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Abstract.

This work presents methods of efficient numerical approximation for linear and non-
linear systems of highly oscillatory ordinary differential equations. We show how an
appropriate choice of quadrature rule improves the accuracy of approximation as the
frequency of oscillation grows. We present asymptotic and Filon-type methods to solve
highly oscillatory linear systems of ODEs, and WRF method, representing a special
combination of Filon-type methods and waveform relaxation methods, for nonlinear
systems. Numerical examples support this paper.
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1 Introduction.

Let the system of highly oscillatory nonlinear ODEs be presented in the vector
form

y′ = Aωy + f(t,y), y(0) = y0 ∈ R
d, t ≥ 0,

where Aω is a constant non-singular d×dmatrix with large eigenvalues, σ(Aω) ⊂
iR, ‖Aω‖ � 1, ω � 1 is a real parameter and f : R × Rd → Rd is a smooth
vector-valued function. Using the variation of constants formula we can write
the implicit solution of the system in the form

y(t) = etAωy0 +

∫ t
0

e(t−τ)Aωf(τ,y(τ))dτ = etAωy0 + I[f ].(1.1)
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In essence, the matrix Aω need not depend on the parameter ω explicitly.
Rather, the largest absolute values of the matrix eigenvalues determine the fre-
quency of oscillation in I[f ], and the norm of the matrix grows with an increase
in frequency. However, for numerical purposes, we have expressed this informa-
tion in ω, as a way of showing improvement in the accuracy of approximation
as ω grows. Expanding the integral I[f ] into its asymptotic series we demon-
strate the dependence of the error of approximation on the powers of the matrix
inverse, having the implication that the error depends on the inverse powers of ω.
By this we mean that the larger the eigenvalues of the matrix Aω, the larger
the norm of the matrix, and the better our approximation. One can obtain an
arbitrary high order of approximation by adding higher order derivatives in I[f ].
Amazingly, both the Filon-type method and the WRF method work with end
points only, and as such do not require further subdivision of the integration
interval. Evolving ideas of the stationary phase approximation [24], our methods
require explicit availability of more terms in the asymptotic expansion, leading
to the assumptions of non singularity of the matrix Aω and smoothness of the
function f . These requirements are crucial for the Filon-type method and hence
also for WRF methods which employ Filon quadrature rule for discretization,
Theorems 1.3 and 3.1, except a more comprehensive Theorem 4.1 for an arbitrary
matrix and quadrature.

A. Iserles and S. Nørsett have shown in [10] that the standard numerical
approach based on Gauss–Christoffel quadrature fails to approximate highly os-
cillatory integrals since the error of approximation is O(1) for ω → ∞. Instead
the authors developed the asymptotic and the Filon-type methods, which share
the feature that accuracy improves as ω increases.

In getting to grips with our underlying task of solving highly oscillatory non-
linear ODEs, we advance gradually, first considering some special cases of the
problem. We commence from linear equation with the same properties as before,

y� = Aωy + f(t), y(0) = y0 ∈ R
d, f : R→ Rd, t ≥ 0,

having the exact solution

y(t) = etAωy0 +

∫ t
0

e(t−τ)Aωf(τ)dτ = etAωy0 + I[f ].(1.2)

Before beginning to present our methods, we briefly state the two important
theorems from [10], describing the quadrature methods used to approximate
highly oscillatory integrals of the form

I[f ] =

∫ b
a

f(x)eiωg(x)dx,(1.3)

where f, g ∈ C∞ are smooth, g is strictly monotone in [a, b], a ≤ x ≤ b and the
frequency is ω � 1. Later in this section we will explain the link between the
present work and [10].
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Lemma 1.1 (A. Iserles & S. Nørsett [10]). Let f, g ∈ C∞, g′(x) 	= 0 on
[a, b] and

σ0[f ](x) = f(x),

σk+1[f ](x) =
d

dx

σk[f ](x)

g′(x)
, k = 0, 1, . . . .

Then, for ω � 1,

I[f ] ∼ −
∞∑
m=1

1

(−iw)m

[
eiωg(1)

g′(1)
σm−1[f ](1)−

eiωg(0)

g′(0)
σm−1[f ](0)

]
.

