
Interpolation in Special Orthogonal Groups

Tatiana Shingel
DAMTP, Centre for Mathematical Sciences

University of Cambridge

August 7, 2007

Abstract

The problem of constructing smooth interpolating curves in non-Euclidean spaces
finds applications in different areas of science. In this paper we propose a scheme to
generate interpolating curves in Lie groups, focusing on a special orthogonal group
SO(n). Our technique is based on the exponential representation of elements of the
group, which allows to transfer the problem to the corresponding Lie algebra so(n)
and benefit from the linearity of this space. Due to the exponential representation
we can obtain a high degree of smoothness of an interpolating curve at relatively
low costs. The underlying problem is challenging because the standard SO(n) −→
so(n) map is multi-valued.

1 Introduction

In the present paper we develop an algorithm in order to provide a constructive solution
to the following problem:

Let Q1, Q2, . . . , Qm ∈ SO(n) be an ordered set of elements and s1 < s2 <
· · · < sm be given points in [0, 1]. Construct a sufficiently smooth interpolation
function Q : [0, 1] −→ SO(n) such that

Q(sk) = Qk, for k = 1, . . . , m. (1)

A Lie group SO(n) can be naturally embedded in the Euclidean space Mn(R) of all n× n
matrices. Therefore, we will identify the elements of SO(n) with real n × n orthogonal
matrices of unit determinant.

Construction of smooth interpolating curves in non-Euclidean spaces is an interesting
theoretical problem which finds many applications in engineering and physics. Interpola-
tion in the 3-dimensional rotation group SO(3) has immediate application in robotics for
path planning of a rigid body, in computer graphics for the animation of 3D objects, and
elsewhere. Interpolation in Lie groups can be applied in geometric integration, when one
needs to approximate a solution at intermediate points in the integration interval. There
exist several methods and algorithms which solve the interpolation problem. Depending
on which properties of the trajectory the algorithm is focused, it has certain implementa-
tion costs, which usually grow with the degree of smoothness. There are other restrictions
such as considering a problem of interpolation only locally, i.e. when the interpolation

1

data can be covered by a single coordinate chart on the manifold. We believe that under
this restriction the interpolation problem falls short of having an adequate approach, since
interpolation is a global concept by its very nature and should not be considered in a local
setting.

Among the methods that we have encountered in literature very common are appro-
priate generalizations of classical interpolation techniques [4], [16]. The De Casteljau
algorithm, which is used to generate polynomial spline curves in Euclidian spaces, is pop-
ular due to its simple geometric construction, based on the application of successive linear
interpolations. A sequence of d − 1 points known as control points is used to construct
a polynomial of degree d joining two given points in Rn. A concatenation of polynomial
segments generates a spline curve. The natural generalization of a straight line in a mani-
fold is the minimizing geodesic. The existence of unique minimizing geodesics between the
points to be interpolated is the key idea in the extension of the De Casteljau algorithm
to non-Euclidian spaces, in particular to complete Riemannian manifolds. However, in
practice the algorithm can be implemented only when the computation of the minimiz-
ing geodesics is feasible and affordable. Numerous examples in literature reveal that this
is a computationally expensive task even in simple cases. In addition, the modified De
Casteljau algorithm is used as a computational device to construct at most C1-splines
on manifolds, since the computational cost increases substantially when higher degree of
smoothness of the interpolating curve is required. Regarding this issue, reductions in
complexity were recently presented in the work [18], in which the authors introduced a
smoothing function which allows to construct Ck-polynomial splines on complete Rieman-
nian manifolds in three steps. The choice of the smoothing function depends on the degree
of smoothness k prescribed in advance. In case of compact Lie groups there is an easy
construction of a curve on the group, connecting two points, which makes the algorithm
easy to implement. In particular, for Qk, Qk+1 ∈ SO(n) the corresponding curve has the
form Qke

t log(QT
k Qk+1) with t ∈ [0, 1]. We would like to point out that the issue of unique-

ness of such curves, which does not seem to be covered in [18], is closely related to the
nature of the logarithmic function. Due to its importance, we will discuss in the sequel
the role of the logarithm in interpolation in considerably greater detail.

There have been many attempts to solve similar interpolation problems on Lie groups
in terms of the coordinates of the embedding space [10], [13]. The idea is to find a suit-
able mapping in order to express the information in a linear space, solve the interpolation
problem there and pull the trajectory back to a manifold. Popular SO(3) interpolation
algorithms adopt various re-parametrizations of the rotation matrices (e.g. rotation axes
and angles, unit quaternions) and perform cubic spline interpolation based on such repre-
sentations [10]. These algorithms, however, often do not generalize to higher-dimensional
manifolds. Recently the authors of [7] proposed to combine the pull back/push forward
technique with rolling a manifold (e.g. sphere, SO(n) or a Graßmann manifold) on its
affine tangent space like a rigid body. In this manner the rolling motion is described by
the action of the Euclidian group SE(n) on the embedding space. The interpolation prob-
lem is then solved on the affine space and rolled back to the manifold, avoiding in this
manner trajectory distortions. The solution is obtained in closed form which is convenient
for implementations. However, the outlined method is only applied to a localized set of
data on the manifold, i.e. situated within a single chart with respect to a chosen local
diffeomorphism.

