From high oscillation to rapid approximation IV:
Accelerating convergence

Daan Huybrechs
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
B-3001 Leuven
Belgium

Arieh Iserles
DAMTP, Centre for Mathematical Sciences
University of Cambridge
Wilberforce Rd, Cambridge CB3 OWA
United Kingdom

Syvert P. Narsett
Department of Mathematics
Norwegian University of Science and Technology
Trondheim N-7491
Norway

October 19, 2007

Abstract

Modified Fourier expansion is a powerful means for the approximafiopm-periodic
smooth functions in a univariate or multivariate setting. In the currenepa@ con-
sider further enhancement of this approach by two techniques fanmdiar donventional
Fourier analysis: polynomial subtraction and the hyperbolic cross. &vedstrate that,
judiciously subtracting simpler functions dependent on linear combinatioderivatives
along boundaries, it is possible to accelerate convergence a greandehis procedure is
considerably more efficient than in the case of conventional Fourparesion. Moreover,
examining the pattern of decay of coefficients in a multivariate setting, weodstrate
that most of them can be disregarded without any ill effect on qualitppfaimation.

1 Introduction

In this paper we continue work that commenced in (Iserles &k 2006, Iserles & Ngrsett
2006, Iserles & Ngrsett 2007), exploring approximation of fuogs in univariate and mul-



tivariate setting by modified Fourier expansions and itspatational aspects.

LetQ c R? be a bounded, closed, non-empty, simply-connected domigtirpiecewise-
smooth boundary. (The assumption of simple connectedse®s tonvenience sake only,
to render the use of the Stokes theorem straightforwardcande easily lifted.) Modified
Fourier expansion is concerned with expressing functjpns? — R as expansions in the
eigenfunctions of the Laplace operator{in equipped with Neumann boundary conditions
(Iserles & Ngrsett 2007).

Modified Fourier expansion features two important charasttes. Firstly, by virtue of the
Neumann boundary conditions, it converges rapidly: fomeple (to which we will return),
in the univariate setting it converges uniformly in any edsnterval forC? functions and the
speed of convergence usingexpansion terms i€ (n~2) within the interval and? (n ')
at the boundary (Iserles & Ngrsett 2@08lver 2007). (In comparison, standard Fourier
expansion for non-periodic functions converges mk(azrl) within the interval and fails to
converge to the function values at the boundary.)

Second advantage of modified Fourier expansions is thakffesion coefficients are in-
tegrals of the functiorf, multiplied by rapidly oscillating Laplace—Neumann eigerctions.
This brings them within realm of applicability of the verywerful methods for the numer-
ical quadrature of highly oscillating integrals that hae=b developed in the last few years
(Huybrechs & Vandewalle 2006, Iserles & Ngrsett 2005, OR@D6). Such methods allow
for the approximate computation of the firsexpansion coefficients i@(n) operations.

Modified Fourier expansions clearly are not a panacea faoatiputational problems. If
Q is ad-dimensional box and the functighis periodic, nothing can beat standard Fourier ex-
pansion and the Fast Fourier Transform. Evefig not periodic, it is often preferable to use
expansions in Chebyshev polynomials. Yet, we believe timtbncept of modified Fourier
expansions is powerful enough to confer real advantage iy rsiduations and deserves fur-
ther enquiry. In particular, we believe it worthwhile to éoqe ideas how to accelerate the
convergence of modified Fourier series and how to implenfmhtwith considerably smaller
set of coefficients (and in considerably smaller number @rafons) without any injury to
their precision. This is the theme of the present paper.

To set the stage for the new material presented in the segeetview very briefly aspects
of univariate modified Fourier expansions from (Iserles &dést 2008). Assuming without
loss of generality tha® = [—1, 1], Laplace—Neumann eigenfunctions are simply

{cosmnz : n € Z4} and  {sinw(n— )z : n € N}
and themodified Fourier expansiois

flx) = %foc + i[fnc cos ™ + ff sinm(n — %)az], (1.1)

n=1

where ) L
rC _ d rS _ in 1 dt.
I /_1 f(t) cos ntdt, I /_1 f(t)sinm(n — 5)tdt

Let f € C*[-1,1]. Using repeated integration by parts, it is easy to expaadnbdified
Fourier coefficients’S’ and £ asymptotically fom > 1,

FC = (—1)k+" (2k+1) (2k+1)
fS ~ZWU (1) — fEED(-1)], (1.2)

k=0
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k=0

[FERD (1) 4 fERHD(—1))]. (1.3)

It follows at once thatf, f5 ~ O(n~2) for n > 1. This is strikingly better than the
conventional Fourier sine coefficients, that decay@(m*l) and this is the main reason why
(1.1) exhibits superior convergence properties (Iserléézfsett 2006). However, arguably,
the main importance of the asymptotic expansions (1.2) arg) (s numerical, rather than
theoretical: they allow for very rapid calculation of quglapproximations to the modified
Fourier coefficients.

The simplest means to calculagié’ andff is based on the truncation of their respective
asymptotic series. In that case we need to precompute thiermignber of odd derivatives at
the endpointst1. The procedure is remarkably effective even for fairly daalues ofn.
Yet, it can be improved considerably, without requiringraxtinction evaluations, by the use
of Filon-type formulee (Iserles & Ngrsett 208)6 This renders this approach competitive even
for quite small values ofi. The few values of, too small for such asymptotic-based tech-
nigues can be computed with little or no extra function eafiins using the ‘exotic quadra-
ture’ approach explained in (Iserles & Ngrsett 2806

Many ideas associated with the univariate modified Fouxiparsion (1.1) scale up seam-
lessly to multivariate setting. In particular, an asymigtekpansion is available by employing
repeatedly the Stokes theorem and can be used as a basis famtiputation of expansion
coefficients. The latter can be further enhanced by usinonFifpe methods and ‘exotic
quadrature’ (Iserles & Ngrsett 2007). Of course, we takegi@anted that the full set of
Laplace—Neumann eigenfunctions (of which rich theorytsxign particular, they form an
orthogonal set closed i (€2)) is explicitly known. This represents a tangible restdnton
our approach.

