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including the augmented Lagrangian method. Direct methods that make linear
approximations to constraints became more popular in the late 1970s, especially
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linear approximations are satisfied only if the changes to the variables are so large
that the approximations become unsuitable, which stimulated the development
of trust region techniques that make partial corrections to the constraints. That
work is also introduced, noting that quadratic models of the objective or Lagrange
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variables.

Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA,
England.

January, 2008.

1Presented at the symposium on the Birth of Numerical Analysis, Leuven (October, 2007).



1. Earlier algorithms

The year 1959 is stated in the title of this paper, because Davidon (1959) published
then the report that describes his variable metric method for the unconstrained
minimization of a general differentiable function, F (x), x ∈Rn, say. That work
provides many of the ideas and techniques that are fundamental to later develop-
ments, especially the construction and accumulation of useful second derivative
information from changes in first derivatives that become available automatically
as the calculation proceeds. That information is held in a positive definite ma-
trix, which can give a downhill search direction whenever the gradient ∇F (x) is
nonzero. Thus an initial vector of variables that is close to the solution is not re-
quired, and usually the rate of convergence of the iterations of the variable metric
method is superlinear. It is a fortunate coincidence that I started my research on
numerical analysis in 1959. Therefore, beginning in Section 2, a personal view of
major advances in nonlinear optimization during my career is presented.

First we recall some classical foundations of optimization, beginning with New-
ton’s method for solving the nonlinear system of equations f(x)=0, where f is a
continuously differentiable function from Rn to Rn. For any xk ∈Rn, let J(xk)
be the Jacobian matrix that has the elements

[J(xk)]ij = dfi(xk) / dxj, 1 ≤ i, j ≤ n. (1.1)

Then the first order Taylor series provides the approximation

f(xk+ dk) ≈ f(xk) + J(xk) dk, dk∈Rn. (1.2)

Newton’s method is based on the remark that, if dk is defined by equating the
right hand side of this expression to zero, then xk+dk may be a good estimate of
a vector that satisfies f(xk+dk)=0. Indeed, given a starting vector x1∈Rn, the
formula

xk+1 = xk − J(xk)
−1 f(xk), k=1, 2, 3, . . . , (1.3)

is applied, assuming every J(xk) is nonsingular. It is well known that, if x∗ satisfies
f(x∗) = 0 and if J(x∗) is nonsingular, then xk converges at a superlinear rate to
x∗ as k→∞, provided that x1 is sufficiently close to x∗.

It happens often in practice, however, that such a starting point x1 is not
available. Then it is highly useful to employ dk = −J(xk)

−1f(xk) as a search
direction, letting xk+1 be the vector

xk+1 = xk + αk dk (1.4)

for some choice of αk > 0. A usual way of helping convergence is to seek a value
of αk that provides the reduction ‖f(xk+1)‖ < ‖f(xk)‖ in the Euclidean norm
of f . This strict reduction can be achieved whenever J(xk) is nonsingular and
‖f(xk)‖ is nonzero. One way of establishing this property begins with the remark
that the first derivatives at α = 0 of the functions ‖f(xk +αdk)‖2, α ∈ R, and
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φ(α)=‖f(xk)+αJ(xk) dk‖2, α∈R, are the same due to the use of the first order
Taylor series. Moreover, φ(α), α∈R, is a nonnegative quadratic that takes the
values φ(0)=‖f(xk)‖2 and φ(1)=0. Thus we deduce the required condition

[ d

dα
‖f(xk + αdk)‖2

]
α=0

= φ ′(0) = −2 ‖f(xk)‖2 < 0. (1.5)

Probably this enhancement of Newton’s method is also classical. It is easy to
show that the line searches may fail to provide ‖f(xk)‖→0 as k→∞, by picking
a system of equations that does not have a solution.

Let every αk in the method of the last paragraph be the value of α that
minimizes ‖f(xk +αdk)‖2, α ≥ 0. It is possible for each iteration to be well-
defined, and for xk, k=1, 2, 3, . . ., to converge to a limit x∗ where the gradient of
the function F (x) = ‖f(x)‖2, x∈Rn, is nonzero, but of course J(x∗) is singular
(Powell, 1970). Then the search direction dk tends to be orthogonal to ∇F (xk)
as k→∞, which is unwelcome when seeking the least value of a differentiable
function F .

Such orthogonality is avoided as much as possible in the steepest descent
method for minimizing F (x), x ∈ Rn, where F is now any continuously differ-
entiable function from Rn to R. The k-th iteration sets dk =−∇F (xk), where x1

is given and where xk, k≥ 2, is provided by the previous iteration. Termination
occurs if ‖dk‖ is zero or acceptably small, but otherwise a positive step-length αk

is sought, in order to apply formula (1.4). Typically, values of αk that are too
long or too short are avoided by imposing the conditions

F (xk+ αk dk) ≤ F (xk) + c1 αk dT
k ∇F (xk)

dT
k ∇F (xk+ αk dk) ≥ c2 dT

k ∇F (xk)

 , (1.6)

where c1 and c2 are prescribed constants that satisfy 0<c1 < 0.5 and c1 <c2 < 1.
Termination occurs too if, in the search for αk, it is found that F is not bounded
below. This method has a very attractive convergence property, namely that, if
the number of iterations is infinite and if the points xk remain in a bounded region
of Rn, then the sequence of gradients ∇F (xk) tends to zero as k→∞.

Often in practice, however, the steepest descent method is intolerably slow.
For example, we let m and M be positive constants and we apply the method to
the quadratic function

F (x) = mx2
1 + Mx2

2, x∈R2, (1.7)

starting at the point x1 =(M, m)T . Further, we satisfy the line search conditions
(1.6) by letting αk provide the least value of F (xk+1) = F (xk +αk dk) on every
iteration. A simple calculation shows that xk+1 has the components Mθk and
m (−θ)k, k=1, 2, 3, . . ., where θ=(M−m)/(M+m). Thus, if ∇2F (x∗) is very ill-
conditioned, then a large number of iterations may be required to obtain a vector
of variables that is close enough to the solution x∗ = 0. This slow convergence
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occurs for most starting points x1, but our choice of x1 simplifies the analytic
derivation of xk+1.

