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Abstract

Backward Error Analysis (BEA) has been a crucial tool when analyzing long-time be-
havior of numerical integrators, in particular, one is interested in the geometric properties
of the perturbed vector field that a numerical integrator generates. In this article we present
a new framework for BEA on manifolds. We extend the previously known “exponentially
close” estimates from Rn to smooth manifolds and also provide an abstract theory for
classifications of numerical integrators in terms of their geometric properties. Classifica-
tion theorems of type “symplectic integrators generate symplectic perturbed vector fields”
are known to be true in Rn. We present a general theory for proving such theorems on
manifolds by looking at the preservation of smooth k-forms on manifolds by the pull-
back of a numerical integrator. This theory is related to classification theory of subgroups
of diffeomorphisms. We also look at other subsets of diffeomorphisms that occur in the
classification theory of numerical integrators. Typically these subsets are anti-fixed points
of involutions.

1 Introduction
LetM be a smooth manifold, where, by smooth we throughout the paper mean C∞.A smooth
manifold is presumed to be finite dimensional, while infinite dimensional manifolds (when
considered in Section 4) will always have the name “infinite”, when addressed. Let X(M)
denote the set of smooth vector fields and let X ∈ X(M). Consider the ordinary differential
equation

d

dt
y(t) = Xy(t), y(t) ∈M. (1.1)

The flow map corresponding to X is denoted by θX : R×M→M. Also, we sometimes use
the notation

θ
(q)
X (t) = θX,t(q) = θX(t, q),

and if the vector field X is obvious we sometimes use θ instead of θX .

0AMS classification:34A26, 65L99, 65J99, 53A35, 53A45
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A numerical approximation to the solution of (1.1) can be found by constructing a family
of diffeomorphisms {Φh}h≥0 and then (for each fixed h) one can obtain a sequence {qh,n}n∈N,
often referred to as the numerical solution, satisfying qh,n+1 = Φh(qh,n). We will throughout
the paper denote the family {Φh}h≥0 by Φh. More formally we have the following:

Definition 1.1. An integrator is a one-parameter family Φh : M → M of diffeomorphisms
that is smooth in h and satisfies Φ0 = id (the identity mapping). If X ∈ X(M) and

d

dh

∣∣∣
h=0

Φh(p) = Xp, p ∈M,

then Φh is called an integrator for X. If, for any chart (U,ϕ) on M, there exist a constant
C > 0 such that, for Φ̂h = ϕ ◦ Φh ◦ ϕ−1 and sufficiently small h

‖Φ̂h(x)− θY,h(x)‖ ≤ Chp+1, x ∈ ϕ(U),

where Y is the vector field on ϕ(U) induced by ϕ, the integrator Φh is said to be consistent
with X of order p.

Remark 1.2. It follows immediately by smoothness and the Taylor theorem that if Φh is an
integrator for X then Φh is consistent with X of order one.

If Φh is an integrator for the vector field X then, under suitable assumptions on Φh, one
can guarantee that there is a metric d on M such that

d(qn, θX,nh(qo)) ≤ Chp, p ∈ N, C > 0,

at least for n ≤ N for some N ∈ N and sufficiently small h. The integer p is often referred to
as the order of the numerical integrator.

The idea of backward error analysis is the following. Supposing that we have a numerical
solution {qh,n} i.e. qh,n+1 = Φh(qh,n), could it be the case that the sequence {qh,n} is the
“solution” to a different differential equation i.e. does there exist a vector field X̃ ∈ X(M), a
perturbation of X, such that

qh,n = θ eX,nh(q0)? (1.2)

If such a vector field exists, one can analyze the flow map θ eX to gain information about the
behavior of {qh,n}. In most cases (1.2) may not be obtained, and one has to concentrate on
constructing a family of vector fields X̃(h), depending on the parameter h, such that

d(qh,n, θ eX(h),nh(q0)) ≤ f(h),

where f : R → R is continuous and f(h) → 0 as h→ 0.

The construction of the family of modified vector fields X̃(h) and the analysis of the cor-
responding flow map θ eX(h) is known as Backward Error Analysis (BEA), and the family X̃(h)
is often referred to as the modified or perturbed vector field.

BEA is very well understood whenM = Rn, and modified vector fields X̃(h) are formally
expressed as an infinite series

X̃(h) = X1 + hX2 + h2X3 + . . . , (1.3)

where Xi is uniquely defined by Φh. Thus, it makes sense to talk about the modified vec-
tor field generated by Φh. There are several articles on the subject, Hairer and Lubich [7],
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Calvo, Murua, and Sanz-Serna [3], Benettin and Giorgilli [2] and Reich [14]. In the papers
of Hairer/Lubich and Reich the question of closeness of the numerical solution and the solu-
tion to the modified equation is addressed. In particular, it has been shown that for a suitable
truncation of the series (1.3)

‖θ eX(h),h(q)− Φh(q)‖ ≤ Che−γ/h, q ∈ K,

where C,γ > 0 and K is compact. A crucial assumption for the previous estimate to be true is
that both the vector field and the integrator Φh are analytic.

A very important application of BEA is that it can be used to show when the numerical
solution preserves the geometric properties of the original vector field, e.g. will the flow map of
the modified vector field be symplectic provided that the original vector field is Hamiltonian?
The answer is yes, if the integrator is symplectic. Several other results regarding geometric
properties of modified vector field can be found in [6], [9]. However, all these results are so
far only valid when considering ODEs in Rn, and thus our goal is to extend these classification
theorems to general manifolds. We will deviate quite substantially from the usual framework
[9] and instead introduce a new completely abstract approach in the spirit of Ebin and Marsden
[5]. This framework uses the idea that one may consider the set of diffeomorphisms on M as
a (infinite dimensional) manifold itself [5], [12]. Our classification approach does not depend
on any previously developed theory in Rn, and we will only rely on estimates valid in the
Euclidean space for the “exponentially close” bounds.

2 Background and notation
We will first introduce some notation. If M and N are smooth manifolds and F : M→N is
a smooth map, we will adopt the notation from [10] and denote the derivative, or the tangent
mapping TpF : TpM→ TpN , by F∗ e.g. for x ∈ TpM we let F∗x = TpFx. The derivative of
a function F : Rn → Rm will be denoted by DF, and similarly derivatives of higher order will
be denoted by DrF. As usual we identify DrF (x) with Lr

sym(Rn,Rm), the set of symmetric r
linear mappings from Rn to Rm.

Given a vector field X with corresponding flow map θX : I ×M → M, where I is an
open interval of R, we will allow slight misuse of notation by letting θX(t, s, p) denote the
flow of X at time t that takes the value p at time s i.e. θX(0, s, p) = θX(s, p).

We also adopt the Einstein summation convention, meaning that
∑

i x
iEi will be denoted

by xiEi, hence omitting the summation sign.
Throughout this section M = Rn and we will review some of the well known results that

will be crucial for our developments in the upcoming sections.
Let Φh be an integrator on Rn, and suppose that Φh is consistent of order p with X ∈

X(Rn). As discussed in the introduction, the idea is to look for a family of vector fields X̃(h)
such that Φh ≈ θ eX(h),h and thus the study of the numerical solution reduces to the study of

the flow θ eX(h). The family of modified vector fields X̃(h) is formally defined in terms of an
asymptotic expansion in the step size h; i.e.,

X̃(h) = X1 + hX2 + h2X3 + . . .

The infinite sequence of vector fields {Xi}i=1,...,∞ can be obtained by using the Taylor series
expansion of the one-step method Φh i.e.,

Φh = id+ hΦ1 + h2Φ2 + . . . ,
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where id is the identity map and the Φjs are smooth mappings, and then compare this series
with the expansion of the flow map θh, eX(h). The vector fields Xi are chosen such that these
two series coincide term by term. We will follow the recursive approach by Reich [14] when
defining the vector fields Xi, as this approach is advantageous when one wants to study the
geometric properties of the modified vector field as done in Section 4.

The recursive construction is as follows. Let Φh be an integrator for the smooth vector field
X. Suppose that we have obtained {Xj}i

j=1, and we want to determine Xi+1. Let

Yi(h) =
i∑

j=1

hj−1Xj.

Suppose that {Xj}i
j=1 has been chosen such that the distance between Φh(q) and θh,Yi(h)(q) is

O(hi+1) for all q ∈ Rn. Now define

Yi+1(h) = Yi(h) + hiXi+1, Xi+1(q) = lim
h→0

Φh(q)− θh,Yi(h)(q)

hi+1
, q ∈ Rn. (2.1)

Note that the limit exists by the choice of Yi(h). This definition of Yi+1(h) generates a flow
map that is O(hi+2) away from Φh. Indeed, by Taylor’s theorem and the definition of Yi+1(h)
we get

θh,Yi+1(h)(q)− θh,Yi(h)(q) = hi+1Xi+1(q) +O(hi+2)

and
θh,Yi(h)(q)− Φh(q) = hi+1Xi+1(q) +O(hi+2).

Thus,

θh,Yi+1(h)(q)− Φh(q) = θh,Yi(h)(q) + hi+1Xi+1(q)− Φh(q) +O(hi+2)

= O(hi+2).
(2.2)

Letting X1 = X the construction is complete. Note that it is easy to see that Xi = 0 for
i = 2, . . . , p when Φh is of order p.

As mentioned above there are several important results regarding BEA in Rn, and for an
excellent review we refer to [9]. Some of the results in [14] are of crucial importance for the
following arguments and we will give a short summary. Let Br(x) ⊂ Cn be the open complex
ball of radius r around x ∈ Rn. Let also ‖ · ‖ denote the max norm on Cn. Let K ⊂ Rn be a
compact subset and define, for Z ∈ Xω(Rn), the set of analytic vector fields, and r > 0 ,

‖Z‖r = sup
x∈BrK

‖Zx‖, where BrK =
⋃

x0∈K

Br(x0).

