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Abstract: We consider trust region methods for seeking the unconstrained min-
imum of an objective function F (x), x∈Rn, when the gradient ∇F (x), x∈Rn, is
available. The methods are iterative with x1 being given. The new vector of vari-
ables xk+1 is derived from a quadratic approximation to F that interpolates F (xk)
and ∇F (xk), where k is the iteration number. The second derivative matrix of the
quadratic approximation, Bk say, can be indefinite, because the approximation is
employed only if the vector of variables x satisfies ‖x−xk‖≤∆k, where ∆k is a
“trust region radius” that is adjusted automatically. Thus the approximation is
useful if ‖∇F (xk)‖ is sufficiently large and if ‖Bk‖ and ∆k are sufficiently small. It
is proved under mild assumptions that the condition ‖∇F (xk+1)‖≤ε is achieved
after a finite number of iterations, where ε is any given positive constant, and
then it is usual to end the calculation. The assumptions include a Lipschitz con-
dition on ∇F and also F has to be bounded below. The termination property is
established in a single theorem that applies to a wide range of trust region meth-
ods that force the sequence F (xk), k=1, 2, 3, . . ., to decrease monotonically. Any
choice of each symmetric matrix Bk is allowed, provided that ‖Bk‖ is bounded
above by a constant multiple of k.
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1. Introduction

Let the least value of a differentiable function F (x), x∈Rn, be required, where
F (x) and the first derivative ∇F (x) can be calculated for any vector of variables
x. We consider trust region methods for the unconstrained minimization of F
that employ quadratic models of the form

F (xk+s) ≈ Qk(s) = F (xk) + sT∇F (xk) + 1
2
sTBk s, s∈Rn. (1.1)

They are iterative, k being reserved for the iteration number, and Qk(s), s∈Rn,
being an estimate of F (xk+s) that is useful during the k-th iteration. The vector
xk and the n×n symmetric matrix Bk are available at the start of the iteration,
with a positive number ∆k called the “trust region radius”. We assume that the
sequence of iterations is terminated if ‖∇F (xk)‖ is sufficiently small, which is the
condition

‖∇F (xk)‖ ≤ ε, (1.2)

where ε is a prescribed nonnegative constant. Otherwise, consideration of the
current quadratic model provides a trial step sk∈Rn that has the properties

‖sk‖ ≤ ∆k and Qk(sk) < F (xk). (1.3)

Then the function value F (xk+sk) and the ratio

ρk =
Actual reduction

Predicted reduction
=

F (xk)− F (xk+sk)

F (xk)−Qk(sk)
(1.4)

are calculated. Guided by these numbers, the vector xk+1 and the new trust region
radius ∆k+1 are selected for the next iteration. The matrix Bk+1 is chosen too; in
several trust region procedures it satisfies the equation

Bk+1 sk = ∇F (xk+sk)−∇F (xk). (1.5)

Many algorithms of this kind are highly successful in practice. Furthermore,
nearly all versions of trust region methods in the literature are supported by proofs
of convergence. We are also going to engage in theoretical analysis, in order to
provide a single convergence theorem that applies to a wide range of trust region
methods, the range being specified in Section 2 with reasons for the generality. In
particular, the restrictions on the choice of xk+1 are mild, in order to emphasise
that xk+1 =xk+sk is admissible whenever the strict reduction F (xk+sk)<F (xk)
occurs. Thus F (xk) can be the least calculated value of the objective function
so far for every iteration number k, which is a strong preference of the author,
although most published trust region methods set xk+1 =xk+sk only if the ratio
(1.4) is sufficiently large.

Therefore, assuming exact arithmetic and some usual properties of F , we prove
only that the test (1.2) provides termination eventually if the value of ε is positive.
In other words, if ε were zero and if the test (1.2) failed for every k, then “lim inf”
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of the sequence ‖∇F (xk)‖, k=1, 2, 3, . . ., would be zero. On the other hand, by
allowing xk+1 6= xk only if ρk is sufficiently large, several trust region procedures
achieve the limit ‖∇F (xk)‖→0 as k→∞. The required properties of the objective
function F (x) are that it is bounded below and that its first derivative satisfies
the Lipschitz condition

‖∇F (x)−∇F (y)‖ ≤ Λ ‖x−y‖, x, y ∈ L, (1.6)

where Λ is a positive constant, and where L ⊂ Rn is the level set {x : F (x) ≤
F (x1)}, the point x1 of the first iteration being given.

