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Abstract

Modified Fourier expansion is a powerful means for the approximation of non-periodic
smooth functions in a univariate or multivariate setting. In the current paper we con-
sider further enhancement of this approach by two techniques familiar from conventional
Fourier analysis: polynomial subtraction and the hyperbolic cross. We demonstrate that,
judiciously subtracting simpler functions dependent on linear combinationsof derivatives
along boundaries, it is possible to accelerate convergence a great deal and this procedure is
considerably more efficient than in the case of conventional Fourier expansion. Moreover,
examining the pattern of decay of coefficients in a multivariate setting, we demonstrate
that most of them can be disregarded without any ill effect on quality of approximation.

1 Introduction

In this paper we continue work that commenced in (Iserles & Nørsett 2006a, Iserles & Nørsett
2006b, Iserles & Nørsett 2007), exploring approximation of functions in univariate and mul-
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tivariate setting by modified Fourier expansions and its computational aspects.
Let Ω ⊂ R

d be a bounded, closed, non-empty, simply-connected domain with piecewise-
smooth boundary. (The assumption of simple connectedness is for convenience sake only,
to render the use of the Stokes theorem straightforward, andcan be easily lifted.) Modified
Fourier expansion is concerned with expressing functionsf : Ω → R as expansions in the
eigenfunctions of the Laplace operator inΩ, equipped with Neumann boundary conditions
(Iserles & Nørsett 2007).

Modified Fourier expansion features two important characteristics. Firstly, by virtue of the
Neumann boundary conditions, it converges rapidly: for example (to which we will return),
in the univariate setting it converges uniformly in any closed interval forC3 functions and the
speed of convergence usingn expansion terms isO

(

n−2
)

within the interval andO
(

n−1
)

at the boundary (Iserles & Nørsett 2006a, Olver 2007). (In comparison, standard Fourier
expansion for non-periodic functions converges likeO

(

n−1
)

within the interval and fails to
converge to the function values at the boundary.)

Second advantage of modified Fourier expansions is that the expansion coefficients are in-
tegrals of the functionf , multiplied by rapidly oscillating Laplace–Neumann eigenfunctions.
This brings them within realm of applicability of the very powerful methods for the numer-
ical quadrature of highly oscillating integrals that have been developed in the last few years
(Huybrechs & Vandewalle 2006, Iserles & Nørsett 2005, Olver2006). Such methods allow
for the approximate computation of the firstn expansion coefficients inO(n) operations.

Modified Fourier expansions clearly are not a panacea for allcomputational problems. If
Ω is ad-dimensional box and the functionf is periodic, nothing can beat standard Fourier ex-
pansion and the Fast Fourier Transform. Even iff is not periodic, it is often preferable to use
expansions in Chebyshev polynomials. Yet, we believe that the concept of modified Fourier
expansions is powerful enough to confer real advantage in many situations and deserves fur-
ther enquiry. In particular, we believe it worthwhile to explore ideas how to accelerate the
convergence of modified Fourier series and how to implement them with considerably smaller
set of coefficients (and in considerably smaller number of operations) without any injury to
their precision. This is the theme of the present paper.

To set the stage for the new material presented in the sequel,we review very briefly aspects
of univariate modified Fourier expansions from (Iserles & Nørsett 2006a). Assuming without
loss of generality thatΩ = [−1, 1], Laplace–Neumann eigenfunctions are simply

{cos πnx : n ∈ Z+} and {sin π(n − 1
2 )x : n ∈ N}

and themodified Fourier expansionis

f(x) = 1
2 f̂C

0 +

∞
∑

n=1

[f̂C
n cos πnx + f̂S

n sin π(n − 1
2 )x], (1.1)

where

f̂C
n =

∫ 1

−1

f(t) cos πntdt, f̂S
n =

∫ 1

−1

f(t) sin π(n − 1
2 )tdt.

Let f ∈ C∞[−1, 1]. Using repeated integration by parts, it is easy to expand the modified
Fourier coefficientŝfC

n andf̂S
n asymptotically forn ≫ 1,

f̂C
n ∼

∞
∑

k=0

(−1)k+n

(πn)2k+2
[f (2k+1)(1) − f (2k+1)(−1)], (1.2)
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f̂S
n ∼

∞
∑

k=0

(−1)k+n+1

[π(n − 1
2 )]2k+2

[f (2k+1)(1) + f (2k+1)(−1)]. (1.3)

It follows at once thatf̂C
n , f̂S

n ∼ O
(

n−2
)

for n ≫ 1. This is strikingly better than the
conventional Fourier sine coefficients, that decay likeO

(

n−1
)

and this is the main reason why
(1.1) exhibits superior convergence properties (Iserles &Nørsett 2006a). However, arguably,
the main importance of the asymptotic expansions (1.2) and (1.3) is numerical, rather than
theoretical: they allow for very rapid calculation of quality approximations to the modified
Fourier coefficients.

The simplest means to calculatêfC
n andf̂S

n is based on the truncation of their respective
asymptotic series. In that case we need to precompute the right number of odd derivatives at
the endpoints±1. The procedure is remarkably effective even for fairly small values ofn.
Yet, it can be improved considerably, without requiring extra function evaluations, by the use
of Filon-type formulæ (Iserles & Nørsett 2006a). This renders this approach competitive even
for quite small values ofn. The few values ofn too small for such asymptotic-based tech-
niques can be computed with little or no extra function evaluations using the ‘exotic quadra-
ture’ approach explained in (Iserles & Nørsett 2006a).

Many ideas associated with the univariate modified Fourier expansion (1.1) scale up seam-
lessly to multivariate setting. In particular, an asymptotic expansion is available by employing
repeatedly the Stokes theorem and can be used as a basis for the computation of expansion
coefficients. The latter can be further enhanced by using Filon-type methods and ‘exotic
quadrature’ (Iserles & Nørsett 2007). Of course, we take forgranted that the full set of
Laplace–Neumann eigenfunctions (of which rich theory exists: in particular, they form an
orthogonal set closed inL2(Ω)) is explicitly known. This represents a tangible restriction on
our approach.

One obvious generalisation of the univariate setting is tod-variate cubes using Carte-
sian products of the univariate eigenfunctionscos πnx andsin π(n − 1

2 )x. It is perhaps less
straightforward than it seems and involves some fairly subtle constructs (Iserles & Nørsett
2007). Otherwise, even the list of simply-connected bivariate domains for which Laplace–
Neumann eigenfunctions are comprehensively know is fairlyrestricted: it includes just el-
lipses and three types of triangles: equilateral, straightwith two equal acute angles and
straight with acute angles ofπ6 and π

3 . However, the situation is not as hopeless as this
brief list might imply. LetΩ be any bivariate domain with piecewise-linear boundary (which
need not be simply connected). To approximatef ∈ C∞(Ω) we tessellateΩ into triangles
∆i, i = 1, 2, . . . , r. Each∆i can be mapped affinely into, say, the unit equilateral triangle
T . Denoting this mapping byϕi, we approximatef(ϕ−1

i ) in T by truncated modified Fourier
expansiongi, say and map the outcome back to∆i. Thus, we are tilingΩ with approximations
gi(ϕi), i = 1, 2, . . . , r.