The asymptotic method is defined as follows,

QAs [f ] = −
s∑
m=1

1

(−iω)m

[
eiωg(1)

g′(1)
σm−1[f ](1)−

eiωg(0)

g′(0)
σm−1[f ](0)

]
.

Theorem 1.2 (A. Iserles & S. Nørsett [10]). For every smooth f and g,
such that g′(x) 	= 0 on [a, b], it is true that

QAs [f ]− I[f ] ∼ O(ω
−s−1), ω →∞.

A precursor of a Filon-type method was first pioneered in the work of
L. N. G. Filon in 1928, modified by E. A. Flinn [4], and developed by A. Iserles
and S. Nørsett in [10] and later by A. Iserles, S. Nørsett and S. Olver in [11].
The method replaces f in (1.3) by its Hermite interpolant,

v(x) =
ν∑
l=1

θl−1∑
j=0

αl,j(x)f
(j)(cl),

which satisfies v(j)(cl) = f
(j)(cl), at node points a = c1 < c2 < · · · < cν = b,

with θ1, θ2, . . . , θν ≥ 1 associated multiplicities, j = 0, 1, . . . , θl−1, l = 1, 2, . . . , ν
and r =

∑ν
l=1 θl−1 being the order of approximation polynomial. For the Filon-

type method, by definition,

QFs [f ] = I[v] =

∫ b
a

v(x)eiωg(x)dx =
ν∑
l=1

θl−1∑
j=0

bl,j(w)f
(j)(cl),

where

bl,j =

∫ 1
0

αl,j(x)e
iωg(x)dx, j = 0, 1, . . . , θl − 1, l = 1, 2, . . . , ν.

Theorem 1.3 (A. Iserles & S. Nørsett [10]). Suppose that θ1, θν ≥ s.
For every smooth f and g, g′(x) 	= 0 on [a, b], it is true that

I[f ]−QFs [f ] ∼ O(ω
−s−1), ω →∞.
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Example 1.1. Here we consider the asymptotic and the Filon-type method
with first derivatives for (1.3) over the interval [0, 1] for the case g(x) = x.

QA2 =
eiωf(1)− f(0)

iω
+
eiωf ′(1)− f ′(0)

ω2
,

QF2 =

(
−
1

iω
− 6
1 + eiω

iω3
+ 12

1− eiω

ω4

)
f(0)

+

(
−
eiω

iω
+ 6
1 + eiω

iω3
− 12

1− eiω

ω4

)
f(1)

+

(
−
1

ω2
− 2
2 + eiω

iω3
+ 6
1− eiω

ω4

)
f ′(0)

+

(
eiω

ω2
− 2
1 + eiω

iω3
+ 6
1− eiω

ω4

)
f ′(1).

In Figure 1.1 we present numerical results on the asymptotic and Filon-type
methods with function values and its first derivatives at the end points only,
c1 = 0, c2 = 1, for the integral

I[f ] =

∫ 1
0

cos(x)eiωxdx, 100 ≤ ω ≤ 200.

Both methods have the same asymptotic order and use exactly the same in-
formation; however as we can see from Figure 1.1, the Filon-type method yields
a greater measure of accuracy than the asymptotic method. We would like to
emphasize that the Filon-type method works for small values of ω either, and
with Gaussian points it is equivalent to the Gauss–Christoffel quadrature for
ω → 0, using the same information.

Figure 1.1: The error of the asymptotic method QA2 (right) and the Filon-type method
QF2 (left) for f(x) = cos(x), g(x) = x, θ1 = θ2 = 2, 100 ≤ ω ≤ 200.
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In [10] it was shown by the authors that adding more internal points leads to
the decay of the leading error constant, resulting in a marked improvement in
the accuracy of approximation. This addition does not affect asymptotic order
but rather its contributory end points. We would like to mention here that these
results remain valid for vector-valued functions and vector-valued polynomials
as in I[f ], and hence our methods are valid for both large and small eigenvalues.
Note that while replacing function f by a polynomial, the Filon-type method