Our ubiquitous convergence theorem is proved in Section 3, and its relevance to
practical computation is discussed in Section 4. Chapter 4 of Nocedal and Wright
(1999) is recommended to readers who seek an introduction to implementations
and convergence properties of trust region methods. There is much interesting
material on developments of the basic methods in the book by Conn, Gould and
Toint (2000) and in Chapter 13 of Sun and Yuan (2006).

2. The range of trust region methods

Our conditions on the choices of sk, xk+1, ∆k+1 and Bk+1, made during the k-th
iteration, are stated and explained in this section. The data for the first iteration,
namely x1, ∆1 and B1, have to be supplied by the user of the trust region method
with the value of the constant ε for the termination test (1.2). We assume from
now on that ε is positive. Every implementation of a trust region method requires
the values of several other parameters to be prescribed too, but, instead of being
specific, we try to embrace all of them in the conditions below.

The step sk is allowed to be any vector in Rn that satisfies the inequalities

‖sk‖ ≤ ∆k and Qk(sk) ≤ Qk(ŝk), (2.1)

where ŝk is the “Cauchy step” of the trust region subproblem of the k-th iteration,
which means that ŝk is the multiple of ∇F (xk) that minimizes Qk(ŝk) subject
to ‖ŝk‖ ≤ ∆k. The conditions (2.1) on sk are usual, because they are suitable
for proofs of convergence and because ŝk is easy to calculate. Each iteration of
many trust region algorithms applies its own iterative procedure to generate sk,
beginning with sk = ŝk, and then adjusting sk in a way that reduces Qk(sk).
Therefore it seems superfluous to replace the second part of expression (2.1) by
the weaker condition

Qk(sk) ≤ (1−θ)F (xk) + θ Qk(ŝk), (2.2)

where θ is any constant from the interval 0< θ≤ 1. This extra generality could
have been included in the theory of Section 3, but we assume θ=1.

We also give up some generality by letting all vector and matrix norms be
Euclidean. The use of other norms for the trust region constraint ‖sk‖ ≤∆k is
addressed briefly in Section 4.
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The conditions (2.1) provide a well-known upper bound on Qk(sk) that is
important to proofs of convergence. We derive it by letting g

k
denote ∇F (xk)

and by considering the function φ(σ) = Qk(−σgk
), σ ∈ R. The Cauchy step is

the vector ŝk =−σ̂g
k
, where σ̂ is the value of σ that minimizes φ(σ) subject to

0<σ≤∆k/‖gk
‖, so, if ‖ŝk‖<∆k occurs, then φ ′(σ̂) is zero. Now the definition

(1.1) of Qk shows that φ is quadratic with the first derivative

φ ′(σ) = −‖g
k
‖2 + σ gT

k
Bk gk

≤ (−1 + σ ‖Bk‖) ‖gk
‖2, σ∈R. (2.3)

Therefore ‖ŝk‖ < ∆k would imply σ̂ ≥ 1/‖Bk‖, which is the same as ‖ŝk‖ ≥
‖g

k
‖/‖Bk‖. Thus we deduce the bounds

min [∆k, ‖gk
‖ / ‖Bk‖ ] ≤ ‖ŝk‖ ≤ ∆k. (2.4)

Further, because φ(σ), σ∈R, is quadratic and because φ ′(σ̂) is nonpositive, the
definitions of Qk, φ and σ̂ provide the relation

Qk(ŝk) = φ(σ̂) = F (xk) + 1
2
σ̂ [φ ′(0) + φ ′(σ̂) ] ≤ F (xk) + 1

2
σ̂ φ ′(0)

= F (xk)− 1
2
σ̂ ‖g

k
‖2 = F (xk)− 1

2
‖g

k
‖ ‖ŝk‖. (2.5)

It follows from expressions (2.1) and (2.4) that Qk(sk) is bounded above by the
inequality

Qk(sk) ≤ Qk(ŝk) ≤ F (xk)− 1
2
‖g

k
‖ min [∆k, ‖gk

‖ / ‖Bk‖ ], (2.6)

which is equivalent to the statement of Lemma 4.5 of Nocedal and Wright (1999).
We now turn to the conditions on xk+1 and ∆k+1. An important feature of

the trust region methods under consideration is that, if the ratio (1.4) is not
“sufficiently large”, then ∆k+1 is always less than ∆k. In this case, the value of
∆k+1 in the analysis of the next section has to be between α ‖ŝk‖ and β∆k, where
α and β are any prescribed constants that satisfy 0<α≤β<1. The lower bound
responds to the possibility that ∆k+1 = β∆k may be unsuitable if ‖ŝk‖ is much
smaller than ∆k. The term “sufficiently large” means that the inequality

ρk =
F (xk)− F (xk+ sk)

