F subject
to the symmetry of the second derivative matrices. The technique of minimizing
the Frobenius norm of the change to ∇2Q is well known when first derivatives
are available, and is considered in Section 9.1 of Dennis and Schnabel (1983), for
instance. One can regard ∇2Q(k+1) as a least squares projection of ∇2Q(k) into
the set of second derivative matrices that are compatible with the new interpo-
lation conditions. It follows that, if F (x), x ∈ Rn, itself is quadratic, then the
errors ‖∇2Q(k)−∇2F‖F , k = 1, 2, 3, . . ., decrease monotonically, and the changes
‖∇2Q(k+1)−∇2Q(k)‖F , k = 1, 2, 3, . . ., tend to zero, which may be the reason for
the good convergence properties of NEWUOA.

The task of deriving Q(k+1) from the equations (1.12)–(1.15) requires only of
magnitude (m+n)2 operations in the NEWUOA software, because the inverse of
the matrix of this (m+n+1) by (m+n+1) linear system is stored and updated
explicitly, except that some loss of accuracy is avoided by working with a factor-
ization of the leading m by m submatrix of the inverse matrix. The updating of
the inverse matrix is cheap, because only the t-th row and column of the matrix
of the linear system are altered when the change (1.8) is made to the interpola-
tion points. If this change caused the new system to be singular, then a division
by zero would occur in the updating of the inverse matrix. Therefore singular-
ity is avoided by keeping the divisors away from zero, which assists the choice
of t on “trust region” iterations, and which justifies the choice of d(k) on “alter-
native” iterations after obtaining t from equation (1.9). The Lagrange function

Λ
(k)
t (x), x∈Rn, of the subproblem (1.11) is defined to be the quadratic such that

‖∇2Λ
(k)
t ‖F is least subject to the conditions (1.10) and the symmetry of ∇2Λ

(k)
t ,

which is a special case of the variational problem that is behind the updating of
Q. Therefore the coefficients of Λ

(k)
t are available in the t-th column of the inverse

matrix that is stored at the beginning of the k-th iteration.
A full description of NEWUOA is given in Powell (2006). It includes the choice

of the points y(1)
j

, j = 1, 2, . . . ,m, and the model Q(1)(x), x ∈ Rn, for the first

iteration. If m is set to 2n+1, then two more points are placed on each coordinate
direction through x(o) (the starting vector provided by the user), and ∇2Q(1) is
diagonal. Another topic is the changes that are made occasionally to the vector
x̂ of equation (1.12). It is explained also that the storage of ∇2Q(k+1) includes
a sum of the form (1.13), because the explicit calculation of all the elements of
∇2Q(k+1) would require O(mn2) operations.

An objective function that shows the efficiency of NEWUOA in favourable

5

Numbers of calculations of F (#F)
n

Case 1 Case 2 Case 3 Case 4 Case 5

10 370 340 348 446 319
20 999 928 921 960 780
40 1951 1776 1629 1916 2114
80 3262 3497 3390 3183 3172
160 5589 5994 6492 6427 6124
320 11593 11391 12042 11780 11887

Table 1: NEWUOA applied to the test problem (1.16)

circumstances is the sum of squares

F (x) =
2n∑
i=1

bi −
n∑

j=1

[Sij sin(xj/σj) + Cij cos(xj/σj)]


2

, x∈Rn. (1.16)

The elements Sij and Cij are random integers from [−100, 100], each σj is chosen
randomly from [1, 10], and each bi is defined by F (x∗) = 0, for a vector x∗ ∈Rn

that is also chosen randomly. Thus F is periodic, with local maxima and saddle
points and with a global minimum at x=x∗. The starting vector x(o) is picked by
letting the weighted differences (x

(o)
j −x∗j)/σj, j =1, 2, . . . , n, be random numbers

from [−π/10, π/10], and the values ρbeg = 0.1 and ρend = 10−6 are set. For each
choice of n, five test problems were generated randomly. The total number of
calculations of F in each case is shown in Table 1. The accuracy of these tests is
good, all the final values of the error ‖x(k)−x∗‖∞ being less than 1.5×10−5.

The most striking features of the table are that the growth of #F as n increases
seems to be no faster than linear, and that some problems with 320 variables and
no sparsity have been solved. The results of several other calculations are reported
in Powell (2006), including some with discontinuities in the first derivatives of F .

These successes of NEWUOA encouraged the author to seek extensions of the
software that allow constraints on the variables. In particular, changes were made
to the Fortran subroutines that forced the variables to maintain the bounds

ai ≤ xi ≤ bi, i=1, 2, . . . , n, (1.17)

throughout the calculation, for given values of ai and bi that satisfy bi≥ai+2ρbeg,
i=1, 2, . . . , n. That work is addressed in Section 2. The bounds on the variables
suggested the replacement of subproblem (1.11) by an easier calculation, and
the modification was found to be very helpful in reducing the total number of
function evaluations. Therefore the idea of including a similar modification in the
“alternative” iterations of NEWUOA was investigated, which gave the results that
are reported and discussed in Section 3. Finally, the subject of Section 4 is some
numerical experiments that explore the dependence of the number of iterations
on the choice of m.