Lemma 2.1. (Reich) Let Φh be an integrator for X ∈ X(Rn). Suppose that the vector field X
is real analytic in an open set U ⊂ Rn and that there is a compact subsetK ⊂ U and constants
K, R > 0 such that ‖X‖R ≤ K. Suppose also that the mapping h 7→ Φh(x) is real analytic
for all x ∈ U . Then there exist M ≥ K such that

‖Φτ − id‖αR ≤ |τ |M ≤ (1− α)R for |τ | ≤ (1− α)R

M
,

where α ∈ [0, 1).
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Theorem 2.2. (Reich) Let the assumptions of Lemma 2.1 be satisfied and let Φh be consistent
of order p with X . Then, the family {Xi} defined in (2.1) is analytic and, for all integers
m ≥ p + 1, there exists C > 0, such that, for X̃(h)m = X1 + hX2 + h2X3 + . . . + Xm, we
have

sup
x∈K

‖Φh(x)− θ eXm,h(x)‖ ≤ Ch
(h(m− p+ 1)M

R

)m

,

where Xj is defined as in (2.1). Also,

sup
x∈K

‖Xj(x)‖ ≤ C

(
(j − p)M

R

)j−1

, j ≥ p+ 1.

Remark 2.3. Note that Theorem 2.2 is not quoted directly as stated in [14], but the bounds
presented here come from equation (4.8) and (4.4) in the proof of Theorem 4.2 in [14].

3 Backward Error Analysis on Manifolds
The following theorem is a generalization of Theorem 4.2 in [14] and Theorem 1 in [7].

Theorem 3.1. Let M be a smooth manifold, X ∈ X(M) and let Φh be an integrator that is
consistent with X of order p. Then there exists a family of smooth vector fields {Xj}j∈N on
M, where each Xj is uniquely determined by Φh, with the following properties:

(i) There is a metric d on M such that if K ⊂ M is a compact subset and for X̃N(h) =
X1+hX2+. . . h

N−1XN there exists aCN > 0, depending onN, such that for sufficiently
small h > 0 we have

d(θ eXN ,h(q),Φh(q)) ≤ CNh
N+1, q ∈ K,

where θ eXN
is the flow map of X̃N(h).

(ii) If M, X are analytic and h 7→ Φh(q) is analytic for q in compact K ⊂ M, then there
exists an integer k (depending on h) and C, γ > 0 such that for X̃(h) = X1 + hX2 +
. . . hk−1Xk it follows that, for sufficiently small h,

d(Φh(q), θ eX,h(q)) ≤ Che−γ/h, (3.1)

for all q ∈ K, where d is the same metric as in (i). Also, there exists a finite collection
F of charts on M, covering K, and a constant C > 0 such that if (U,ϕ) ∈ F and Y ,
Ỹ (h) are the vector field induced by ϕ and X, X̃(h) respectively then

sup
x∈ϕ(U)

‖Y (x)− Ỹ (h)(x)‖ ≤ Chp, sup
x∈ϕ(U)

‖DY (x)−DỸ (h)(x)‖ ≤ Chp. (3.2)

Proof. The construction of {Xj} is as follows: For any chart (U,ϕ), let Φ̂h = ϕ ◦ Φh ◦ ϕ−1

and let Y be the vector field induced by ϕ. Doing the calculations in (2.1) and (2.2) with Φ̂h

and θY we obtain a family of smooth vector fields {Yj} on ϕ(U), and hence also a family
{ϕ−1

∗ Yj} on U. It is easy to see, using the fact that Yj is uniquely defined by Φ̂h, that {ϕ−1
∗ Yj}

is independent of the choice of charts. Thus, we obtain a family of global smooth vector
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fields {Xj} from the local construction. Also, each Xj is uniquely determined by Φh. (This
construction can also be found in Theorem 5.1 Chap. IX.5 in [9]).

To show (i), note that, by compactness of K, consistency of Φh and the fact that θX,0 =
Φ0 = id, we can find a finite collection F = {(Uj, ϕj)} of charts such that there are open
sets Vj ⊂ Uj and h0 > 0, such that θX,h(Vj) ⊂ Uj and Φh(Vj) ⊂ Uj, for h < h0 (for some
h0 > 0) and {Vj} coversK. We may also assume without loss of generality that ϕ−1

j is defined
on ϕj(Uj).

To get the desired metric and bound that we asserted, we use the Whitney Embedding
Theorem to obtain a diffeomorphism F : M → N ⊂ Rm for some m ≥ 2n, where N
is an embedded submanifold and n = dim(M). By the discussion above and by letting
X̃N = X0 + hX1 + . . . hNXN we have that if p ∈ K then q = ϕ(p) for some (U,ϕ) ∈ F , and
by a little manipulation and the calculation in (2.1) and (2.2)

‖F ◦ Φh(p)− F ◦ θ eXN ,h(p)‖ = ‖F ◦ ϕ−1(Φ̂h(q))− F ◦ ϕ−1(θỸN ,h(q))‖ ≤ CNh
N (3.3)

where CN bounds the Lipschitz’s constant of all F ◦ ϕ−1 and ỸN(h) = Y + hY1 + . . . hNYN .
Note that F ◦ ϕ−1 is Lipschitz by smoothness and since ϕ(U) is compact and can be assumed
without loss of generality to be convex. Also, since N is embedded, it has the subspace
topology and hence it inherits a metric from Rm which again leads to a metric d onM induced
by F .

To show (ii), notice that we may, by arguing as in the proof of (i) and possibly changing
F , where F is as in the proof of (i), assume that for each (U,ϕ) ∈ F there is an rϕ > 0 such
that Brϕ(0) is properly contained in ϕ(U),

θX,h(ϕ
−1(Brϕ(0))) ⊂ U, Φh(ϕ

−1(Brϕ(0))) ⊂ U, h ≤ h0,

and
⋃

(U,ϕ)∈F ϕ
−1(Brϕ(0)) is an open cover of K. Let (U,ϕ) ∈ F and let Y be the induced

vector field on V = ϕ(U) of X by ϕ, and let K̃ = Brϕ(0). From the previous discussion it
follows that there exists an Rϕ > 0 such that the complexification of Y is defined on BRϕK̃
and by continuity ‖Y ‖Rϕ ≤ Kϕ for some Kϕ > 0. Now consider the integrator on V defined
by Φ̃h = ϕ ◦ Φh ◦ ϕ−1. We can now apply Lemma 2.1 and Theorem 2.2 to obtain constants
Mϕ, Cϕ > 0 such that

Ỹm = Y1 + hY2 + h2Y3 + . . .+ hm−1Ym, m ≥ p+ 1,

where Yj is the vector field on ϕ(U) induced by Xj and ϕ. We have the estimates

‖Φ̂h(x)− θỸm,h(x)‖ ≤ Cϕh
(h(m− p+ 1)Mϕ

Rϕ

)m

, x ∈ K̃, (3.4)

‖Yj(x)‖ ≤ Cϕ

(
(j − p)Mϕ

Rϕ

)j−1

, x ∈ K̃, j ≥ p+ 1. (3.5)

To get the metric and the desired bounds, let

M = max{Mϕ : ϕ ∈ F}, C = max{Cϕ : ϕ ∈ F}, R = min{Rϕ : ϕ ∈ F}.

To show (3.1), we can now use the same approach as in (i) and apply (3.4) to get

d(Φh(q), θ eXm,h(q)) ≤ C̃h
(h(m− p+ 1)M

R

)m

, q ∈ K,
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where C̃ is a constant depending onC and the Lipchitz constants of F ◦ϕ−1. (F is here as in the
proof of (i)). To get the desired bound we choose m to be the integer part of µ = R

hMe
+ p− 1.

Hence, we get

d(Φh(q), θ eXm,h(q)) ≤ C̃he−m

≤ C̃he−µ+1

≤ C̃he−pe−γ/h, q ∈ K,

where γ = R/(Me).
To show (3.2), note that by analyticity and Cauchy’s integral formula, it follows by (3.5)

(by possibly changing C) that

max (‖Yj(x)‖, ‖DYj(x)‖) ≤ C

(
(j − p)M

R

)j−1

, x ∈ K̃, j ≥ p+ 1.

Thus, since Φh is of order p

max(‖Yj(x)− Ỹj(h)(x)‖,‖DYj(x)−DỸj(h)(x)‖)

≤ C

m∑
j=p+1

(
hM(j − p)

R

)j−1

= C

(
hM

R

)p m∑
j=p+1

(j − p)p

(
hM(j − p)

R

)j−1−p

≤ C

(
hM

R

)p m∑
j=p+1

(j − p)p

ej−p−1

(
j − p

m− p+ 1

)j−1−p

≤ C

(
hM

R

)p

dpK,

(3.6)

where dp bounds (j−p)p

ej−p−1 and K bounds
∑m

j=p+1

(
j−p

m−p+1

)j−1−p

. Also, in the second to last
inequality we have used the fact that

h ≤ R

Me(m− p+ 1)
.

The theorem follows.

Remark 3.2. The computation in (3.6) is almost word for word taken from the last computa-
tions in the proof of Theorem 4.2 in [14].

The idea is now to use this result and follow the ideas in the proof of Corollary 2 (p. 444)
in [7] applied to a general manifold setting. Unfortunately the corollary cannot be applied
directly but after a series of preparations we can follow the analysis in [7] closely.