F (xk)−Qk(sk)
≥ ρ∗ (2.7)

is achieved, where ρ∗ is another prescribed constant from the open interval (0, 1).
When ρk ≥ ρ∗ occurs, it is usual for ∆k+1 to be at least ∆k, but the analysis
is made a little more general by assuming the weaker condition ∆k+1 ≥ ‖ŝk‖.
Moreover, in all implementations of trust region methods known to the author,
∆k+1 is at most ∆∗ or γ∆k for some prescribed constants ∆∗>0 and γ>1. All of
these possibilities are included by allowing ∆k+1 to take any value that satisfies
the constraints

α ‖ŝk‖ ≤ ∆k+1 ≤ β∆k if ρk < ρ∗

‖ŝk‖ ≤ ∆k+1 ≤ max [∆∗, γ∆k ] if ρk ≥ ρ∗

}
, (2.8)
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where the constants α, β, γ, ρ∗ and ∆∗ have been introduced already. In the
“basic algorithm” on page 116 of Conn, Gould and Toint (2000), however, there
is no upper bound on ∆k+1 in the case ρk≥ρ∗.

If ρk≥ρ∗ holds, it is important for the conditions on xk+1 to exclude xk+1 =xk,
in order to prevent the possibility of setting both xk+1 = xk and ∆k+1 = ∆k for
all sufficiently large k. In this case, we expect every trust region algorithm to
pick xk+1 = xk +sk, and we also expect xk+1 = xk to be chosen whenever ρk is
nonpositive. Otherwise, when ρk is in the open interval (0, ρ∗), we expect xk+1

to be set to xk or xk+sk. Our conditions on xk+1 admit all of these possibilities
and many more. Specifically, xk+1 is allowed to be any vector in Rn that has the
property

F (xk+1) ≤ F (xk) if ρk < ρ∗

F (xk+1) ≤ F (xk+sk) if ρk ≥ ρ∗

}
. (2.9)

It follows that the proof of the termination theorem in Section 3 is valid without
the usual constraint ‖xk+1−xk‖≤∆k. The conditions (2.9) imply that the sequence
F (xk), k= 1, 2, 3, . . ., decreases monotonically, and that F (xk+1) is substantially
less than F (xk) on the iterations that achieve ρk≥ρ∗.

Particular attention is going to be given in Section 3 to the accuracy of the
approximation (1.1) when ‖s‖ is relatively small and ‖∇F (xk)‖≥ ε holds. Then
the term sT∇F (xk) is more important than the term 1

2
sTBk s, provided that ‖Bk‖

is not too large, which suggests the kind of condition that Bk+1 is required to
satisfy for each k. Specifically, it is sufficient if there exist nonnegative numbers λ
and µ, independent of k, such that the sequence of matrices Bk has the property

‖Bk‖ ≤ λ+ µk, k=1, 2, 3, . . . . (2.10)

This constraint occurs also in the study of trust region methods by Powell (1984),
but the conditions there on sk, xk+1 and ∆k+1 are much stronger than the require-
ments of our theoretical analysis.

An advantage of allowing ‖Bk‖ to grow linearly with k, instead of assuming
a constant upper bound on ‖Bk‖, is that, under an extension of the Lipschitz
condition (1.6), each new matrix Bk+1 can be defined by the “symmetric Broyden”
formula. The extension is that the set L of inequality (1.6) is enlarged if necessary
so that it includes the line segment between xk and xk +sk for every iteration
number k. Thus the difference ∇F (xk+sk)−∇F (xk)= tk, say, has the property

‖tk‖ ≤ Λ ‖sk‖, k=1, 2, 3, . . . . (2.11)

That updating formula defines Bk+1 to be the symmetric matrix that minimizes
the Frobenius norm of Bk+1−Bk subject to equation (1.5), which is a quadratic
programming problem. It has the solution

Bk+1 = Bk +
(tk−Bk sk) s

T
k + sk (tk−Bk sk)

T

‖sk‖2
− (tk−Bksk)

Tsk

sk s
T
k

‖sk‖4

=

(
I − sk s

T
k

‖sk‖2

)
Bk

(
I − sk s

T
k

‖sk‖2

)
+
tk s

T
k + sk t

T
k

‖sk‖2
− tTk sk

sk s
T
k

‖sk‖4
. (2.12)
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We see that Bk is multiplied by symmetric projection matrices in the last line.
Moreover, the Euclidean norms of the matrices tk s

T
k and sk s

T
k are ‖sk‖ ‖tk‖ and

‖sk‖2, respectively, and the modulus of the scalar product tTk sk is bounded above
by ‖sk‖ ‖tk‖. It follows from formula (2.12) and the triangle inequality that Bk+1

satisfies the condition

‖Bk+1‖ ≤ ‖Bk‖+ 3 ‖sk‖ ‖tk‖ / ‖sk‖2 ≤ ‖Bk‖+ 3Λ, (2.13)

the last inequality being due to the bound (2.11). Therefore, letting λ and µ be
the constants ‖B1‖−3Λ and 3Λ, respectively, the required property (2.10) can be
established by induction on k.