One obvious generalisation of the univariate setting ig-i@riate cubes using Carte-
sian products of the univariate eigenfunctiens mna andsin 7(n — %)x. It is perhaps less
straightforward than it seems and involves some fairly Isubdnstructs (Iserles & Narsett
2007). Otherwise, even the list of simply-connected bataridomains for which Laplace—
Neumann eigenfunctions are comprehensively know is fagstricted: it includes just el-
lipses and three types of triangles: equilateral, strawjtth two equal acute angles and
straight with acute angles ¢f and 5. However, the situation is not as hopeless as this
brief list might imply. Let2 be any bivariate domain with piecewise-linear boundaryi¢tvh
need not be simply connected). To approximate C>(Q2) we tessellaté? into triangles
A;, i =1,2,....r. EachA; can be mapped affinely into, say, the unit equilateral tfiang
T. Denoting this mapping by;, we approximatef (; ') in T by truncated modified Fourier
expansiorny;, say and map the outcome backe Thus, we are tiling2 with approximations
gl(@l)vl = 132a sy T

Detailed approximation by Laplace—Neumann eigenfunstionan equilateral triangle
will feature in a subsequent paper. At present it just sugfioepoint out that it is possible to
represent the underlying eigenfunctions in a convenienmb fand derive handy formulee and
guadrature methods for expansion coefficients: everythiades up from the univariate case.

Unfortunately, so does the speed of convergence. Whileanid triangle the:-term
approximation converges |ik& (n~?2), this drops down t@(n~') on the boundary. This
is particularly unwelcome when we employ the above tedsatiaf bivariate polygonal do-
mains into triangles: the error is significantly larger asrthe (artificial) internal boundaries



than elsewhere. This is a manifestation of a wider problepiigitin our approach: although
modified Fourier for non-periodic functions converges #igantly faster than its conven-
tional counterpart, ideally we would have liked it to converge even faster, boiide the
domain and on the boundary.

One obvious means to accelerate convergence is to replataceaNeumann eigenfunc-
tions by eigenfunctions of polyharmonic operators, sutijgbigh-order Neumann boundary
conditions. This is an approach presented for the univadase in (Iserles & Ngrsett 2066
However, it is highly unlikely to be equally useful in a muériate setting: even the sim-
plest case, biharmonic eigenfunctions in a square, reqoineelementary functions, and their
practical implementation is currently an open problem.

An alternative is a technique already familiar in the cohtaixstandard Fourier expan-
sions — indeed, one that might be construed as a competitnodiified Fourier:polynomial
subtraction(Kantorovich & Krylov 1958, Roache 1978). The main idea islyasimple.
Thus, the nonperiodic functiofi is represented in the forth = p + (f — p), wherep is an
(2s — 1)st-degree Hermite polynomial interpolation pat +1,

pD(£1) = fO(£1), i=0,...,5s—1

One then Fourier-expands the functibr= f — p and addw. Since the first derivatives of
f match at the endpoints, it is possible to prove that the (@otional) Fourier coefficients of
f decay like® (n*sfl). Moreover, the rate of convergence (for sufficiently sma@tiwithin
the interval isO (n~*~') and at the boundary it reduces@{n*).

As already mentioned in (Iserles & Ngrsett 286 olynomial subtraction becomes sub-
stantially more effective when combined with modified Feuréxpansions. The reason is
clear from the asymptotic expansions (1.2) and (1.3): welneesubtract fromf just the
quadratic polynomiap(z) = (32 — 32%)f'(—1) + (32 + 22) f/(1) to force the modified
Fourier coefficients of to decay like® (n~*). The same asymptotic decay within the realm
of conventional Fourier expansions would have requirecchiag f, f/, /" at the endpoints
with quintic polynomial interpolation. The advantage ofdifeed Fourier in this setting be-
comes even more pronounced once we require faster asymgéathy.

Section 2 is devoted to detailed exploration of polynomidteaction for modified Fourier
expansions in an interval and infedimensional box.

In Section 3 we explore another classical computationakéavhich comes into its own
in modified Fourier setting, thRyperbolic crosgBabenko 1960). We start from classical
Fourier expansions in a unit square. In that cas€thhen) coefficient decays asymptotically
like O(m*lnfl). Therefore, once we truncate the series (as we are bounddalistic com-
putation), it is not necessary to retail (m, n)th coefficients form,n < N, say, whereV is
a sufficiently large integer, chosen to guarantee requiséeision. It is perfectly acceptable
to require thatnn < M for somel! (chosen according to similar criteria). This results in
roughly M log, M terms in place ofV? according to the naive approach. All this becomes
even more advantageous with more variables.

Using hyperbolic cross within the context of modified Fouggpansions (ideally, in con-
junction with polynomial subtraction) is considerably moratural. Of course, the asymptotic
decay of the coefficients is more rapid, hence even fewerstanmneeded. But the main dif-
ference is of a different kind. In the case of Fourier expamsintegrals are inevitably com-
puted with FFT, and the latter (in two variables) computéghal coefficients in a square: the

1Conventional Fourier approximations are, needless to sdipatl only in boxes, certainly not in triangles.



large as well as the small. There is no easy way to excise thiicients outside the hyper-
bolic cross! In our case, though, coefficients are compuiddhighly oscillatory quadrature,
one-by-one. This means that we can easily restrict oursetvéhe points in a lattice which
lie inside a hyperbolic cross.

Of course, one clear advantage of multivariate modified iEoexpansions is that, unlike
conventional Fourier series, they can be applied in moremgmomains, e.g. equilateral
triangles. The economies implicit in the use of the hypacbaioss are equally valid in this
setting. We defer the discussion of polynomial subtractiad the hyperbolic cross in an
equilateral triangle to another paper, where we will alsostder other computational issues
relevant in this setting.