Detailed approximation by Laplace–Neumann eigenfunctions in an equilateral triangle
will feature in a subsequent paper. At present it just suffices to point out that it is possible to
represent the underlying eigenfunctions in a convenient form and derive handy formulæ and
quadrature methods for expansion coefficients: everythingscales up from the univariate case.

Unfortunately, so does the speed of convergence. While inside the triangle then-term
approximation converges likeO

(

n−2
)

, this drops down toO
(

n−1
)

on the boundary. This
is particularly unwelcome when we employ the above tessellation of bivariate polygonal do-
mains into triangles: the error is significantly larger across the (artificial) internal boundaries
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than elsewhere. This is a manifestation of a wider problem implicit in our approach: although
modified Fourier for non-periodic functions converges significantly faster than its conven-
tional counterpart,1 ideally we would have liked it to converge even faster, both inside the
domain and on the boundary.

One obvious means to accelerate convergence is to replace Laplace–Neumann eigenfunc-
tions by eigenfunctions of polyharmonic operators, subject to high-order Neumann boundary
conditions. This is an approach presented for the univariate case in (Iserles & Nørsett 2006b).
However, it is highly unlikely to be equally useful in a multivariate setting: even the sim-
plest case, biharmonic eigenfunctions in a square, requirenon-elementary functions, and their
practical implementation is currently an open problem.

An alternative is a technique already familiar in the context of standard Fourier expan-
sions – indeed, one that might be construed as a competitor tomodified Fourier:polynomial
subtraction(Kantorovich & Krylov 1958, Roache 1978). The main idea is fairly simple.
Thus, the nonperiodic functionf is represented in the formf = p + (f − p), wherep is an
(2s − 1)st-degree Hermite polynomial interpolation off at±1,

p(i)(±1) = f (i)(±1), i = 0, . . . , s − 1.

One then Fourier-expands the functionf̃ = f − p and addsp. Since the firsts derivatives of
f̃ match at the endpoints, it is possible to prove that the (conventional) Fourier coefficients of
f̃ decay likeO

(

n−s−1
)

. Moreover, the rate of convergence (for sufficiently smoothf ) within
the interval isO

(

n−s−1
)

and at the boundary it reduces toO(n−s).
As already mentioned in (Iserles & Nørsett 2006a), polynomial subtraction becomes sub-

stantially more effective when combined with modified Fourier expansions. The reason is
clear from the asymptotic expansions (1.2) and (1.3): we need to subtract fromf just the
quadratic polynomialp(x) = (1

2x − 1
4x2)f ′(−1) + (1

2x + 1
4x2)f ′(1) to force the modified

Fourier coefficients of̃f to decay likeO
(

n−4
)

. The same asymptotic decay within the realm
of conventional Fourier expansions would have required matchingf, f ′, f ′′ at the endpoints
with quintic polynomial interpolation. The advantage of modified Fourier in this setting be-
comes even more pronounced once we require faster asymptotic decay.

Section 2 is devoted to detailed exploration of polynomial subtraction for modified Fourier
expansions in an interval and in ad-dimensional box.

In Section 3 we explore another classical computational device which comes into its own
in modified Fourier setting, thehyperbolic cross(Babenko 1960). We start from classical
Fourier expansions in a unit square. In that case the(m,n) coefficient decays asymptotically
like O

(

m−1n−1
)

. Therefore, once we truncate the series (as we are bound to inrealistic com-
putation), it is not necessary to retainall (m,n)th coefficients form,n ≤ N , say, whereN is
a sufficiently large integer, chosen to guarantee requisiteprecision. It is perfectly acceptable
to require thatmn ≤ M for someM (chosen according to similar criteria). This results in
roughlyM log2 M terms in place ofN2 according to the naive approach. All this becomes
even more advantageous with more variables.

Using hyperbolic cross within the context of modified Fourier expansions (ideally, in con-
junction with polynomial subtraction) is considerably more natural. Of course, the asymptotic
decay of the coefficients is more rapid, hence even fewer terms are needed. But the main dif-
ference is of a different kind. In the case of Fourier expansions integrals are inevitably com-
puted with FFT, and the latter (in two variables) computes all the coefficients in a square: the

1Conventional Fourier approximations are, needless to say, defined only in boxes, certainly not in triangles.
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large as well as the small. There is no easy way to excise the coefficients outside the hyper-
bolic cross! In our case, though, coefficients are computed with highly oscillatory quadrature,
one-by-one. This means that we can easily restrict ourselves to the points in a lattice which
lie inside a hyperbolic cross.

Of course, one clear advantage of multivariate modified Fourier expansions is that, unlike
conventional Fourier series, they can be applied in more general domains, e.g. equilateral
triangles. The economies implicit in the use of the hyperbolic cross are equally valid in this
setting. We defer the discussion of polynomial subtractionand the hyperbolic cross in an
equilateral triangle to another paper, where we will also consider other computational issues
relevant in this setting.

2 Polynomial subtraction

2.1 The unit interval

Let f ∈ C∞[−1, 1] be given: the theory can be extended in a transparent manner to f ∈
Cs[−1, 1] for a suitables ≥ 1, with the minimal value ofs changing according to setting, but
the virtue of simplicity and clarity militates against generality for generality sake.

We seek a polynomialp ∈ P2r such thatp(0) = 0 and

p(2k+1)(−1) = f (2k+1)(−1), p(2k+1)(1) = f (2k+1)(1), k = 0, 1, . . . , r − 1. (2.1)

Our first observation is that we cannot take for granted the existence of such a polynomial. (If
it exists it is clearly not unique, since we can add a constanttop without interfering with (2.1).)
The conditions (2.1) are an example ofBirkhoff–Hermite polynomial interpolation(Lorenz,
Jetter & Riemenschneider 1983) and it is well known that a solution to such problems need
not exist and must be carefully checked on a case-by-case basis.

Fortunately, insofar as (2.1) is concerned we can easily prove existence and, subject to a
normalising condition, uniqueness.

Proposition 1 For everyr ∈ N there exists a unique polynomialp of degree2r so that (2.1)
holds andp(0) = 0.

Proof It is sufficient to show that there exists a uniqueq ∈ P2r−1 such that

q(2k)(±1) = f (2k+1)(±1), k = 0, . . . , r − 1

and setp(x) =
∫ x

0
q(t)dt.

Let

q(x) =

2r−1
∑

l=0

pl+1

l!
xl.

Then the Birkhoff–Hermite interpolation conditions forq are equivalent to

2r−2k−1
∑

l=0

pl+2k+1

l!
= f (2k+1)(1),

2r−2k−1
∑

l=0

(−1)l pl+2k+1

l!
= f (2k+1)(−1)























k = 0, 1, . . . , r − 1. (2.2)
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Adding and subtracting the above equations, we convert theminto two separate linear systems,
each ofr equations.

r−k−1
∑

l=0

p2l+2k+1

(2l)!
= 1

2 [f (2k+1)(1) + f (2k+1)(−1)],

r−k−1
∑

l=0

p2l+2k+2

(2l + 1)!
= 1

2 [f (2k+1)(1) − f (2k+1)(−1)]























k = 0, 1, . . . , r − 1.