The classical way of achieving a superlinear rate of convergence when mini-
mizing a twice continuously differentiable function F (x), x∈Rn, is to apply the
Newton–Raphson algorithm. In its basic form it is identical to Newton’s method
for calculating x∈Rn that solves the nonlinear system∇F (x)=0. Putting f =∇F
in the definition (1.1) gives a symmetric Jacobian matrix with the elements

[G(xk)]ij = d 2F (xk) / dxi dxj, 1 ≤ i, j ≤ n, (1.8)

so equation (1.3) takes the form

xk+1 = xk −G(xk)
−1∇F (xk), k=1, 2, 3, . . . . (1.9)

The line search version (1.4), with dk =−G(xk)
−1∇F (xk), can help convergence

sometimes when x1 is not sufficiently close to the optimal vector of variables
x∗. Then, as in the given extension to Newton’s method, one may seek a step-
length αk that provides the reduction ‖∇F (xk+1)‖< ‖∇F (xk)‖. This approach
is objectionable, however, because trying to solve ∇F (x)= 0 can be regarded as
seeking a stationary point of F without paying any attention to minimization.
Therefore it may be more suitable to let αk be an estimate of the value of α that
minimizes F (xk +αdk), α ∈ R, but this minimum may occur at α = 0, even if
∇F (xk) is nonzero.

The remarks of this section have drawn attention to some major disadvantages
of classical methods for optimization. Thus we may be able to appreciate better
the gains that have been achieved since 1959.

2. Two major advances in unconstrained optimization

I was fortunate in 1962 to obtain a copy of the report of Davidon (1959), after
finding a reference to it in a monograph. The report describes an algorithm for
unconstrained minimization, which I programmed for a Ferranti Mercury com-
puter, in order to try some numerical experiments. The results were staggering,
especially the minimization of a periodic function F (x), x ∈ Rn, with 100 vari-
ables, although problems with n = 20 were considered large at that time. The
k-th iteration requires a vector of variables xk, an n×n positive definite symmet-
ric matrix Hk, and the gradient ∇F (xk), which is available from the (k−1)-th
iteration for k≥ 2. The sequence of iterations is terminated if ‖∇F (xk)‖ is suf-
ficiently small, but otherwise formula (1.4) gives the next vector of variables, dk

being the search direction dk = −Hk∇F (xk), which has the downhill property
dT

k ∇F (xk)<0, and αk being a step-length that satisfies the conditions (1.6), usu-
ally with |dT

k ∇F (xk +αk dk)| much less than |dT
k ∇F (xk)|. Finally, the iteration

replaces Hk by the matrix

Hk+1 = Hk −
Hk γ

k
γ T

k
Hk

γ T
k

Hk γ
k

+
δk δ T

k

δ T
k γ

k

, (2.1)
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where δk =xk+1−xk, where γ
k
=∇F (xk+1)−∇F (xk), and where the superscript

“T” distinguishes a row vector from a column vector. The positive definiteness
of Hk+1 is inherited from Hk, because the second of the conditions (1.6) implies
δ T

k γ
k
>0.

Davidon (1959) explains that, if the objective function F is strictly convex and
quadratic, and if each αk is the value of α that minimizes F (xk+αdk), α>0, which
is the condition dT

k ∇F (xk+αkdk)=0, then, in exact arithmetic, the least value of
F is calculated after at most n iterations. His arguments include some variable
metric points of view, familiar to experts in the theory of relativity, but many
researchers including myself do not understand them properly. Therefore other
proofs of quadratic termination have been constructed, which depend strongly on
the fact that the algorithm with exact line searches gives the conjugacy property
dT

k ∇2Fdj =0, j 6=k, in the quadratic case. Thus the orthogonality conditions

dT
j ∇F (xk+1) = 0, j =1, 2, . . . , k, (2.2)

are achieved. There are no restrictions on the choices of x1 and the symmetric
matrix H1 for the first iteration, except that H1 must be positive definite.

The brilliant advantage of this algorithm over classical methods is that it can
be applied easily to minimize a general differentiable function F , even if a good
initial vector of variables x1 is not available, and it gives fast convergence when F
is quadratic. Not having to calculate second derivatives is welcome, and it brings
two more benefits over the Newton–Raphson procedure. Firstly there is no need
to devise a remedy for loss of positive definiteness in ∇2F (x), and secondly the
amount of routine work of each iteration is only O(n2) instead of O(n3). Another
attractive property is invariance under linear transformations of the variables.
Specifically, let xk, k=1, 2, 3, . . ., and zk, k=1, 2, 3, . . ., be the vectors of variables
that are generated when the algorithm is applied to the functions F (x), x∈Rn,
and F (S−1z), z∈Rn, respectively, where S is any constant real n×n nonsingular
matrix. Then, if the initial vector of variables in the second case is z1 =Sx1, if the
initial positive definite matrix is changed from H1 to SH1S

T for the second case,
and if there are no changes to the procedure for choosing each step-length αk, then
the second sequence of variables is zk =Sxk, k =1, 2, 3, . . . . It follows that good
efficiency does not require the variables to be scaled so that their magnitudes
are similar. Furthermore, one can simplify the theoretical analysis when F is
quadratic by assuming without loss of generality that ∇2F is the unit matrix.

The investigations of Roger Fletcher into Davidon’s recent algorithm were
similar to my own, so we reported them in a joint paper (Fletcher and Powell,
1963), and the original algorithm has become known as the DFP method. One
can view Bk+1 =H−1

k+1 as an approximation to ∇2F , partly because equation (2.1)
gives Hk+1γk

= δk, which implies γ
k
=Bk+1δk, while γ

k
=∇2Fδk holds when F is

quadratic. The matrix Bk+1 = H−1
k+1 can be calculated directly from Bk = H−1

k ,
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equation (2.1) being equivalent to the formula

Bk+1 =
(
I −

γ
k
δ T

k

δ T
k γ

k

)
Bk

(
I −

δk γ T
k

δ T
k γ

k

)
+

γ
k
γ T

k

δ T
k γ

k

. (2.3)

It is sometimes helpful that working with Bk provides the quadratic model

F (xk+ d) ≈ F (xk) + dT∇F (xk) + 1
2
dT Bk d, d∈Rn. (2.4)

Expression (2.3) allows the Cholesky factorization of Bk+1 to be derived from
the Cholesky factorization of Bk in O(n2) operations. Thus positive definiteness
is preserved in the presence of computer rounding errors, and it is inexpensive
to obtain the usual search direction dk = −Hk∇F (xk) from the linear system
Bkdk =−∇F (xk). A comparison of equations (2.1) and (2.3) suggests the formula

Hk+1 =
(
I −

δk γ T
k

δ T
k γ

k

)
Hk

(
I −

γ
k
δ T

k

δ T
k γ

k

)
+

δk δ T
k

δ T
k γ

k

. (2.5)

If it replaces equation (2.1) in the DFP method, then we have the well-known
BFGS method, which is usually faster than the DFP method in practice.