6

2. Extensions to simple bounds

I began to develop the BOBYQA Fortran software in 2006 for minimizing F (x),
x ∈ Rn, subject to the simple bounds (1.17). The name denotes Bound Opti-
mization BY Quadratic Approximation, which seemed to cause amusement when
I presented an invited paper on the work so far at the International Conference on
Numerical Analysis and Optimization, held in Beijing to celebrate my 70th birth-
day in September, 2006. Whenever BOBYQA calls the subroutine that returns
the function value F (x), the components of x satisfy the constraints. Therefore
the subproblems (1.5) and (1.11) are replaced by the calculations

Minimize Q(k)(x(k)+ d) subject to ‖d‖ ≤ ∆(k),

and ai ≤ x
(k)
i + di ≤ bi, i=1, 2, . . . , n,

 (2.1)

and
Maximize |Λ(k)

t (x(k)+ d)| subject to ‖d‖ ≤ ∆(k),

and ai ≤ x
(k)
i + di ≤ bi, i=1, 2, . . . , n,

 (2.2)

respectively. Most features of BOBYQA, however, are copied from NEWUOA,
including the use of “trust region” and “alternative” iterations, with the same
procedures for adjusting the trust region radii ∆(k) and their lower bounds ρ(k).
The values of ρbeg and ρend, with m and the starting vector x(o), are given as
before. The ways of storing and updating the quadratic models and the inverse
of the matrix of the system (1.12)–(1.15) are also the same, as are the occasional
adjustments of the vector x̂ of expression (1.12). Further, the same techniques are
used to pick the integer t of formula (1.8) on each iteration. An extra feature of
BOBYQA is a shift of x(o) if necessary, so that the initial interpolation points y(1)

j
,

j = 1, 2, . . . ,m, are all feasible, which is straightforward, because the conditions
bi ≥ ai +2ρbeg, i = 1, 2, . . . , n, are imposed on the given bounds, as mentioned
already.

The method of BOBYQA for finding a rough solution of subproblem (2.1) is
considered next, because it has not been published yet. Let F (x), x ∈ Rn, be
differentiable, let x∗ be the vector of variables that minimizes F , and let g∗ be
the gradient ∇F (x∗). For each integer i in [1, n], the condition g∗i > 0 or g∗i < 0
implies x∗i = ai or x∗i = bi, respectively, which makes a case for setting di = 0

in subproblem (2.1) if both g
(k)
i > 0 and x

(k)
i = ai or both g

(k)
i < 0 and x

(k)
i = bi

hold, where g(k) =∇Q(k)(x(k)) is introduced in equation (1.1). This test is applied
by BOBYQA to identify components of d that will remain at zero during the
approximate solution of the subproblem, the other components being “free”. Only
the free components are adjusted by the truncated conjugate gradient procedure
of NEWUOA, starting at d = 0, but a free component may try to violate one of
the bounds ai ≤ x

(k)
i +di ≤ bi during the calculation.If this happens, then a free

component that offends is transferred to the set of components that are fixed, and
the truncated conjugate gradient method is restarted at the current point with
one fewer free variables than before. Usually the value of the new fixed component

7

of d is nonzero, because it is defined by putting x(k)+d on the boundary of the
linear constraint that was about to be violated. If this procedure ends on the trust
region boundary, then BOBYQA may make further changes to d that are similar
to those of NEWUOA, except that the bound constraints may require one or more
additional components of d to be fixed. In this case any further adjustments to
d, with fewer free variables, continue from the current point on the trust region
boundary. The amount of work of each change to d is O(mn), because the change
has to be multiplied by the matrix ∇2Q(k). The number of changes hardly ever
exceeds ten for each of the subproblems (2.1), due to the stopping conditions that
are used.

We consider next the calculation (2.2). It is stated in Section 1 that NEWUOA
solves subproblem (1.11) approximately by the extension to the truncated con-
jugate gradient method that makes two dimensional searches on the trust region
boundary. The starting point d of that procedure satisfies ‖d‖= ∆(k), which is
suitable because there is no need to look inside the trust region for the greatest
value of the modulus of a quadratic function that is zero at d = 0. The bound
constraints of subproblem (2.2), however, may make it necessary for the choice of
d by BOBYQA to satisfy ‖d‖<∆(k). We are going to compare two versions of the
approximate solution of subproblem (2.2), the first one being an extension of the
truncated conjugate gradient method again. An important difference from the
procedure for subproblem (2.1) is that the starting point is never at d=0, which
is the centre of the trust region. Instead, a preliminary calculation, described in
the next two paragraphs, picks a d that is feasible for subproblem (2.2), say d

(k)
cd ,

such that |Λ(k)
t (x(k)+d

(k)
cd)| is quite large. Then the rough solution d to subproblem

(2.2) is found by the method of the previous paragraph with two modifications.