In this work we adopt a projection technique that exploits the mathematical elegance of
the Lie group SO(n) and the corresponding Lie algebra so(n). Note that the exponential

2

map exp : so(n) −→ SO(n) is surjective, which implies that for any Q ∈ SO(n) there
exists at least one A ∈ so(n) such that Q = exp(A). Consequently, we would like to
transfer the data onto the Lie algebra so(n), interpolate the points using tools of the
classical interpolation theory for linear spaces, and then map the path obtained in the
algebra back to the group by the exponential map. Exponential representation of the
interpolation curve insures relatively easy means to obtain high degrees of smoothness,
which is a main source of complexity in the algorithms mentioned earlier. The key point in
our approach is a novel projection method from the group to the algebra, which is presented
in the sequel. The necessity of the method is justified by a simple observation that the
exponential map is not injective, so a ”natural” way to choose one of the corresponding
preimages in the Lie algebra space is often not apparent. In particular, we will provide a
simple example showing that using standard logarithmic map for the projection may create
large distortions of an approximating curve. For the implementation of the algorithm we
require that any two consecutive interpolation points are situated within a single chart
(with exponential map as a local diffeomorphism), but the whole set of data we consider
globally on SO(n). Each step in the algorithm is based only on the knowledge of the
projection in the previous step, which in turn is obtained via a specially constructed,
rapidly convergent iterative procedure.

Lie groups can provide a nonlinear motion on manifolds by means of Lie group actions.
A manifold which is transitively acted upon by a Lie group is called a homogeneous space.
A popular example which has clear geometric interpretation is the unit sphere S2 which
is a homogeneous space with respect to an SO(3)-action. Other well-known examples of
homogeneous spaces under an action of SO(n) are Stiefel manifold, Graßman manifold and
a torus. Hence, the question of interpolation in homogeneous spaces is closely related to the
question of interpolation in Lie groups. However, the procedure is not as straightforward as
it seems due to the presence of isotropy for Lie group actions [15]. In general, the isotropy
subgroup is defined pointwise on a manifold, and is a set of those elements in the group
which fix a given element on the manifold under the group action. For example, for any
point x on a sphere S2 there is a nontrivial isotropy group in SO(3), which is a subgroup
of rotations in the plane perpendicular to the vector ~x. In case when an isotropy group
is nontrivial, it is unclear what elements to use in the interpolation process. However, we
believe that the extra freedom which is introduced by isotropy can be used to improve
the quality of interpolating function, similarly to an approach that has been pursued in
[11], where the authors used isotropy to improve significantly the numerical accuracy of
Lie group methods. This important application of interpolation in Lie groups is the major
target for our future research. In this work we will use a sphere S2 acted upon by the
rotation group SO(3) only for illustration purposes, meaning that particular rotations for
points on the sphere are prescribed in advance.

The rest of the paper is structured as follows: Section 2 presents few relevant notions
from the theory of Lie groups. Here we introduce a splitting formula for matrix expo-
nential, which is obtained by solving a linear differential equation on a Lie group using a
Magnus expansion [12]. Being an interesting theoretical result the formula is also a major
tool for the iterative scheme which we propose to use for interpolation; Section 3 reports
a failure of simple approaches suggested by techniques from matrix linear algebra which
underlies the difficulties of the interpolation problem. The iterative algorithm which is
used for rapid computation of interpolating curves is introduced in Section 4; Section 5
reports some numerical examples, which are then followed by a Conclusion.

3

2 Basic definitions and background theory

We wish to keep Lie-group and Lie-algebra notation and knowledge to minimum and
expect the reader to be familiar with basic concepts. These fundamental notions are
covered in detail in [1],[19].

When measuring distances between the elements of the group we will consider SO(n)
as naturally embedded into a linear space of matrices Mn(R). In what follows we will
use the spectral norm of a matrix (denoted simply by ‖ · ‖), unless stated otherwise. By
definition,

‖A‖ = max
x6=0

‖Ax‖2

‖x‖2
= (maximal eigenvalue of AAT)1/2,

where ‖ · ‖2 is the Euclidean norm of a vector. Note that for any Q ∈ SO(n) its spectral
norm is equal to 1, since QQT = I. There are other obvious ways to measure distances
between the elements on manifolds, for example along geodesics, which we, however, will
not pursue in this paper.

The exponential map for the Lie group SO(n) is the usual exponential map of matrices,
given by the Taylor series

exp : A ∈ so(n) −→ exp(A) ∈ SO(n), exp(A) =
∞∑

k=0

Ak

k!
.