The other major advance in unconstrained optimization that we consider in
this section is the conjugate gradient method of Fletcher and Reeves (1964). It
can be applied to general differentiable functions F (x), x∈Rn, it is designed to
be efficient when F is quadratic, and it has the strong advantage over the variable
metric algorithm of not requiring any n×n matrices. It can be regarded as an
extension of the steepest descent method, retaining d1 =−∇F (x1), but the search
directions of later iterations have the form

dk = −∇F (xk) + βk dk−1, k≥2, (2.6)

where βk is allowed to be nonzero. Then a line search picks the step-length that
provides the new vector of variables (1.4), which completes the description of the
k-th iteration except for the choices of αk and βk.

These choices are made in a way that achieves the orthogonality conditions
(2.2) for each iteration number k when F is a strictly convex quadratic function,
assuming exact arithmetic and termination if ‖∇F (xk)‖= 0 occurs. We satisfy
dT

k ∇F (xk+1) = 0 by letting αk be the α that minimizes F (xk +αdk), α > 0,
while the (k−1)-th of the conditions (2.2) defines βk. Specifically, because the line
search of the previous iteration gives dT

k−1∇F (xk)=0, we require dT
k−1{∇F (xk+1)−

∇F (xk)}=0, which is equivalent to {∇F (xk)−∇F (xk−1)}T dk =0 in the quadratic
case. It follows from equation (2.6) that βk should take the value

βk = {∇F (xk)−∇F (xk−1)}T ∇F (xk)
/
{∇F (xk)−∇F (xk−1}T dk−1

= {∇F (xk)−∇F (xk−1)}T ∇F (xk)
/
‖∇F (xk−1)‖2, (2.7)
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the denominator in the second line being derived from exact line searches and
the form of dk−1. The description of the algorithm is now complete when F is
quadratic, and we note that ∇2F is not required. Further analysis in this case can
establish the first k−2 of the conditions (2.2). It exposes not only the conjugacy
property dT

k ∇2Fdj =0, j 6= k, but also that the gradients ∇F (xk), k =1, 2, 3, . . .,
are mutually orthogonal.

The second line of expression (2.7) states the formula for βk that is preferred by
Polak and Ribière (1969) for general F , but Fletcher and Reeves (1964) propose
βk =‖∇F (xk)‖2/‖∇F (xk−1)‖2. These two choices are equivalent in the theory of
the quadratic case, due to the mutual orthogonality of gradients that has been
mentioned, but they are quite different for general F , especially if the changes to
∇F (xk) become relatively small as k is increased. The alternative of Polak and
Ribière seems to be more efficient in practice, and it is even better to increase
their βk to zero if it becomes negative. Another reason for modifying βk (or αk−1)
is that, if βk is nonzero, then the conditions (1.6) of the previous iteration may
fail to supply the descent property dT

k ∇F (xk)<0.
We see that the conjugate gradient technique is nearly as easy to apply as

steepest descents, and usually it provides huge gains in efficiency. The DFP and
BFGS algorithms with H1 = I (the unit matrix) are equivalent to the conjugate
gradient method when F is quadratic and all line searches are exact, but the use
of the matrices Hk, k = 1, 2, 3, . . ., brings a strong advantage for general F . In
order to explain it, we assume that the sequence xk, k = 1, 2, 3, . . ., converges to
x∗, say, and that F becomes exactly quadratic only in a neighbourhood of x∗. The
excellent convergence properties of variable metric algorithms are enjoyed auto-
matically when the points xk enter the neighbourhood, without any restrictions
on the current xk and the positive definite matrix Hk. On the other hand, the
corresponding convergence properties of the conjugate gradient method require a
special choice of the initial search direction, d1 =−∇F (x1) being suitable, except
that the implications of this choice would be damaged by the generality of F on
the early iterations. The perfect remedy would set βk =0 as soon as the variables
xk stay within the neighbourhood, and perhaps on some earlier iterations too.
In practice, βk can be set to zero when, after the most recent steepest descent
iteration, a substantial loss of orthogonality in the sequence of gradients ∇F (xk)
is observed.

3. Unconstrained objective functions for constrained problems

The methods of Section 2 provide huge improvements over classical algorithms for
unconstrained optimization. Therefore it was attractive in the 1960s to include
constraints on the variables by modifying the objective functions of unconstrained
calculations. In particular, the techniques in the book of Fiacco and McCormick
(1968) were very popular. Some of them are addressed below.

Let the least value of F (x), x ∈ Rn, be required, subject to the inequality
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constraints
ci(x) ≥ 0, i=1, 2, . . . ,m. (3.1)

Then a typical objective function of a barrier method has the form

Φ(x, µ) = F (x) + µ
∑m

i=1 {ci(x)}−1

or Φ(x, µ) = F (x)− µ
∑m

i=1 log{ci(x)}

 , x∈Rn, (3.2)

if x satisfies all the constraints (3.1) as strict inequalities, but otherwise Φ(x, µ)
is defined to be +∞. Here µ is a positive parameter that remains fixed during
the unconstrained minimization of Φ(x, µ), x∈Rn. The starting point x1 of this
calculation has to satisfy ci(x1)>0, i=1, 2, . . . ,m, because Φ(x1, µ) is required to
be finite. Let x[µ] be the vector of variables that is produced by this calculation.

The constraints (3.1) are also satisfied as strict inequalities at x[µ], because
the unconstrained algorithm provides Φ(x[µ], µ)≤Φ(x1, µ) automatically, but it is
usual for the solution, x∗ say, of the original problem to be on the boundary of the
feasible region. In this case, the theory of barrier methods requires F and ci, i=
1, 2, . . . ,m, to be continuous functions, and it requires every neighbourhood of x∗

to include a strictly interior point of the feasible region. Then it is straightforward
to establish F (x[µ]) < F (x∗)+ε for sufficiently small µ, where ε is any positive
constant, assuming that Φ(x[µ], µ) is sufficiently close to the least value of Φ(x, µ),
x∈Rn.