Firstly, the quadratic ±Λ
(k)
t is minimized instead of Q(k), where the ± sign is

chosen so that ±Λ
(k)
t (x(k)+d

(k)
cd) is negative, and secondly the starting point d=0

with the use of the gradient g(k) =∇Q(k)(x(k)) are replaced by d = d
(k)
cd with the

corresponding use of the gradient ∇Q(k)(x(k)+d
(k)
cd) for the initial assignment of

the “free” variables. Then one or more conjugate gradient steps are taken only if
d

(k)
cd is strictly inside the trust region. As before, all other changes to d are made

by two dimensional searches in the intersection of the trust region boundary with
the linear space that is spanned by the current “free” variables. We introduce the
name d

(k)
full for the final d.

The point d
(k)
cd has the subscript “cd”, because its construction depends on line

searches along coordinate directions and along one other line. We let Lcd⊂Rn be
the union of these n+1 lines, a point being in Lcd if and only if it has one of the
forms x(k)+αei, i=1, 2, . . . , n, and x(k)+α(y(k)

t
−x(k)), for some real α, where ei

is the i-th coordinate direction in Rn. The starting point d
(k)
cd is defined to be the

solution of the subproblem

Maximize |Λ(k)
t (x(k)+ d)| subject to ‖d‖ ≤ ∆(k),

ai ≤ x
(k)
i + di ≤ bi, i=1, 2, . . . , n, and x(k)+ d ∈ Lcd.

 (2.3)

8

We see that d
(k)
cd is chosen from a subset of the feasible vectors of the calculation

(2.2), its freedom being taken up by maximizing the same objective function

|Λ(k)
t (x(k) +d)|, d ∈ Rn, as before. The coordinate directions in Lcd allow much

of the original feasible region to be explored, and the straight line through x(k)

and y(k)
t

guarantees that |Λ(k)
t (xk+d

(k)
cd)| is positive, due to the Lagrange condition

Λ
(k)
t (y(k)

t
)=1.

One reason for this choice of d
(k)
cd is that it is easy to apply. Searches along

n+1 lines through x(k) are required, so the Lagrange condition Λ
(k)
t (x(k)) = 0 is

helpful, and the gradient ∇Λ
(k)
t (x(k)) is computed for use in all the line searches.

It is sufficent to pick only one more linear functional of Λ
(k)
t on each of the n+

1 lines, because Λ
(k)
t is quadratic. Specifically, we employ the diagonal second

derivatives (∇2Λ
(k)
t)ii, i = 1, 2, . . . , n, in the searches along coordinate directions,

and we employ the value Λ
(k)
t (y(k)

t
)=1 in the line search through y(k)

t
. It has been

noted already that the parameters of Λ
(k)
t are available in the t-th column of the

inverse matrix that is stored, and that they include the gradient ∇Λ
(k)
t (x̂) and the

parameters µ
(k)
tj of the expression

∇2Λ
(k)
t =

∑m
j=1 µ

(k)
tj (y(k)

j
− x̂) (y(k)

j
− x̂)T . (2.4)

Therefore calculating ∇Λ
(k)
t (x(k)) and all the elements (∇2Λ

(k)
t)ii, i = 1, 2, . . . , n,

takes only O(mn) operations. The remaining work of searching along all the lines

in Lcd is only of magnitude n. Thus the solution d = d
(k)
cd of subproblem (2.3) is

found cheaply and exactly.
The above version of BOBYQA was applied to the following test problem. Let

n be even and let the variables xi, i=1, 2, . . . , n, be the coordinates of n/2 points
in two dimensions, namely the vectors

p
j

=

(
x2j−1

x2j

)
∈ R2, j =1, 2, . . . , n/2. (2.5)

The problem is to place these points on and within the unit square in a way that
keeps the points apart. Specifically, the objective function

F (x) =
n/2∑
i=2

i−1∑
j=1

min
[
‖p

i
− p

j
‖−1, 106

]
, x∈Rn, (2.6)

is minimized subject to the bounds

0 ≤ xi ≤ 1, i=1, 2, . . . , n. (2.7)

The term 106 in expression (2.6) is hardly ever relevant. The components of
the starting vector x(o) are picked randomly and independently from the uniform
distribution on [0, 1], except that this procedure is repeated if necessary until the
condition

min
{
‖p(o)

i
− p(o)

j
‖ : j =1, 2, . . . , i−1; i=2, 3, . . . , n/2

}
> 0.2 (n/2)−1/2 (2.8)

9

Numbers of calculations of F (#F)
n

Case 1 Case 2 Case 3 Case 4 Case 5

20 715 842 752 626 852
40 3822 1988 3880 3719 2991
80 13766 12594 24399 13767 13893
160 36576 48185 50339 50301 58124
320 142263 95285 101546 181363 154182

Table 2: BOBYQA (Version 1) applied to the problem (2.6)–(2.7)

is achieved, where p(o)
j

, j =1, 2, . . . , n/2, are the points (2.5) in the case x=x(o).