Similarly, the logarithm is defined by the following power series:

log : Q ∈ SO(n) −→ log(Q) ∈ so(n), log Q =
∞∑

k=1

(−1)k+1 (Q− I)k

k
,

which converges for matrices Q with ‖Q− I‖ < 1. The fact that this definition is invalid
outside the specified domain causes major problems for interpolation. The logarithm is
not unique, which follows from the non-uniqueness of the logarithm of a complex number.
The easiest way to see this in this setting is to apply the above power series expansion to
the diagonalized form of Q, namely to PDP−1, where P is orthogonal and D is diagonal
with eigenvalues of Q as diagonal entries. There are countably many choices of a loga-
rithm branch for each of the eigenvalue and complexity increases exponentially with the
dimension of the matrix Q.

We will make use of the following Lie-group and Lie-algebra operators [1], [19]:

AdQE = QEQ−1, Q ∈ SO(n), E ∈ so(n),
adAE = [A,E], A, E ∈ so(n),

where [·, ·] is the Lie bracket, which is in this case just the commutator of matrices. There
is an important formula, relating Ad, ad and the exponential map:

Adexp(A) = exp(adA).

It is also useful to recall the definition of the dexp operator [9],

dexpA =
eu − 1

u

∣∣∣∣
u=adA

=
∞∑

k=0

1
(k + 1)!

adk
A, A ∈ so(n),

4

where adk
A is defined as an iterated commutator,

ad0
XY = Y,

adk
XY = [adk−1

X , Y], X, Y ∈ Mn(R).

We conclude the chapter by considering the following symmetric product

e−
t
2
Aet(A+E)e−

t
2
A, (2)

where A,E ∈ so(n) and t > 0 is a real parameter. We restrict E to be small enough so
that for t = 1 the product (2) is in a small neighborhood of the identity matrix in the
group SO(n). We seek to construct a function LA : so(n) −→ so(n) such that

e−
t
2
Aet(A+E)e−

t
2
A = eLA(tE) + R(t, ‖E‖m, ‖A‖)

with m ≥ 2. In this representation the higher powers of the norm of E should reduce the
influence of ‖A‖ on the remainder term R. We intend to use the Magnus expansion (ME)
[12] to obtain a closed expression for the function LA. This formula is analogous to the
symmetric BCH formula [8] in a sense that it is obtained by some means of truncating the
BCH expansion. The method of truncation, however, is not apparent from the classical
form of the symmetric BCH formula. We use ME since it gives a tool to collect the terms
which have the same order in powers of ‖E‖. Furthermore, the application of ME implies
the convergence condition, which, as we will see later, does not depend on the size of
the matrix A, whereas from the general theory for the BCH formula we know that it is
convergent only for matrices A and E of small norm.

Let us regard t as a variable and differentiate the function Y (t) = e−
t
2
Aet(A+E)e−

t
2
A

with respect to it. Then

Y ′(t) = U(t)Y (t)− Y (t)W (t), Y (0) = I, (3)

where U(t) = 1
2e−

t
2
AEe

t
2
A = 1

2e
−tad 1

2 AE and W (t) = −1
2e

t
2
AEe−

t
2
A = −1

2e
tad 1

2 AE.
We follow the method suggested in [8] to solve the above equation in terms of ME. Using
the same notation, we let P (t) = U(t)−W (t) = cosh(tad t

2
A)E and Q(t) = U(t)+W (t) =

− sinh(tad 1
2
A)E.

When writing f(adX), where f is some function, we will understand this expression as
a power series expansion f(adX) =

∑∞
k=0 αkadk

X , where f(z) =
∑∞

k=0 αkz
k is the Taylor

expansion of a function in its domain of analyticity. Also f(adX) is understood as a
function of a matrix, since a commutation operator adX is linear and therefore can be
represented by a matrix. We refer the reader to [5], [6] for thorough discussion on the
topic of functions of matrices.

According to [8] we seek a solution to (3) in the exponential form Y (t) = eΩ(t), which
leads to the differential equation for Ω,

Ω′ = dexp−1
Ω P − 1

2
adΩQ, Ω(0) = O.

The solution of the above equation can be expressed in terms of the series

Ω(t) =
∞∑

k=1

Ωk(t), (4)

5

0 50 100 150
0.0285

0.029

0.0295

0.03

0.0305

0.031

0.0315

0.032

k

k2 δ

0 50 100 150
0.063

0.0632

0.0634

0.0636

0.0638

0.064

0.0642

0.0644

k

k2 δ

Figure 1: Here δ‖E‖2 =

∥∥∥∥e−
1
2 AeA+ 1

k
Ee−

1
2 A − exp

(
1
k

sinh(ad 1
2 A

)

ad 1
2 A

E

)∥∥∥∥. In the case of the

left-hand side plot ‖A‖ = 5.8528 and ‖E‖ = 0.7388. In the case of the right-hand side plot
‖A‖ = 14.011 and ‖E‖ = 1.1934.

similarly to the classical Magnus expansion, where Ωk are nested commutators of the
functions P, Q. Note that

P (t) = cosh(tad 1
2
A)E =

∞∑

k=0

t2k

(2k)!
ad2k

1
2
A
E.

Then by definition

Ω1 =
∫ t

0
P (x)dx =

∞∑

k=0

1
(2k)!