The two linear systems above (one for odd-indexed and the other for even-indexed coeffi-
cients) have nonsingular upper-triangular matrices. Hence they are nonsingular and possess
unique solutions. This completes the proof. 2

Proposition 1 confirms the validity of polynomial subtraction in the setting of modified
Fourier expansions in the unit interval[−1, 1] (and, therefore, by linear translation, in any
compact interval). To make the procedure explicit, we choose r ∈ N, computef (2k+1)(±1)
for k = 0, . . . , r − 1 and construct the interpolation polynomialp. In place of the expansion
(1.1), we use

f(x) = p(x) + 1
2
ˆ̃
f

C

0 +
∞
∑

n=1

[
ˆ̃
f

C

n cos πnx +
ˆ̃
f

S

n sin π(n − 1
2 )x], (2.3)

where

ˆ̃
f

C

n =

∫ 1

−1

[f(x) − p(x)] cos πnxdx,
ˆ̃
f

S

n =

∫ 1

−1

[f(x) − p(x)] sin π(n − 1
2 )xdx.

It follows at once from the asymptotic expansions (1.2) and (1.3) that

ˆ̃
f

C

n ∼

∞
∑

k=r

(−1)k+n

(πn)2k+2
[f (2k+1)(1) − f (2k+1)(−1)] = O

(

n−2r−2
)

, (2.4)

ˆ̃
f

S

n ∼

∞
∑

k=r

(−1)k+n+1

[π(n − 1
2 )]2k+2

[f (2k+1)(1) − f (2k+1)(−1)] = O
(

n−2r−2
)

.

This readily leads to the major observation of this subsection.

Theorem 2 The asymptotic rate of decay of modified Fourier coefficients, once a polynomial
p ∈ P2r consistent with (2.1) is subtracted fromf , isO

(

n−2r−2
)

for n ≫ 1.

The polynomialp can be derived solving thenormal equations(2.2). An alternative,
lending itself better toward detailed analysis and multivariate generalisation, is the use of
cardinal functions.Thus, we seek polynomialsθn,± ∈ P2n such that

θ
(2l+1)
n,± (±1) =

{

0, l = 0, . . . , n − 2,
1, l = n − 1,

θ
(2l+1)
n,± (∓1) = 0, l = 0, . . . , n − 1.

(Needless to say,θ(2l+1)
n,± ≡ 0 for l ≥ n.) For example,

θ1,±(x) = 1
2 (± 1

2x2 + x),

θ2,±(x) = 1
24 (± 1

2x2 + x)(x2 ± 2x − 6),

θ3,±(x) = 1
720 (± 1

2x2 + x)(x4 ± 4x3 − 13x2 ∓ 34x + 75)
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Figure 1: The magnitude of the coefficients (scaled byn2r+2) for r = 0 (no polynomial
subtraction),r = 1 andr = 2 for f(x) = ex.

and so on. In general, it is trivial to confirm that

θn,−(x) = −θn,+(−x), n ≥ 1,

hence we need just the explicit form ofθn,+.

Proposition 3 For everyn ∈ N it is true that

θn+1,+(x) = anx + 1
2bnx2 +

∫ x

0

(x − t)θn,+(t)dt, (2.5)

where

an = − 1
2

∫ 1

0

[θn,+(t) − θn,+(−t)]dt, bn = − 1
2

∫ 1

0

[θn,+(t) + θn,+(−t)]dt.

Proof By induction. θn,+ ∈ P2n, thereforeθn+1,+ ∈ P2n+2. Differentiation in (2.5),
lettingx = ±1 and substitution of the values ofan andbn confirm at once that

θ′n+1,+(±1) = an ± bn +

∫ ±1

0

θn,+(t)dt = 0.

Moreover, it follows trivially from (2.5) thatθ′′′n+1,+ = θ′n,+, hence, by induction onn, it is

true thatθ(2l+1)
n+1,+ = 0, l = 0, . . . , n − 1, except thatθ(2n+1)

n+1,+ (1) = θ
(2n−1)
n,+ (1) = 1. Therefore

θn+1,+ obeys the interpolation conditions. 2

In Fig. 1 we display the magnitude of the cosine (circles) andsine (diamonds) coefficients,
scaled byn2r+2, for r = 0, 1, 2 and the functionf(x) = ex. As expected, the coefficients
indeed decay likeO

(

n−2r−2
)

. What is perhaps surprising – yet is consistent with a great
deal of further numerical experimentation – is how rapid is the onset of asymptotic behaviour.
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Figure 2: The error incurred in approximatingf(x) = ex by modified Fourier expansions
without polynomial subtraction, with 12, 24, 48 and 96 termsrespectively.

This, of course, is of paramount importance when asymptoticformulæ are used as a basis for
rapid numerical evaluation of expansion coefficients.

The theme of Figures 2–4 are pointwise errors incurred whenex is approximated by mod-
ified Fourier expansions without polynomial subtraction (Fig. 2), with r = 1 (Fig. 3) and
r = 2 (Fig. 4). The increase in precision is truly remarkable.

In the specific casef(x) = ex it is easy to derive coefficients explicitly for smallr: letting
r = 0 stand for the ‘basic’ expansion, without polynomial subtraction, we have

r = 0 : f̂C
0 = (e − e−1),

f̂C
m =

(−1)m(e − e−1)

1 + π2m2
, f̂S

m =
(−1)m+1(e + e−1)

1 + π2(m − 1
2 )2

, m ∈ N,
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Figure 3: The error incurred in approximatingf(x) = ex by modified Fourier expansions
with polynomial subtraction,r = 1, with 12, 24, 48 and 96 terms respectively.

r = 1 :
ˆ̃
f

C

0 = 5
6 (e − e−1),

ˆ̃
f

C

m =
(−1)m+1(e − e−1)

π2m2(1 + π2m2)
,

ˆ̃
f

S

m =
(−1)m(e + e−1)

π2(m − 1
2 )2[1 + π2(m − 1

2 )2]
, m ∈ N,

r = 2 :
ˆ̃
f

C

0 = 307
360 (e − e−1),

ˆ̃
f

C

m =
(−1)m(e − e−1)

π4m4(1 + π2m2)
,

ˆ̃
f

S

m =
(−1)m+1(e + e−1)

π4(m − 1
2 )4[1 + π2(m − 1

2 )2]
, m ∈ N.

This is fully consistent with the asymptotic rate of decay from Theorem 2. Moreover, it is
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Figure 4: The error incurred in approximatingf(x) = ex by modified Fourier expansions
with polynomial subtraction,r = 2, with 12, 24, 48 and 96 terms respectively.

easy to confirm an obvious conjecture, namely that

ˆ̃
f

C

m =
(−1)m+r(e − e−1)

(πm)r[1 + (πm)2]
,

ˆ̃
f

S

m =
(−1)m+r+1(e + e−1)

[π(m − 1
2 )]r{1 + [π(m − 1

2 )]2}
, m ∈ N,

for anyr ≥ 0 by summing up explicitly the asymptotic expansions (2.4).
The range of the above plots is the interval[− 9

10 , 9
10 ], thus we omit the vicinity of end-

points. The reason is that convergence at the endpoints is slower. In the standard modified
Fourier case the error at±1 decays likeO

(

n−1
)

(Iserles & Nørsett 2006a, Olver 2007) and
it is easy to use the technique of Olver (2007) to prove that, for polynomial subtraction with
r ≥ 1 the error decay at the endpoints isO

(

n−2r−1
)

– a single unit less than inside the
interval. This is fully confirmed by numerical results.