requires computation of the moments
∫ b
a
xmeiωg(x)dx,m ≥ 0, which may not

always be available. As a consequence, since I[f ] appear to be elements of the
vector-valued integral I[f ], the latter may also not always be available once f
is replaced by a vector-valued polynomial in (1.2).
The current author used both MATLAB numerical package and its symbolic
toolbox linked to a MAPLE kernel to perform numerical evaluations for this
paper.
Numerical approximation of highly oscillatory integrals is a an advanced topic
of research and involves wide spectrum of different approaches including moment-
free approximation. This includes Levin-type methods, [16, 17], invented by
D. Levin and further extended by S. Olver, [23]. The second alternative method
the author refers to is numerical steepest descent method by D. Huybrechs and
S. Vandewalle, [8, 9]. There is a very relevant work using exponential integrators
for oscillatory equations by V. Grimm and M. Hochbruck, [7]. For asymptotic
methods for integrals we refer to [3, 22, 27].
This paper entails the extension of the introduced points from [10] in a further
approximation of highly oscillatory integrals I[f ] with a matrix-valued kernel
and a vector-valued function, with the results of approximation being used to
solve linear and nonlinear systems of highly oscillatory ODEs. We should men-
tion here that all norms in the paper are L∞ norms.
Having introduced asymptotic and Filon-type methods for the family of inte-
grals (1.3), we now explain the link between the present work and [10]. Take for
simplicity a spectral decomposition of the matrix Aω = PDP

−1, having a pure
imaginary spectrum σ(Aω) = {iωk}dk=1, ωk ∈ R,

Aω = P

⎛
⎜⎜⎜⎝

iω1 0 . . . 0
0 iω2 . . . 0
...
. . .

. . .
...

0 . . . 0 iωd

⎞
⎟⎟⎟⎠P−1,

therefore

A−1ω = P

⎛
⎜⎜⎜⎝

1
iω1

0 . . . 0

0 1
iω2

. . . 0
...
. . .

. . .
...

0 . . . 0 1
iωd

⎞
⎟⎟⎟⎠P−1,
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and

eAω = P

⎛
⎜⎜⎜⎝

eiω1 0 . . . 0
0 eiω2 . . . 0
...

. . .
. . .

...
0 . . . 0 eiωd

⎞
⎟⎟⎟⎠P−1.

This suggests that to approximate a highly oscillatory integral I[f ] with
a matrix-valued kernel and a vector-valued function in (1.2), we need to approx-
imate a highly oscillatory integral of the kind (1.3) in I[f ]. Needless to mention
the asymptotic order of our approximation to I[f ] depends on the inverse powers
of the eigenvalues, thus we wish the error will decay as the eigenvalues grow. For
smaller eigenvalues the method is comparable with the classical methods, while
in the case of zero eigenvalues the method will be equivalent to the polynomial
approximation of the integrable function.

2 The asymptotic method.

Consider a vector-valued integral over a compact interval [a, b]

I[f ] =

∫ b
a

Xω(t)f(t)dt, X
′
ω = AωXω,(2.1)

where the matrix kernel Xω satisfies a linear differential equation (2.1) with
a constant non-singular matrix Aω of large eigenvalues, ‖A−1ω ‖ � 1, σ(Aω) ⊂ iR,
ω is a real parameter and f ∈ Rd is a smooth vector-valued function: f ∈
C
∞[a, b]. The fact that the matrix Xω satisfies linear matrix ODE (2.1) allows
us to integrate (2.1) by parts,

I[f ] = A−1ω [Xw(b)f(b)−Xω(a)f(a)]

−A−1ω

∫ b
a

Xω(t)f
′(t)dt = QA1 −A

−1
ω I[f

′].

We define asymptotic method QAs as

QAs [f ] = −
s∑
m=1

(−Aω)
−m
[
Xω(b)f

(m−1)(b)−Xω(a)f
(m−1)(a)