∫ t

0
x2kdx ad2k

1
2
A
E

=
∞∑

k=0

t2k+1

(2k + 1)!
ad2k

1
2
A
E =

sinh(tad 1
2
A)

ad 1
2
A

E.

Likewise, the second term is

Ω2 = −1
2

∫ t

0

[∫ x

0
P (ξ)dξ, Q(x)

]
dx

=
1
2

∫ t

0

[∞∑

k=0

x2k+1

(2k + 1)!
ad2k

1
2
A
E, sinh(xad 1

2
A)E

]
dx

=
1
2

∞∑

k=0

1
(2k + 1)!

[
ad2k

1
2
A
E,

∫ t

0
x2k+1 sinh(xad 1

2
A)Edx

]
.

It follows that Ω2 = O(t3). Since Ωk, k ≥ 2 are generated recursively, we deduce that

e−
t
2
Aet(A+E)e−

t
2
A = exp

(
sinh(tad 1

2
A)

ad 1
2
A

E

)
+O(t3). (5)

If the parameter t is set to 1, then Ω1 =
sinh(ad 1

2 A
)

ad 1
2 A

E. With a little more effort (see

Appendix A for details), which includes applying the Taylor series expansion for the sinh
function and taking the integral, we can compute

Ω2 =
1
2

∞∑

k=0

∞∑

l=0

ϕk,l[ad2k
1
2
A
E, ad2l+1

1
2
A

E],

6

where ϕk,l =
∑l

m=0

(
1

(2m+1)!(2l+2k+2−2m)! − 1
(2m)!(2l+2k+3−2m)!

)
. Note that when l, k tend

to infinity, the coefficients decay faster than 1/(k + l + 1)!.
Again due to the recursive nature of higher order terms in the expansion (4) we con-

clude that

e−
1
2
AeA+Ee−

1
2
A = exp

(
sinh(ad 1

2
A)

ad 1
2
A

E

)
+O(‖E‖2). (6)

For the numerical examples (Figure 1) illustrating formula (6), we consider e−
1
2
AeA+ 1

k
Ee−

1
2
A−

exp
(

1
k

sinh(ad 1
2 A

)

ad 1
2 A

E

)
. The graphs display the remainder scaled by k2/‖E‖2, which is sur-

prisingly small even when the matrix ‖A‖ is of large norm.
Regarding the condition for existence of Ω(t) as well as convergence of the series (4),

both could be deduced from the classical case of Magnus series expansion for the fun-
damental solution of a linear differential system, presented in exponential form [9], and
should look like ∫ t

0
‖P (x)‖dx,

∫ t

0
‖Q(x)‖dx ≤ C,

for some constant C > 0. However, to our knowledge the optimal value of C, unlike
in the classical case [14], is not presently available. Nevertheless, using the fact that
‖X‖F = ‖ν(X)‖2, where ‖ · ‖F , ‖ · ‖2 are the Frobenius and Euclidean norms respectively,
and ν is a natural embedding which ”stretches” a matrix into a vector, we can derive the
following estimate for the function P (x),

‖P (x)‖F = ‖ cosh(adx
2
A)E‖F

= ‖ cosh(Cx
2
A)ν(E)‖2 ≤ ‖ cosh(Cx

2
A)‖2‖ν(E)‖2 ≤ ‖ν(E)‖2,

where Cx
2
A is the matrix corresponding to the adjoint operator in the embedded space. The

last estimate is due to the fact that the spectrum of Cx
2
A in case of a skew-symmetric matrix

A is purely imaginary [3], so the hyperbolic cosine is just normal cosine and consequently
‖ cosh(Cx

2
A)‖2 ≤ 1. It is easy to see that the same result is valid for Q(x). We conclude that

existence of the exponential solution Y (t) = eΩ for (3) for some fixed t and convergence
of the series expansion for Ω are predicated by the size of the matrix E only. This is also
justified by the numerical examples above.

3 Naive approach to curve interpolation

An obvious way to generate an orthogonal matrix from an arbitrary matrix is to take its
QR factorization and leave the upper-triangular component out. So in order to generate a
curve satisfying (1), we can simply interpolate the corresponding coefficients of the given
matrices for example by splines and then take QR factorization of the resulting matrix
function. We realize this approach on a spiral curve P (t)v, where v ∈ S2 and P (t) ∈ SO(3)
(Figure 2). It is easy to see from the plot that disregarding the topology of SO(3), which
is what we do when taking QR factorization of P (t) = Q(t)R(t), leads to large distortion
of the interpolating curve Q(t)v from the original curve P (t)v and therefore provides
poor approximation results, as well as lacks smoothness. Superior alternative is to make
use of tools specific to SO(n) and the obvious choice is the exponential map. Since the
exponential map exp : so(n) −→ SO(n) is surjective, for any X ∈ SO(n), there exists

7

Figure 2: The spiral curve is P (t)v ∈ S2, where P (t) is a curve in SO(3). QR factorization
is applied to P (t) = Q(t)R(t) and the curve Q(t)v is plotted.