11

2.2 The square [−1, 1]2

Detailed theory of modified Fourier expansions ind-dimensional boxes[−1, 1]d has been de-
veloped in (Iserles & Nørsett 2007). Since it involves a great deal of notation and terminology,
designed to deal with many different types of coefficients, we concentrate in this subsection on
the first nontrivial case,d = 2, observing that generalisation to more dimensions is straight-
forward in principle, delicate in practice.

A bivariate modified Fourier expansion off ∈ L2([−1, 1]2) is

1
4 f̂

[0,0]
0,0 + 1

2

∞
∑

n=1

[f̂
[0,0]
n,0 cos(πnx) + f̂

[0,0]
0,n cos(πny) + f̂

[1,0]
n,0 sin(π(n − 1

2 )x)

+ f̂
[0,1]
0,n sin(π(n − 1

2 )y)] +

∞
∑

n1=1

∞
∑

n2=1

[f̂ [0,0]
n1,n2

cos(πn1x) cos(πn2y) (2.6)

+ f̂ [1,0]
n1,n2

sin(π(n1 −
1
2 )x) cos(πn2y) + f̂ [0,1]

n1,n2
cos(πn1x) sin(π(n2 −

1
2 )y)

+ f̂ [1,1]
n1,n2

sin(π(n1 −
1
2 )x) sin(π(n2 −

1
2 )y)],

where

f̂ [0,0]
n1,n2

=

∫ 1

−1

∫ 1

−1

f(x, y) cos(πn1x) cos(πn2y)dxdy,

f̂ [1,0]
n1,n2

=

∫ 1

−1

∫ 1

−1

f(x, y) sin(π(n1 −
1
2 )x) cos(πn2y)dxdy,

f̂ [0,1]
n1,n2

=

∫ 1

−1

∫ 1

−1

f(x, y) cos(πn1x) sin(π(n2 −
1
2 )y)dxdy,

f̂ [1,1]
n1,n2

=

∫ 1

−1

∫ 1

−1

f(x, y) sin(π(n1 −
1
2 )x) sin(π(n2 −

1
2 )y)dxdy.

The modified Fourier coefficients above can be expanded asymptotically. A departure from
the univariate case is that the coefficients now depend on twoparameters,n1 andn2, both of
which can grow large independently of each other. Hence, there is a two-dimensional quadrant
of coefficients and, ideally, we want to accelerate the decayof modified Fourier coefficients
in any direction where eithern1 or n2 grows large – or both.

We commence the discussion with the easiest case, wheren1 andn2 are both large. The
first term in this expansion isO

(

n−2
1 n−2

2

)

, the second is a linear combination ofO
(

n−4
1 n−2

2

)

andO
(

n−2
1 n−4

2

)

terms and so on: we refer the reader to (Iserles & Nørsett 2007) for details.
A natural generalisation of the framework from the last subsection to a bivariate setting is to
subtract fromf a multivariate polynomialp so that

fxy(±1,±1) = pxy(±1,±1). (2.7)

This means that we knock out the leading asymptotic term and,for largen1, n2, modified
Fourier coefficients off − p decay likeO

(

n−4
1 n−2

2 , n−2
1 n−4

2

)

. Observing that the next terms
in the expansion always depend on the partial derivatives ofodd order inx andy, evaluated
precisely at the vertices of the square, we can iterate this approach. Thus, in order to accelerate
the decay of the coefficients further, we require in additionto (2.7)

fxxxy(±1,±1) = pxxxy(±1,±1) and fxyyy(±1,±1) = pxyyy(±1,±1),
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and so on.
An important subset of bivariate modified Fourier coefficients are the ‘boundary coef-

ficients’, whenmin{n1, n2} = 0. These coefficients are non-oscillatory in one dimen-
sion and hence they exhibit different asymptotic expansion. Replacingf(x) with F (x) =
∫ 1

−1
f̃(x, y)dy in (1.2), it follows that

ˆ̃
f

[0,0]

n,0 ∼

∞
∑

k=0

(−1)n+k

(πn)2k+2
[F (2k+1)(1) − F (2k+1)(−1)].

Thus, to acquire rapid asymptotic decay forn ≫ 1 we needF ′(1) = F ′(−1) and we can
easily prove that, once other ‘boundary coefficients’ are taken into account, we need

∫ 1

−1

fx(±1, y)dy =

∫ 1

−1

px(±1, y)dy,

∫ 1

−1

fy(x,±1)dx =

∫ 1

−1

py(x,±1)dx, (2.8)

extra four conditions on the polynomialp.
Imposing just conditions (2.7) and (2.8) onp does not yet achieve accelerated decay in all

directions, as it is still true thatˆ̃f
[0,0]

n1,n2
= O

(

n−2
1

)

for largen1, but smalln2 > 0. We can
repeat the argument that led to (2.8) and replacef(x) by

F (x) =

∫ 1

−1

f̃(x, y) cos(n2πy)dy,

wheren2 may be small. It follows that we again needF ′(1) = F ′(−1). More generally, to
obtain rapid decay of all modified Fourier coefficients with largen1 and fixedn2 ∈ N, this
argument leads to the conditions

∫ 1

−1

fx(±1, y) cos(πn2x)dy =

∫ 1

−1

px(±1, y) cos(πn2x)dy,

∫ 1

−1

fx(±1, y) sin(π(n2 −
1
2 )x)dy =

∫ 1

−1

px(±1, y) sin(π(n2 −
1
2 )x)dy.

Thus, we find thatpx should reproduce precisely theunivariatemodified Fourier coefficients
of fx along the vertical edges of the boundary. A similar result follows for the case of large
n2 and fixedn1, involving the two horizontal edges of[−1, 1]2. Alternatively, all required
conditions are automatically satisfied once we interpolatethe normal derivative off along the
entire boundary,

∂f

∂n
(x, y) =

∂p

∂n
(x, y), (x, y) ∈ ∂[−1, 1]2. (2.9)

Any functionp satisfying this condition also satisfies all conditions mentioned above. Note in
particular that any sufficiently smooth functionp satisfying (2.9) should also satisfy (2.7).

Condition (2.9) does not come as a surprise. A general expansion for modified Fourier
coefficients, that converges in an asymptotic sense, was developed in (Iserles & Nørsett 2007),

〈f, u〉 ∼ −

∞
∑

k=0

1

(−λ)k+1

∫

∂Ω

∂∆kf(x)

∂n
u(x)dS, λ ≫ 1, (2.10)
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based only on a repeated application of the Stokes theorem. Here,u(x) is a Laplace–Neumann
eigenfunction inΩ with the corresponding eigenvalueλ. In the case of a square, the eigen-
value behaves asλ ∼ n2

1 + n2
2, and thusλ ≫ 1 if max{n1, n2} ≫ 1. Matching normal

derivatives along the boundary means the first term in (2.10)is cancelled. This is fully consis-
tent with the objective of accelerated convergence whenever n1, n2 or both are large. At the
same time, this expansion signposts the path of generalization towards both cancelling higher
order asymptotic terms and extending acceleration to otherbivariate setsΩ.