]
,

representing s-partial sum of the asymptotic expansion for I[f ].
At this point of discussion it will be appropriate if we introduce some notation
on matrix and function asymptotics from [23]. We say that f = O(f̃ ) for an
arbitrary function f and non-negative constant f̃ , which depend on a real par-
ameter ω, if the norm of f and its derivatives are all of order O(f̃ ) as ω → ∞,
namely ‖f (m)‖ = O(f̃ ) for m = 0, 1, . . . . For arbitrary two n × m matrices
A(x) = (aij(x)) and Ã = (ãij), ãij ≥ 0, depending on a real parameter ω, we
can thus posit A(x) = O(Ã), if aij(x) = O(ãij) element-wise as ω → ∞. We
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may also say that f = O(1), if f and its derivatives remain bounded on [a, b],
as ω → ∞. Let 1 = {1ij} stand for a matrix with all entries one. This allows
us to write A(x) = O(1), if aij(x) = O(1) element-wise as ω →∞. And finally,
if A = O(Ã) and B = O(B̃), then the integration and multiplication properties

are
∫ b
a
A(x)dx = O(Ã) and AB = O(ÃB̃).

Lemma 2.1. Let

I[f ] =

∫ b
a

Xω(t)f(t)dt, X
′
ω = AωXω,

where the matrix kernel Xω satisfies linear matrix ODE as above, Aω is a con-
stant non-singular matrix, ‖A−1ω ‖ � 1 and f : R→ R

d is a smooth vector-valued
function. Then, for ω � 1,

I[f ] ∼ −
∞∑
m=1

(−Aω)
−m
[
Xω(b)f

(m−1)(b)−Xω(a)f
(m−1)(a)

]
.

For ψ = max{‖f (s)‖, ‖f(s+1)‖},

QAs [f ]− I[f ] ∼ O
(∥∥A−s−1ω

∥∥‖Xω‖ψ), as ω →∞.
If Xω = O(X̂ω) and f = O(f̃), then

QAs [f ]− I[f ] = O
(
A−s−1ω X̂ωf̃

)
, as ω →∞,

element wise.

Proof. By induction,

QAs [f ] = I[f ]− (−Aω)
−s

∫ b
a

Xω(t)f
(s)(t)dt = I[f ]− (−Aω)

−sI[f (s)].

Indeed, for s = 0 the identity QAs = I[f ]. Suppose that the equality holds for
some s ≥ 1, we now prove it for s+ 1. This follows from

I[fs] =

∫ b
a

Xω(t)f
(s)(t)dt = A−1ω

[
Xω(b)f

(s)(b)−Xω(a)f
(s)(a)

]

−A−1ω

∫ b
a

Xω(t)f
(s+1)(t)dt.

For L∞ norms,

I[f (s)] ∼ O
(∥∥A−1ω ∥∥‖Xω‖‖f(s)‖)+O(∥∥A−1ω ∥∥‖Xω‖‖f(s+1)‖)

= O
(∥∥A−1ω ∥∥‖Xω‖ψ),

therefore

QAs [f ]− I[f ] ∼ O
(∥∥A−s−1ω

∥∥‖Xω‖ψ).
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If Xω = O(X̂ω) and f = O(f̃) element-wise, then

I[f (s)] = O
(
A−1ω X̂ωf̃

)
+O
(
A−1ω X̂ωf̃

)
= O
(
A−1ω X̂ωf̃

)
,

yielding the further result

QAs [f ]− I[f ] = O
(
A−s−1ω X̂ωf̃

)
.

Corollary 2.2. If

f (i)(a) = f (i)(b) = 0, for i = 0, . . . , s− 1,

then in L∞ norm,

I[f ] ∼ O
(∥∥A−s−1ω

∥∥‖Xω‖ψ),
and

I[f ] = O
(
A−s−1ω X̂ωf̃

)

element-wise.

Proof. Follows immediately from Lemma 2.1.

Corollary 2.3. If Xω = O(1) and f = O(1), then

QAs [f ]− I[f ] = O
(
A−s−1ω 1

)
.

Proof. Follows from the notation on matrix asymptotics and Lemma 2.1.

The point of departure in construction of our numerical solvers for the systems
of ordinary differential equations (1.2) is the initial-value integrator

yn+1 = e
hAωyn +

∫ h
0

e(h−τ)Aωf(tn + τ)dτ.(2.2)

Example 2.1. Let

Ih[f ] =

∫ h
0

eAω(h−t)f(t)dt.

The asymptotic method for s = 2 with end points only is

QA2 [f ] = −A
−1
ω (f(h)− e

Aωhf(0))−A−2ω (f
′(h)− eAωhf ′(0)).