Y ∈ so(n) such that eY = X. Letting Qr = eAr for r = 1, . . . , m, we can interpolate
the Ars in so(n) by a function R : [0, 1] −→ so(n). This can be accomplished easily
since so(n) is an Euclidean space. Therefore Q(s) = exp(R(s)) is a suitable interpolation
function.

Having the exponential trivialization X = eY at hand, it seems obvious that in order
to find Y , given X, we need to take the logarithm. However, a logarithm is a multi-valued
function, so to render it single-valued we can require that it resides in the principal branch
(this is, for instance, the approach used by the logm function in MATLAB). For the time
being we assume that −1 does not belong to the spectrum σ(X) of a matrix X for any
element X ∈ SO(n) we will be considering, in which case the principal logarithm log(X)
is well-defined.

Consider a curve Q(t) = etA for some A ∈ so(n). Let t1 be such that t1ρ(A) < π
and t2 such that t2ρ(A) > π, and let L(t) be a line segment in the algebra, interpolating
log(exp(t1A)) and log(exp(t2A)) with log being the principal logarithm. We can see from
the plot (Figure 3) that the interpolating curve eL(t) deviates significantly from the curve
etA within the chosen interval and is useless for applications. In order to have meaningful
approximation results we need to be able to follow the correct branch of the logarithm.

One could argue that with a suitable parametrization such that Q1 = et1A, Q2 = et2A

are within one chart, we can avoid the above problem. This can be easily done via the
left translation on the group, using the fact that geodesic curves are invariant under this
action. In other words, the curve segment Q1e

t log QT
1 Q2 for t ∈ [0, 1] will coincide with etA

for t ∈ [t1, t2]. Indeed, but we can obtain this only locally, meaning that the remaining
challenge is how to smoothly patch up different approximations for distinct segments.

This is a manifestation of a deeper problem at the heart of our research: to reconcile
approximation, which by its very nature is a global concept, with the topology of a group
or, with greater generality, a smooth manifold.

4 Following the correct branch: an iterative algorithm

We focuss our attention on developing a constructive approach to interpolate an ordered set
of points Q1, Q2, . . . , Qm in SO(n). Recall that simply taking principal logarithms of the

8

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

0 ≤ k ≤ 1

Figure 3: The curve represents the distance d
(
e(1−k)t1A+kt2A, e(1−k)t1A+k log(et2A)

)
,

where t2 − t1 = 1/10. The maximum of the distance is equal 2.

points in SO(n) renders approximation of the true solution by the interpolation function
next to useless. Consequently, we want to be able to move away from the principal branch
in a smooth manner to the ”correct” branch whenever necessary.

We impose a restriction that any two neighboring elements Qr, Qr+1 in the group are
sufficiently close to each other, by which we mean that e−

1
2
ArQr+1e

− 1
2
Ar is in a small

neighborhood of the identity in the group SO(n), and consequently its logarithm resides
in the principal branch. Assume that for some r we already know Ar such that eAr = Qr.
(Without loss of generality we may assume that Q1 = I, whereby A1 = O.) We want to
find Ar+1 = Ar + Er+1 such that Qr+1 = eAr+1 and the difference Ar+1 −Ar = Er+1 has
small norm. Observe that formula (6) gives an implicit equation for the unknown Er+1.
Whereas we cannot solve the equation, we can use it to approximate Er+1. Consider the
following expression:

Ẽr+1 = TAr log(e−
1
2
ArQr+1e

− 1
2
Ar), (7)

where TAr =
1
2
adAr

sinh(1
2
adAr)

is a linear operator. The operator TAr is defined by the values

of the function f(z) = z/2
sinh z/2 on the spectrum of adAr which is purely imaginary [3], so

f(ix) = ix/2
sinh(ix/2) = x/2

sin(x/2) . Let us assume that the spectrum of the adjoint operator does

not contain the points 2πik, k ∈ Z\{0}, at which the function f(z) = z/2
sinh z/2 is singular

(see Figure 4). Then the operator TAr is bounded.

Theorem 1 For Ẽr+1 defined by (7) we have

Ẽr+1 = Er+1 +O(‖TAr‖‖Er+1‖2),

where Er+1 is such that eAr+Er+1 = Qr+1.

Proof The proof is straightforward and is a variation of the formula (6),

1
2adAr

sinh(1
2adAr)

log(e−
1
2
ArQr+1e

− 1
2
Ar) = Er+1 +O(‖

1
2adAr

sinh(1
2adAr)

‖‖Er+1‖2).

2

9

-4 Π -2 Π 2 Π 4 Π

-60

-40

-20

20

40

Plot of the function
x �2

��������������������������

Sin@x �2D

Figure 4: The function is singular at points 2πk, k ∈ Z\{0}. The absolute value of the

function | x/2
sin x/2

| ≥ 1 for any x.

Corollary 1 The following estimate holds

‖eAr+Er+1 − eAr+Ẽr+1‖ ≤ C‖Ẽr+1‖2,

where C > 0 is a small constant, compared to the norm of Ar.