Let us first recall some basic facts from differential geometry that will be useful in the
following argument. By the normal space to an embedded submanifold M ⊂ Rn at x we
mean the subspace NxM ⊂ TRn consisting of all vectors that are orthogonal to TxM with
respect to the Euclidean dot product. The normal bundle of M is the subset NM ⊂ TRn

defined by
NM =

∐
x∈M

NxM = {(x, v) ∈ TRn : x ∈M, v ∈ NxM}.
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Define a map E : NM→ Rn by

E(x, v) = x+ v, (3.7)

where we have done the usual identification. A tubular neighborhood of M is a neighborhood
U of M in Rn that is the diffeomorphic image under E of an open subset V ⊂ NM of the
form

V = {(x, v) ∈ NM : |v| < δ(x)}
for some positive continuous function δ : M → R. A useful fact that will come in handy in
the next theorem is that every embedded submanifold of Rn has a tubular neighborhood.

Theorem 3.3. Let M be a smooth manifold and X ∈ X(M) with flow map θX that exists for
all t ∈ R and all p ∈ M. Let Φh be an integrator that is consistent of order r with X. Let
{qh,n}n∈Z+ be the numerical solution produced by Φh recursively and let {Xi} be the family
of vector fields from Theorem 3.1. Suppose that there is a compact set K ⊂ M, h0 > 0
and T ≤ ∞ such that {qh,n}n≤T/h ⊂ K for all h ≤ h0. For any integer s ≥ r + 1, let
X̃(h) = X1 + hX2 + . . . hs−1Xs. Suppose also that⋃

t≤T,h≤h0,s<∞

θ eX(h),t({qh,n}n≤T/h) ⊂ K. (3.8)

(i) Then there are constants L > 0 and Cs > 0 (depending on s) such that

d(θ eX(h),nh(q0), qn) ≤ hsCs

L

(
eLhr+1n − 1

)
, nh ≤ T.

(ii) If M, X and h 7→ Φh(p) are analytic and X̃(h) is as in (ii) of Theorem 3.1, then there
exist constants L > 0 and C > 0 such that

d(θ eX,nh(q0), qn) ≤ e−γ/hC

L

(
eLhr+1n − 1

)
, nh ≤ T.

Proof. We will show that there are constants C > 0 and L > 0 such that

d(θ eX,t(p), θ eX,t(q)) ≤ CeLhrtd(p, q), t ≤ T, p, q ∈ {qh,n}n≤T/h, (3.9)

where d is the same metric as in Theorem 3.1. Now, suppose for the moment that (3.9) is true.
Recall that {qh,n}n∈Z+ is the numerical solution obtained recursively by Φh and let tk = kh.
Also, to avoid cluttered notation we will use just X̃ for X̃(h). Then

d(θ eX,tn
(q0), qn) ≤

n∑
k=1

d(θ eX(tn, tk−1, qk−1), θ eX(tn, tk, qk))

≤
n∑

k=1

CeLhr(tn−tk)d(θ eX(tk, tk−1, qk−1), θ eX(tk, tk, qk))

=
n∑

k=1

CeLhr(tn−tk)d(θ eX,h(qk−1), qk),

where the second inequality follows from (3.9) and the last equality follows from the fact that
θ eX(tk, tk, qk) = qk and θ eX(tk, tk−1, qk−1) = θ eX,h(qk−1). Thus, using Theorem 3.1, we get the
two cases
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(i) d(θ eX,tn
(q0), qn) ≤ C1h

s+1
∑n−1

k=0 e
Lhrkh ≤ hs C1

L

(
eLhr+1n − 1

)
,

(ii) d(θ eX,tn
(q0), qn) ≤ C2he

−γ/h
∑n−1

k=0 e
Lhrkh ≤ e−γ/h C2

L

(
eLhr+1n − 1

)
,

where C1 and C2 are the constants form Theorem 3.1 (i) and (ii) respectively. Also, the last
inequalities in cases (i) and (ii) come from the standard techniques used to prove convergence
of one step methods (details can be found on p. 161 [8]). Thus, to conclude, we only need to
show (3.9). To do that we will transform our problem from the manifold setting into a vector
space environment and then follow the analysis in Corollary 2 [7] quite closely.

By Whitney’s embedding theorem we obtain a smooth embedding F : M → Rm, for
m ≥ 2n, where n = dim(M). LetN = F (M). Now, F, X and X̃ induce vector fields onN ,

namely, F∗XF−1(·) and F∗X̃F−1(·). With a slight misuse of notation we will also denote these
vector fields by X and X̃ respectively. Our first goal is to extend X and X̃ to a neighborhood
around N .

Let U be a tubular neighborhood of N i.e. N ⊂ U ⊂ Rm where U is open in Rm and
diffeomorphic to an open set V ⊂ NN of the form

V = {(x, v) ∈ NN : |v| < δ(x)}

for some positive continuous function δ : N → R. Note that diffeomorphism mentioned above
E : V → U is defined as in (3.7). For (x, v) ∈ NN we identify T(x,v)NN with TxN × Rm−n

and define the vector fields Z and Z̃ by

Z(x,v) = (Xx, 0) ∈ TxN × Rm−n, Z̃(x,v) = (X̃x, 0) ∈ TxN × Rm−n.

Now Z and Z̃ are obviously smooth, thus, we can define smooth vector fields Y and Ỹ on U
by Y = E∗ZE−1(·) and Ỹ = E∗Z̃E−1(·). We are now in the position where we can apply the
ideas from the proof of Corollary 2 [7]. But before we do so we need to establish two facts.

Claim I. There exists a smooth vector field Ŷ on U such that Y − Ỹ = hrŶ . Indeed, by
the construction of X̃, and the fact that Φh is of order r, it follows that there is a vector field X̂
on N such that

X̂ = h−r(X − X̃). (3.10)

Thus, for x ∈ U, we have

Yx − Ỹx = E∗(ZE−1(x) − Z̃E−1(x))

= E∗

(
(Xπ(E−1(x)), 0)− (X̃π(E−1(x)), 0)

)
= hrE∗(X̂π(E−1(x)), 0),

(3.11)

where π : NN → N is the canonical projection. Thus, by letting Ŷ = E∗(ZE−1(·) − Z̃E−1(·))
the assertion follows.

Claim II. There is a compact set K̃ ⊃ F (K) such that the interior K̃o ⊃ F (K) is open in
U, and there is a constant M > 0 such that (independently of h) we have

sup
z∈eK ‖Ŷ (z)‖ ≤M, sup

z∈eK ‖DŶ (z)‖ ≤M, (3.12)

sup
z∈eK ‖

∂

∂z
θY (t, s, z)‖ ≤M, sup

z∈eK ‖
∂2

∂z2
θY (t, s, z)‖ ≤M, s < t ≤ T. (3.13)
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Let F be the collection of charts referred to in Theorem 3.1 (ii). It is easy to see that we
may without loss of generality assume that F is a family of charts on N , covering F (K),
with the properties stated in Theorem 3.1 (ii). Now, for (V, ϕ) ∈ F , define Uϕ = {x ∈ U :
π(E−1(x)) ∈ V }, where π : NN → N is the canonical projection. Observe that Uϕ is
obviously open in Rm and also

F (K) ⊂
⋃

(V,ϕ)∈F

Uϕ

(this is clear by the definition of E). Let K̃ be a compact set with the properties that K̃o is open
in Rm and

F (K) ⊂ K̃o ⊂ K̃ ⊂
⋃

(V,ϕ)∈F

Uϕ.

Note that (3.13) follows immediately from compactness of K̃ and smoothness of θY . To see
(3.12), for (V, ϕ) ∈ F let Fϕ : Uϕ × Rn → Rm be defined by

Fϕ(x, v) = TE−1(x)E · (Taϕ
−1 · v, 0), a = ϕ ◦ π(E−1(x)),

where
TE−1(x)E : Tπ(E−1(x))N × Rm−n → Rm

and A · y denotes that the operator A acts linearly on y. Then by (3.11) we get

Yx − Ỹx = hrFϕ(x, X̂ϕ(ρ(x))), ρ(x) = ϕ ◦ π(E−1(x)), x ∈ Uϕ,

where X̂ϕ is the vector field on ϕ(V ) induced by X̂ and ϕ, (X̂ is defined in (3.10)). Hence,

D(Y−Ỹ )(x) · y
= hrDFϕ(x, X̂ϕ(ρ(x))) · (y,DX̂ϕ(ρ(x)) ·Dρ(x) · y), x ∈ Uϕ, y ∈ Rm.

By Theorem 3.1 (ii) it follows that there is a constant K such that

sup
y∈ϕ(V )

‖X̂ϕ(y)‖ ≤ K, sup
y∈ϕ(V )

‖DX̂ϕ(y)‖ ≤ K,

uniformly for all sufficiently small h and all ϕ ∈ F . This allows us to find a constant bounding
‖DFϕ(x, X̂ϕ(ρ(x)))‖, ‖DX̂ϕ(ρ(x))‖ and ‖Dρ(x)‖ for all x ∈ Uϕ and ϕ ∈ F . Since {Uϕ}ϕ∈F

covers K̃ we, deduce that ‖DŶ (x)‖ is bounded uniformly for all sufficiently small h and for
all x ∈ K̃. Similar reasoning gives a bound on ‖Ŷ (x)‖ for small h and all x ∈ K̃.

Note that we may without loss of generality assume that K̃ is convex. Indeed, if that
is not the case choose a compact set K̂ whose interior is open and an open set Û such that
F (K) ⊂ K̂o ⊂ K̂ ⊂ Û ⊂ K̃, and an f ∈ C∞(Rm) such that 0 ≤ f(x) ≤ 1, supp(f) ⊂ Û

and f is equal to one on K̂. Define Yf = fY, Ỹf = fỸ and Ŷf = fŶ . Now Claim I and Claim
II are still valid (possibly with different constants) for these vector fields and since they are
globally defined K̃ could be chosen to be convex.