2 Polynomial subtraction

2.1 Theunit interval

Let f € C*°[—1,1] be given: the theory can be extended in a transparent maonferct
C#[—1, 1] for a suitables > 1, with the minimal value o changing according to setting, but
the virtue of simplicity and clarity militates against gealy for generality sake.

We seek a polynomial € P,,. such thap(0) = 0 and

PRIV (—1) = fERHD (1), pRRF(1) = fCHU (1) k=0,1,...,r— 1. (2.1)

Our first observation is that we cannot take for granted tie@xce of such a polynomial. (If
it exists itis clearly not unique, since we can add a constgntvithout interfering with (2.1).)
The conditions (2.1) are an exampleRifkhoff-Hermite polynomial interpolatiofiLorenz,
Jetter & Riemenschneider 1983) and it is well known that atsmt to such problems need
not exist and must be carefully checked on a case-by-cage bas

Fortunately, insofar as (2.1) is concerned we can easilyepeaistence and, subject to a
normalising condition, uniqueness.

Proposition 1 For everyr € N there exists a unique polynomiglof degree2r so that (2.1)
holds andp(0) = 0.

Proof It is sufficient to show that there exists a unique P»,._; such that
¢ (£1) = fEFD(£1),  k=0,...,r—1

and sep(z) = [, q(t)dt.
Let
= Pi+1 g
q(x) = T
=0
Then the Birkhoff—=Hermite interpolation conditions fpare equivalent to
2r—2k—1
Pia2k+1 FERHD (1),

1!
oo 0 k=0,1,...,r — 1. (2.2)

Z (_DIZM = feRD (1)

)
1=0



Adding and subtracting the above equations, we convert thientwo separate linear systems,
each ofr equations.

r—k—1
DAL ) + fo(-1)

2 I
20+2k+2 c
PUIBEE _ 4l (y) — Sk (1)

=0
The two linear systems above (one for odd-indexed and ther éth even-indexed coeffi-

cients) have nonsingular upper-triangular matrices. ldahey are nonsingular and possess
unique solutions. This completes the proof. O

Proposition 1 confirms the validity of polynomial subtractiin the setting of modified
Fourier expansions in the unit intervgt1, 1] (and, therefore, by linear translation, in any
compact interval). To make the procedure explicit, we ckaos N, computef (2¢+1) (41)
fork =0,...,r — 1 and construct the interpolation polynomjalln place of the expansion
(1.1), we use

f(z) = %}, i I/, coswnx—i—fs sinm(n — 3)l, (2.3)
where
~C 1 ~S 1
Fo= [ U@ - p@lcosmnade, = [ (@) - p@)sinntn - Had.
-1 —1
It follows at once from the asymptotic expansions (1.2) dn@)(that
30 = (Ckm (2k+1) (2k+1) —2r—2
Fr ~;W[f (1) = fEHI(=1)] = O(n~272), (2.4)

~S ol (_J)k+n+1 S _— s
fnwzm[f( +)(1)_f( +)(—1)]=(’)(n r )

k=r
This readily leads to the major observation of this subseacti

Theorem 2 The asymptotic rate of decay of modified Fourier coefficiamise a polynomial
p € P2, consistent with (2.1) is subtracted frofnis O (n=2"~2) for n > 1.

The polynomialp can be derived solving theormal equationg2.2). An alternative,
lending itself better toward detailed analysis and mutiate generalisation, is the use of
cardinal functions.Thus, we seek polynomiats, - € P,,, such that

951%?”&1):{(1)’ 522"_"1’”*2’ 0PV (F1) =0, 1=0,...,n—1.

(Needless to say\ ") = 0 for | > n.) For example,
01,4 (x) = %(:I:la"2 + ),
O+ (z) = 35 (£32% + 2)(2® £ 22 — 6),

O3+ () = =5 (+2a” + 2) (2 + 42® — 132% F 342 4 75)
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Figure 1: The magnitude of the coefficients (scalednBy*?) for r = 0 (no polynomial
subtraction); = 1 andr = 2 for f(z) = e®.

and so on. In general, it is trivial to confirm that
an,*(x) = —Qn#(—x), n>1,
hence we need just the explicit form &f .

Proposition 3 For everyn € N itis true that

O () = ani 3 + [ (o =04 (0, (2.5)
0

1 1
i = =3 [ Bos @) =000l b= =4 [0 0+, 4 (1)
Proof By induction. 8, € P, therefored,,;1 + € Ps,4o. Differentiation in (2.5),
letting z = +1 and substitution of the values of, andb,, confirm at once that

+1

1,4 (L) = an £ b, + O+ (t)dt = 0.
0

Moreover, it follows trivially from (2.5) thav;’. ; . = @], ., hence, by induction on, it is

true thatd’} 1) = 0,1 = 0,....n — 1, except that' 1, }) (1) = 6777V (1) = 1. Therefore
0,+1,+ obeys the interpolation conditions. O

In Fig. 1 we display the magnitude of the cosine (circles)sind (diamonds) coefficients,
scaled byn?"*2, for » = 0,1, 2 and the functionf(z) = e®. As expected, the coefficients
indeed decay like)(n~2"~2). What is perhaps surprising — yet is consistent with a great
deal of further numerical experimentation — is how rapidhesdnset of asymptotic behaviour.
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Figure 2: The error incurred in approximatirfdz) = e by modified Fourier expansions
without polynomial subtraction, with 12, 24, 48 and 96 tenespectively.

This, of course, is of paramount importance when asymptotioulae are used as a basis for
rapid numerical evaluation of expansion coefficients.

The theme of Figures 2—4 are pointwise errors incurred wfiénapproximated by mod-
ified Fourier expansions without polynomial subtractioig(R2), with » = 1 (Fig. 3) and
r = 2 (Fig. 4). The increase in precision is truly remarkable.