Proof Since e−
1
2
Ar is an orthogonal matrix, the following equality holds

‖eAr+Er+1 − eAr+Ẽr+1‖ = ‖e− 1
2
AreAr+Er+1e−

1
2
Ar − e−

1
2
AreAr+Ẽr+1e−

1
2
Ar‖. (8)

It remains to apply the formula (6) to the term e−
1
2
AreAr+Ẽr+1e−

1
2
Ar and then substitute

the formula (7) for Ẽr+1 into the expression for the exponential. The difference (8) there-
fore reduces to the remainder term O(‖Ẽr+1‖2) from the formula (6) and so the proof is
complete. 2

It follows from the corollary that when the norm of Ẽr+1 is small we can take the principal
logarithm of

e−
1
2
(Ar+Ẽr+1)Qr+1e

− 1
2
(Ar+Ẽr+1)

and repeat the same construction with Ar + Ẽr+1. In other words we can generate an
iterative process in order to approximate Ar+1:

A
[1]
r+1 = Ar

A
[k+1]
r+1 = A

[k]
r+1 + E

[k]
r+1,

where E
[k]
r+1 =

1
2ad

A
[k]
r+1

sinh(1
2ad

A
[k]
r+1

)
log

(
e−

1
2
A

[k]
r+1Qr+1e

− 1
2
A

[k]
r+1

)
, k = 1, 2,

(9)

Let us omit the subscript r + 1 to simplify the notation. Since

e−
1
2
(A[1]+E[1])Qe−

1
2
(A[1]+E[1]) = e−

1
2
(A[1]+E[1])eA[1]+E[1]+(E−E[1])e−

1
2
(A[1]+E[1])

= exp
(

sinh(1
2adA[1]+E[1])

1
2adA[1]+E[1]

(E −E[1])
)

+O(‖E −E[1]‖2),

applying Lemma 1 we obtain

E[2] = E −E[1] +O(‖TA[2]‖‖E − E[1]‖2).

10

Inductively,

E[k] = E −
k−1∑

l=1

E[l] +O
(
‖TA[k]‖‖E −

k−1∑

l=1

E[l]‖2

)
for k ≥ 2.

Hence,
Ar+1 −A

[k+1]
r+1 = O(‖T

A
[k]
r+1

‖‖Ar+1 −A
[k]
r+1‖2). (10)

If we have a uniform bound on the norms of the operator T
A

[k]
r+1

for k ≥ 1, the above

relation indicates quadratic convergence of the iterative algorithm and is an analogue to
the formula for error growth of the famous Newton–Raphson method for finding roots
of functions. Unless we hit a point of singularity of the function f(z) = z/2

sinh z/2 , we can
still achieve the convergence by choosing the interpolation points sufficiently close to each
other. The quadratic convergence will be illustrated on the numerical examples presented
in the next chapter.

5 Implementation and numerical experiments

Implementation of the iterative algorithm (9) involves computation of the matrix of the
commutator adAr and then evaluation of the function f(z) = z/2

sinh z/2 from this matrix.
This can be done by definition, i.e. by computing the eigenvalue-eigenvector decomposition
of the corresponding matrix and then evaluating f on the eigenvalues [6]. However, this
approach becomes computationally expensive when n is large. An alternative is first to
use a so-called reduced commutator matrix, introduced in [3], and then the diagonal Padé
approximation to the function f [2]. The reduced commutator matrix CA ∈ Mm(R) is
obtained if we consider a restricted embedding ν : so(n) −→ Rm, where m = 1

2n(n− 1) is
the dimension of the Lie algebra so(n). In other words, CA is defined by the relation

ν(adAB) = CAν(B), B ∈ so(n).

In [3] the authors developed an effective algorithm for assembling the reduced commutator
matrix CA of an arbitrary dimension m using directed graphs. The function f = z/2

sinh z/2
is even and analytic in the circle of radius 2π about the origin, so it can be expanded into

power series f(z) =
∞∑

k=0

α2kz
2k. Then f(adA) =

∞∑
k=0

α2kad2k
A and for B ∈ so(n),

ν(f(adA)B) = ν(
∞∑

k=0

α2kad2k
A B) =

∞∑

k=0

α2kν(ad2k
A B)

=
∞∑

k=0

α2kC
2k
A ν(B) = f(CA)ν(B).

Going back to the iterative algorithm (9), let B[k] = log(e−
1
2
A[k]

Qe−
1
2
A[k]

)
and N(CA[k])/P (CA[k]) be the (p, p)-Padé approximation to f(CA[k]), were N, P are cor-
responding polynomials of degree p. Then at each iteration step finding the correction
matrix E[k] reduces to solving the linear system

P (CA[k])ν(E[k]) = N(CA[k])ν(B[k]),

11

Figure 5: The curve constructed using the iterative algorithm (the right plot) coincides
with the original curve (the left plot).