Equality constraints, however, cannot be included in barrier function methods,
because they cannot be satisfied as strict inequalities. Therefore, when minimizing
F (x), x∈Rn, subject to the conditions

ci(x) = 0, i=1, 2, . . . ,m, (3.3)

it was usual to apply an algorithm for unconstrained minimization to the function

Φ(x, µ) = F (x) + µ−1 ∑m
i=1 {ci(x)}2

or Φ(x, µ) = F (x) + µ−1 ∑m
i=1 |ci(x)|

 , x∈Rn, (3.4)

where µ is still a positive parameter, fixed during each unconstrained calculation,
that has to become sufficiently small. A new difficulty is shown by the minimiza-
tion of F (x) = x3, x∈R, subject to x = 1, namely that, for any fixed µ > 0, the
functions (3.4) are not bounded below. On the other hand, if x[µ] is the minimizer
of Φ(x, µ), x∈Rn, if the points x[µ], µ>0, all lie in a compact region of Rn, and
if the objective and constraint functions are continuous, then all limit points of
the sequence x[µ] as µ→ 0 are solutions of the original problem. The two main
ingredients in a proof of this assertion are that the constraints are satisfied at
the limit points, and that, for every positive µ, F (x[µ]) is a lower bound on the
required value of F .

Penalty function methods are also useful for inequality constraints. If ci(x)=0
were replaced by ci(x)≥0, then, in expression (3.4), it would be suitable to replace
the terms {ci(x)}2 and |ci(x)| by {min[0, ci(x)]}2 and max[0,−ci(x)], respectively.
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The dependence of the error x[µ]−x∗ on µ, for both the inequality and equality
constrained problems that have been mentioned, can be investigated by comparing
the condition for an unconstrained minimum of Φ(x, µ), x ∈Rn, with the KKT
conditions for a solution of the original problem. We consider this approach
briefly when the constraints are the equations (3.3), when Φ is the first of the
functions (3.4), when the objective and constraint functions have continuous first
derivatives, when ∇F (x∗) is nonzero, and when the constraint gradients ∇ci(x

∗),
i=1, 2, . . . ,m, are linearly independent. Then ∇Φ(x[µ], µ)=0 is the equation

∇F (x[µ]) + 2µ−1 ∑m
i=1 ci(x[µ])∇ci(x[µ]) = 0, (3.5)

while the first order KKT conditions include the existence of unique Lagrange
multipliers λ∗i ∈R, i=1, 2, . . . ,m, not all zero, such that ∇F (x∗) can be expressed
in the form

∇F (x∗) =
∑m

i=1 λ∗i ∇ci(x
∗). (3.6)

Therefore, if x[µ] tends to x∗ as expected when µ→ 0, we have the estimates
ci(x[µ])≈−1

2
µλ∗i , i=1, 2, . . . ,m. It follows that the distance from x[µ] to any point

inRn that satisfies the constraints is at least of magnitude µ. Typically, ‖x[µ]−x∗‖
is also of this magnitude, but there are exceptions, such as the minimization of
x4

1+x1x2+x2, x∈R2, subject to x2 =0.
The efficiency of these barrier and penalty function methods depends strongly

on suitable stopping conditions for the unconstrained calculations, on the size of
the reductions in µ, and on obtaining a good starting vector and second derivative
estimates for each new unconstrained problem from the sequence of unconstrained
problems that have been solved already. Much attention has been given to these
questions recently, because the path x[µ], µ>0, in Rn is a part of the central path
of a primal-dual algorithm (see Nocedal and Wright, 1999, for instance). In the
early 1970s, however, barrier and penalty function methods became unpopular,
due to the development of new techniques for constraints that avoid the difficulties
that arise when µ is tiny. In particular, the functions Φ(x, µ), x∈Rn, tend to have
some huge first derivatives, so a descent method for unconstrained minimization
can reach the bottom of a cliff easily. Then the remainder of the route to x[µ] has
to stay at the bottom of the cliffs that are caused by the barrier or penalty terms,
which is a daunting situation, especially if the constraints are nonlinear.

The augmented Lagrangian method, proposed by Hestenes (1969) and Powell
(1969) independently, is a highly useful extension to the minimization of the first
of the functions (3.4), when seeking the least value of F (x), x ∈Rn, subject to
the equality constraints (3.3). The new penalty function has the form

Λ(x, λ, µ) = F (x) − ∑m
i=1 λi ci(x) + µ−1 ∑m

i=1 {ci(x)}2, x∈Rn, (3.7)

its unconstrained minimum being calculated approximately for each fixed choice of
the parameters λ∈Rm and µ>0. Let this calculation give the vector of variables
x[λ, µ]. The main feature of the augmented Lagrangian method is that it tries to
satisfy the constraints ci(x[λ, µ])=0, i=1, 2, . . . ,m, by adjusting λ∈Rm without
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further reductions in µ when µ becomes sufficiently small. It follows from equation
(3.6) and from the assumed linear independence of the constraint gradients that, if
µ>0, then the solution x∗ of the original problem is at the unconstrained minimum
of the function (3.7) only if λ has the components λi =λ∗i , i=1, 2, . . . ,m.

In the awkward problem that has been mentioned of minimizing x4
1+x1x2+x2,

x∈R2, subject to x2 =0, we find λ∗1 =1 and that expression (3.7) is the function

Λ(x, λ∗, µ) = x4
1 + x1 x2 + µ−1 x2

2, x∈R2, (3.8)

which is stationary at the required solution x∗=0. Unfortunately this stationary
point is never a minimum when µ is fixed and positive. Usually, however, the given
problem satisfies the second order condition dT{∇2F (x∗)−∑m

i=1 λ∗i∇2ci(x
∗)}d>0,

where d is any nonzero vector that is orthogonal to ∇ci(x
∗), i = 1, 2, . . . ,m. In

this case, the function (3.7) with λ = λ∗ is not only stationary at x = x∗, but
also the second derivative matrix ∇2Λ(x∗, λ∗, µ) is positive definite for sufficiently
small µ. It follows that x∗ can be calculated by the unconstrained minimization
of Λ(x, λ∗, µ), x∈Rn.