In the specific cas¢(x) = e” itis easy to derive coefficients explicitly for smallletting
r = 0 stand for the ‘basic’ expansion, without polynomial subtti@n, we have

r=0: f()cz(efeil)a

fo— (=1)™(e—e™)
m 1+ m2m?2

s () ete!)

, oy , méeN,
/ 1+7T2(m—%)2
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Figure 3: The error incurred in approximatirfdz) = e by modified Fourier expansions
with polynomial subtraction; = 1, with 12, 24, 48 and 96 terms respectively.

C
r=1: fo =

m —

/;_C
r=2: fo =
~C

fm =

g<e_e+11>, 1 1
T T i s "
S(e—e),

e L e L

This is fully consistent with the asymptotic rate of decaynir Theorem 2. Moreover, it is
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Figure 4: The error incurred in approximatirfdz) = e* by modified Fourier expansions
with polynomial subtraction; = 2, with 12, 24, 48 and 96 terms respectively.

easy to confirm an obvious conjecture, namely that

~C _1\m+r _ A1 ~S m—+r—+1 —1
FoEUmre—e) g Cymriere)
(wm)"[1 + (7m)?] [r(m = )] {1+ [r(m — 3)]2}
for anyr > 0 by summing up explicitly the asymptotic expansions (2.4).

The range of the above plots is the mter{/aw, 10] thus we omit the vicinity of end-
points. The reason is that convergence at the endpointeviesl In the standard modified
Fourier case the error atl decays likeO (n_l) (Iserles & Ngrsett 200§ Olver 2007) and
it is easy to use the technique of Olver (2007) to prove tlaitpblynomial subtraction with
r > 1 the error decay at the endpoints@n—2""') — a single unit less than inside the
interval. This is fully confirmed by numerical results.
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22 Thesguare[-1,1]?

Detailed theory of modified Fourier expansionsiidimensional boxes-1, 1]¢ has been de-
veloped in (Iserles & Ngrsett 2007). Since it involves a gdeal of notation and terminology,
designed to deal with many different types of coefficients cancentrate in this subsection on
the first nontrivial casej = 2, observing that generalisation to more dimensions isgittai
forward in principle, delicate in practice.

A bivariate modified Fourier expansion gfc Ly([—1,1]?) is

i +3 Z . 0 Icos (mnzx) + f(g?;to} cos(mny) + f" 5 sm( (n—3))

+f0 ” bm( Z Z ,[;1(112 cos(mnyx) cos(mnay) (2.6)
ny= 1n2 1

+ fn1 n, SIN(m (11 — 5)x) cos(mnay) + f}lol 1,12 cos(mniz) sin(m(ng — 1)y)

1
2
+ fIb sin(n(ny — $)a) sin(r(n2 — $)y)],
where

1 1
e, = / / f(x,y) cos(mnyz) cos(mnay)dedy,
i, = / / f(z,y) sin(m(ny — 3)z) cos(mnay)dzdy,
f,[f)l,l,]lz = / / f(z,y) cos(mnix) sin(w(ng — %)y)dxdy,
“1J-1

1 1
fia — / 1 / favg)sinr(ns — 3)o)sinr(ny ~ §)y)dady,

The modified Fourier coefficients above can be expanded dsyicglly. A departure from
the univariate case is that the coefficients now depend ompamametersy,; andns, both of
which can grow large independently of each other. Henceg k@ two-dimensional quadrant
of coefficients and, ideally, we want to accelerate the detagodified Fourier coefficients
in any direction where either; or ny grows large — or both.

We commence the discussion with the easiest case, wheaadn, are both large. The
first term in this expansion i® (ny *n;?), the second is a linear combination@f{n; *n;?)
andO(n; °n; ) terms and so on: we refer the reader to (Iserles & Narsett)200details.
A natural generalisation of the framework from the last gglisn to a bivariate setting is to
subtract fromf a multivariate polynomiab so that

fwy(ilvil) :pwy(ilvil)' (2.7)
This means that we knock out the leading asymptotic term fmdarge ny, no, modified
Fourier coefficients of — p decay likeO (ny *n;?,ni *n; *). Observing that the next terms

in the expansion always depend on the partial derlvatlvexjdforder inr andy, evaluated
precisely at the vertices of the square, we can iterate pipisoach. Thus, in order to accelerate
the decay of the coefficients further, we require in additm(2.7)

fraay(£1, £1) = Pagay(£1,£1)  and  foyyy(£1, £1) = payyy (£1, £1),
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and so on.

An important subset of bivariate modified Fourier coeffitseare the ‘boundary coef-
ficients’, whenmin{n,,no} = 0. These coefficients are non-oscillatory in one dimen-
sion and hence they exhibit different asymptotic expansi@aplacingf(x) with F(x) =

I, f(z,y)dy in (1.2), it follows that

21001 — (=1 ** (2k+1) (2k+1)
Fro ~ Y. W[F (1) -r (=1)].
k=0

Thus, to acquire rapid asymptotic decay for> 1 we needF’(1) = F’(—1) and we can
easily prove that, once other ‘boundary coefficients’ akeranto account, we need

1 1 1 1
[ aend= [ neind [ pesni= [ p e @8)
—1 —1 —1 —1
extra four conditions on the polynomial

Imposing just conditions (2.7) and (2.8) prdoes not yet achieve accelerated decay in all
+[0,0]
directions, as it is still true thaf,, ,, = O(nﬁ) for largeny, but smalln, > 0. We can

repeat the argument that led to (2.8) and replécg by

F(z) = / ) costrnamy)dy,

wherens may be small. It follows that we again ne&d(1) = F'(—1). More generally, to
obtain rapid decay of all modified Fourier coefficients witingen; and fixedn, € N, this
argument leads to the conditions