The values ρbeg =10−2 and ρend =10−6 are set. The choices of n are shown in the
tables of results, and the number of interpolation conditions is always m=2n+1.
Five cases for each n are generated by different random choices of x(o) that satisfy
condition (2.8). We ignore the fact that the problem has many local and global
minima. Instead, the accuracy of each final vector of variables is indicated by
recording the final residuals of the KKT conditions.

Table 2 gives the total number of function values that occur when BOBYQA
(Version 1) is applied to each of the test problems of the previous paragraph. It
seems that these calculations are more difficult than those of Table 1. The greatest
final value of the ∞-norm of the KKT residual vector in the experiments of Table
2 is 8.6×10−5.

Version 2 of BOBYQA is a simplification of Version 1. Specifically, d
(k)
cd is

chosen instead of d
(k)
full as the approximate solution of the subproblem (2.2), which

avoids all the conjugate gradient steps and two dimensional searches that occur
when d

(k)
full is calculated from d

(k)
cd . A disadvantage of Version 2, however, is that

the divisors tend to be smaller when updating the inverse matrix of Section 1,
which provides the parameters of the Lagrange functions and of the change D(k) =
Q(k+1)−Q(k) to the quadratic model. On the other hand, it happens often that d

(k)
cd

is a multiple of a coordinate direction, and then the move from x(k) to x(k)+d
(k)
cd

stays on the boundary of all or all but one of the constraints (1.17) that are active

at x(k). Thus the new function value F (x(k)+d
(k)
cd) of Version 2 of BOBYQA may

be more useful than the value F (x(k)+d
(k)
full) of Version 1.

The last remark shows wisdom after the event that was accumulated from
several numerical experiments. In particular, when Version 2 is applied instead
of Version 1 to the test problems of Table 2, without changing the data of the
calculations, the results in Table 3 are obtained. We see in these tests that the
simplification to BOBYQA provides major gains in efficiency, except in some of
the n=20 cases. The final values of the ∞-norms of the KKT residual vectors in
the Table 3 calculations are all less than 1.3×10−5, which is another improvement
over the experiments of Table 2.

10

Numbers of calculations of F (#F)
n

Case 1 Case 2 Case 3 Case 4 Case 5

20 723 592 935 625 723
40 3380 1291 2847 3220 2291
80 12336 11020 7963 9458 11157
160 29834 21806 23746 24990 21212
320 66682 48242 53189 64121 44775

Table 3: BOBYQA (Version 2) applied to the problem (2.6)–(2.7)

The unexpected superiority of Version 2 over Version 1 of BOBYQA encour-
aged me to investigate a similar modification to NEWUOA. A report on the
progress so far of this new work is given in the next section.

3. On the “alternative” iterations of NEWUOA

It is suggested in the last section that Version 2 of BOBYQA may be more efficient
than Version 1, because the step from x(k) to x(k)+d

(k)
cd stays on the boundaries

of all, or all but one, of the constraints that are active at x(k). Nevertheless, in
this section we consider the possibility that Version 2 may also be better when
there are no constraints on the variables. For convenience, we continue to apply
the BOBYQA software, and we remove the influence of the constraints by setting
the values ai = −1010 and bi = 1010, i = 1, 2, . . . , n, in expression (1.17). Thus

the vectors d
(k)
full and d

(k)
cd , derived from subproblems (2.2) and (2.3) respectively,

become independent of the simple bounds, but the other features of these vectors
are retained. In particular, d

(k)
cd remains the exact solution of subproblem (2.3),

because the set Lcd still contains only n+1 straight lines, namely the lines through
x(k) that are parallel to the coordinate directions, and the single line through x(k)

and the interpolation point y(k)
t

that is going to be dropped. Further, d
(k)
cd is

still used as a starting point of the iterative procedure that calculates d
(k)
full by

applying conjugate gradient steps and two dimensional searches on the boundary
of the trust region. Therefore, in the usual case when d

(k)
full is different from d

(k)
cd , the

extra work of Version 1 improves the value of the objective function |Λ(k)
t (x(k)+d)|,

d∈Rn, that occurs in the two subproblems.
At present there is only one version of NEWUOA, but in this section we

are going to compare algorithms for unconstrained optimization that differ in the
calculation of d(k) by the “alternative” iterations. Therefore we take the view that
the results of Table 1 are given by “The d

(k)
full version applied to problem (1.16)”.

Indeed, most of the captions of the tables in this section have the form “The d(k)
∗

version applied to problem (u.v)”, where the subscript “∗” may be “full” or “cd”

11

Numbers of calculations of F (#F)
n

Case 1 Case 2 Case 3 Case 4 Case 5

10 327 303 349 412 235
20 837 917 826 725 766
40 1550 1623 1747 1732 1823
80 3645 3488 4079 3357 3578
160 6573 7084 7012 6733 6761
320 12506 12935 12839 12407 12291

Table 4: The d
(k)
cd version applied to problem (1.16)

for instance, d(k)
∗ being the choice of d(k) on the alternative iterations, while “(u.v)”

is the number of the display in the text that specifies the objective function of the
unconstrained calculation. All of the numerical results were produced by versions
of BOBYQA, as mentioned already, with ai and bi, i = 1, 2, . . . , n, being set to
values that cause the bounds (1.17) to be irrelevant.