The initial choice of µ and any later reductions should provide suitable local
minima in the unconstrained calculations and should help the achievement of
λ→λ∗. Usually the components of λ are set to zero initially. A convenient way of
adjusting λ is based on the remark that, if x is a stationary point of the function
(3.7), then it satisfies the equation

∇Λ(x, λ, µ) = ∇F (x) − ∑m
i=1 {λi − 2µ−1 ci(x)}∇ci(x) = 0. (3.9)

Specifically, a comparison of equations (3.6) and (3.9) suggests the formula

λi ← λi − 2µ−1 ci(x[λ, µ]), i=1, 2, . . . ,m, (3.10)

where “←” denotes “is replaced by ”. The success of this technique requires µ to
be sufficiently small. Other techniques for updating λ have been derived from the
remark that λ∗ should be the value of λ that maximizes Λ(x[λ, µ], λ, µ), λ∈Rm.
Indeed, the calculation of x[λ, µ] should provide the bound

Λ(x[λ, µ], λ, µ) ≤ Λ(x∗, λ, µ) = F (x∗) = Λ(x∗, λ∗, µ) (3.11)

for every choice of λ, the last two equations being elementary consequences of the
constraints ci(x

∗)=0, i=1, 2, . . . ,m.
The augmented Lagrangian method became even more useful when Rockafellar

(1973) proposed and analysed a version of expression (3.7) that is suitable for
inequality constraints. Specifically, when the original problem is the minimization
of F (x), x ∈ Rn, subject to the conditions (3.1), then x[λ, µ] is calculated by
applying an algorithm for unconstrained minimization to the function

Λ(x, λ, µ) = F (x) + µ−1 ∑m
i=1 {min[0, ci(x)− 1

2
µλi]}2, x∈Rn, (3.12)
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for a sequence of fixed values of λ ∈ Rm and µ ∈ R. Again the constraints are
satisfied by adjusting only λ if possible for sufficiently small µ. We see that, if x
is a stationary point of the new Λ(x, λ, µ), x∈Rn, then it satisfies the equation

∇F (x) − ∑m
i=1 max[0, λi − 2µ−1ci(x)]∇ci(x) = 0. (3.13)

Therefore we modify formula (3.10) for adjusting λ by letting max[0, λi−2µ−1ci(x)]
at x = x[λ, µ] be the new right hand side. Thus the components of λ are non-
negative, as required in the KKT condition (3.6) of the original problem when
the constraints are inequalities. Further, λ∗i should be zero in equation (3.6) for
every i that satisfies ci(x

∗)>0, and, if µ is sufficiently small, the modification of
formula (3.10) gives λi this property automatically. A mixture of equality and
inequality constraints can be treated by taking their contributions to Λ(x, λ, µ)
from expressions (3.7) and (3.12), respectively.

4. Sequential quadratic programming

Often the methods of the last section are too elaborate and too sophisticated.
An extreme example is the minimization of F (x), x∈Rn, subject to xn =0. The
constraint allows the number of variables to be decreased by one, and then a single
unconstrained calculation with n−1 variables can be solved, instead of a sequence of
unconstrained calculations with n variables. The sequence of subproblems can also
be avoided when the constraints are nonlinear by making linear approximations
to the constraints. In particular, if the least value of F (x) is required subject to
the equality constraints (3.3), and if the objective and constraint functions have
continuous second derivatives, then one can apply Newton’s method for solving
nonlinear equations to the system that is given by the first order KKT conditions
at the solution. That approach has several disadvantages. Many of them were
removed by the development of sequential quadratic programming (SQP), which
is addressed below, because SQP became a popular successor to the augmented
Lagrangian method for constrained calculations in the late 1970s.

In the application of Newton’s method that has just been mentioned, the
unknowns are not only the variables xi, i = 1, 2, . . . , n, but also the Lagrange
multipliers of condition (3.6). Specifically, we seek vectors x ∈ Rn and λ ∈ Rm

that satisfy the square system of equations

∇F (x)−∑m
i=1 λi∇ci(x) = 0 and

−ci(x) = 0, i=1, 2, . . . ,m,

}
(4.1)

the signs of the equality constraints (3.3) being reversed in order that the Jacobian
matrix of Newton’s method is symmetric. Let f(x, λ), x ∈ Rn, λ ∈ Rm, be the
vector inRm+n whose components are the left hand sides of expression (4.1). As in
Section 1, the k-th iteration of Newton’s method without line searches calculates
xk+1 = xk +dk and λk+1 = λk +η

k
by equating to zero a first order Taylor series
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approximation to the function f(xk+d, λk+η), d∈Rn, η∈Rm. Specifically, the
analogue of equation (1.3) is that dk and η

k
are derived from the linear system W (xk, λk) −J(xk)

T

−J(xk) 0

  dk

η
k

 =

 −∇F (xk) + J(xk)
T λk

c(xk)

 , (4.2)

where W (x, λ) =∇2F (x)−∑m
i=1 λi∇2ci(x), where J(x) is now the m×n matrix

that has the elements

[J(x)]ij = dci(x)/dxj, 1≤ i≤m, 1≤j≤n, (4.3)

and where c(x) is the vector in Rm with the components ci(x), i=1, 2, . . . ,m.
This application of Newton’s method has the following three disadvantages.

The calculation breaks down if the partitioned matrix of the linear system (4.2)
becomes singular. No attempt is made to help convergence when good initial
values of the variables are not available. The minimization ingredient of the
original problem is absent from the formulation (4.1). On the other hand, the
method provides a highly useful answer to a very important question, which is
to identify the second derivatives that are usually sufficient for a fast rate of
convergence. We see that the k-th iteration in the previous paragraph requires
second derivatives of the objective and constraint functions only to assemble the
matrix W (xk, λk). Therefore, when second derivatives are estimated, one should
construct an approximation to the combination ∇2F (x)−∑m

i=1 λi∇2ci(x), which
is much more convenient than estimating all the matrices ∇2F (x) and ∇2ci(x),
i=1, 2, . . . ,m, separately.

We recall from Section 2 that variable metric algorithms for unconstrained
optimization bring huge advantages over the Newton–Raphson method by working
with positive definite approximations to ∇2F . Similar gains can be achieved in
constrained calculations over the Newton iteration above by making a positive
definite approximation to W (xk, λk) in the system (4.2). We let Bk be such an
approximation, and we consider the minimization of the strictly convex quadratic
function

Qk(xk+ d) = F (xk) + dT∇F (xk) + 1
2
dTBk d, d∈Rn, (4.4)

subject to the linear constraints

ci(xk) + dT∇ci(xk) = 0, i=1, 2, . . . ,m, (4.5)

still assuming that the constraint gradients are linearly independent. The vector
d=dk is the solution to this problem if and only if it satisfies the constraints (4.5)
and the gradient ∇Qk(xk +dk) = ∇F (xk)+Bkdk is in the linear space spanned
by ∇ci(xk), i = 1, 2, . . . ,m. In other words, dk has to satisfy the equations (4.2)
with W (xk, λk) replaced by Bk. Thus the calculation of dk by the Newton iter-
ation is equivalent to the solution of the strictly convex quadratic programming
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problem, which captures the minimization ingredient that has been mentioned. A
more important benefit of the alternative calculation of dk is that it has a natural
extension for inequality constraints, by continuing to let dk be the vector d that
minimizes the strictly convex quadratic function (4.4) subject to first order Tay-
lor series approximations to all the constraints. Specifically, for each constraint
index i, the original constraint ci(x) = 0 or ci(x) ≥ 0 contributes the condition
ci(xk)+dT∇ci(xk) = 0 or ci(xk)+dT∇ci(xk) ≥ 0, respectively, to the quadratic
programming problem, without any change to Qk(xk +d), d ∈ Rn, after Bk has
been chosen.