Now, using Claim I and the Alekseev-Gröbner formula (p. 96, [8]) (recall that θX(t, s, p)
denotes the flow of X at time t that takes the value p at time s i.e. θX(0, s, p) = θX(s, p)) we
get, for p ∈ F ({qh,n}n≤T/h), that

θ
(p)eY (t) = θ

(p)
Y (t) + hr

∫ t

0

∂

∂z
θY (t, s, θ

(p)eY (s))Ŷ (θ
(p)eY (s)) ds, t ≤ T.
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Note that the latter expression is justified by the assumption on global existence of θX and
(3.8). Hence, by using the above expression also for q ∈ F ({qh,n}n≤T/h), subtracting the two
equations and applying Claim II (this is where convexity is crucial) it follows that

‖θ(p)eY (t)− θ
(q)eY (t)‖ ≤M‖p− q‖+ hr

∫ t

0

2M2‖θ(p)eY (t)− θ
(q)eY (t)‖, t ≤ T.

Letting L = 2M2 and by appealing to the Gronwall lemma [8] gives

‖θ(p)eY (t)− θ
(q)eY (t)‖ ≤ CeLhrt‖p− q‖, t ≤ T.

Hence, since M inherits a metric from N similarly to what is done in the proof of Theorem
3.1 we obtain (3.9), and we are done.

4 Geometry in Infinite Dimensions
Given an integrator Φh, Theorem 3.1 assures us that there is a unique family of vector fields
{Xi} such that for some properly chosen N, the vector field X̃N(h) = X1 + hX2 + . . . +
hN−1XN will have a flow map θ eXN (h),t that is close to the integrator (in the sense described
in Theorem 3.1). Thus it makes sense to talk about the perturbed vector field induced by
Φh. In the following we will refer to X̃N(h) as the perturbed vector field and to simplify
the notation we will denote the perturbed vector field by X̃(h). It is of great importance
in order to understand the behavior of the numerical approximation that we understand the
behavior of θ eX(h),t. A convenient tool for analyzing θ eX(h),t is the theory of classifications of
diffeomorphisms.

Definition 4.1. Let M be a smooth manifold. Define

Diff(M) = {ϕ ∈ C∞(M,M) : ϕ is a bijection, ϕ−1 ∈ C∞(M,M)}.

In the following we will consider subsets of Diff(M) with certain geometric properties.
We are interested in determining under which conditions geometric properties of the flow map
of the original vector field will be preserved by the flow map of the perturbed vector field. In
other words, if the flow map θX,t of a vector field X is in some subset S ⊂ Diff(M), under
which conditions will θ eX(h),t ∈ S? To answer the previous question it is convenient to look at
Diff(M) as a manifold itself, in particular as an infinite dimensional manifold.

4.1 Cartan’s Subgroups
Diffeomorphism groups and subgroups occur frequently in classical mechanics and are there-
fore a crucial concept in Geometric Integration. The theory of such groups originate, from the
work of Lie and Cartan [4], in particular Cartan gave a classification of the complex primitive
infinite-dimensional diffeomorphism groups, finding six classes. We will give a brief review
here and refer to [11] for a more detailed discussion. The diffeomorphism groups of Cartan
are as follows:

• Diff(M), the group of all diffeomorphisms on M.

• The diffeomorphisms preserving a symplectic 2-form ω on M, that is the set of diffeo-
morphisms ϕ such that ϕ∗ω = ω.
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• The diffeomorphisms preserving a volume form µ on M, that is the set of diffeomor-
phisms ϕ such that ϕ∗µ = µ.

• The diffeomorphisms preserving a given contact 1-form α up to a scalar function, that
is the set of diffeomorphisms ϕ such that (ϕ∗α)p = cϕ(p)µ.

• The group of diffeomorphisms preserving a given symplectic form ω up to an arbitrary
constant multiple, that is the set of diffeomorphisms ϕ such that ϕ∗ω = cϕω.

• The group of diffeomorphisms preserving a given volume form µ up to an arbitrary
constant multiple, that is the set of diffeomorphisms ϕ such that ϕ∗ω = cϕω.

These subgroups serve as a motivation for most of the theory in the upcoming sections.

4.2 Infinite-Dimensional Manifolds
We will give a short review of the basic definitions of infinite dimensional manifolds, their
tangent bundle and tangent spaces. For a more thorough treatment of the subject we refer to
[12].

Definition 4.2. A Hausdorff spaceM is called aC∞-manifold modeled on a separable locally
convex topological vector space E ifM is covered by an indexed family {Uα : α ∈ A} of open
subsets of M satisfying the following:

(i) For each Uα, there is an open subset Vα ⊂ E and a homeomorphism ϕα : Vα → Uα.

(ii) IfUα∩Uβ 6= ∅ then ϕ−1
β ◦ϕα is aC∞ diffeomorphism of ϕ−1

α (Uα∩Uβ) onto ϕ−1
β (Uα∩Uβ).

The maps ϕ−1
β ◦ ϕα are called coordinate transformations.

(iii) The indexed family A is the maximal one among indexed families satisfying (i) and (ii)
above.

M is called a Frechet, Banach or Hilbert manifold if E itself is a Frechet, Banach or Hilbert
space respectively.

Throughout the paper we will use the name E-manifold to describe a C∞-manifold mod-
eled on a separable locally convex topological vector space E. With a smooth structure on
M we can define the tangent bundle and the tangent space. First we need to introduce an
equivalence relation.

Definition 4.3. LetM be anE-manifold. Let x ∈ Vα and y ∈ Vβ. Then x and y are equivalent
(x ∼ y) if and only if x and y are contained in the domains of ϕ−1

β ◦ ϕα, ϕ
−1
α ◦ ϕβ and

ϕ−1
β ◦ ϕα(x) = y.

Now, for an infinite dimensional manifold M covered by {Uα = ϕ−1
α (Vα) : α ∈ A} we

may view M as {Vα : α ∈ A} glued together with the equivalence relation from Definition
4.3. This gives rise to the following definition of the tangent bundle and the tangent space.

Definition 4.4. The tangent bundle TM of an E-manifold M is the collection {Vα×E : α ∈
A} glued according to the following equivalence relation:

(x, u) ∈ Vα × E and (y, v) ∈ Vβ × E

are equivalent if and only if x ∼ y and (ϕ−1
β ◦ ϕα)∗u = v.
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Definition 4.5. Define the mapping π of
⋃

α∈A Vα × E onto
⋃

α∈A Vα by π(x, u) = x. Since
(x, u) ∼ (y, v) yields π(x, u) = π(y, v), then π naturally defines a mapping (which we will,
by slight abuse of notation, denote by the same symbol) π of TM onto M. This map is called
the projection of the tangent bundle. Then the tangent space of M at p is defined as

TpM = π−1(p).

4.3 The Smooth Structure of Ck(M), Hs(M) and Diff(M)

Before we define Ck(M) and Hs(M) and show how to make them into manifolds, we need
to discuss how to make Banach and Hilbert spaces out of sections of vector bundles. We will
follow [13] (Chap. IV) quite closely. Firstly, we need to define an inner product and norm on
Lk

sym(Rn,Rm). Let {ej} be an orthonormal basis for Rn and define, for T, S ∈ Lk
sym(Rn,Rm),

the inner product and norm

〈T, S〉 = 〈T (ei1 , . . . , eik), S(ei1 , . . . , eik)〉, ‖T‖ = 〈T, T 〉1/2

Secondly, let M be a compact manifold and let π : E → M be a smooth vector bundle
over M of rank m. Now, for smooth f : N → M, where N is a smooth manifold, we let
π′ : f ∗E → N denote the pull back bundle and Γ(E) denote the set of all smooth sections of
E.

We can now make subspaces of Γ(E) into Banach and Hilbert spaces. Let Γ(Bn,Rm)
denote the vector space of all functions from the closed n-ball Bn ⊂ Rn with radius one into
Rm, regarded as the set of sections of the product bundle Bn × Rm over Bn. Now cover M
with finitely many charts {(Ui, ϕi)}r

i=1 such that ϕi(Ui) = Bn, and choose trivializations Ψi

on (ϕ−1
i )∗E such that Ψi : π′−1(Bn) → Bn × Rm. Define the linear mapping

F : Γ(E) →
r⊕

i=1

Γ(Bn,Rm), F (ξ) = (ξ1, . . . ξr), ξi(x) = Ψi(ξ ◦ ϕ−1
i (x)) (4.1)

and define the norm ‖ · ‖B,k and inner product 〈·, ·〉H,k in the following way. For u =
(u1, . . . , ur), v = (v1, . . . , vr) ∈

⊕r
i=1 Γ(Bn,Rm), let

|u|B,k = max
1≤j≤k

r∑
i=1

sup
x∈Bn

‖Djui(x)‖

〈u, v〉k = max
1≤j≤k

r∑
i=1

∫
Bn

〈Djui(x), D
jvi(x)〉 dx,

(4.2)

and for ξ, η ∈ Γ(E)

‖ξ‖B,k = |F (s)|B,k, 〈ξ, η〉H,k = 〈F (ξ), F (η)〉k.

Let Ck(E) = Γ(E) and Hs(E) = Γ(E), where the closures are in the norms ‖ · ‖B,k and
‖ · ‖H,s respectively. These Banach and Hilbert spaces will be useful in the next developments.

Given two smooth manifolds, M and N , let Ck(M,N ) denote the set of mappings from
M to N such that their derivatives (in any local coordinates) of order ≤ k exist and are con-
tinuous. Also, if s > dim(M)/2 we let Hs(M,N ) denote the set of mappings from M to N
with square integrable (in charts) derivatives (in the distributional sense) of order≤ s. We will
show how to make Ck(M) and Hs(M) (where Ck(M) and Hs(M) are short for Ck(M,M)
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and Hs(M,M)) into a Banach and Hilbert manifold respectively. The description will be
rather brief and we refer to [5] and [12] for a more detailed discussion.