1 2 3 4 5
−1

0

1

2

3

4

5

6

7

8

9

k−number of iterations

−log
10

(d(A
2
,Aiter

2
))

1 2 3 4 5 6 7
−2

0

2

4

6

8

10

k−number of iterations

−log
10

(d(A
2
,Aiter

2
))

Figure 6: σ(A1)/π = {±9.14i,±2.92i,±6.32i}, and σ(A2)/π = {±9.23i,±3.08i,±5.95i}
for the left plot. σ(A1)/π = {±7.03i,±4.03i,±3.06i,±1.37i,±0.37i}, and σ(A2)/π =
{±7.20i,±3.99i,±2.99i,±1.69i,±0.13i} for the right plot.

with respect to the coefficients of the vector ν(E[k]).
In case of the rotation group SO(3) the logarithm as well as the operator T

A
[k]
r+1

can

be derived in closed form, so the above simplifications are not necessary. Specifically, for
Q ∈ SO(3) such that Tr(Q) 6= 1 we have

log Q =
θ

2 sin θ
(Q−QT),

where θ satisfies 1 + 2 cos θ = Tr(Q). For A ∈ so(3),

TA =
adA

sinh(adA)
= I +

(
1

θ sin θ
− 1

θ2

)
ad2

A,

where ‖A‖2 = θ2.
Our numerical examples are organized as follows. To illustrate the performance of

the algorithm (9), we use a sphere S2 in the Euclidian space R3. We sample a curve
P (t)v on the sphere to obtain the discrete set of data in SO(3). Subsequently, we apply
the iterative process (9) to find the corresponding elements in the algebra so(3), then
interpolate these points by splines and project the spline curve S(t) back to the group

12

using the exponential map. In Figure 5 the left-hand side plot displays the original curve
P (t)v and the right-hand side plot displays the interpolating curve exp(S(t))v, which in
this case is indistinguishable from the original curve.

For the examples in Figure 6 we deliberately generated two matrices of large norm such
that some of the eigenvalues jump over singularity points, since for these cases the norm
of the operator T

A
[k]
r+1

can be large. Given the matrix A1 we apply the iterative scheme to

approximate the matrix A2. The algorithm still exhibits quadratic convergence.

6 Conclusion and further remarks

Given any two elements Qr, Qr+1 in a Lie group SO(n), sufficiently close to each other,
and a matrix Ar in the corresponding Lie algebra so(n) such that eAr = Qr, we have
introduced a numerical algorithm for approximating Ar+1, which is a pre-image of Qr+1

under the exponential map and is the closest to Ar among other pre-images. Analysis
shows that the algorithm exhibits quadratic convergence. The algorithm has immediate
application to the interpolation problem in SO(n). Using the exponential trivialization
of the elements of the group we can project the points to the corresponding Lie algebra
via the introduced algorithm and then apply standard techniques of interpolation theory
for linear spaces. Practical implementation of the algorithm involves computation of the

function of a commutation matrix
ad 1

2 A
[k]
r+1

sinh(ad 1
2 A

[k]
r+1

) . A possible way to reduce the complexity

of the algorithm is to use diagonal Padé approximation to the function x/2
sinh x/2 . In this

case one needs to solve a linear system of equations of dimension 1
2n(n + 1) with respect

to the coefficients of the unknown matrix E
[k]
r+1.

As part of future work we intend to investigate the distance between an arbitrary (suf-
ficiently smooth) function sampled at some points on a Lie group G and an interpolation
function in G, constructed via the above algorithm, using the intrinsic geometry of the
group. A related problem is minimization of this distance with respect to different norms.

A broad field for research is a generalization of the interpolation problem to other
Lie groups. In particular for compact semisimple Lie groups it is known that the set
of polynomials pn(z) =

∑n
−n Pkz

k with values in a Lie group G, where z ∈ S1 and
Pk ∈ Mp(C), is dense in the set the functions f(z) =

∑+∞
−∞ Fkz

k with values in G [17]. In
this regime an interesting problem would be to find a minimal degree polynomial pn(z)
passing through a given set of points in G.

We would like to point out that the interpolation method developed in this work can
be used for more general interpolation problem when the tangent vectors at interpolation
points are prescribed (Hermite interpolation). Let {Qi} and {Vi}, i = 1, 2, . . . , r be given.
We want to construct an interpolation function eA(t) such that eA(ti) = Qi and d

dte
A(t)

∣∣
ti

=
Vi for the partition 0 = t1 < t2 < . . . < t0 = 1. The values A(ti) = Ai are found via
the iterative algorithm (9). From the formula for the derivative of the exponential map it
follows immediately that

A′(ti) = dexp−1
Ai

(Vie
−Ai), i = 1, 2 . . . , r.

Consequently, the interpolation problem is reduced to the Hermite interpolation prob-
lem on the corresponding Lie algebra. The situation when higher order derivatives are
prescribed at the interpolation points requires further investigation.

13

References

[1] F. Adams. Lectures on Lie Groups. The University of Chicago Press, 1982.

[2] G. A. Baker Jr. Essentials of Padé Approximants. Academic Press, 1975.

[3] A. M. Bloch and A. Iserles. Commutators of skew-symmetric matrices. International
Journal of Bifurcation and Chaos, 15:793–801, 2005.