In order to make comparisons with Table 1, the d
(k)
cd version of the software

was applied to the sum of squares objective function (1.16), using exactly the
same data and random numbers as before. The results are given in Table 4. We
see that all but two of the entries with n≤ 40 are better than the corresponding
entries in Table 1, but, unfortunately, all the entries in the last two rows of
Table 4 are worse. These figures suggest that, besides being easier to implement,
the replacement of d

(k)
full by d

(k)
cd may reduce the number of iterations in many

unconstrained calculations with fewer than 50 variables. The final x(k) achieves
the property ‖x(k)−x∗‖∞<1.5×10−5 in all the tests of Table 4.

The relatively poor figures in the last two rows of Table 4 may be due to the
hugeness of spaces of more than 100 variables. Indeed, if d is restricted to the n+1
straight lines of Lcd, then it is highly unlikely that a good approximate solution
to the subproblem (1.11) can be found. Nevertheless, the results in the n = 160
and n=320 rows of Table 4 are not bad. Therefore more research is needed into
the choice of d(k) by the alternative iterations.

We are going to investigate another choice experimentally, partly because it
has the advantage of being convenient if there are general linear constraints on
the variables. In order to describe it, we let d

(k)
ip be the exact solution to the

subproblem

Maximize |Λ(k)
t (x(k)+ d)| subject to ‖d‖ ≤ ∆(k) and x(k)+ d ∈ Lip, (3.1)

where Lip⊂Rn is the union of m−1 straight lines, each of these lines being through
x(k) and another of the interpolation points y(k)

j
, j =1, 2, . . . ,m. Again the value

Λ
(k)
t (x(k)) = 0 is employed, and again the gradient ∇Λ

(k)
t (x(k)) is computed for

use in all the line searches. Further, the remaining freedom in the quadratic

12

Numbers of calculations of F (#F)
n

Case 1 Case 2 Case 3 Case 4 Case 5

10 298 302 312 362 300
20 1021 870 711 850 776
40 1906 1674 1451 1867 1878
80 3387 2933 3288 3236 3061
160 5983 5853 5911 6239 5802
320 11104 11599 11503 11427 11559

Table 5: The d
(k)
ip+ version applied to problem (1.16)

function Λ
(k)
t (x), x∈Rn, on each of the straight lines is taken up by one of the

Lagrange conditions (1.10). Thus the calculation of d
(k)
ip is even easier than that

of d
(k)
cd . Numerical results with the choice d(k) =d

(k)
ip on the alternative iterations,

however, tend to be unfavourable when n is large. In particular, the values of #F
that correspond to the entries in the last row of Table 1 or 4 are 15043, 16391,
19859, 21582 and 15069, while the final errors ‖x(k)−x∗‖∞ in these cases range
from 2.5×10−5 to 3.8×10−5. General linear constraints have been mentioned
because, if the points y(k)

j
, j =1, 2, . . . ,m, are feasible, then all the line segments

between them are also feasible, and they include much of the set Lip.

A weakness of picking d(k) =d
(k)
ip is that there is no resistance to any tendencies

for the points y(k)
j

, j =1, 2, . . . ,m, to lie in an affine subset of dimension less than

n. Indeed, if the points y(k)
j

, j = 1, 2, . . . ,m, had this property, then it would be

inherited by the new interpolation points when formula (1.8) is applied. Although
this degenerate situation is hypothetical, it provides some support for giving more
attention to the gradient ∇Λ

(k)
t (x(k)). Therefore we compare |Λ(k)

t (x(k) +d
(k)
ip)|

with the greatest value of |Λ(k)
t (x(k)+d)| that can be achieved by letting d be a

multiple of ∇Λ
(k)
t (x(k)) that satisfies ‖d‖≤∆(k). This value is at least the product

‖∇Λ
(k)
t (x(k))‖∆(k), because Λ

(k)
t (x), x∈Rn, is a quadratic function that is zero at

x(k). Our comparison is the easy test

|Λ(k)
t (x(k)+ d

(k)
ip)| ≥ cip ‖∇Λ

(k)
t (x(k))‖∆(k), (3.2)

where cip is a prescribed nonnegative constant. If this condition holds, we retain

d(k) =d
(k)
ip , but otherwise we prefer the “Cauchy point”

d(k) = ±∆(k) ‖∇Λ
(k)
t (x(k))‖−1 ∇Λ

(k)
t (x(k)), (3.3)

where the ± sign is calculated to give the greater value of |Λ(k)
t (x(k)+d(k))|. We

let d
(k)
ip+ denote this choice of d(k) on the alternative iterations.