1
pz(£1,y) cos(mnex)dy,
1

/_11 [ (£1,y) cos(mngr)dy = /

1
pa(£1,y)sin(m(ng — 1)x)dy.
1

1
/1 fo(£1,y) sin(m(ng — %)x)dy = /
Thus, we find thap, should reproduce precisely thaivariate modified Fourier coefficients
of f,. along the vertical edges of the boundary. A similar resuloves for the case of large
ne and fixedn,, involving the two horizontal edges ¢f-1,1]2. Alternatively, all required
conditions are automatically satisfied once we interpdteganormal derivative of along the
entire boundary,
U o) = Liay), () €011 29)
Any functionp satisfying this condition also satisfies all conditions timmed above. Note in
particular that any sufficiently smooth functiprsatisfying (2.9) should also satisfy (2.7).
Condition (2.9) does not come as a surprise. A general eigrafier modified Fourier
coefficients, that converges in an asymptotic sense, wasaj®d in (Iserles & Ngrsett 2007),

=1 DA f(z)
<f,u>~—kz:%(i>\)k+l /m 5 u(xz)dS,  A>1, (2.10)
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based only on a repeated application of the Stokes theorene,d{x) is a Laplace—Neumann
eigenfunction inf2 with the corresponding eigenvalue In the case of a square, the eigen-
value behaves as ~ n? + n3, and thus\ > 1 if max{n;,n2} > 1. Matching normal
derivatives along the boundary means the first term in (2sl€8ncelled. This is fully consis-
tent with the objective of accelerated convergence wheneyve, or both are large. At the
same time, this expansion signposts the path of geneializ@wvards both cancelling higher
order asymptotic terms and extending acceleration to diivariate sets).

The interpolation of the normal derivative along the entioeindary might seem a tall or-
der — even more so if we wish to speed asymptotic decay fustheubtracting higher deriva-
tives. Fortunately, this can be done fairly easily by empigytechniques from computer-
aided geometric design similar to tl@@ons patcheg¢Farin 1997). Strictly speaking, the
outcome is nopolynomialsubtraction, since is no longer a polynomial, but this should
cause no problems whatsoever in practice.

Recall the quadratié; (z) = 6, 4+ (x) from the last subsection and note tifiat_(z) =
—61(—x). We let

p(z,y) = —01(—2) fo(—1,y) + 01 (2) fa(1,y) — O2(—y) fy(z, —1) + 01 (y) fy(x, 1)
= [01(=2)01(=y) fay (=1, 1) — O1(=2)01 (y) foy(—1,1) (2.11)
—th (x)el(_y)fxy(L =1)+ 6, (x)91 (y)fzy(lv 1)]

Note thatp fills in’ values in (—1, 1), using solely information orf along the boundary. It
is now easy to verify that

pe(£1,y) = fa(£1,y), py(l‘,:tl) ny(l‘,:tl)7

therefore (2.9) is satisfied and we can pge ‘subtract’ the influence of the leading asymp-
totic term inall types of coefficients.

There is an apparent element of cheating in using the abowgidu p to accelerate con-
vergence. After all, the entire point of approximation theis to express (or approximate)
complicated functions in terms of simpler functions: palymals, trigonometric functions,
splines etc. This is entirely consistent with polynomiabtsaction, since therf is expressed
as a polynomial plus trigonometric series, but not wids allowed to be a linear combi-
nation of derivatives off along the boundary. However, this is not a real problem. The
functionsf, (+1, y) and f, (x, £1) are univariate and we can use the theory of Subsection 2.1
to approximate them rapidly with ‘proper’ polynomial sudattion. In other words, our pro-
cedure (which generalises to higher dimensions) is to aabfrom f a linear combination of
lower-dimensional functions which are, in turn, approxietkin a lower-dimensional box.

With greater generality, and bearing in mind expansionQR.ih order to eliminate all
0<n1’2j1n2’2j2> terms in the square withy, j» < r we need to fit all normal derivatives of
the formdAT f /on for j = 0,...,r — 1 along the boundary of the square. To this end we
chooser € N and let

r

pr(@,y) = > [=0k(—2)D2 " f(=1,y) + 0 (2)D2" " £(1,y) — Ok (—y)DyF ' (2, —1)
k=1

+ 0p(y)D2 " f (2, 1)
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Figure 5: The error incurred in approximatiri¢r, y) = sin(1 + « — 2y) by modified Fourier
expansions withr = 0 (top row),r = 1 andr = 2 (bottom row), truncating fon,,n, < 10
(left column),ny, ny < 20 (central column) and, no < 40 (right column).

=3 Ok(=2)0u(—y) D2 DY F(—1, 1)
k=1 1=1
— Ox(—2)0,(y)DZ D2 F(—1,1) — Ok (2)0,(—y)DZF D21 F(1, 1)

+ 0(2)0;(y)D2 D2 (1, 1)),

whereby(z) = 0y 4 (z) (hencefy, _(z) = —0i(—x)) for k € N.

This seemingly peculiar functiop, was constructed in a systematic way that will be
detailed further on. First, we illustrate the acceleramuergence of modified Fourier series,
next we will prove thap, does indeed satisfy the required properties.
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Figure 6: The number of significant decimal digits in appnaaiing f (x, y) = sin(14+xz—2y)
along the boundary = 1 by modified Fourier expansions with = 0 (left), » = 1 and
r = 2 (right): solid, dashed and dotted lines represent truandr n,,n, > N, where
n = 10, 20,40 respectively.

Fig. 5 displays the error committed when approximatif{g, y) = sin(l + = — 2y)
with ‘plain’ modified Fourier expansion (top row) and by sw@#atingp. The improvement in
performance is consistent with theory.

In Fig. 6 we present the number of significant digits (that-dpg,, |errof) when the
above function is approximated on the boundary 1. The asymptotic decay appears to be
consistent withO (n=2"~1), one less than inside the domain. This can be confirmed using
Sheehan Olver’s technique of Lerch functions (Olver 200i8te an important point. While
for » = 0 (the standard modified Fourier) the difference between emance inside the
domain and on the boundary@(n=2) vsO(n~!), for r = 2itis O(n %) compared with
O(n~%). The latter is, relatively speaking, of a marginal nature.