First one needs candidates for the charts on Ck(M). Let f ∈ Ck(M) and define

TfC
k(M) = {g ∈ Ck(M, TM) : π ◦ g = f},

where π : TM → M is the canonical projection. Note that TfC
k(M) can naturally be

identified with Ck(f ∗(TM)) with the norm as discussed above, and hence we have the de-
sired Banach space. Similar reasoning applies to Hs(M) by replacing Ck(f ∗(TM)) with
Hs(f ∗(TM)).

As we will only need a chart around the identity in the following arguments, we will show
how to construct the chart for f = id and refer to [5] [12] [15] for the general case. Let expq

denote the Riemannian exponential map expq : TqM → M (note that expq is defined on all
of TqM since M is compact). Define Exp : TM→M×M, by

Exp(vq) = (q, expq(vq)).

Now Exp is a diffeomorphism from a neighborhoodN (M×{0}) ofM×{0} ⊂ TM (where
we have allowed a minor misuse of notation using M× {0}) to a neighborhood U(∆) of the
diagonal ∆ ⊂M×M. This defines a neighborhood V(id) around id, namely,

V(id) = {f ∈ Ck(M) : Gr(f) ⊂ U(∆)}, (4.3)

where Gr(f) is the graph of f. Similarly, we define a neighborhood W(ζ0) of the zero section
ζ0 : M→ TM by

W(ζ0) = {X ∈ TidC
k(M) : X(M) ⊂ N (M×{0})}

We can now define the chart (ωExp,V(id)) by

ωExp(f) = Exp−1 ◦ (id, f), f ∈ V(id),

ω−1
Exp(X) = Pr2 ◦ Exp ◦X, X ∈ W(ζ0),

(4.4)

where Pr2 : M×M→M is the projection onto the second factor.
Using this differentiable structure, Ck(M) becomes a Banach manifold [5], [12] and sim-

ilarly we can make a Hilbert manifold of Hs(M). The brief discussion above can be summa-
rized in the following theorem [15].

Theorem 4.6. LetM be a compact Riemannian manifold. Then, with the differential structure
suggested above, Ck(M), where k ≥ 1, and Hs(M), where s > dim(M)/2, become Banach
and Hilbert manifolds respectively. Also

TidC
k(M) = Xk(M), TidH

s(M) = Xs
H(M),

where Xk(M) denotes the set of vector fields whose derivatives (in local coordinates) of or-
der ≤ k exist and are continuous, and Xs

H(M) denotes the set of vector fields such that the
derivatives (in the distributional sense) of order ≤ s in local coordinates exist and are square
integrable.

Actually, the differentiable structure suggested above is independent of the choice of Rie-
mannian metric on M, however, that fact will not be central in the upcoming discussions.
Throughout this paper Ck(M) and Hs(M) are understood to have the differential structure
as presented above. The following property of integrators is quite convenient and will be a
crucial ingredient in some of the later sections.
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Theorem 4.7. Let M be a compact n dimensional manifold and let Φh be an integrator on
M. Then there exist neighborhoods U ⊂ Ck(M) and Ũ ⊂ Hs(M) of id (the identity), where
k ≥ 1 and s > n/2, such that the mappings R 3 h 7→ Φh ∈ U and R 3 h 7→ Φh ∈ Ũ are
smooth for sufficiently small h. Also, ( d

dh

∣∣
h=0

Φh)(q) = d
dh

∣∣
h=0

Φh(q).

Proof. We will first prove that h 7→ Φh ∈ U is smooth. Note that by the reasoning in Section
4.3 there is a neighborhood U ⊂ Ck(M), containing the identity, defined by

U = {f ∈ Ck(M) : Gr(f) ∈ U(∆)},

where U(∆) is defined as in (4.3), such that (V , ωExp) is a local chart around id, and ωExp is
defined in (4.4). We claim that Φh ∈ U for all sufficiently small h. Indeed, this is true, for
since U(∆) is a neighborhood of the diagonal ∆ ∈ M ×M (in the product topology), and
by compactness of M, it suffices to show that for r, s > 0 and q ∈ M, there is an h0 such
that Φh(Br(q)) ⊂ Br+s(q) for h < h0, where Br(q) denotes the open ball of radius r around q
with respect to some metric d on M. Let X ∈ X(M) be defined by Xp = d

dh

∣∣
h=0

Φh(p). Then
there is a h0 > 0 such that

θX,h(Br(q)) ⊂ Br+s(q), h ≤ h0. (4.5)

Now, since Φ : R×M→M is smooth, and by the classical convergence analysis of integra-
tors in Rn and compactness ofM, it follows that there is aC > 0 such that d(θX,h(q),Φh(q)) ≤
Ch for h ≤ h̃ for some h̃ > 0. Thus, using (4.5), the assertion follows.

Consider the smooth mapping ωExp ◦ Φ : R ×M → TM as a time-dependent smooth
vector field. Choose charts {(Ui, ϕi)} and trivializations {Ψi} and define F as in (4.1). To
prove that h 7→ Φh is differentiable, we need to show that there is a vector field Y ∈ X(M)
such that

lim
t→0

|F (ωExp ◦ Φ)(h+ t, ·)− F (ωExp ◦ Φ)(h, ·)− tF (Y )|B,k = 0,

where | · |B,k is defined as in (4.2), and

lim
t→0

|F (ωExp ◦ Φ)(h+ t, ·)− F (ωExp ◦ Φ)(h, ·)− tF (Y )|s = 0,

where | · |s is the norm induced by 〈·, ·〉s defined in (4.2). We claim that he vector field defined
by Yp = d

du

∣∣
u=h

(ωExp ◦ Φ)(u, p) is the right candidate (obviously Y ∈ X(M)). Letting ξi be a
local representative of ωExp ◦ Φ with respect to Ψi and ϕi as in (4.1), it suffices to show that

lim
t→0

max
0≤l≤k

sup
x∈Bn

1

t
‖Dlξi(h+ t, x)−Dlξi(h, x)− tDl d

du

∣∣∣
u=h

ξi(u, x)‖ = 0 (4.6)

and

lim
t→0

max
0≤l≤s

1

t

∫
Bn

〈
Dlξi(h+ t, x)−Dlξi(h, x)− tDl d

du

∣∣∣
u=h

ξi(u, x),

Dlξi(h+ t, x)−Dlξi(h, x)− tDl d

du

∣∣∣
u=h

ξi(u, x)
〉
dx = 0.

(4.7)

To see (4.6), let t̃ = (t, 0, . . . , 0) and let D̃ denote the total derivative on C1(Rn+1, Rn) Then,
by Taylor’s Theorem [1] and smoothness of ξi it follows that

ξi(h+ t, x)− ξi(h, x)− t
d

du

∣∣∣
u=h

ξi(u, x)

= ξi(h+ t, x)− ξi(h, x)− D̃ξi(h, x)(t̃)

= D̃2ξi(h, x)(t̃, t̃) +R(h, x, t̃)(t̃, t̃),
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where both D̃2ξi and R are smooth. Hence

lim
t→0

max
0≤l≤k

sup
x∈Bn

1

t
‖DlD̃2ξi(h, x)(t̃, t̃) +DlR(h, x, t̃)(t̃, t̃)‖ = 0,

where DlD̃2ξi(h, x)(t̃, t̃) and DlR(h, x, t̃)(t̃, t̃) and are the l-th derivatives of

x 7→ D̃2ξi(h, x)(t̃, t̃) and x 7→ R(h, x, t̃)(t̃, t̃)

respectively, and we have shown (4.6). Now, (4.7) follows by similar reasoning. To show
that h 7→ Φh is infinitely smooth we observe that ωExp ◦ Φ is infinitely smooth and since
Yp = d

du

∣∣
u=h

(ωExp ◦ Φ)(u, p) we may argue as above using Taylor’s theorem and deduce
smoothness. We are now done with the first part of the proof. The last assertion of the theorem
is straightforward, as seen by the following calculation

(
d

dh

∣∣∣
h=0

Φh)(q) =
d

dh

∣∣∣
h=0

(ωExp ◦ Φ)(h, q)

=
d

dh

∣∣∣
h=0

exp−1
q (Φh(q))

= (exp−1
q )∗

d

dh

∣∣∣
h=0

Φh(q)

=
d

dh

∣∣∣
h=0

Φh(q).

LetD1(M) be the set ofC1 diffeomorphisms onM (a compact manifold) and let Diffs(M) =
D1(M) ∩ Hs(M), for s > dim(M)/2 + 1, Then Diffs(M) is open in Hs(M) ([5] p. 107)
and

Diffs(M) = {ψ ∈ Hs(M) : ψ is bijective, ψ−1 ∈ Hs(M)}. (4.8)

Since Diffs(M) is an open subset ofHs(M), it naturally inherits its smooth manifold structure
from Hs(M). Throughout the paper Diffs(M) will denote the set in (4.8) with this smooth
structure. We immediately get the following.

Corollary 4.8. Let M be a compact manifold and let Φh be an integrator on M. Then there
exists a neighborhood U ⊂ Diffs(M), where s > dim(M)/2 + 1, such that the mapping R 3
h 7→ Φh ∈ U is smooth for sufficiently small h, and left multiplication Lg : ( d

dh

∣∣
h=0

Φh)(q) =
d
dh

∣∣
h=0

Φh(q).

Proof. Follows immediately from Theorem 4.7

The next theorem describes the smoothness of the group operations: multiplication and
invertion on Diffs(M).

Theorem 4.9. [15] For s > dim(M)/2 + 1 it follows that Diffs(M) is a smooth infinite
dimensional manifold and a Lie group in the following sense: For g ∈ Diffs(M), right multi-
plication is C∞ as a map

Rg : Diffs(M) → Diffs(M), Rg(f) = f ◦ g.