In the sequel we provide some applications of the asymptotic method to solve
highly oscillatory linear systems (1.2). Figure 2.1 captures how the accuracy
of the method increases with ω, as long as the step size h is fixed and the
characteristic frequency hω � 1. The method remains accurate for magnitudes
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of ω = 104 and hω = 103. This allows us to work with larger step-sizes, taking
into account that it is the ω that reduces the error small rather than step-size.

Figure 2.1: Global error of the asymptotic method QA2 with end points only for the
equation y′′(t) = −ωy(t) − cos(t), 0 ≤ t ≤ 100, with [1, 0]ᵀ initial conditions and
step-size h = 1

10 for ω = 10 (left figure, top), ω = 10
2 (right figure, top), ω = 103 (left

figure, bottom), ω = 104 (right figure, bottom).

Figure 2.2: Global error of the fourth order Runge–Kutta method for the equation
y′′(t) = −ωy(t)− cos(t), 0 ≤ t ≤ 100, with [1, 0]ᵀ initial conditions, step-size h = 1

10
,

for ω = 10 (left) and ω = 102 (right).
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Our method may be compared with the fourth order Runge–Kutta method
presented in Figure 2.2 for the same equation and same step size, and MATLAB
ode15s and ode113 solvers in Figure 4.1. For a fixed step-size h = 1

10 the error
of the fourth order Runge–Kutta method increases with ω. Due to stability of
the Runge–Kutta method the error remains bounded as in the right Figure 2.2.
However the method is accurate only for small values of t around the origin,
whilst on a large time scale the approximation has nothing to do with exact
solution for increasing ω.

3 Filon-type method.

In this section we extend the Filon-type method [10] to solve systems of ordin-
ary differential equations. We interpolate a vector-valued function f in (2.1) by
a r-degree vector-valued polynomial v

v(t) =
ν∑
l=1

θl−1∑
j=0

αl,j(t)f
(j)(tl),(3.1)

such that v(j)(tl) = f
(j)(tl) at node points a = t1 < t2 < · · · < tν = b,

θ1, θ2, . . . , θν ≥ 1 being the associated multiplicities, j = 0, 1, . . . , θl − 1 and
l = 1, 2, . . . , ν. We define the Filon-type method as follows,

QFs [f ] =

∫ b
a

Xω(t)v(t)dt =
ν∑
l=1

θl−1∑
j=0

βl,jf
(j)(tl),

where βl,j =
∫ b
a
Xω(t)αl,j(t)dt.

Theorem 3.1. Let

I[f ] =

∫ b
a

Xω(t)f(t)dt, X
′
ω = AωXω,

where Aω is a constant non-singular matrix of a pure imaginary spectrum,
σ(Aω) ⊂ iR, ‖A−1ω ‖ � 1, θ1, θν ≥ s and f : R → R

d is a smooth vector-valued

function. Then, for ψ = max{‖f(s)‖, ‖f (s+1)‖},

QFs [f ]− I[f ] ∼ O
(∥∥A−s−1ω

∥∥‖Xω‖ψ), as ω →∞.
If Xω = O(X̂ω) and f = O(f̃), then element-wise

QFs [f ]− I[f ] = O
(
A−s−1ω X̂ωf̃

)
, as ω →∞.

Proof. The proof is equivalent to that for the classical Filon-type method.
As a consequence of Corollary 2.2, replacing f in the asymptotic method with
f − v, implies that [f − v](j)(a) = [f − v](j)(b) = 0, for j = 0, 1, . . . , s− 1.
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Corollary 3.2. If Xω = O(1) and f = O(1), then

QFs [f ]− I[f ] = O
(
A−s−1ω 1

)
.

Proof. The statement follows from the notation on matrix asymptotics and
Corollary 2.3.