Proposition 4 For everyr € Nandj;,jo =0,1,...,r — 1itis true that
DD, (2, y) = DD f(ayy),  (z,y) € O[-1,1]% (2.12)
In addition, forj =0,...,r—1andl =0,1,2,...itis true that

D§j+1D'L2/lp7‘(i17y) = Dij+1D'L2/lf(i1a y)7
20y 2j+1 _ p2ln2i+1
DD p,(z, £1) = DD f(z, £1).

Proof By symmetry, it is enough to prove (2.12) only along the face 1. Since the
05, +s are cardinal polynomials of Birkhoff—Hermite interpadet, it follows that, within the
above range of; andj,,

DYDY py(2,1) = Y07 (@)D IDY f(-1,1)
k=1
+ 00 (@)DBTIDZH (1, 1)] 4 DYDY f (1)
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= Y07 @)D D f(-1,1)
k=1
+ 0,3 (@)D D (1, 1)] = DYDY f(x, 1),

as required.
The remaining assertion follows by the same reasoning. O

If follows immediately that‘m7 I = 8@1@ with j = 0,...,r — 1. Thus, the first terms

in expansion (2.10) vanish fgr = f — p. We can also establish the full asymptotic expansion
of classical Poinc#&rtype for the modified Fourier coefficients.

Theorem 5 The modified Fourier coefficients of the functiée, y) = f(x,y) — pr(, ),
wherer € Z (andpy = 0) obey the asymptotic expansion

+lo10) pymtes = ) 2%+1 a1y 2k+1
fnl,O ~ Z 71',LL 2k:+2 [D f(l y) ( 1) Da: f(—l,y)]dy,
k=r a1
2[0,c2] n2+a2 > k 2k+1 a1y 2k+1
fO,'ng Z 2k+2 [D f(l’ 1) ( 1) Dy f(.’E, —1)]d1',
k:r
~lan,az] e (_1)k 1
fn ™ (71)n1+n2+041+(¥2
- Z O )
l1,l2>Tr

x DD (1, 1) = (1) DI f(-1,1)
_ (_1>¢12Dil1+1D§lg+1f(l, _1) + (—1)a1+a2Dil1+1D2l2+1f(—1, _1)}

for ny,ny > 1. Hereay, s € {0,1} and

n, a=0,
oty ={ v, 22}

Proof Our point of departure are asymptotic expansions-fer0, as proved in (Iserles
& Ngrsett 2007). By virtue of Proposition 4 we deduce thattadl terms fork < r — 1 when
min{ni,ne} = 0, k < 2r — 1 otherwise, are nil and all the higher derivativesfofatch
these off. O

2.3 d-variate cubes

Bearing in mind how involved are the formulee for polynomiabsaction in two variables, it
might appear hopeless to seek them in higher (and evenashimumber of variables. For-
tunately, we can present a general recursive formula whictiyzes polynomial-subtraction
schemes ifi—1, 1]¢ for anyd > 1. The operative word is “recursive” — writing such schemes
explicitly is, obviously, both exceedingly complicatedddairly abstruse.

The main idea is to subtract from the functighboundary effects, one variable at a
time. Thus, to obtain the bivariate subtraction (2.11Xkitig away’ the first derivative along
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9[—1,1]%, we let

h[O](xvy) = f(x,y),
Wiz, y) = bz, y) — 01— (2)nl (=1, y) — 01 4 (2)B0 (1, 1), (2.13)

WAz, y) = Wz, y) — 01— (y)h[ (2, —1) — 014 (v) R (2, 1).

It is trivial to verify directly that the outcome 82! = f — p, wherep has been given by
(2.11). However, it is more interesting to prove this goinghvthe grain of the recursive
process. Thudy,g], by design, vanishes far = +1 and ally € [—1, 1]. Moreover, by the
same tokenhg] = (0 for y = £1 — but, by virtue of its constructionh,[f] =(0forx = +1.

This line of reasoning immediately generalises to an ahjitnumber of variables. Al-
though general formula can be easily given, it probably cedfito present it foid = 3,

I
>=

=
—
&
=
N -
~—

\
D
=

|
o
>
=)

](7153/72) - 917+(I)h£?](17yaz)7
(.Z', _17 Z) - 91+(y)h£/1] (xa 1a Z>7
](xvyv _1) - 01,+(z)h;[y2]($ayv 1)

= h(a,y,2) = 01, (y)h

>
=
&8
S
Il
>
=
—
8
=
w
~—
|
oS
4)—'
|
©
S~—"
>
ol ST

Moreover, this framework can be generalised also to higrgars of polynomial subtrac-
tion. Thus, in a bivariate setting, (2.13) generalises to

h’[O] (xvy) = f(xvy)v

h[l] (l',y) = h[O] (xvy) - Z[Gk,*(x)Dik_lh[O](_]ﬂy) + 0k,+($)Dik_1h[0](1a y)]a

=
—

W2 (z,y) = W (@, y) = 3 10k (9)D3* "Wl (2, =1) + 0 (9)DFF W (e, 1)),
k=1

Of course, having subtracted the contribution of odd dévigés) along the boundary of
[—1,1]¢, we must deal with théd — 1)-dimensional functions that we have used there. To
obtain truepolynomialsubtraction we must subtract from them, in turn, the coutiitn of
odd derivatives on the boundary — in other wor@s;- 2)-variate functions — and so on. In
other words, we need to descend along the facés bf1]¢, seen as a complex. All this is
straightforward in theory, yet might be fairly messy to implent in practice for largé.

3 Thehyperbolic cross

In this section we focus just on cubgsl, 1]¢, d > 2: although our theory is more wide
ranging and applies to all multivariate domains where weussanmodified Fourier expansion,
it is sufficient to understand it in a cube to convey its maindia.