Left multiplication is Ck as a map

Lg : Diffs+k(M) → Diffs(M), Lg(f) = g ◦ f.
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The group multiplication µ is Ck as a map

µ : Diffs+k(M)×Diffs(M) → Diffs(M), µ(f, g) = f ◦ g.

The inversion ν is Ck as a map

ν : Diffs+k(M) → Diffs(M), ν(f) = f−1.

4.4 Alternative Definition of the Tangent Space at the Identity
Similarly to the discussion in the previous section one may consider submanifolds of Diffs(M).
We thus consider a symplectic 2-form on M and let

S = {ϕ ∈ Diffs(M) : ϕ∗ω = ω}. (4.9)

Then, according to [5], if s > 1
2
dim(M) + 1 then S is a closed submanifold of Diffs(M) and

TidS = {X ∈ Xs
H(M) : LXω = 0}, (4.10)

where LXω denotes the Lie derivative of ω with respect to X.
Returning to Cartans subgroups of Diff(M), we are interested in determining the tangent

spaces at the identity for these subgroups of Diff(M). But not only that, we will see in the
upcoming discussion that there are subsets of Diff(M) without group structure that may be
of interest in geometric integration. The problem we are faced with when focusing on find-
ing TidS for some subset S ⊂ Diff(M), is that, to be rigorous (according to Definition 4.5),
we must impose a smooth structure on S. This can be quite technical and sometimes may be
impossible. Note that the crucial assumption in defining a smooth structure on Diffs(M) has
been compactness of M, and this is an assumption we would like to remove. Also, we are
interested in very specific subsets of Diff(M), namely subsets of one-parameter diffeomor-
phisms (integrators and flow maps).

Our goal is therefore to find a definition of the tangent space at the identity of subsets of
integrators and flow maps that is independent of the choice of smooth structure on the set, and
also coincides with the usual definition on well-known examples. Note that by our definition
of integrator, it is superfluous to talk about integrators and flow maps, as a flow map is an
integrator.

Suppose that we should choose a heuristically and more intuitive definition of the tangent
space at the identity of (4.9) to obtain (4.10). A natural definition would be to consider the
collection of derivatives at zero of smooth curves R 3 t 7→ f(t) ∈ S, where f(0) = id i.e.

TidS = {X ∈ X(M) : X =
d

dt

∣∣∣
t=0
f(t), f(t) ∈ S, f(0) = id}.

Thus, if we consider the set S̃ ⊂ S defined by S̃ = {Φh ∈ S : Φh is an integrator}, a natural
definition of the tangent space at the identity of S̃ is

TidS̃ = {X ∈ X(M) : X =
d

dt

∣∣∣
h=0

Φh, Φh ∈ S̃},

where d
dt

∣∣
h=0

Φh would have been well defined by Corollary 4.8 had we considered the smooth
structure discussed in Section 4.3. But this definition is based on an underlying smooth struc-
ture on S since the derivative d

dt

∣∣
h=0

Φh is defined as the derivative of the mapping h 7→ Φh ∈
S̃. To get rid of that extra technicality we suggest the following

TidS̃ = {X ∈ X(M) : Xq =
d

dh

∣∣∣
h=0

Φh(q), Φh ∈ S̃}.
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This definition does not depend on any smooth structure on S, it only depends on the smooth
structure on M as we take the derivative of the mapping h 7→ Φh(q) ∈M.

Note that it is not clear that with the latter definition that TidS̃ = {X ∈ X(M) : LXω = 0},
(even though that is the case, see Section 5) but if we consider the following subset of S̃,
namely, Ŝ = {θt ∈ S : θt is a flow map}, then obviously, by the formula for the Lie derivative

TidŜ = {X ∈ X(M) : LXω = 0}.

Thus our definition is compatible with (4.9) and (4.10). To be more formal, by the reasoning
above, we suggest the following definition.

Definition 4.10. Let S ⊂ Diff(M) be a set of integrators. Define the tangent space at the
identity by

TidS = {X ∈ X(M) : Xq =
d

dh

∣∣∣
h=0

Φh(q), Φt ∈ S}.

Note that the name “tangent space” used here is a slight abuse of language as there is
no restriction on S and therefore TidS may not be a vector space e.g. consider S = {Φh}
containing only one element. Then the vector field X defined by Xq = d

dt

∣∣
h=0

Φh(q) is in TidS
but tX, for t ∈ R, may not be in TidS as Φh may not be a flow map.

Remark 4.11. Note that if A = TidS there may exist S̃ such that S 6= S̃ and A = TidS̃.
Consider the following short argument. Let M = Rn and let ω be a symplectic 2-form on M.
Let A = {X ∈ X(M) : LXω = 0} and

S = {θt ∈ Diff(M) : θ∗tω = ω, θt is a flow map}.

Then A = TidS. Let X ∈ A and let the integrator Φh be Euler’s method applied to X and let
S̃ = S ∪ Φh. By consistency we have d

dh

∣∣
h=0

Φh(x) = Xx. Hence TidS̃ = A.

5 Classification Theory of Integrators
In the following we will assume that X ∈ A ⊂ X(M) where A is a vector subspace of the
infinite dimensional Lie algebra of vector fields on M. In addition we will assume that there
is a semigroup S ⊂ Diff(M) such that A = TidS. We will show that if the integrator Φh ∈ S

then the perturbed vector field X̃(h) ∈ A.

Theorem 5.1. Suppose that X ∈ A ⊂ X(M) where A is a linear subspace. Let S ⊂ Diff(M)
be a semigroup such that A = TidS. Suppose also that the integrator Φh ∈ S for all h. Then
the perturbed vector field X̃(h) ∈ A and the flow map θ eX,h of X̃(h) is also in S.

Proof. Let {Xj} be the family of vector fields from Theorem 3.1. It suffices to show that
Xj ∈ A for all j ∈ N. We do so by induction. Suppose that Xj ∈ A for i ≤ j. We will
show that Xj+1 ∈ A. To to that we need to show that there is a one-parameter family of
diffeomorphisms Ψh ∈ S such that, for p ∈ M, we have Xj+1(p) = d

dh

∣∣
h=0

Ψh(p). Let
X̃j = X1 + hX2 + . . .+ hj−1Xj. We claim that

Ψh = θ−1eXj ,h1/(1+j)
◦ Φh1/(1+j)

is the right candidate. Note that it is not clear (because of the root) that Ψh is smooth at h = 0,
but that is part of the proof. However, Ψh ∈ S, indeed, by the induction assumption and the
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assumption that A is a vector space we have θ−1eXj ,t
= θ− eXj ,t ∈ S, so since Φh ∈ S and by

the semigroup hypothesis the assertion follows. Let (U,ϕ) be a chart on M, and let Ỹj and
{Yj} be the vector fields induced by ϕ, X̃j and {Xj}. By the construction of {Xj} it suffices
to show that d

dh

∣∣
h=0

Ψ̂h(x) = Yj+1(x), where Ψ̂h is a local representative of Ψh with respect to
ϕ, and x ∈ ϕ(U). To see this, note that by the construction of {Xj} and Taylor’s theorem it
follows that

Φ̂h(x) = θeYj ,h(x) + hj+1Yj+1(x) + hj+2Z(x, h),

where Φ̂h is the local representative of Φh with respect to ϕ and Z is some smooth mapping.
This gives, again by Taylor’s theorem, that there is a smooth mapping R : Rn × Rn →
L2

sym(Rn) such that

θ−1eYj ,h
◦ Φ̂h(x) = θ−1eYj ,h

(θeYj ,h(x) + hj+1Yj+1(x) + hj+2Z(x, h))

= x+Dθ−1eYj ,h
(x)W (x, h) +D2θ−1eYj ,h

(x)(W (x, h),W (x, h))

+R(θeYj ,h(x),W (x, h))(W (x, h),W (x, h)),

(5.1)

where W (x, h) = hj+1Yj+1(x) + hj+2Z(x, h). It is easy to see (by smoothness) that

‖D2θ−1eYj ,h
(x)(W (x, h),W (x, h))

+R(θeYj ,h(x),W (x, h))(W (x, h),W (x, h))‖ = O(hj+2), h→ 0.

And also, since θ−1eYj ,h
is a flow map, it follows that Dθ−1eYj ,h

(x) = I +O(h) as h→ 0. Hence

θ−1eYj ,h
◦ Φ̂h(x) = x+ hj+1Yj+1(x) +O(hj+2), h→ 0.

Hence,

Yj+1(x) = lim
h→0

θ−1eYj ,h1/(1+j)
◦ Φ̂h1/(1+j)(x)− x

h
=

d

dh

∣∣∣
h=0

Ψ̂h(x).

The fact that X1 = X ∈ A completes the induction and we are done.

In a later section we will treat the case where S is not a subgroup, but has some other
structure. However, a natural question to ask is: does S have to have any structure at all? The
answer is affirmative as the following example shows.

Example 5.2. We follow the reasoning in Remark 4.11 and let ω be a symplectic 2-form on
M = Rn. Also, we have the subspace A = {X ∈ X(M) : LXω = 0} and

S = {θt ∈ Diff(M) : θ∗tω = ω, θt is a flow map}.

Then A = TidS. If X ∈ A and Φh is Euler’s method applied to X and we let S̃ = S ∪Φh then

d

dh

∣∣∣
h=0

Φh(x) = Xx and TidS̃ = A.