[4] P. Crouch, G. Kun, and F. S. Leite. The De Casteljau algorithm on Lie groups and
spheres. Journal of Dynamical and Control Systems, 3:397–429, 1999.

[5] N. J. Higham. Functions of matrices. In L. Hogben, editor, Handbook of Linear
Algebra. Chapman/CRC Press, 2006.

[6] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge Univ. Press,
1991.

[7] K. Hüper and F. S. Leite. On the geometry of rolling and interpolation curves on Sn,
SO(n) and Graßmann manifolds. Technical Report SISSA 56/2005/M, International
School for Advanced Studies, Trieste, Italy, 2005.

[8] A. Iserles. A Magnus expansion for the equation Y ′ = AY − Y B. J. Comput. Math.,
19:15–26, 2001.

[9] A. Iserles, H. Munthe-Kaas, S. P. Nørsett, and A. Zanna. Lie-group methods. Acta
Numerica, 9:215–365, 2000.

[10] I. G. Kang and F. C. Park. Cubic spline algorithms for orientation interpolation. Int.
J. Numer. Engng., 46:45–64, 1999.

[11] D. Lewis and P. J. Olver. Geometric integration algorithms on homogeneous mani-
folds. Found. Comput. Math., 2:363–392, 2002.

[12] W. Magnus. On the exponential solution of differential equations for a linear operator.
Comm. Pure Appl. Math., 7:649–767, 1954.

[13] A. Marthinsen. Interpolation in Lie groups. SIAM J. Numer. Anal., 37:269–285,
1999.

[14] P. C. Moan, J. Oteo, and J. Ros. On the existence of the exponential solution of linear
differential systems. Journal of Physics A: Mathematical and General, 32:5133–5139,
1999.

[15] P. J. Olver. Equivalence, Invariants, and Symmetry. Cambridge Univ. Press, 1995.

[16] F. Park and B. Ravani. Bézier curves on Riemannian manifolds and Lie groups with
kinematic applications. ASME J. Mechan. Design, 117:36–40, 1995.

[17] A. Presley and G. Segal. Loop Groups. Oxford Univ. Press, 1986.

[18] R. C. Rodrigues, F. S. Leite, and J. Jakubiak. A new geometric algorithm to gener-
ate smooth interpolating curves on Riemannian manifolds. LMS J. Comput. Math.,
8:251–266, 2005.

[19] V. S. Varadarajan. Lie Groups, Lie Algebras, and Their Representations. Springer-
Verlag, 1984.

14

Appendix A

By expanding sinh(xad 1
2
A) into power series and computing the integral term by term it

is possible to verify that

1
(2k + 1)!

∫ 1

0
x2k+1 sinh(xad 1

2
A)dx

=
cosh(ad 1

2
A)

ad2k+2
1
2
A

k∑

l=0

ad2l+1
1
2
A

(2l + 1)!
−

sinh(ad 1
2
A)

ad2k+2
1
2
A

k∑

l=0

ad2l
1
2
A

(2l)!

=
sinh(ad 1

2
A)

ad2k+2
1
2
A

∞∑

l=k+1

ad2l
1
2
A

(2l)!
−

cosh(ad 1
2
A)

ad2k+2
1
2
A

∞∑

l=k+1

ad2l+1
1
2
A

(2l + 1)!

= sinh(ad 1
2
A)

∞∑

l=0

ad2l
1
2
A

(2l + 2k + 2)!

− cosh(ad 1
2
A)

∞∑

l=0

ad2l+1
1
2
A

(2l + 2k + 3)!

We substitute the above expression into the formula for Ω2 and interchange the order of
summation. Then

Ω2 =
1
2

∞∑

l=0

([∞∑

k=0

ad2k
1
2
A

(2l + 2k + 2)!
E, ad2l

1
2
A

sinh(ad 1
2
A)E

]

−
[∞∑

k=0

ad2k
1
2
A

(2l + 2k + 3)!
E, ad2l+1

1
2
A

cosh(ad 1
2
A)E

])
.

Substituting the Taylor expansions for sinh and cosh, we obtain

Ω2 =
∞∑

m=0

∞∑

l=0

∞∑

k=0

(
1

(2m + 1)!(2l + 2k + 2)!
− 1

(2m)!(2l + 2k + 3)!

)
[ad2k

1
2
A
E, ad2m+2l+1

1
2
A

E]

=
∞∑

k=0

∞∑

m=0

∞∑

l=m

(
1

(2m + 1)!(2l + 2k + 2− 2m)!

− 1
(2m)!(2l + 2k + 3− 2m)!

)
[ad2k

1
2
A
E, ad2l+1

1
2
A

E]

=
∞∑

k=0

∞∑

l=0

ϕk,l[ad2k
1
2
A
E, ad2l+1

1
2
A

E],

and ϕk,l =
∑l

m=0

(
1

(2m+1)!(2l+2k+2−2m)! − 1
(2m)!(2l+2k+3−2m)!

)
.

15