13

Numbers of calculations of F (#F)
Version

Case 1 Case 2 Case 3 Case 4 Case 5

d
(k)
full 25281 26303 24615 26498 26297

d
(k)
cd 34488 30192 27713 31164 37343

d
(k)
ip 47685 201260 87080 34233 187714

d
(k)
ip+ 10093 10721 10905 10305 10611

d
(k)
ip++ 24810 10014 26351 11651 26831

Table 6: All versions applied to problem (3.4) with n=320

Table 5 gives results for the trigonometric sum of squares when d
(k)
ip+ is tried

with cip =0.1, all the other data and random numbers of the experiments being as
before. The final values of ‖x(k)−x∗‖∞ are now at most 1.1×10−5. A comparison
with Table 1 shows that the entries in Table 5 are less than the corresponding
values of #F in Table 1 in 25 of the 30 cases. Moreover, all the entries in the
last 3 rows of Table 5 are better than the corresponding entries in those rows of
Table 4. Thus we find that the choice d(k) = d

(k)
ip+ brings some advantages. The

d
(k)
ip+ calculations were repeated with cip =0.5 instead of cip =0.1. Improvements in

#F over the results in Table 5 occurred in only 7 of the 30 trials, and the greatest
final value of ‖x(k)−x∗‖∞ increased a little to 1.4×10−5. For convenience later, we

let d
(k)
ip+ and d

(k)
ip++ denote the d

(k)
ip+ choices of d(k) in the cases cip =0.1 and cip =0.5,

respectively.
The author has applied the d

(k)
full, d

(k)
cd , d

(k)
ip , d

(k)
ip+ and d

(k)
ip++ versions of BOBYQA

to the ARWHEAD test problem in Powell (2006), which has the objective function

F (x) =
∑n−1

j=1 {(x2
j + x2

n)2− 4xj+ 3}, x∈Rn. (3.4)

The least value of F is zero, which occurs when the variables take the values
xj = x∗j = 1, j = 1, 2, . . . , n−1 and xn = x∗n = 0. The starting vector x(o) is given

the components x
(o)
j = 1, j = 1, 2, . . . , n, and the other parameters are set to the

values m = 2n+1, ρbeg = 0.5 and ρend = 10−6. Again the choices of n are 10, 20,
40, 80, 160 and 320, and again there are five cases for each n, distinguished now
by the ordering of the variables, which is done by a random permutation. The
permutations would be irrelevant in exact arithmetic, but in practice they can
cause the calculations to proceed very differently. The final values of ‖x(k)−x∗‖∞
are a triumph for the ability of BOBYQA to recover from damage by computer
rounding errors, the greatest final value of ‖x(k)−x∗‖∞ in all of the ARWHEAD
tests being only 8.0×10−6. The relative changes in #F due to the permutations are
greatest when there are 320 variables, these results being shown in Table 6. The
tests with smaller values of n confirm that the d

(k)
ip version of BOBYQA requires

the most iterations. The superiority of the d
(k)
ip+ version in Table 6, however, fails

14

Numbers of calculations of F (#F)
Version

Case 1 Case 2 Case 3 Case 4 Case 5

d
(k)
full 21739` 23384 21727 24735` 27177

d
(k)
cd 18126 20255 18783 19445 18794

d
(k)
ip 91629` 13746 14960 13764 14374

d
(k)
ip+ 26932` 23614 27673 25006 27475

d
(k)
ip++ 24009` 26026` 20372 23319 24895

Table 7: All versions applied to problem (3.5) with n=320

spectacularly when n is reduced. In particular, when n is 80, the five values of
#F for d

(k)
ip+ are all in the range [7466, 7995], while the corresponding ranges for

d
(k)
full, d

(k)
cd and d

(k)
ip++ are [1990, 2406], [3690, 4469] and [3170, 4258], respectively.

Furthermore, the d
(k)
cd version is the clear winner in all the n=40 tests, but d

(k)
ip++

takes first place easily with #F =6974 in one of the n=160 cases. These major
differences seem to be unreasonable.

More confusion occurs when the five versions of BOBYQA are applied to the
CHROSEN test problem in Powell (2006). It has the objective function

F (x) =
∑n−1

j=1 {4 (xj− x2
j+1)

2+ (1−xj+1)
2}, x∈Rn, (3.5)

which is least at xj =x∗j =1, j =1, 2, . . . , n, but convergence to a local minimum

is also possible, and then the final values of F (x(k)) and ‖x(k)−x∗‖∞ are about
3.628 and 1.784, respectively. As in the ARWHEAD experiments, the data are
m=2n+1, ρbeg =0.5 and ρend =10−6, and permutations of the variables provide
five cases for each n. The values of n are also as before, but the starting vector x(o)

is given the components x
(o)
j =−1, j =1, 2, . . . , n. The n=320 results are shown

in Table 7 for comparison with Table 6. The superscript “`” in Table 7 denotes
convergence to the local minimum that has been mentioned, while in the other
cases the greatest final value of ‖x(k)−x∗‖∞ is 8.1×10−5. Ignoring the d

(k)
ip rows for

the moment, we see that d
(k)
cd is a clear winner in Table 7, but it is in last place in

Table 6. Another difference is that the superiority of d
(k)
ip+ over d

(k)
ip++ in Table 6 is

not achieved in Table 7. Further, in each of the 25 CHROSEN tests with smaller
values of n, the d