Thus, if we relax the semigroup hypothesis in Theorem 5.1 and assume no structure on the set,
then S̃ is a set and TidS̃ = A so, if Theorem 5.1 was true without the semigroup assumption,
the perturbed vector field of Euler’s method would be symplectic. It is easy to find examples of
symplectic vector fields such that the perturbed vector field of Euler’s method is not symplectic
and thus we have a contradiction.
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Subsets of Diff(M) Subsets of X(M)

Let ω ∈ Ω2(M) be symplectic.
{Φh ∈ Diff(M) : Φ∗hω = ω} {X ∈ X(M) : LXω = 0}

{Φh ∈ Diff(M) : Φ∗hω = cΦh
ω} {X ∈ X(M) : LXω = βXω}

Let µ ∈ Ωn(M) be a volume form.
{Φh ∈ Diff(M) : Φ∗hµ = µ} {X ∈ X(M) : LXµ = 0}

{Φh ∈ Diff(M) : Φ∗hµ = cΦh
µ} {X ∈ X(M) : LXµ = βXµ}

Let α ∈ Ω1(M) be a contact form.
{Φh ∈ Diff(M) : (Φ∗hα)p = cΦh

(p)αp} {X ∈ X(M) : (LXα)p = βX(p)αp}
Let f ∈ C∞(M).

{Φh ∈ Diff(M) : f ◦ Φh = f} {X ∈ X(M) : f∗X = 0}
Let σ : Diff(M) → Diff(M)
be a smooth homomorphism.

{Φh ∈ Diff(M) : σ(Φh) = Φ−1
h } {X ∈ X(M) : σ∗X = −X}

Table 5.1: Subsets of diffeomorphisms with corresponding candidates for the tangent spaces
at the identity.

Remark 5.3. Note that Theorem 5.1 is just Theorem 3.1 in [14] with Rn replaced by a general
manifoldM and the additional assumption that S is a semigroup. The previous example shows
that Theorem 3.1 in [14] is incomplete.

We are now ready to make use of Theorem 5.1 in analyzing geometric properties of the
perturbed vector field. To be able to utilize Theorem 5.1 we therefore need to determine
the tangent space at the identity for the desired subsets of Diff(M). Table 5 shows several
subsets of Diff(M), that may be of some interest in Geometric Integration, with corresponding
subspaces that are candidates for being the tangent space at the identity for the corrsponding
subsets. We intend to prove that these subspaces actually are the correct tangent spaces.

As Table 5 shows, the Lie derivative is crucial in computing the tangent space at the identity
in several interesting examples. The following result is therefore crucial

Proposition 5.4. Let M be a smooth manifold and let Φt be an integrator. Suppose that
X = X(M) and d

dt

∣∣
t=0

Φt(p) = Xp for p ∈ M. Let τ be a smooth covariant k-tensor field on
M. Then

(LXτ)p = lim
t→0

Φ∗t (τΦt(p))− τp
t

.

Proof. Let θt be the flow map of X. Then, for p ∈M we have

(LXτ)p = lim
t→0

θ∗t (τθt(p))− τp
t

,

thus the assertion will be evident if we can show that there is aC > 0 such that forX1, . . . Xk ∈
TpM we have

|Φ∗t (τΦt(p))(X1, . . . Xk)− θ∗t (τθt(p))(X1, . . . Xk)| ≤ Ct2, (5.2)
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for sufficiently small t. We will prove this. Let (U,ϕ) be a chart containing p then, in these
coordinates, τ will have the form

τ = τi1...ikdx
i1 ⊗ . . .⊗ dxik ,

where τi1...ik : M→ R is a smooth function.
Note that the assertion (5.2) becomes evident were we to show that there is a C > 0 such

that
|τi1...ik(Φt(p))− τi1...ik(θt(p))| ≤ Ct2 (5.3)

and

|dxi1
∣∣
θt(p)

⊗ . . .⊗ dxik
∣∣
θt(p)

((θt)∗X1, . . . , (θt)∗Xk)

− dxi1
∣∣
Φt(p)

⊗ . . .⊗ dxik
∣∣
Φt(p)

((Φt)∗X1, . . . , (Φt)∗Xk)| ≤ Ct2
(5.4)

for sufficiently small t. Let θ̃t = ϕ ◦ θt ◦ ϕ−1 and let {ej} be the usual basis for Rn such that
∂

∂xj
= ϕ−1

∗ ej. Also, let Xl = aj
l

∂
∂xj
, where 1 ≤ l ≤ k. Then

dxi1
∣∣
θt(p)

⊗ . . .⊗dxik
∣∣
θt(p)

((θt)∗X1, . . . , (θt)∗Xk)

= dxi1
∣∣
θt(p)

⊗ . . .⊗ dxik
∣∣
θt(p)

(aj
1(θt)∗

∂

∂xj

∣∣∣
p
, . . . , aj

k(θt)∗
∂

∂xj

∣∣∣
p
)

= dxi1
∣∣
θt(p)

⊗ . . .⊗ dxik
∣∣
θt(p)

(aj
1ϕ

−1
∗ (θ̃t)∗ej, . . . , a

j
kϕ

−1
∗ (θ̃t)∗ej)

= dxi1
∣∣
θt(p)

⊗ . . .⊗ dxik
∣∣
θt(p)

(aj
1ϕ

−1
∗ bµj (t)eµ, . . . , a

j
kϕ

−1
∗ bµj (t)eµ)

= (aj
1b

µ
j (t)δi1

µ ) . . . (aj
kb

µ
j (t)δik

µ )

= (aj
1b

i1
j (t)) . . . (aj

kb
ik
j (t)),

where bµj : R → R, bµj (t)eµ = (θ̃t)∗ej and δi
µ is the Kronecker delta. Let Φ̃t = ϕ ◦ Φt ◦ ϕ−1.

Then by exactly the same calculation as above we get

dxi1
∣∣
Φt(p)

⊗ . . .⊗ dxik
∣∣
Φt(p)

((Φt)∗X1, . . . , (Φt)∗Xk) = (aj
1c

i1
j (t)) . . . (aj

kc
ik
j (t)),

where cµj : R → R and cµj (t)eµ = (Φ̃t)∗ej. Thus, to show (5.4) we only need to show that
cµj (t) − bµj (t) = O(t2), which is easily seen to follow if ‖(Φ̃t)∗ − (θ̃t)∗‖ = O(t2). To see the
latter; note that, by our assumption and by Taylor’s theorem, we have Φ̃t(x) = x + tX̃(x) +

t2Y1(x) and θ̃t(x) = x + tX̃(x) + t2Y2(x), where X̃ is the vector field induced by X and
ϕ, and Yi : Rn → Rn is smooth. Hence, taking derivative with respect to x and possibly
restricting to a compact domain yield the assertion. Note that (5.3) follows by the fact that
Φ̃t(x)− θ̃t(x) = O(t2) and smoothness of τi1...ik .

Throughout this section we will use (as oppose to the notation in section 4.3) the notation
C∞(N ) for C∞(N ,R) when N is a smooth manifold.

Corollary 5.5. Let τ ∈ Ωk(M) be a smooth k-form. Let

S1 = {Φt : Φ∗t τ = τ}, S2 = {Φt : Φ∗t τ = cΦ(t)τ, cΦ ∈ C∞(R)}

and S3 = {Φt : (Φ∗t τ)p = cΦ(t, p)τ, cΦ ∈ C∞(R×M)}. Also, let

A1 = {X ∈ X(M) : LXτ = 0}, A2 = {X ∈ X(M) : LXτ = αXτ, αX constant}

and A3 = {X ∈ X(M) : LXτ = αXτ, αX ∈ C∞(M)}. Then TidS1 = A1, TidS2 = A2 and
TidS3 = A3
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Proof. Let Φt ∈ S2 and X = d
dt

∣∣
t=0

Φt. Then, by Proposition, 5.4

LXτ = lim
t→0

Φ∗t (τΦt(p))− τp
t

= c′(0)τp,

where the last equality follows by our assumption, so X ∈ A and hence TidS2 ⊂ A2. The
inclusions TidS1 ⊂ A1 and TidS3 ⊂ A3 follow similarly. As for the other inclusion, let
X ∈ A3 and θt be the flow map of X. Then, for p ∈ M and X1, . . . , Xn ∈ TpM we have the
following differential equation

d

dt

∣∣∣
t=t0

θ∗t (τθt(p))(X1, . . . , Xn) = θ∗t0
(
(LXτ)θt0 (p)

)
(X1, . . . , Xn)

= αX(θt0(p))
(
θ∗t0τθt0 (p)

)
(X1, . . . , Xn).

Thus, θ∗t (τθt(p))(X1, . . . , Xn) must satisfy

θ∗t (τθt(p))(X1, . . . , Xn) = eβX(t,p)τp(X1, . . . , Xn),

where βX(t, p) =
∫ t

0
αX(θs(p)) ds. Hence, θt ∈ S2. The inclusions A1 ⊂ TidS1 and A1 ⊂

TidS1 follow similarly.

Corollary 5.6. Let X ∈ X(M) and τ ∈ Ωk(M). Let Φh be an integrator for X.

(i) If LXτ = 0 and Φ∗hτ = τ then the perturbed vector field X̃(h) satisfies L eXτ = 0.

(ii) If LXτ = αXτ and Φ∗hτ = cΦ(h)τ, where c is smooth, then the perturbed vector field
X̃(h) satisfies L eXτ = αX̃τ.

(iii) If LXτ = αXτ where αX ∈ C∞(M) (Φ∗hτ)p = cΦ(h, p)τ, cΦ ∈ C∞(R ×M)}, then
the perturbed vector field X̃(h) satisfies L eXτ = α eXτ where αX ∈ C∞(M)

Proof. Note that the sets S1, S2, S3 from Corollary 5.5 are easily seen to be groups and the
corresponding sets A1, A2, A3 are vector spaces, a fact easily seen from Cartan’s formula.
Thus, the assertion follows by Theorem 5.1.