Employing the initial-value integrator (2.2), we present the Filon-type method
for the systems of highly oscillatory ODEs (1.2),

yn+1 = e
hAωyn +

∫ h
0

e(h−τ)Aωv(tn + τ)dτ

= ehAωyn +Q
F
s [f ].(3.2)

Example 3.1. Take the same integral Ih[f ] as in the Example 2.1. For s = 2,
t1 = 0, t2 = h and f = [f1, f2]

ᵀ we derive the Filon-type method,

QFs [f ] = Ih[v] =

∫ h
0

eAω(h−t)v(t)dt

=
[ ∫ h
0

eAω(h−t)v1(t)dt
]
f(0) +

[ ∫ h
0

eAω(h−t)v2(t)dt
]
f(h)

+
[ ∫ h
0

eAω(h−t)v3(t)dt
]
f ′(0) +

[ ∫ h
0

eAω(h−t)v4(t)dt
]
f ′(h).

We note by passing that the computational cost is relatively cheap. The algo-
rithm requires only some linear algebra once we have precomputed moments
in Ih[v].

Theorem 3.3. Let θ1, θν ≥ s, r =
∑ν
l=1 θl−1. Then r is the numerical order

of the Filon-type method applied to the linear system (1.2),

y(tn)− yn = O(h
r+1).

Proof. Suppose that f = v + p, where v is an r-degree vector-valued poly-
nomial approximation (e.g. Hermite, 3.1) to f , with an approximation error

p =
pr

r!
f (r)(ξ), pr =

ν∏
l=1

(t− tl)
θl .

We can now derive the local error of our numerical solver,

I[p] =

∫ h
0

e(h−τ)Aωp(tn + τ)dτ =

∫ h
0

e(h−τ)Aω
pr(τ)

r!
f (r)(ξ)dτ,

where pr(τ) = O(τr).
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Recall that

I[p] = I[f ]− I[v] = I[f ]−QFs [f ] = O(h
r+1),(3.3)

which proves the order of the method.

Theorem 3.4. The numerical solution (3.2) is convergent.

Proof. Presenting matrix Aω in its Jordan normal form J = P
−1AωP, we

let

Cω =
{
‖P‖‖P−1‖ : P−1AωP = J

}
,

and consider the following bounds for matrix exponential,

‖etAω‖ = ‖P etJP−1‖ ≤ Cω‖e
tJ‖.

We would like to remind our reader that σ(Aω) ⊂ iR, which means that the
norm of the matrix exponential is always bounded, etJ = O(1). In other words,

Figure 3.1: Global error of the Filon-type method QF2 with end points only and multi-
plicities all 2, for the equation y′′(t) = −ωy(t)− cos(t), 0 ≤ t ≤ 100, with [1, 0]ᵀ initial
conditions and step-size h = 1

4
for ω = 10 (top figure, left) and ω = 102 (top figure,

right), ω = 103 (left, bottom figure) and ω = 104 (right, bottom figure).
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for a fixed value of parameter ω, the convergence of the numerical scheme to the
exact solution follows from the estimate of the residual term,

‖I[p]‖ ≤
Cωh

r!
‖pr(τ)‖‖f

(r)‖,

as step-size h tends to zero.

Note that the method requires information only about the function values and
its derivatives at the end points. Figure 3.1 offers some numerical examples,
where a step size h is fixed and ω increases. The examples demonstrate a gain
in accuracy with the increase of ω. Comparison will note that the Filon-type
method performs better than the asymptotic method, although both methods
are of the same asymptotic order. It is evident now that for a larger step-size
h = 1

4 than that assumed with the asymptotic method (h =
1
10 ) the accuracy of

approximation improves as hω � 1.
We can compare our solutions with MATLAB solvers, presented in Figure 4.1.
To achieve better results with MATLAB we set it to AbsTol = ReTol = 10−8.
Accuracy decreases for the solver ode15s while remaining the same for ode113.
Both methods work with variable step size, but taking an average for ω = 100 it
is h ≈ 1

186 for ode15s and h ≈
1
60 for ode113, reducing to the exceptionally small

values for ω = 104 of h ≈ 5×10−4 in ode15s and h ≈ 10−3 in ode113, which is in
no way comparable with h = 1

4 of the Filon-type method. The logarithmic error
in Figure 3.2 describes both numerical and asymptotic analysis of the method
for increasing ω.
These considerations leave us at a point where the connections between [10]
and the present work are evident. It follows from the spectral decomposition of
the matrix Aω that the factor e

iλkf appears in the fundamental matrix in the
solutions of both linear and nonlinear systems of highly oscillatory ODEs, and
provides valid reasons to extend described methods for the given setting.