(k)
ip+ value of #F is greater than 1.2 times the d

(k)
ip++ value. The

huge success of d
(k)
ip in Cases 2–5 of Table 7 is an unexplained mystery, its severe

inefficiency in Case 1 being typical, as confirmed in Table 6. Another huge success
and four severe inefficiencies are given by d

(k)
ip in the n=160 experiments of this

paragraph, the values of #F being 75049, 6708, 27575`, 32820` and 32327`.
By changing the starting vector x(o), we obtain some results for the CHROSEN

function (3.5) that are not chaotic for large n. Specifically, each component of

15

Average values of#F
n

d
(k)
full d

(k)
cd d

(k)
ip d

(k)
ip+ d

(k)
ip++

10 326 329 375 367 325
20 772 708 822 745 727
40 1744 1666 2749 1786 1801
80 3810 3582 7965 3566 3523
160 8291 7697 33010 7837 7475
320 15210 14320 73852 15789 13075

Table 8: All versions applied to problem (3.5) with random x(o)

x(o) is picked randomly and independently from the logarithmic distribution on
[0.5, 2.0], we retain m = 2n+1 and ρend = 10−6, but we set ρbeg = 0.1. Again
five test problems are generated for each of the usual values of n, by different
choices of the random x(o) instead of by permutations of the variables. These data
avoid convergence to the local minimum, the greatest final value of ‖x(k)−x∗‖∞
throughout the experiments being 7.0×10−4, which is due to the poor accuracy
of the d

(k)
ip calculations with 320 variables. The results are so consistent that, for

each n and each choice of d(k) on the “alternative” iterations, it is suitable to
present averages of #F over the five test problems. They are reported in Table
8, the averages being rounded to the nearest integer. We see that the use of d

(k)
ip

can be very expensive, as noted earlier, but that there are not large differences
between the other columns of Table 8. The d

(k)
cd and d

(k)
ip++ versions seem to be best

for the smaller and larger values of n, respectively. Thus there is good support
for the idea of replacing d

(k)
full by a choice of d(k) that is easier to calculate.

4. On the number of interpolation points

The number of interpolation points throughout the experiments so far is m=2n+1.
We investigate briefly in this section whether some other choices of m may be more
efficient. Reductions in m decrease the routine work of each iteration, because
one of the main tasks is updating the inverse of the matrix of an (m+n+1) by
(m+n+1) linear system, as mentioned in Section 1. On the other hand, decreases
in m also reduce the amount of information that is given to quadratic models
by interpolation conditions, so the total number of iterations may increase. We
continue to take n from the set {10, 20, 40, 80, 160, 320} for our numerical tests. We
compare the choices m=n+6, m=1.5n+1 and m=2n+1, because interpolation
takes up m−n−1 degrees of freedom in the second derivative matrix of each
quadratic model, and we prefer m to be of magnitude n.

Our first experiments with the smaller values of m employ the sum of squares
objective function (1.16), without changing any of the other values of the param-

16

Range of #F
n

m=2n+1 m=1.5n+1 m=n+6

10 235–446 327–614 327–614
20 711–1021 885–1640 1025–1830
40 1451–2284 2049–3289 2747–4749
80 2933–4079 5825–7346 6263–12246
160 5589–9510 11941–14719 15762–27477
320 11018–21582 24025–29527 34854–61109

Table 9: All versions applied to problem (1.16) for 3 values of m

Range of #F
n

m=2n+1 m=1.5n+1 m=n+6

10 248–474 252–496 252–496
20 603–962 611–968 718–1139
40 1459–2021∗ 1548–2303∗ 1502–2452
80 3096–4110∗ 3091–4809∗ 3763–4903
160 7139–8929∗ 7267–10022∗ 8682–12720
320 12241–18465∗ 14064–20433∗ 18719–30007

Table 10: The CHROSEN tests with random x(o) for 3 values of m

eters and data that have been specified already. All five versions of the choice of
d(k) on the “alternative” iterations are tried. Thus 25 values of #F are obtained
for each m and n, the least and greatest of them being reported in Table 9. We
see that the number of iterations increases when m is decreased, which is allevi-
ated slightly by the reduction in the work of each iteration. All the final values of
‖x(k)−x∗‖∞ in the tests of Table 9 are less than 1.3×10−4. Another interesting
point that receives attention later is that, although it is stated near the end of the
paragraph that includes expression (3.1) that the choice d(k) =d

(k)
ip is unfavourable,

this does not happen in the present experiments with the smaller values of m.
The Table 8 tests with the CHROSEN objective function (3.5) and the random

choices of x(o) have also been run for m=1.5n+1 and m=n+6. The range of #F
that occurs for each m and n is shown in Table 10, except that the superscript “∗”
indicates that all the d

(k)
ip calculations are excluded from the results. The reason

for doing so is to avoid counts that are unfair to the other choices of d(k), as
indicated by the very large numbers in the d