We examine modified Fourier expansion of the functjtft) = e™(*~¥) in the square
. 2[070]
[—1,1]2. Givenr € Z, we restrict our attention to ‘pure cosine’ tem&,’ém = fon.n With -

fold polynomial subtraction, mentioning in passing thealy the same arguments are valid
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—

Figure 7: The hyperbolic cross: Contour Iines|df),n| > 10~* for (in order of decreasing
shading)k = 2,3,...,9 for the functionf(z,y) = e % andr = 0,1,2. We display
m,n=20,1,...,100

also in regard to other expansion coefficients. We can alewxplicitly

4(=1)"*" sinh? 7
Ao
™ 12(1 4+ m2)(1+ n2)’
(72 — 6)2sinh® 7
972 ’
2(—1)™ (% — 6) sinh? 7

m,n € Zy;

N, n=0
) semie ey o e TR
) 2(—1)" (w? — 6) sinh® 7
—0, neN,
3r2n2(1+n?) " "
4(—1)™*" sinh? 7 e N

m2m2n2(1 + m?2)(1 +n2)’
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Figure 8: Contour lines q%l,[i;],n\ > 10~* for (in order of decreasing shading)= 2, 3,...,9
for the functionf (z,y) = ¢™®~¥% andr = 1, 2. We displaym,n = 0,1,...,100

(77t — 6072 + 360)% sinh? 7
_ , n=m=0,
3240072
(=1)™(77* — 6072 + 360) sinh? 7
) e N’ = 07
2 — 907m2m4(1 + m?) " "
™, (=1)™(7x* — 6072 + 360) sinh? 0 meN
9072n4(1 + n?) ’ - ’
4(—1)™*" sinh? 7
eN.
m2mAnt(1+ m2)(1 +n2)’ L

The size of the coefficients is consistent with the theoryeuftton 2. However, thpattern
of decay exhibited by the coefficients is also of interest #nsl displayed in Fig. 7. We
have shaded there the entries corresponding to the COB‘ﬁC‘é,n (with cg”]o at the top left
corner) according to their magnitude. Thug.]ﬂ > 10~ 2 is painted black and, subsequently,
107541 > |clr 1> 107F, for k = 3,4, ..., 8, in increasingly lighter shades of grey. Finally,
el | < 1078 is painted white.

Two striking observations are clear from Fig. 7. Althoughthbare fairly obvious by
this stage of our exposition and should come as no surphisg, dre nonetheless brought
home fairly vividly by the ‘size plot’. Firstly, the magnitie of the elements decreases very
rapidly asr grows. Secondly, elements of similar magnitude are grotpgether, with large
elements hugging the axes = 0 andn = 0 and rapid decay exhibited once one moves
diagonally ‘into’ the latticgm, n). This is precisely the phenomenon of thgerbolic cross,
as identified by Babenko (1960) in the different setting oftivariate Fourier expansions and
is precipitated by the fact that,, = O((mn)=2r=2).

For additional insight, we briefly illustrate the same pidae when subtracting only odd
derivatives at the corners. Thus, we chopde satisfy condition (2.7) and its higher order
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generalizations, but nothing more. We have

dyr)z],n - C’E?L],n’ m,n e Z+;
(- ?;6)281nh2 ™ —
i
2(=1)™(6 — 7%)sinh®*x  2(=1)™ N m—0
JuU 3m2(1 +m2) 3m2(1 +m?2)’ o
M) 2(—1)7(6 — w2) sinh® 7 2(—1)"
— =0 N
3n2(1 +n?) 3n2(1+n2)’ m=t et
4(—=1)"*"(m? 4+ n? 4+ 1) sinh® 7 cN:
w2m2n2(1 4+ m?2)(1 +n2) e '
(778 — 307* 4 1080) sinh® 7
27072 ’ n=m=0,
(=1)™ sinh? 7 [77% — 6072 +360 772 60
2 2 + 72 + 7 9 m e N, n = O,
g2 — 90 1+m T m m
e (—1)" sinh® 7 [77* — 6072 4360 772 60
90 11n2 e T Al m=0,nel,
4(_1)m+n(m4 + 2m2n2 + n4) 9
h N.
m2mint(1 4+ m?2)(1 + n?) ST m,n €

Fig. 8 clearly demonstrates that interpolation of the ndwheavative along the entire bound-
ary is highly advantageous for an accelerated decay of ceffs near the axes, where either
m or n is small. Inside the quadrant, for largeandn, acceleration is already quite effective
indeed — and this is interpolating just a few partial deiet at the corners of the domain.
We continue the discussion assuming full subtraction ofntbienal derivative along the
boundary. The obvious manner of truncating the bivariatdifieal Fourier expansion (2.6)

(with or without polynomial subtraction) is by setting toraeall fEni] for m,n > N for
someN, where the size aV scales like an inverse power law of the desired accuracythiero
words, we require an expansion withV+1)? = O(N?) coefficients: such coefficients need
be precomputed and, once the expansion has been formeda)lithegd be taken into account
once the approximate value ¢fis calculated for soméz, y). However, a cursory look at
Fig. 7 confirms thathe overwhelming majority of these coefficients are notrgldit all to
the accuracy of the approximatiorifhey are as small — if not smaller — as the coefficients
we have discarded by choosing our valueNof Thus, if we wish, for example, to discard
all c%{ns smaller thari0—8, we can disregard all the ‘white’ terms in Fig. 7 — for= 1 this
means that only a small number of terms survives, while-fer2 it is much smaller yet!
Although the hyperbolic cross is not unique to the currettirgggand is quite well known
in the context of Fourier and Chebyshev expansions (Delv@&cBempp 1989, Temlyakov
1993, Wasilkowski & Waniakowski 1995), it is fairly difficult to implement in a daical
Fourier setting. Fourier coefficients are usually derivath\bivariate) FFT, and the latter
requires the availability of data in an entife x N square lattice and calls f(ﬁP(N2 log N)
operations. Although modern non-standard versions of F&iage to deal with this situation
(Fenn, Kunis & Potts 2006), they are neither easy nor sttiighard to implement. However,
methods for the evaluation of modified Fourier coefficiefgerfes & Ngrsett 2007) (which
can be readily extended to cater for polynomial subtragidnain them one-by-one. In other
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words, provided that we restrict attention to a subset stingj of anyM coefficients, the cost

of their computation is jus©(M). This provides a means to combine the hyperbolic cross
with modified Fourier and polynomial subtraction which ighbsimple to comprehend and
easy to implement.