Figure 3.2: Logarithmic error (y-axis) and the step-size (x-axis) of the Filon-type
method QF2 , with endpoints only and multiplicities all 2, for the equation y

′′(t) =
−ωy(t)− cos(t), with initial values in [1, 0]ᵀ.
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4 WRF method.

In approximation of highly oscillatory nonlinear systems of ODEs we use the
implicit representation of the solution (1.1) and the initial value integrator

yn+1 = e
hAωyn +

∫ h
0

e(h−τ)Aωf(tn + τ,y(tn + τ))dτ.

Our method further develops some of the implications of the Filon quadrature
and waveform relaxation methods in this setting.
Waveform relaxation (WR) methods, a family of iterative techniques designed
for analyzing dynamical systems, have been studied by a number of authors and
we mention here some of them, [1, 2, 5, 6, 12, 13, 18, 19, 20, 21, 25, 26].
Assuming that f : R×Rd → Rd satisfies the Lipschitz condition, the classical
waveform Picard algorithm states

y[s](t) = X(t)y0 +

∫ t
0

X(t− τ)f(τ,y[s−1](τ))dτ.

It is desirable to apply Filon quadrature with its nice properties for large ω
to nonlinear dynamical systems to solve integral

I[f ] =

∫ b
a

Xω(t)f(t,y(t))dt, where X
′
ω = AωXω and

∥∥A−1ω ∥∥� 1.
Formally, the asymptotic expansion for the integral I[f ] as above looks as follows,

I[f ] ∼
∞∑
m=1

(−1)m−1A−m
[
Xw(b)f

(m−1)(b,y(b))−Xw(a)f
(m−1)(a,y(a))

]
,

where the function values and its derivatives at the end point f (m)(b,y(b)) are
not available anymore for m = 0, 1, 2, . . . . To overcome this issue we introduce
waveform methods. Note that if the solution y is oscillatory, then the function
f(t,y) is also likely to be oscillatory, causing waveform relaxation methods, if
used by itself, to be inefficient. Thus, for efficiency, we discretize I[f ] according
to the rules of the Filon quadrature, choosing a vector-valued polynomial (e.g.

Hermite), which agrees with our function values and its derivatives f (m) at the
node points. Our WRF method iterates y in (1.1) with a waveform method,
solving I[f ] at each step with Filon quadrature,

y
[0]
n+1 = y

[s]
n ,

y
[1]
n+1 = e

Aωhy[s]n +

∫ h
0

e(h−τ)Aωf
(
tn + τ,y

[0]
n+1

)
dτ,

...

y
[s]
n+1 = e

Aωhy[s]n +

∫ h
0

eAω(h−τ)v
(
tn + τ,y

[s−1]
n+1 (tn + τ)

)
dτ,
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where v is a polynomial approximation to f as before. The method takes the

initial value constant y
[0]
n+1 at a first step of iteration to obtain the first value

of y
[1]
n+1. Having values at two endpoints we can now evaluate the derivatives

at those points and construct a polynomial, which agrees with function values
and derivatives at the end points. In order to obtain any desirably high order
method higher order derivatives of the function f are required. In that respect
we recommend to differentiate the equation for the system y′ = Ay + f(t,y)
itself to obtain higher order derivatives of the solution vector y, and use the
results in construction of approximation polynomial. The more derivatives at
the end points are used in the polynomial approximation the more terms are
cancelled in the asymptotic expansion to I[f ], leading to higher order methods
and hence better accuracy.
We highlight here that the WRF method employs end points only, otherwise
adding internal points would have led to increasingly fine discretization of the
interval. The reason for this is that approximation at internal points themselves
requires further partition of the subinterval and this iteration is endless. From
the point of view of the function asymptotics, the fundamental point here is that
the performance of the Filon quadrature is determined by the values at the end
points of the integration interval only, making addition of internal points less
valuable, Theorem 1.3, Theorem 3.1.
Computational cost of the WRF method is comparable to that of the Filon-
type method. Having precomputed the vector-valued moments, all that remains
are only some linear algebra operations.