(k)
ip column of Table 8. The d

(k)
ip values

of #F are particularly remarkable when m is 1.5n+1 and n is 320. Indeed, in the
five cases that are provided by the random choices of x(o), the values of #F are
132095, 92833, 49485, 11405 and 11841. It follows from Table 10 that, although

17

Range of #F for the 5 cases
Version

m=2n+1 m=1.5n+1 m=n+6

d
(k)
full 8658–9695 7967–9538 5673–7015

d
(k)
cd 9357–11592 7906–10102 7999–14719

d
(k)
ip 53860–59765 20495–37102 7439–10698

d
(k)
ip+ 16531–19105 4646–14549 9361–9749

d
(k)
ip++ 6974–14404 4885–9270 5200–6000

Table 11: The ARWHEAD tests with n=160 for 3 values of m

d
(k)
ip is a clear loser on the first three of these occasions, it is a clear winner in the

other two cases. There are no “∗” superscripts in the last column of the table,
because, for m=n+6, the performance of d

(k)
ip is similar to the performance of the

other choices of d(k). Another noteworthy feature of Table 10 is that the increases
in #F are much smaller than in Table 9 when m is reduced. Thus, for each n,
the choice m=n+6 provides the fastest of the calculations in Table 10.

It happens sometimes that the number of iterations is reduced when m is de-
creased from 2n+1 to 1.5n+1 and then from 1.5n+1 to n+6. This unexpected
behaviour is clear in many of the tests for large n when F is the ARWHEAD
objective function (3.4). As in the experiments of Table 6, we set ρbeg = 0.5,

ρend = 10−6 and x
(o)
j = 1, j = 1, 2, . . . , n, and again five cases are constructed

for each n by random perturbations of the variables. The results for n = 160
are given in Table 11, including a comparison of the five versions of d(k) on the
“alternative” iterations, the entries being the least and greatest values of #F
that occurred among the five cases for each m and d(k). We see that, when m
is reduced, the upper limits of the ranges become smaller in every row of the
table, except for the last entry in the d

(k)
cd row. All the other usual choices of n

were tried too, the greatest final value of ‖x(k)−x∗‖∞ in all these experiments
being only 1.02×10−5. For n = 320 and m = n+6, the ranges of #F that corre-
spond to the last column of Table 11 are 14826–20885, 21610–28663, 13198–15177,
13396–18950 and 15425–19557 for d

(k)
full, d

(k)
cd , d

(k)
ip , d

(k)
ip+ and d

(k)
ip++, respectively.

Thus d
(k)
ip has become a hero, although it is highly inefficient in Tables 6 and 8.

One reason for preferring n=160 to n=320 in Table 11 is to avoid the very wide
range of #F that occurs for the five permutations of the variables when the choices
n=320, m=1.5n+1 and d(k) =d

(k)
ip are made. Indeed, #F takes the values 16616,

12941, 11692, 10288 and 106295. The corresponding entry for n=160 in Table 11
is the range 20495–37102. By comparing these figures, we find that substantial
reductions in #F are possible when n is increased if the consequences of the
permutations of the variables are favourable. Such conclusions have to be drawn
from numerical experiments without theoretical analysis, because the results are

18

independent of the permutations in exact arithmetic. These huge differences in
#F in practice do not impair the accuracy of the final x(k), which confirms that the
software includes techniques that provide good automatic recovery from damage
by computer rounding errors.

I have to decide on one choice of d(k) by the “alternative” iterations before
releasing the BOBYQA software. The present paper has been written in advance
of that selection, in order to provide a contribution on recent research to the
Special Issue of IMAJNA that will celebrate my 70th birthday. I hope the reader
finds that the information in the given numerical results is sufficiently interesting
to compensate for the lack of completeness in the work that is presented. I would
like to pick a d(k) that can be adapted conveniently to linear constraints on the
variables, that can be calculated as easily as the exact solution of subproblem (2.3)
or (3.1), that is not influenced much by orthogonal rotations of the variables, and
that combines good final accuracy with relatively low values of #F . This task is
very challenging because BOBYQA is intended to be suitable for the minimization
of a wide range of objective functions.

The choice of the number m of interpolation points also deserves further in-
vestigation. A comparison of Tables 9 and 11 suggests that the best choice may
depend strongly on F (x), x∈Rn. Another consideration is that the number and
positions of the points have to be suitable for defining all the linear polynomial
terms in the updating of the quadratic model, because the method that takes up
the freedom in the updating gives attention only to second derivatives. Thus the
updating has the welcome property of being independent of shifts of the origin of
Rn. I am going to ask the users of BOBYQA to pick their values of m. Therefore
my decisions need to provide software that is without the kinds of inefficiencies
that are shown in the d

(k)
ip entries of Tables 6 and 8.

References

J.E. Dennis and R.B. Schnabel (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice Hall (Englewood Cliffs).

M.J.D. Powell (2006), “The NEWUOA software for unconstrained optimization
without derivatives”, in Large-Scale Nonlinear Optimization, eds. G. Di Pillo
and M. Roma, Springer (New York), pp. 255–297.

19