The DFP formula (2.3) (or the well-known BFGS formula) may be used to
define Bk+1 for the next iteration, where δk is the step xk+1−xk as before, but
the selection of γ

k
requires further consideration. The updating formula gives

Bk+1δk = γ
k
, so γ

k
must satisfy δT

kγk
> 0, in order that Bk+1 inherits positive

definiteness from Bk. On the other hand, because Bk+1 should be an estimate
of the combination ∇2F (xk+1)−

∑m
i=1 λi∇2ci(xk+1), as mentioned already, it it

suitable to let the difference

γ̂
k

= ∇F (xk+1)−∇F (xk)−
∑m

i=1 λi {∇ci(xk+1)−∇ci(xk)} (4.6)

be a provisional choice of γ
k
, where the multipliers λi, i = 1, 2, . . . ,m, can be

taken from the quadratic programming problem that defines dk, even if some of
the constraints are inequalities. It is possible, however, for the original problem to
be the minimization of F (x)=−1

2
‖x‖2, x∈Rn, subject to constraints that are all

linear. Then equation (4.6) gives γ̂
k
=−xk+1+xk =−δk, which implies δ T

k γ̂
k
< 0,

although we require δ T
k γ

k
> 0. Therefore the form γ

k
= θkγ̂k

+(1−θk)Bkδk is
proposed in Powell (1978) for the DFP or BFGS updating formula, where θk is
the largest number from [0, 1] that satisfies δ T

k γ
k
≥ 0.1 δ T

k Bkδk. A device of this
kind was necessary in order to provide software.

Another challenge for SQP software is forcing convergence from poor starting
points. A remedy in Section 1 is to seek xk+1 by a line search from xk along
the direction dk, but, if all the early iterations require tiny step-lengths, then the
progress towards constraint boundaries is very slow, even if the constraints are
linear. Therefore some implementations of the SQP method employ two kinds
of changes to the variables, namely horizontal and vertical steps, where horizon-
tal steps include line searches and try to reduce the objective function without
worsening constraint violations, and where the main purpose of vertical steps is
to correct the departures from feasibility (see Coleman and Conn, 1982, for in-
stance). Several techniques have also been proposed for deciding whether or not
to accept a trial step in a line search, the difficulty being that improvements in the
objective function and decreases in constraint violations may not occur together.
The usual compromise is to seek a reduction in the penalty function

Φ(x, µ) = F (x) + µ−1{∑
i∈E |ci(x)|+ ∑

i∈I max [0,−ci(x)] }, (4.7)

where E and I contain the indices of the equality and inequality constraints,
respectively, and where µ has to be selected automatically. Alternatively, instead
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of taking dubious decisions in the line searches, one can keep options open by
applying the filter method of Fletcher and Leyffer (2002). Many different versions
of the SQP method have been developed for constrained calculations when first
derivatives are available, and usually they are excellent at keeping down the total
number of function and gradient evaluations.

5. Trust region methods

We recall that, in line search methods for forcing convergence from general starting
points, the sequence of iterations gives the variables

xk+1 = xk + αk dk, k=1, 2, 3, . . . , (5.1)

where usually the search direction dk is derived from a simple model of the original
problem, and where the choice of the step-length αk should make xk+1 better
than xk according to the criteria of the original problem, the simplest example
being the condition F (xk+1) < F (xk) when the least value of F (x), x ∈ Rn, is
required. We expect the model of the k-th iteration to provide useful accuracy in
a neighbourhood of xk, but xk+dk may be far from that neighbourhood, so often
the step-lengths of line search methods are substantially less than one for many
consecutive iterations. Then it is reasonable to take the view that each new value
of ‖xk+1−xk‖ is not going to be much larger than the magnitudes of the changes to
the variables of recent iterations. Under this assumption, one may be able to make
much better use of the simple model. For example, moves to constraint boundaries
can be made more quickly in the situation that is mentioned in the last paragraph
of Section 4. Therefore a bound of the form ‖dk‖ ≤ ∆k is imposed by a trust
region method, the remaining freedom in dk being taken up by consideration of the
current simple model. The positive parameter ∆k is chosen automatically before
the start of the k-th iteration. Some details and advantages of this technique
are addressed below, because, since the 1970s, trust region methods have become
fundamental within many highly successful algorithms for optimization.

We begin with the unconstrained minimization of F (x), x ∈ Rn, when first
derivatives are available, and when the calculation of xk+1 from xk employs the
model

F (xk+ d) ≈ Qk(xk+ d) = F (xk) + dT∇F (xk) + 1
2
dTBk d, d∈Rn, (5.2)

as in expressions (2.4) and (4.4), but now there is no need for the symmetric
matrix Bk to be positive definite. We assume that termination occurs if ‖∇F (xk)‖
is sufficiently small. Otherwise, we require dk to be an estimate of the vector d
that minimizes Qk(xk+d), d∈Rn, subject to ‖d‖≤∆k. If dk is an exact solution
to this subproblem, then there exists λk≥0 such that the equation

(Bk+ λk I) dk = −∇F (xk) (5.3)

14



holds, and Bk +λkI is positive definite or semi-definite, where I is the identity
matrix. Thus reliable procedures for calculating dk with control of accuracy are
given by Moré and Sorensen (1983), but often they are too expensive when n is
large. Instead it is usual to apply the conjugate gradient minimization procedure
of Section 2 to the quadratic model (5.2), starting at d=0. It generates a piecewise
linear path in Rn, the difference between the end and the beginning of the `-th
line segment of the path being the change that is made to the vector of variables
d on the `-th iteration. The conjugate gradient iterations are terminated if the
path reaches the boundary of the region {d : ‖d‖ ≤∆k}, or if the reduction in
Q(xk+d) by an iteration is much less than the total reduction so far. Then dk is
chosen to be the final point of the path, except that some algorithms seek further
reductions in Qk(xk+d) in the case ‖dk‖=∆k (Conn, Gould and Toint, 2000).