The interpolation of the normal derivative along the entireboundary might seem a tall or-
der – even more so if we wish to speed asymptotic decay furtherby subtracting higher deriva-
tives. Fortunately, this can be done fairly easily by employing techniques from computer-
aided geometric design similar to theCoons patches(Farin 1997). Strictly speaking, the
outcome is notpolynomialsubtraction, sincep is no longer a polynomial, but this should
cause no problems whatsoever in practice.

Recall the quadraticθ1(x) = θ1,+(x) from the last subsection and note thatθ1,−(x) =
−θ1(−x). We let

p(x, y) = −θ1(−x)fx(−1, y) + θ1(x)fx(1, y) − θ1(−y)fy(x,−1) + θ1(y)fy(x, 1)

− [θ1(−x)θ1(−y)fxy(−1,−1) − θ1(−x)θ1(y)fxy(−1, 1) (2.11)

− θ1(x)θ1(−y)fxy(1,−1) + θ1(x)θ1(y)fxy(1, 1)].

Note thatp ‘fills in’ values in (−1, 1)2, using solely information onf along the boundary. It
is now easy to verify that

px(±1, y) = fx(±1, y), py(x,±1) = fy(x,±1),

therefore (2.9) is satisfied and we can usep to ‘subtract’ the influence of the leading asymp-
totic term inall types of coefficients.

There is an apparent element of cheating in using the above functionp to accelerate con-
vergence. After all, the entire point of approximation theory is to express (or approximate)
complicated functions in terms of simpler functions: polynomials, trigonometric functions,
splines etc. This is entirely consistent with polynomial subtraction, since thenf is expressed
as a polynomial plus trigonometric series, but not whenp is allowed to be a linear combi-
nation of derivatives off along the boundary. However, this is not a real problem. The
functionsfx(±1, y) andfy(x,±1) are univariate and we can use the theory of Subsection 2.1
to approximate them rapidly with ‘proper’ polynomial subtraction. In other words, our pro-
cedure (which generalises to higher dimensions) is to subtract fromf a linear combination of
lower-dimensional functions which are, in turn, approximated in a lower-dimensional box.

With greater generality, and bearing in mind expansion (2.10), in order to eliminate all

O
(

n−2j1
1 n−2j2

2

)

terms in the square withj1, j2 ≤ r we need to fit all normal derivatives of

the form∂∆jf/∂n for j = 0, . . . , r − 1 along the boundary of the square. To this end we
chooser ∈ N and let

pr(x, y) =

r
∑

k=1

[−θk(−x)D2k−1
x f(−1, y) + θk(x)D2k−1

x f(1, y) − θk(−y)D2k−1
y f(x,−1)

+ θk(y)D2k−1
y f(x, 1)]
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Figure 5: The error incurred in approximatingf(x, y) = sin(1+x−2y) by modified Fourier
expansions withr = 0 (top row),r = 1 andr = 2 (bottom row), truncating forn1, n2 ≤ 10
(left column),n1, n2 ≤ 20 (central column) andn1, n2 ≤ 40 (right column).

−

r
∑

k=1

r
∑

l=1

[θk(−x)θl(−y)D2k−1
x D2l−1

y f(−1,−1)

− θk(−x)θl(y)D2k−1
x D2l−1

y f(−1, 1) − θk(x)θl(−y)D2k−1
x D2l−1

y f(1,−1)

+ θk(x)θl(y)D2k−1
x D2l−1

y f(1, 1)],

whereθk(x) = θk,+(x) (henceθk,−(x) = −θk(−x)) for k ∈ N.
This seemingly peculiar functionpr was constructed in a systematic way that will be

detailed further on. First, we illustrate the accelerated convergence of modified Fourier series,
next we will prove thatpr does indeed satisfy the required properties.



15

y

3.0

x

0.5−0.5

1.0

1.5

2.5

4.0

0.0

2.0

1.0−1.0

3.5

6.5

x

4.5

−0.5−1.0 0.50.0

6.0

5.0

1.0

5.5

x

−0.5

9.5

0.5

10.0

1.0

8.5

0.0

9.0

8.0

−1.0

7.5

Figure 6: The number of significant decimal digits in approximatingf(x, y) = sin(1+x−2y)
along the boundaryy = 1 by modified Fourier expansions withr = 0 (left), r = 1 and
r = 2 (right): solid, dashed and dotted lines represent truncation for n1, n2 ≥ N , where
n = 10, 20, 40 respectively.

Fig. 5 displays the error committed when approximatingf(x, y) = sin(1 + x − 2y)
with ‘plain’ modified Fourier expansion (top row) and by subtractingp. The improvement in
performance is consistent with theory.

In Fig. 6 we present the number of significant digits (that is,− log10 |error|) when the
above function is approximated on the boundaryy = 1. The asymptotic decay appears to be
consistent withO

(

n−2r−1
)

, one less than inside the domain. This can be confirmed using
Sheehan Olver’s technique of Lerch functions (Olver 2007).Note an important point. While
for r = 0 (the standard modified Fourier) the difference between convergence inside the
domain and on the boundary isO

(

n−2
)

vsO
(

n−1
)

, for r = 2 it is O
(

n−6
)

compared with
O

(

n−5
)

. The latter is, relatively speaking, of a marginal nature.

Proposition 4 For everyr ∈ N andj1, j2 = 0, 1, . . . , r − 1 it is true that

D2j1+1
x D2j2+1

y pr(x, y) = D2j1+1
x D2j2+1

y f(x, y), (x, y) ∈ ∂[−1, 1]2. (2.12)

In addition, forj = 0, . . . , r − 1 andl = 0, 1, 2, . . . it is true that

D2j+1
x D2l

y pr(±1, y) = D2j+1
x D2l

y f(±1, y),

D2l
x D2j+1

y pr(x,±1) = D2l
x D2j+1

y f(x,±1).

Proof By symmetry, it is enough to prove (2.12) only along the facey = 1. Since the
θk,±s are cardinal polynomials of Birkhoff–Hermite interpolation, it follows that, within the
above range ofj1 andj2,

D2j1+1
x D2j2+1

y pr(x, 1) =

r
∑

k=1

[θ
(2j1+1)
k,− (x)D2k−1

x D2j2+1
y f(−1, 1)

+ θ
(2j1+1)
k,+ (x)D2k−1

x D2j2+1
y f(1, 1)] + D2j1+1

x D2j2+1
y f(x, 1)
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−
r

∑

k=1

[θ
(2j1+1)
k,− (x)D2k−1

x D2j2+1
y f(−1, 1)

+ θ
(2j1+1)
k,+ (x)D2k−1

x D2j2+1
y f(1, 1)] = D2j1+1

x D2j2+1
y f(x, 1),

as required.
The remaining assertion follows by the same reasoning. 2

If follows immediately that∂∆jf
∂n

= ∂∆jpr

∂n
with j = 0, . . . , r − 1. Thus, the firstr terms

in expansion (2.10) vanish for̃f = f −p. We can also establish the full asymptotic expansion
of classical Poincaré type for the modified Fourier coefficients.