What applies tal = 2 applies with even greater force to larger number of var@blée
proportion of points that need be considered ihdimensional lattice to attain given accuracy
exhibitsveryweak growth as a function ef > 1.

We formally define théayperbolic crosg<,(t) as the set of alh € Zi such that

ning - -ng < t, where ng = max{nk, 1}.

The number of points,(t) in K4(t) has been calculated in (Dobrovol'skii & Roshchenya
1998).

Proposition 6 The number of points in the hyperbolic crdss(¢) is

~ t(logt)??

Ka(t) = - + lower-order terms. (3.1)

Proof We forego the longer (and more general) proof in (Dobrokil& Roshchenya
1998) for an elementary inductive argument. Cleatlyt) = ¢ and this is consistent with
(3.1). Ford > 2 we note the recurrence relation

Ka(t) = % K (;) .

m=1
Therefore, by induction (and retaining only leading terms)

L]

w0 (3) -t ()

1 bt £\ 42 t " (log x)?—2
N(d2)!/1m<10gm) dm_(d72)!/1 P

t(logt)d—1
CES

as stipulated by (3.1). O
Suppose that, givefi € C>([-1,1]¢), there exists\ > 0 such that
IDDR2 - DI flly(m1,1j0) < (wA)mrFnettna, ni, ... g € L. (3.2)

(Itis possible to embrace more general point of view, simidahat in (Temlyakov 1993), but
at present we strive for insight, rather than for maximalegelity.)
Similarly to Theorem 5, we have for all> 0 andny,no ..., ng > 1

ol (=1)mrs[f)

~Y
N1,M2,..0,T0 ’
1,M2;5...,Md W2r+2dn§r+2ngr+2 L nflr-&-Q
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whereS|[f] is a linear combination (with-1 coefficients) ofD2" D27+t ... D21 at the2?
vertices of thel-cube. Disregarding higher-order terms, we thus deduce {&2) that

2d>\2rd+d

= (nlnz,..nd)QH—Qa Ny, N, ..., ng > 1. (3.3)

Suppose that we agree to discard all coefficie%ﬂsiess thare > 0 in magnitude. Then,
2d)\7d ﬁ
n c Kd(td,r,)\); where td,r,)\ = )\d (€> .

Now, by (3.1) and assuming for simplicity that> 1,

d d
2%\ me
=G

d—1
loge™! )
(d—1)lezm s }

d 1
og 2
2r+2 2r+2

d
Kd(tarn) = 2 + 2

Assuming that the~! terms dominates, we deduce that we require just about

d d
22r+2 /\d7 2

(d—1)I(2r +2)d1

e (loge~1)d-1

terms.

Brief examination of Theorem 5 and the more general (gively tor » = 0, but all
this generalises readily along the lines of that theordragriate expressions in (Iserles &
Ngrsett 2007), it is easy to verify that, for ady> 2, we have the following ‘layers’ of
coefficients, corresponding to different faces of the caxpt1, 1]. In eachk dimensions,

k =0,1,...,d, we have2*(¢) different types of coeﬁicientﬁi , Where onlyk of then;s

are nonzero and the correspondiag are either O or 1 (if,; = 0 then we also set; = 0).

Since each such coefficient iskavariate integral, we need to repladevith % in the above
estimate of the number of terms. Altogether, we have, aftereselementary algebra,

k k
22r2 /\k_ 22

d
d 1
1 E ok g L
+k:1 <k>(k—1)!(2r+2)k15 772 (loge 1)

=1+ mrattmm)\-mnL{ (2t wE Al wE loge ™)), (3.4)

WhereLEf‘) is the (generalised) Laguerre polynomial (Rainville 1960)

e || r=0 | r=1]r=2]r=3
10700 116,182 2,623| 742| 395
107°% || 1,530,224/ 10,897| 2,098| 921
10710 || 18,986,367| 42,695 5,596 2,026
10712 || 226,705,024 161,062| 14,375| 4,295

Table 1: The estimate (3.4) of the total number of coeffigent for d = 2 and\ = 1.

In Tables 1 and 2 we display the number of terms greaterdimmagnitude, as predicted
by (3.4), in two and four variables. Of course, (3.4) is a segland grossly pessimistic in
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e H r=20 ‘ r=1 ‘ r=2 ‘ r=3
10706 37,439,571 622,278 159,081 80,461
10708 829,237,918 4,310,161 747,652 311,475

10-10 15,532,963,636 25,351,179| 2,988,241| 1,026,185
102 || 260,907,636,317 134,000,994/ 10,741,885| 3,041,963

Table 2: The estimate (3.4) of the total number of coeffigent for d = 4 and\ = 1.

our experience) estimate. Yet, even if, on the face of it, medealing here with fairly large
numbers, we must also bear in mind the fairly large numbeiadgbles! Thus, considering
the bottom row in Table 2, even without polynomial subtmacfithe first column) this number
of terms is equivalent to using a four-dimensional cubiedtide of coefficients (of either
conventional or modified Fourier expansion) of side 715 Jevtiiple polynomial subtraction,
r = 3, requires side of length 42. Now, taking 715 coefficientsrivariate Fourier expansion
of a non-periodic function and incurring an error=f10~'2 is surely quite remarkable —
taking just 42 terms even more so!

It might be too optimistic to hope for the curse of dimensidpdo be completely lifted
from multivariate approximation. Having said so, the comeloi magic of modified Fourier
expansion, polynomial subtraction and the hyperboliccmasm draw away much of its sting.
Clearly, our current understanding of these phenomenataidinteraction is far from com-
plete. Yet even partial results and initial numerical eigrese indicate that they present us
with a powerful approach to multivariate approximation.
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