After picking dk, the new function value F (xk+dk) is calculated. The ratio

ρk = {F (xk)− F (xk+ dk)} / {Qk(xk)−Qk(xk+ dk)} (5.4)

is important, because a value close to one suggests that the current model is good
for predicting the behaviour of F (xk+d), ‖d‖≤∆k. Therefore the value of ∆k+1

for the next iteration may be set to max[∆k, 2‖dk‖], ∆k or 1
2
‖dk‖ in the cases

ρk ≥ 0.8, 0.2≤ ρk < 0.8 or ρk < 0.2, respectively, for example. No other values of
F are calculated on the k-th iteration of most trust region methods, xk+1 being
either xk or xk+dk. It seems obvious to prefer xk+1 =xk+dk whenever the strict
reduction F (xk+dk)<F (xk) is achieved, which is the condition ρk >0. Many trust
region algorithms, however, set xk+1 to xk +dk only if ρk is sufficiently large. If
F (xk+dk)≥F (xk) occurs in a trust region method, then the conditions xk+1 =xk

and ‖dk+1‖ ≤∆k+1 < ‖dk‖ are satisfied. Hence, if the vector xk+1 +dk+1 of the
(k+1)-th iteration is regarded as the result of a step from xk, then the length
of the step is less than ‖dk‖ automatically. Thus trust region methods include a
main ingredient of line search methods. Attention is given later to the choice of
the new matrix Bk+1 at the end of the k-th iteration.

As in Section 4, a difficulty in constrained calculations is the need for a balance
between reducing F (x), x∈Rn, and correcting violations of the constraints. We
retain the compromise of the penalty function (4.7), and we estimate Φ(xk+d, µ),
d∈Rn, by the model

Ξk(xk+ d, µ) = F (xk) + dT∇F (xk) + 1
2
dTBk d + µ−1{∑

i∈E |ci(xk) + dT∇ci(xk)|

+
∑

i∈I max [0,−ci(xk)− dT∇ci(xk)] }, d∈Rn, (5.5)

which reduces to expression (5.2) if there are no constraints. It is usual to termi-
nate the sequence of iterations if the residuals of the first order KKT conditions
are sufficiently small at x = xk. Otherwise, dk and µ are chosen in a way that
satisfies ‖dk‖≤∆k and Ξk(xk+dk, µ)<Ξk(xk, µ). Let F (·) and Qk(·) be replaced
by Φ(·, µ) and Ξk(·, µ) throughout the remarks of the previous paragraph, the new
version of the definition (5.4) being the ratio

ρk = {Φ(xk, µ)− Φ(xk+ dk, µ)} / {Ξk(xk, µ)− Ξk(xk+ dk, µ)}. (5.6)
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The modified remarks give suitable techniques for choosing ∆k+1 and xk+1 in
calculations with constraints on the variables.

If the ∞-norm is used instead of the 2-norm in the bound ‖d‖≤∆k, then the
minimization of the function (5.5) for fixed µ subject to the bound is a quadratic
programming problem. Thus the dk of the previous paragraph can be calculated
(Fletcher, 1985), with occasional decreases in µ if necessary in order to give enough
weight to the constraints. Another way of generating dk begins by letting d̂k be an
estimate of the d that minimizes Γk(d), d∈Rn, subject to ‖d‖≤ 1

2
∆k, where Γk(d)

is the term inside the braces of expression (5.5). Then dk has to satisfy ‖dk‖≤∆k

and Γk(dk)≤Γk(d̂k), which leaves some freedom in dk. It is taken up by trying to
make Qk(xk+dk) substantially smaller than Qk(xk+d̂k), where Qk(xk+d) is still
the quadratic term (5.2). This technique has the property that dk is independent
of µ, which is adjusted separately in a way that controls the required reduction
Ξk(xk+dk, µ)<Ξk(xk, µ).

Several advantages are provided by the fact that, in trust region methods, the
second derivative matrix Bk of the model does not have to be positive definite. In
particular, if the sparsity structure of∇2F is known in unconstrained optimization,
then Bk+1 may be required to have the same structure in addition to satisfying
the equation Bk+1δk = γ

k
of Section 2, which may not allow Bk+1 to be positive

definite, even if we retain δ T
k γk > 0. Moreover, we recall from Section 4 that,

in constrained calculations, it is suitable to replace the condition Bk+1δk = γ
k

by Bk+1δk = γ̂
k
, where γ̂

k
is the difference (4.6). There is now no need for an

unwelcome device to maintain positive definiteness, as described after equation
(4.6). In both of these settings the conditions on the elements of Bk+1 are linear
equality constraints. A highly successful and convenient way of taking up the
freedom in Bk+1 is to minimize ‖Bk+1−Bk‖F , where the subscript F denotes the
Frobenius norm. In other words, we let the new model be as close as possible to
the old model subject to the linear constraints, where closeness is measured by
the sum of squares of the changes to the elements of the second derivative matrix
of the model. Some very useful properties of this technique are given in the next
section.

Trust region methods are also more robust than line search methods when the
Newton iteration (1.3) is modified, in case the starting point x1 is not “sufficiently
close” to a solution. We recall that a line search method applies formula (1.4), but
a trust region method would choose between the alternatives xk+1 = xk +dk and
xk+1 =xk, where dk is an estimate of the vector d that minimizes ‖f(xk)+J(xk)d‖
subject to ‖d‖ ≤ ∆k. The usual ways of selecting xk+1 and ∆k+1 for the next
iteration are similar to those that have been described already.

6. Further remarks

In my experience, the question that has been most useful to the development of
successful algorithms for unconstrained optimization is “Does the method work
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well when the objective function is quadratic?”. The answer is very welcome and
encouraging for the updating of second derivative matrices of quadratic models
by the symmetric Broyden method, which is the technique of taking up freedom
in the new model by minimizing ‖Bk+1−Bk‖F , mentioned in the paragraph before
last. We are going to consider this method in unconstrained calculations when
the current quadratic model has the form

F (xk+ d) ≈ Qk(xk+ d) = F (xk) + dTg
k
+ 1

2
dTBk d, d∈Rn, (6.1)

where F (xk) and Bk are retained from expression (5.2), but g
k

is allowed to be
an estimate of ∇F (xk) that is given to the k-th iteration, which is useful if first
derivatives of F are not available.