We can now prove the main theorem.

Theorem 5.7. Let X ∈ X(M) with corresponding flow map θt, and let Φh be a numerical
integrator for X with corresponding perturbed vector field X̃(h) and flow map θ̃t. Then

(i) if ω is a symplectic 2-form on M such that θ∗tω = ω and Φ∗hω = ω then the perturbed
vector field X̃(h) is symplectic i.e. it satisfies L eX(h)ω = 0, and θ̃∗tω = ω.

(ii) if µ is a volume form on M such that θ∗tµ = µ and Φ∗hµ = µ then the perturbed vector
field X̃(h) is divergence-free i.e. it satisfies div X̃(h) = 0, and θ̃∗tµ = µ.

(iii) if ω is a symplectic 2-form on M such that θ∗tω = α(t)ω and Φ∗hω = β(h)ω, where
α, β : R → R are smooth, then the perturbed vector field X̃(h) satisfies L eX(h)ω = ρω,

where ρ is a real constant and θ̃∗tω = α̃(t)ω, where α̃ is smooth.

(iv) if µ is a volume form on M such that θ∗tµ = α(t)µ and Φ∗hµ = β(h)µ, where α, β :

R → R are smooth, then the perturbed vector field X̃(h) satisfies L eX(h)µ = ρµ, where
ρ is a real constant and θ̃∗tµ = α̃(t)µ, where α̃ is smooth.
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(v) if τ is a contact 1-form onM such that (θ∗t τ)p = α(t, p)τ and (Φ∗hτ)p = β(h, p)τ, where
α, β ∈ C∞(R×M) then the perturbed vector field X̃(h) satisfies L eX(h)τ = ρτ, where
ρ ∈ C∞(M) and θ̃∗t τ = α̃(t, p)τ, where α ∈ C∞(R×M).

(vi) if f : M → R is a smooth function such that f∗X = 0 and f ◦ Φh = f. Then the
perturbed vector field X̃(h) satisfies f∗X̃(h) = 0 and f ◦ θ̃t = f.

Proof. (i)–(v) follow from corollary 5.6 and Theorem 5.1. To show (vi), note that

S = {ϕt : f ◦ ϕt = f}

is obviously a semigroup and it is easily seen that

TidS = {X ∈ X(M) : f∗X = 0}

and the latter is a vector space. Hence, appealing to Theorem 5.1 yields our assertion.

6 Smooth Homomorphisms and Their Anti Fixed Points
In the previous section we considered subsets of Diff(M) that are semigroups. It turns out
that there are interesting examples that do not fit into the previous framework. One of these
examples are anti-fixed points of smooth homomorphisms and this is the theme in this section.
By a smooth homomorphism we mean a C1 mapping σ : Diffs+k(M) → Diffs(M), (recall
(4.8) for the definition of Diffs(M)) where s > 1

2
dim(M)+1 and k ≥ 0, such that σ(Ψ◦Φ) =

σ(Ψ) ◦ σ(Φ). An anti-fixed point of σ is an element Φ ∈ Diff(M) such that σ(Φ) = Φ−1.
Recall also Xs+k

H (M) from Theorem 4.6.
An example of such a smooth homomorphism is the following. Let ρ : M → M be a

diffeomorphism and denote the mapping

Ψ 7→ ρ ◦Ψ ◦ ρ−1 (6.1)

by σ. Note that this is a homomorphism on Diff(M), since σ(Ψ ◦ Φ) = σ(Ψ) ◦ σ(Φ). Also,
by Theorem 4.9, σ is Ck as a map

σ : Diffs+k(M) → Diffs(M).

Theorem 6.1. Let M be a compact manifold, s > 1
2
dim(M) + 1 and k ≥ 0. Let X ∈ X(M)

with corresponding flow map θt and let Φh be an integrator for X. Let σ : Diffs+k(M) →
Diffs(M) be a C1 group homomorphism and define

S = {ϕ ∈ Diffs+k(M) : σ(ϕ) = ι(ϕ−1)} and A = {X ∈ Xs+k
H (M) : σ∗X = −ι∗X},

where ι : Diffs+k(M) → Diffs(M) is the inclusion map. Suppose that θt ∈ S. If Φh ∈ S then
the perturbed vector field X̃(h) ∈ A and θ̃t ∈ S, where θ̃t is the flow map of X̃(h).

Proof. The proof is similar to the proof of Theorem 5.1. Let

S̃ = {Φh ∈ S : Φh is an integrator}, Ã = A ∩ X(M).

We will first show that Ã = TidS̃. To see that TidS̃ ⊂ Ã, let Ψh ∈ S̃ be an integrator. To get
the desired inclusion we have to show that

σ∗(
d

dh

∣∣∣
h=0

Ψh) = − d

dh

∣∣∣
h=0

Ψh, (6.2)
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where d
dh

∣∣
h=0

Ψh is well defined because of Corollary 4.8.
To see this, for any chart (U,ϕ) let Ψ̃h = ϕ ◦ Ψh ◦ ϕ−1. Let Y = d

dh

∣∣
h=0

Ψh and Ỹ be
the vector field induced by ϕ and Y . By Taylor’s Theorem and a little manipulation we have
Ψ̃−1

h (y) = y−hỸ (y)+O(h2),where y ∈ ϕ(U), and thus, by Corollary 4.8, d
dh

∣∣
h=0

Ψ−1
h = −Y.

Hence, we have

σ∗Y =
d

dh

∣∣∣
h=0

σ(Ψh) =
d

dh

∣∣∣
h=0

Ψ−1
h = −Y,

and this yields (6.2). To get the inclusion TidS̃ ⊃ Ã we must show that for Y ∈ Ã the
corresponding flow map satisfies σ(θY,t) = θ−1

Y,t To see that, note that by Corollary 4.8 t 7→
θY,t ∈ Diffs+k(M) is smooth so t 7→ σ(θY,t) ∈ Diffs(M) is smooth and

d

dt

∣∣∣
t=0
σ(θY,t) = σ∗

d

dt

∣∣∣
t=0
θY,t = σ∗Y = −Y.

Thus, σ(θY,t) is the flowmap of −Y and hence σ(θY,t) = θ−Y,t = θ−1
Y,t.

We can now proceed as in the proof of Theorem 5.1. The Theorem will follow if we
can show that X̃(h) ∈ A. The proof is by induction. Now for sufficiently small h > 0 let
X̃i(h) = X1 + hX1 + . . . + hi−1Xi where Xj is constructed as in the proof of Theorem 3.1.
Suppose X̃j ∈ Ã for all j ≤ i for some j. We will show that Xi+1 ∈ Ã, thus we need to show
that σ∗(Xi+1) = −Xi+1, which we will do.

Let θi be the flow map of X̃i(h). Let θ̂i,t = θi,t1/(1+i) and Φ̂t = Φt1/(1+i) . We will need the
following fact

Xi+1 =
d

dt

∣∣∣
t=0
θ̂−1

i,t ◦ Φ̂t and −Xi+1 =
d

dt

∣∣∣
t=0
θ̂i,t ◦ Φ̂−1

t . (6.3)

Suppose for a moment that (6.3) is true. Then

σ∗(Xi+1) = σ∗(
d

dt

∣∣∣
t=0
θ̂−1

i,t ◦ Φ̂t)

=
d

dt

∣∣∣
t=0
σ(θ̂−1

i,t ◦ Φ̂t)

=
d

dt

∣∣∣
t=0
σ(θ̂−1

i,t ) ◦ σ(Φ̂t)

=
d

dt

∣∣∣
t=0
θ̂i,t ◦ Φ̂−1

t = −Xi+1,

where the second to last equality follows by the induction hypothesis on Xi and the proved
fact that Ã = TidS̃. Thus, to conclude the argument we only have to show (6.3).

It suffices to show (6.3) in local coordinates. Let (U,ϕ) be a chart on M, and let Φ̃h =

ϕ ◦ Φh ◦ ϕ−1 and θ̃i,h = ϕ ◦ θi,h ◦ ϕ−1. Let X̂i+1 be the vector field on ϕ(U) induced by Xi+1

and ϕ. By the construction of X̃i(h) it follows that for y ∈ ϕ(U) we have

Φ̃h(y) = θ̃i,h(y)+h
i+1X̂i+1(y)+O(hi+2) and Φ̃−1

h (y) = θ̃−1
i,h (y)−hi+1X̂i+1(y)+O(hi+2).

So, by arguing as in the proof of Theorem 5.1, we get

θ̃−1
i,h ◦ Φ̃h(y) = y + hi+1X̂i+1(y) +O(hi+2)

θ̃i,h ◦ Φ̃−1
h (y) = y − hi+1X̂i+1(y) +O(hi+2).
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Let t = hi+1. Then

X̃i+1 = lim
t→0

θ̃−1
i,t(1/1+i) ◦ Φ̃t(1/1+i) − id

t
=

d

dt

∣∣∣
t=0
θ̃−1

i,t(1/1+i) ◦ Φ̃t(1/1+i) .

And similarly we get −X̃i+1 = d
dt

∣∣∣
t=0
θ̃i,t(1/1+i) ◦ Φ̃−1

t(1/1+i) , proving (6.3). The fact that X̃1 =

X ∈ A completes the induction.

Corollary 6.2. Let M be a compact manifold. Let X ∈ X(M) and let Φt be a numerical
integrator for X . Suppose that σ is defined as in (6.1) and that σ(θX,h) = θ−1

X,h and σ(Φh) =

Φ−1
h then the perturbed vector field X̃(h) of Φh satisfies σ∗X̃(h) = −X̃(h) and σ(θ̃X,t) = θ̃−1

X,t,

where θ̃ is the flow of X̃(h).

Proof. Follows from Theorems 4.9 and 6.1.
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