Theorem 5 The modified Fourier coefficients of the functionf̃(x, y) = f(x, y) − pr(x, y),
wherer ∈ Z+ (andp0 ≡ 0) obey the asymptotic expansion

ˆ̃
f

[α1,0]

n1,0 ∼ (−1)n1+α1

∞
∑

k=r

(−1)k

[πµα1
(n1)]2k+2

∫ 1

−1

[D2k+1
x f(1, y) − (−1)α1D2k+1

x f(−1, y)]dy,

ˆ̃
f

[0,α2]

0,n2
∼ (−1)n2+α2

∞
∑

k=r

(−1)k

[πµα2
(n2)]2k+2

∫ 1

−1

[D2k+1
y f(x, 1) − (−1)α2D2k+1

y f(x,−1)]dx,

ˆ̃
f

[α1,α2]

n1,n2
∼ (−1)n1+n2+α1+α2

∞
∑

k=2r

(−1)k

π2k+4

∑

l1+l2=k
l1,l2≥r

1

µ2l1+2
α1

(n1)µ
2l2+2
α2

(n2)

× [D2l1+1
x D2l2+1

y f(1, 1) − (−1)α1D2l1+1
x D2l2+1

y f(−1, 1)

− (−1)α2D2l1+1
x D2l2+1

y f(1,−1) + (−1)α1+α2D2l1+1
x D2l2+1

y f(−1,−1)]

for n1, n2 ≫ 1. Hereα1, α2 ∈ {0, 1} and

µα(n) =

{

n, α = 0,
n − 1

2 , α = 1.

Proof Our point of departure are asymptotic expansions forr = 0, as proved in (Iserles
& Nørsett 2007). By virtue of Proposition 4 we deduce that allthe terms fork ≤ r − 1 when
min{n1, n2} = 0, k ≤ 2r − 1 otherwise, are nil and all the higher derivatives off̃ match
these off . 2

2.3 d-variate cubes

Bearing in mind how involved are the formulæ for polynomial subtraction in two variables, it
might appear hopeless to seek them in higher (and even arbitrary) number of variables. For-
tunately, we can present a general recursive formula which produces polynomial-subtraction
schemes in[−1, 1]d for anyd ≥ 1. The operative word is “recursive” – writing such schemes
explicitly is, obviously, both exceedingly complicated and fairly abstruse.

The main idea is to subtract from the functionf boundary effects, one variable at a
time. Thus, to obtain the bivariate subtraction (2.11), ‘taking away’ the first derivative along
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∂[−1, 1]2, we let

h[0](x, y) = f(x, y),

h[1](x, y) = h[0](x, y) − θ1,−(x)h[0]
x (−1, y) − θ1,+(x)h[0]

x (1, y), (2.13)

h[2](x, y) = h[1](x, y) − θ1,−(y)h[1]
y (x,−1) − θ1,+(y)h[1]

y (x, 1).

It is trivial to verify directly that the outcome ish[2] = f − p, wherep has been given by
(2.11). However, it is more interesting to prove this going with the grain of the recursive
process. Thus,h[1]

x , by design, vanishes forx = ±1 and ally ∈ [−1, 1]. Moreover, by the
same token,h[2]

y = 0 for y = ±1 – but, by virtue of its construction,h[2]
x = 0 for x = ±1.

This line of reasoning immediately generalises to an arbitrary number of variables. Al-
though general formula can be easily given, it probably suffices to present it ford = 3,

h[0](x, y, z) = f(x, y, z),

h[1](x, y, z) = h[0](x, y, z) − θ1,−(x)h[0]
x (−1, y, z) − θ1,+(x)h[0]

x (1, y, z),

h[2](x, y, z) = h[1](x, y, z) − θ1,−(y)h[1]
y (x,−1, z) − θ1,+(y)h[1]

y (x, 1, z),

h[3](x, y, z) = h[2](x, y, z) − θ1,−(z)h[2]
y (x, y,−1) − θ1,+(z)h[2]

y (x, y, 1).

Moreover, this framework can be generalised also to higher orders of polynomial subtrac-
tion. Thus, in a bivariate setting, (2.13) generalises to

h[0](x, y) = f(x, y),

h[1](x, y) = h[0](x, y) −
r

∑

k=1

[θk,−(x)D2k−1
x h[0](−1, y) + θk,+(x)D2k−1

x h[0](1, y)],

h[2](x, y) = h[1](x, y) −

r
∑

k=1

[θk,−(y)D2k−1
y h[1](x,−1) + θk,+(y)D2k−1

y h[1](x, 1)].

Of course, having subtracted the contribution of odd derivative(s) along the boundary of
[−1, 1]d, we must deal with the(d − 1)-dimensional functions that we have used there. To
obtain truepolynomialsubtraction we must subtract from them, in turn, the contribution of
odd derivatives on the boundary – in other words,(d − 2)-variate functions – and so on. In
other words, we need to descend along the faces of[−1, 1]d, seen as a complex. All this is
straightforward in theory, yet might be fairly messy to implement in practice for larged.

3 The hyperbolic cross

In this section we focus just on cubes[−1, 1]d, d ≥ 2: although our theory is more wide
ranging and applies to all multivariate domains where we canuse modified Fourier expansion,
it is sufficient to understand it in a cube to convey its main flavour.

We examine modified Fourier expansion of the functionf(x) = eπ(x−y) in the square

[−1, 1]2. Givenr ∈ Z+, we restrict our attention to ‘pure cosine’ termsc
[r]
m,n =

ˆ̃
f

[0,0]

m,n with r-
fold polynomial subtraction, mentioning in passing that exactly the same arguments are valid
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Figure 7: The hyperbolic cross: Contour lines of|c
[r]
m,n| > 10−k for (in order of decreasing

shading)k = 2, 3, . . . , 9 for the functionf(x, y) = eπ(x−y) andr = 0, 1, 2. We display
m,n = 0, 1, . . . , 100

also in regard to other expansion coefficients. We can calculate explicitly

c[0]
m,n =

4(−1)m+n sinh2 π

π2(1 + m2)(1 + n2)
, m, n ∈ Z+;

c[1]
m,n =



















































(π2 − 6)2 sinh2 π

9π2
, m = n = 0,

2(−1)m(π2 − 6) sinh2 π

3π2m2(1 + m2)
, m ∈ N, n = 0,

2(−1)n(π2 − 6) sinh2 π

3π2n2(1 + n2)
, m = 0, n ∈ N,

4(−1)m+n sinh2 π

π2m2n2(1 + m2)(1 + n2)
, m, n ∈ N;
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Figure 8: Contour lines of|d[r]
m,n| > 10−k for (in order of decreasing shading)k = 2, 3, . . . , 9

for the functionf(x, y) = eπ(x−y) andr = 1, 2. We displaym,n = 0, 1, . . . , 100

c[2]
m,n =



















































−
(7π4 − 60π2 + 360)2 sinh2 π

32400π2
, n = m = 0,

(−1)m(7π4 − 60π2 + 360) sinh2 π

90π2m4(1 + m2)
, m ∈ N, n = 0,

(−1)n(7π4 − 60π2 + 360) sinh2 π

90π2n4(1 + n2)
, m = 0, n ∈ N,

4(−1)m+n sinh2 π

π2m4n4(1 + m2)(1 + n2)
, m, n ∈ N.