Theorem 4.1. Suppose that r is the numerical order of a waveform relaxation
method and s is the numerical order of the quadrature discretization applied to
a nonlinear system of ODEs

y′ = Ay + f(t,y), y(t0) = y0, t ≥ 0,

of arbitrary matrix A and f : R × Rd → Rd satisfying the Lipschitz condition.
Then,

y(h)− yh = O(h
q+1),

where q = min{r, s}.

Proof. Let y(h) be an exact solution, y
[r]
h its numerical solution by a wave-

form method, and yh the final numerical solution after discretization. Then,

‖y(h)− yh‖ ≤
∥∥y(h)− y[r]h

∥∥+ ∥∥y[r]h − yh
∥∥

= O(hr+1) +O(hs+1) = O(hq+1)(4.1)

where q = min{r, s}.

Corollary 4.2. The numerical order of the WRF method is the minimum
over both the Filon quadrature and the waveform method applied to solve non-
linear system (1.1).
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Proof. It follows immediately from Theorem 4.1.

Thus, once we have chosen the quadrature rule of a given order, we iterate
the equation until obtaining the order of the quadrature and further iteration is
pointless.

Theorem 4.3. WRF method is convergent.

Proof. Follows from (4.1) as h→ 0.

In the Table 4.1 we demonstrate the accuracy of the WRF method for in-
creasing ω in just four iterations. Due to non-linearity, the accuracy improves
slightly slower, since we have chosen to iterate oscillatory equations. On the
other hand, taking into account rapid oscillation of the solution for large ω, ap-
plying only four iteration combined with Filon quadrature is a very little exercise
to achieve up to ten digits accuracy as it is described the Table 4.1. Figure 4.2
demonstrates the logarithmic error of theWRF method for different values of ω.
Waveform methods do not contribute to function asymptotics making it harder
to parallel the two methods, namely Filon-type method and WRF method, as
it is shown in Figures 4.2 and 3.2. We have seen that the Filon-type methods
have the same asymptotic order as the asymptotic method, where the error de-
pends on the inverse powers of ω. In the case of asymptotic behavior of WRF
method the bottom line is that one iterates the asymptotic expansion, but the
advantage of applying the right quadrature rule means that for increasing ω
the error amazingly remains very close to that for smaller ω. Waveform meth-
ods do not preserve the nice asymptotic features of the Filon quadrature, but
the latter even in the presence of iteration captures up to 10−12 accuracy as ω
increases.

Table 4.1: Approximation error of the WRF method for the nonlinear ODE
y′′ = −ωy − 3y3, compared with the results of MATLAB ode45 solver set to
RelTol = 10−12, AbsTol = 10−16.

h ω = 10 h ω = 100 h ω = 1000
2.50−01 1.04−03 1.00−01 −8.32−04 4.00−02 −8.90−04
1.00−01 2.25−05 5.00−02 −5.33−05 2.00−02 −5.16−05
5.00−02 1.40−06 2.50−02 −3.35−06 1.00−02 −3.22−06
4.00−02 5.74−07 1.00−02 −8.59−08 3.33−02 −3.98−08
1.25−02 4.83−09 5.00−03 −5.36−09 1.25−03 −6.63−10

Finally, for methods introduced in current paper there wasn’t any restrictions
on the phase of the solution, whilst for discretization of I[f ] with Filon quadra-
ture some special functions can be considered as the most obvious choice.
The analysis of the asymptotic, Filon-type and WRF methods for a time-
dependant matrix using Magnus expansions as well as some alternative choices
of the quadrature methods can be found in [14, 15].
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Figure 4.1: Global error of MATLAB ode15s routine (top figure, left) and ode113
routine (top figure, right) set to RelTol = 1e− 08, AbsTol = 1e − 08, for the equation
y′′(t) = −ωy(t) − cos(t), 0 ≤ t ≤ 100, with [1, 0]ᵀ initial conditions and ω = 102;
the same solvers with the same properties and ω = 104 (two figures in the bottom
respectively).

Figure 4.2: Logarithmic error (y-axis) and the step-size (x-axis) of the WRF method
for the equation y′′ = −ωy − 3y3, initial values in [1, 1]ᵀ, with endpoints only and
multiplicities all 2.
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