Some constraints on the parameters of the new model

Qk+1(xk+1+ d) = F (xk+1) + dTg
k+1

+ 1
2
dTBk+1 d, d∈Rn, (6.2)

have been stated already for algorithms that employ first derivatives. In addition
to g

j
=∇F (xj), j =1, 2, 3, . . ., they include the equation

Bk+1 δk = γ
k

= ∇F (xk+ δk)−∇F (xk), (6.3)

where δk is xk+1−xk or dk in a line search or trust region method, respectively.
In algorithms without derivatives, however, the new model Qk+1 may be derived
from the current model Qk and from interpolation conditions of the form

Qk+1(zj) = F (zj), j =1, 2, . . . ,m, (6.4)

where the points zj, j =1, 2, . . . ,m, are chosen automatically, one of them being
xk+1. I prefer to keep m fixed at about 2n+1 and to change only one of the
interpolation points on each iteration, which can provide suitable data for the
selection of both g

k+1
and Bk+1. The matrix Bk+1 is required to be symmetric

in all of these algorithms, and sometimes Bk+1 is given the sparsity structure of
∇2F .

Let F (x), x ∈ Rn, be a quadratic function. Then all the constraints on the
parameters of Qk+1 in the previous paragraph are satisfied if we pick Qk+1≡F .
It follows from the linearity of the constraints that they allow any multiple of
the difference F −Qk+1 to be added to Qk+1. Therefore, if Bk+1 is calculated
by minimizing ‖Bk+1−Bk‖F subject to the constraints, which is the symmetric
Broyden method, then the least value of φ(θ) = ‖Bk+1−Bk +θ (∇2F −Bk+1)‖2F ,
θ ∈ R, occurs at θ = 0. We consider this remark algebraically by introducing
the notation 〈V, W 〉 for the sum

∑n
i=1

∑n
j=1 VijWij, where V and W are any n×n

symmetric matrices. The definition of the Frobenius norm gives the expression

φ(θ) = 〈 (Bk+1−Bk) + θ (∇2F −Bk+1), (Bk+1−Bk) + θ (∇2F −Bk+1) 〉, (6.5)

θ∈R, which is least at θ=0 if and only if the scalar product 〈Bk+1−Bk,∇2F−Bk+1〉
is zero. This remark implies the identity

‖∇2F −Bk+1‖2F = ‖∇2F −Bk‖2F − ‖Bk+1−Bk‖2F , (6.6)
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which is a well-known property of least squares projection methods. Thus, if F
is quadratic, the symmetric Broyden method causes the Frobenius norms of the
error matrices ∇2F−Bk, k=1, 2, 3, . . ., to decrease monotonically as the iterations
proceed.

Equation (6.6) is highly relevant to the important breakthrough in convergence
theory by Broyden, Dennis and Moré (1973). They find that, if ∇F is available
in the unconstrained minimization of F (x), x∈Rn, then usually the sequence xk,
k=1, 2, 3 . . ., converges at a superlinear rate if the matrices Bk have the property

lim k→∞ ‖∇F (xk+ δk)− {∇F (xk) + Bk δk}‖ / ‖δk‖ = 0, (6.7)

for the choices of δk considered already. The term ∇F (xk)+Bkδk is the estimate
of ∇F (xk+δk) given by the quadratic model (6.1) in the case g

k
=∇F (xk). Many

researchers had believed previously, however, that fast convergence in practice
would require Bk to be sufficiently close to ∇2F (xk). Equation (6.6) shows that
‖Bk+1−Bk‖F tends to zero as k increases. Therefore ‖Bk+1δk−Bkδk‖/‖δk‖ tends
to zero too, and we let Bk+1 be constrained by condition (6.3). Thus the condition
(6.7) for superlinear convergence is satisfied by the symmetric Broyden method
even if ‖∇2F−Bk‖F does not become small.

Some successes of the symmetric Broyden method in minimization without
derivatives are stunning. In the NEWUOA software of Powell (2006), the con-
straints on the parameters of the new model (6.2) are the interpolation conditions
(6.4) and the symmetry condition B T

k+1 = Bk+1. The volume of the convex hull
of the points zj, j = 1, 2, . . . ,m, is forced to be nonzero, in order that both g

k+1

and Bk+1 are defined uniquely when they provide the least value of ‖Bk+1−Bk‖F
subject to the interpolation and symmetry constraints. The test function that
was used most in the development of NEWUOA has the form

F (x) =
2n∑
i=1

{
bi −

n∑
j=1

(
Sij sin(θjxj) + Cij cos(θjxj)

)}2
, x∈Rn, (6.8)

which is equation (8.5) of Powell (2006). Details are given there, including the
choices of the parameters bi, Sij, θj and Cij and of a starting point x1, several
choices being made randomly for each n. In each experiment, the objective func-
tion (6.8) is minimized to high accuracy and the total number of calculations of
F (x) is noted. The average values of these counts with m=2n+1 are 931, 1809,
3159 and 6013 for n=20, 40, 80 and 160, respectively. We see that these figures
are roughly proportional to n, which is not very surprising if one attributes the
good rate of convergence to the property ‖Bk+1−Bk‖F→ 0. On the other hand,
an algorithm that constructed a careful quadratic model would require more than
n2/2 calculations of F (x). These observations are analogous to the remark that,
if ∇F is available, if F (x), x∈Rn, is minimized by one of the methods of Section
2, and if n is large, then it is not unusual for the required accuracy to be achieved
in far fewer than n iterations.
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The material of this paper leans strongly towards my own contributions to
nonlinear optimization. Therefore the presentation should be regarded as a per-
sonal view of an active researcher instead of an attempt at being comprehensive.
Most of the algorithms that have been addressed do not require a review, be-
cause they, with several other methods, are now studied carefully in books, such
as Fletcher (1987), Nocedal and Wright (1999) and Sun and Yuan (2006). The
main exception is the brief consideration of minimization without derivatives in
the previous paragraph, the NEWUOA software being only five years old. An
excellent survey of another part of this field is given by Kolda, Lewis and Torczon
(2003). It includes some work on optimization without derivatives when there are
constraints on the variables. There is a strong need in that area for new algorithms
that provide high accuracy efficiently.
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