The size of the coefficients is consistent with the theory of Section 2. However, thepattern
of decay exhibited by the coefficients is also of interest andit is displayed in Fig. 7. We
have shaded there the entries corresponding to the coefficientsc

[r]
m,n (with c

[r]
0,0 at the top left

corner) according to their magnitude. Thus,|c
[r]
m,n| > 10−2 is painted black and, subsequently,

10−k+1 > |c
[r]
m,n| > 10−k, for k = 3, 4, . . . , 8, in increasingly lighter shades of grey. Finally,

|c
[r]
m,n| < 10−8 is painted white.

Two striking observations are clear from Fig. 7. Although both are fairly obvious by
this stage of our exposition and should come as no surprise, they are nonetheless brought
home fairly vividly by the ‘size plot’. Firstly, the magnitude of the elements decreases very
rapidly asr grows. Secondly, elements of similar magnitude are groupedtogether, with large
elements hugging the axesm = 0 andn = 0 and rapid decay exhibited once one moves
diagonally ‘into’ the lattice(m,n). This is precisely the phenomenon of thehyperbolic cross,
as identified by Babenko (1960) in the different setting of multivariate Fourier expansions and
is precipitated by the fact thatc[r]

m,n = O
(

(mn)−2r−2
)

.
For additional insight, we briefly illustrate the same procedure when subtracting only odd

derivatives at the corners. Thus, we choosep to satisfy condition (2.7) and its higher order
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generalizations, but nothing more. We have

d[0]
m,n = c[0]

m,n, m, n ∈ Z+;

d[1]
m,n =



















































−
(π4 − 36) sinh2 π

9π2
, m = n = 0,

2(−1)m(6 − π2) sinh2 π

3π2(1 + m2)
−

2(−1)m

3m2(1 + m2)
, m ∈ N, n = 0,

2(−1)n(6 − π2) sinh2 π

3π2(1 + n2)
−

2(−1)n

3n2(1 + n2)
, m = 0, n ∈ N,

−
4(−1)m+n(m2 + n2 + 1) sinh2 π

π2m2n2(1 + m2)(1 + n2)
, m, n ∈ N;

d[2]
m,n =



















































(7π6 − 30π4 + 1080) sinh2 π

270π2
, n = m = 0,

(−1)m

90

sinh2 π

1 + m2

[

7π4 − 60π2 + 360

π2
+

7π2

m2
+

60

m4

]

, m ∈ N, n = 0,

(−1)n

90

sinh2 π

1 + n2

[

7π4 − 60π2 + 360

π2
+

7π2

n2
+

60

n4

]

, m = 0, n ∈ N,

4(−1)m+n(m4 + 2m2n2 + n4)

π2m4n4(1 + m2)(1 + n2)
sinh2 π, m, n ∈ N.

Fig. 8 clearly demonstrates that interpolation of the normal derivative along the entire bound-
ary is highly advantageous for an accelerated decay of coefficients near the axes, where either
m or n is small. Inside the quadrant, for largem andn, acceleration is already quite effective
indeed – and this is interpolating just a few partial derivatives at the corners of the domain.

We continue the discussion assuming full subtraction of thenormal derivative along the
boundary. The obvious manner of truncating the bivariate modified Fourier expansion (2.6)

(with or without polynomial subtraction) is by setting to zero all ˆ̃
f

[α,β]

m,n for m,n ≥ N for
someN , where the size ofN scales like an inverse power law of the desired accuracy. In other
words, we require an expansion with(2N+1)2 = O

(

N2
)

coefficients: such coefficients need
be precomputed and, once the expansion has been formed, theyall need be taken into account
once the approximate value off is calculated for some(x, y). However, a cursory look at
Fig. 7 confirms thatthe overwhelming majority of these coefficients are not adding at all to
the accuracy of the approximation!They are as small – if not smaller – as the coefficients
we have discarded by choosing our value ofN . Thus, if we wish, for example, to discard
all c

[r]
m,ns smaller than10−8, we can disregard all the ‘white’ terms in Fig. 7 – forr = 1 this

means that only a small number of terms survives, while forr = 2 it is much smaller yet!
Although the hyperbolic cross is not unique to the current setting and is quite well known

in the context of Fourier and Chebyshev expansions (Delvos &Schempp 1989, Temlyakov
1993, Wasilkowski & Wózniakowski 1995), it is fairly difficult to implement in a classical
Fourier setting. Fourier coefficients are usually derived with (bivariate) FFT, and the latter
requires the availability of data in an entireN × N square lattice and calls forO

(

N2 log N
)

operations. Although modern non-standard versions of FFT manage to deal with this situation
(Fenn, Kunis & Potts 2006), they are neither easy nor straightforward to implement. However,
methods for the evaluation of modified Fourier coefficients (Iserles & Nørsett 2007) (which
can be readily extended to cater for polynomial subtraction) obtain them one-by-one. In other
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words, provided that we restrict attention to a subset consisting of anyM coefficients, the cost
of their computation is justO(M). This provides a means to combine the hyperbolic cross
with modified Fourier and polynomial subtraction which is both simple to comprehend and
easy to implement.

What applies tod = 2 applies with even greater force to larger number of variables. The
proportion of points that need be considered in ad-dimensional lattice to attain given accuracy
exhibitsveryweak growth as a function ofd ≥ 1.

We formally define thehyperbolic crossKd(t) as the set of alln ∈ Z
d
+ such that

n̄1n̄2 · · · n̄d ≤ t, where n̄k = max{nk, 1}.

The number of pointsκd(t) in Kd(t) has been calculated in (Dobrovol’skii & Roshchenya
1998).

Proposition 6 The number of points in the hyperbolic crossKd(t) is

κd(t) =
t(log t)d−1

(d − 1)!
+ lower-order terms. (3.1)

Proof We forego the longer (and more general) proof in (Dobrovol’skii & Roshchenya
1998) for an elementary inductive argument. Clearly,κ1(t) = t and this is consistent with
(3.1). Ford ≥ 2 we note the recurrence relation

Kd(t) =

⌊t⌋
∑

m=1

Kd−1

(

t

m

)

.

Therefore, by induction (and retaining only leading terms)

κd(t) =

⌊t⌋
∑

m=1

κd−1

(

t

m

)

≈
1

(d − 2)!

⌊t⌋
∑

m=1

t

m

(

log
t

m

)d−2

≈
1

(d − 2)!

∫ t

1

t

m

(

log
t

m

)d−2

dm =
t

(d − 2)!

∫ t

1

(log x)d−2

x
dx

=
t(log t)d−1

(d − 1)!
,

as stipulated by (3.1). 2

Suppose that, givenf ∈ C∞([−1, 1]d), there existsλ > 0 such that

‖Dn1

x1
Dn2

x2
· · ·Dnd

xd
f‖L∞([−1,1]d) ≤ (πλ)n1+n2+···+nd , n1, . . . , nd ∈ Z+. (3.2)

(It is possible to embrace more general point of view, similar to that in (Temlyakov 1993), but
at present we strive for insight, rather than for maximal generality.)

Similarly to Theorem 5, we have for allr ≥ 0 andn1, n2 . . . , nd ≫ 1

c[r]
n1,n2,...,nd

∼
(−1)|n|+rS[f ]

π2r+2dn2r+2
1 n2r+2

2 · · ·n2r+2
d

,
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whereS[f ] is a linear combination (with±1 coefficients) ofD2r+1
x1

D2r+1
x2

· · ·D2r+1
xd

at the2d

vertices of thed-cube. Disregarding higher-order terms, we thus deduce from (3.2) that

|c[r]
n
| ≤

2dλ2rd+d

(n1n2 · · ·nd)2r+2
, n1, n2, . . . , nd ≫ 1. (3.3)

Suppose that we agree to discard all coefficientsc
[r]
n less thanε > 0 in magnitude. Then,

by (3.3),

n ∈ Kd(td,r,λ), where td,r,λ = λd

(

2dλ−d

ε

)

1
2r+2

.

Now, by (3.1) and assuming for simplicity thatλ ≥ 1,

κd(td,r,λ) ≈
2

d
2r+2 λd− d

2r+2

(d − 1)!ε
1

2r+2

[(

d −
d

2r + 2

)

log λ +
d

2r + 2
log 2 +

1

2r + 2
log ε−1

]d−1

.

Assuming that theε−1 terms dominates, we deduce that we require just about

2
d

2r+2 λd− d
2r+2

(d − 1)!(2r + 2)d−1
ε−

1
2r+2 (log ε−1)d−1

terms.
Brief examination of Theorem 5 and the more general (given only for r = 0, but all

this generalises readily along the lines of that theorem)d-variate expressions in (Iserles &
Nørsett 2007), it is easy to verify that, for anyd ≥ 2, we have the following ‘layers’ of
coefficients, corresponding to different faces of the complex [−1, 1]d. In eachk dimensions,

k = 0, 1, . . . , d, we have2k
(

d
k

)

different types of coefficientsˆ̃f
[α]

n
, where onlyk of thenjs

are nonzero and the correspondingαjs are either 0 or 1 (ifnj = 0 then we also setαj = 0).
Since each such coefficient is ak-variate integral, we need to replaced with k in the above
estimate of the number of terms. Altogether, we have, after some elementary algebra,

1 +

d
∑

k=1

2k

(

d

k

)

2
k

2r+2 λk− k
2r+2

(k − 1)!(2r + 2)k−1
ε−

1
2r+2 (log ε−1)k−1

= 1 + ε−
1

2r+2 21+ 1
2r+2 λ1− 1

2r+2 L
(1)
d−1(−21+ 1

2r+2 λ1− 1
2r+2 log ε−1), (3.4)

whereL
(α)
n is the (generalised) Laguerre polynomial (Rainville 1960).

ε r = 0 r = 1 r = 2 r = 3
10−06 116,182 2,623 742 395
10−08 1,530,224 10,897 2,098 921
10−10 18,986,367 42,695 5,596 2,026
10−12 226,705,024 161,062 14,375 4,295

Table 1: The estimate (3.4) of the total number of coefficients≥ ε for d = 2 andλ = 1.

In Tables 1 and 2 we display the number of terms greater thanǫ in magnitude, as predicted
by (3.4), in two and four variables. Of course, (3.4) is a coarse (and grossly pessimistic in
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ε r = 0 r = 1 r = 2 r = 3
10−06 37,439,571 622,278 159,081 80,461
10−08 829,237,918 4,310,161 747,652 311,475
10−10 15,532,963,636 25,351,179 2,988,241 1,026,185
10−12 260,907,636,317 134,000,994 10,741,885 3,041,963

Table 2: The estimate (3.4) of the total number of coefficients≥ ε for d = 4 andλ = 1.

our experience) estimate. Yet, even if, on the face of it, we are dealing here with fairly large
numbers, we must also bear in mind the fairly large number of variables! Thus, considering
the bottom row in Table 2, even without polynomial subtraction (the first column) this number
of terms is equivalent to using a four-dimensional cubical lattice of coefficients (of either
conventional or modified Fourier expansion) of side 715, while triple polynomial subtraction,
r = 3, requires side of length 42. Now, taking 715 coefficients in univariate Fourier expansion
of a non-periodic function and incurring an error of≈ 10−12 is surely quite remarkable –
taking just 42 terms even more so!

It might be too optimistic to hope for the curse of dimensionality to be completely lifted
from multivariate approximation. Having said so, the combined magic of modified Fourier
expansion, polynomial subtraction and the hyperbolic cross can draw away much of its sting.
Clearly, our current understanding of these phenomena and their interaction is far from com-
plete. Yet even partial results and initial numerical experience indicate that they present us
with a powerful approach to multivariate approximation.

Acknowledgements

This paper has been written in the course of the Isaac Newton Institute programme on “High
oscillation: Computation, theory and applications”. The authors wish to thank the institute
staff for a wonderful setting for mathematical research andacknowledge endless helpful dis-
cussions with other programme participants. Special thanks are due to David Levin (Tel Aviv
University) and Sheehan Olver (University of Cambridge).

References

Babenko, K. (1960), ‘Approximation of periodic functions of many variables by trigonometric
polynomials’,Soviet Maths1, 513–516.

Delvos, F.-J. & Schempp, W. (1989),Boolean Methods in Interpolation and Approximation,
Longman, Harlow.

Dobrovol’skii, N. M. & Roshchenya, A. L. (1998), ‘Number of lattice points in the hyperbolic
cross’,Mathematical Notes63, 319–324.

Farin, G. (1997),Curves and Surfaces for CAGD: A Practical Guide, 4th edn, Academic
Press, San Diego.

Fenn, M., Kunis, S. & Potts, D. (2006), ‘Fast evaluation of trigonometric polynomials from
hyperbolic crosses’,Numerical Algorithms41, 339–352.



24

Huybrechs, D. & Vandewalle, S. (2006), ‘On the evaluation ofhighly oscillatory integrals by
analytic continuation’,SIAM J. Num. Anal.44, 1026–1048.

Iserles, A. & Nørsett, S. P. (2005), ‘Efficient quadrature ofhighly oscillatory integrals using
derivatives’,Proc. Royal Soc. A461, 1383–1399.

Iserles, A. & Nørsett, S. P. (2006a), From high oscillation to rapid approximation I: Modified
Fourier expansions, Technical Report NA2006/05, DAMTP, University of Cambridge.

Iserles, A. & Nørsett, S. P. (2006b), From high oscillation to rapid approximation II: Expan-
sions in polyharmonic eigenfunctions, Technical Report NA2006/05, DAMTP, Univer-
sity of Cambridge.

Iserles, A. & Nørsett, S. P. (2007), From high oscillation torapid approximation III: Multi-
variate expansions, Technical Report NA2007/01, DAMTP, University of Cambridge.

Kantorovich, L. V. & Krylov, V. I. (1958),Approximate Methods of Higher Analysis, 3rd edn,
Interscience, New York.

Lorenz, G. G., Jetter, K. & Riemenschneider, S. D. (1983),Birkhoff Interpolation, Addison–
Wesley, London.

Olver, S. (2006), ‘Moment-free numerical integration of highly oscillatory functions’,IMA J.
Num. Anal.26, 213–227.

Olver, S. (2007), On the convergence rate of modified Fourierseries, Technical report,
DAMTP, University of Cambridge, Cambridge. NA2007/02.

Rainville, E. D. (1960),Special Functions, Macmillan, New York.

Roache, P. J. (1978), ‘A pseudo-spectral FFT technique for non-periodic problems’,J. Comp.
Phys.27, 204–220.

Temlyakov, V. (1993),Approximation of Periodic Functions, Nova Sci., New York.
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