There are several other updating formulae for calculating Bk+1 from Bk and
equation (1.5), but in some trust region algorithms for unconstrained minimization
the updating is suppressed if ‖Bk+1−Bk‖ would become unacceptably large. In
particular, the symmetric rank one formula

Bk+1 = Bk +
(tk−Bk sk) (tk−Bk sk)

T

(tk−Bk sk)T sk

(2.14)

is useless if its denominator is zero, where we are retaining the notation tk =
∇F (xk +sk)−∇F (xk). Therefore Conn, Gould and Toint (1991) investigate the
technique of applying equation (2.14) on the k-th iteration if and only if the
inequality

|(tk−Bk sk)
T sk| ≥ c1 ‖tk−Bk sk‖ ‖sk‖ (2.15)

holds for some small prescribed constant c1 > 0, the alternative for the other
iterations being Bk+1 = Bk. Their analysis of this “safeguarded SR1 method”,
however, assumes a linear independence property of the steps sk, k = 1, 2, 3, . . .,
that is questionable. Byrd, Khalfan and Schnabel (1996) proved later that, instead
of the linear independence property, one can assume that the matrices Bk, k =
1, 2, 3, . . ., stay bounded as k→∞, but that is questionable too. The theory of
the next section makes a little more progress by establishing the termination of
the safeguarded SR1 method under the weaker condition (2.10).

3. The proof of termination

It is proved in this section that, under the given conditions on F (x), x∈Rn, and
on the range of trust region methods, the termination property (1.2) is achieved
for some iteration number k. The method of proof depends on the sum of the
reductions F (xk)−F (xk+1) that occur on the iterations that satisfy ρk≥ρ∗. This
sum is a lower bound on the total reduction in F on all iterations, because the
sequence F (xk), k = 1, 2, 3, . . ., decreases monotonically. Therefore the sum is
finite if F is bounded below, which is one of our assumptions. We will find that
if k→∞, however, then the sum would diverge. It follows that the sequence of
iterations must terminate.
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Our analysis begins with two lemmas. The first of them shows that ρk ≥ ρ∗
holds if ∆k is sufficiently small. Then the second lemma establishes a lower bound
on ∆k for all k, which, for the iterations that satisfy ρk≥ρ∗, leads to a lower bound
on F (xk)−F (xk+1) that is independent of ∆k. Because the proof of termination
is by contradiction, we assume that ‖∇F (xk)‖ exceeds ε for every k. We recall
that ρk is the ratio (1.4), that ρ∗ is a constant from (0, 1), that Λ is the constant
of the Lipschitz condition (1.6), and that we may write g

k
instead of ∇F (xk).

Lemma 1 If the trust region radius has the property

∆k ≤ (1− ρ∗) ‖gk
‖ / ( Λ + ‖Bk ‖), (3.1)

then the condition ρk≥ρ∗ is achieved.

Proof The assumption (3.1) implies that ∆k is less than ‖g
k
‖/‖Bk‖. Therefore

inequality (2.6) takes the form

Qk(sk) ≤ F (xk)− 1
2
‖g

k
‖∆k, (3.2)

any choice of sk being allowed subject to the conditions (2.1).
We consider the function ψ(τ)=F (xk+τsk), 0≤τ≤ τ̂ , where τ̂ is the greatest

number in [0, 1] that satisfies ψ(τ)≤ψ(0), 0≤ τ ≤ τ̂ . The definition (1.1) of Qk,
with ‖sk‖≤∆k and inequality (3.2), give the bound

ψ ′(0) = sT
k gk

= Qk(sk)− F (xk)− 1
2
sT

kBk sk

≤ 1
2
∆k (−‖g

k
‖ + ‖Bk‖∆k ). (3.3)

It follows from the remark ∆k < ‖gk
‖/‖Bk‖ at the beginning of this proof that

ψ ′(0) is negative. Therefore τ̂ is nonzero.
The value of τ̂ allows x and y in condition (1.6) to be any two points on the

line segment between xk and xk+τ̂ sk. Thus some elementary algebra provides the
inequality

|ψ(τ̂)− ψ(0)− τ̂ ψ ′(0) | = |
∫ τ̂
0 [ψ ′(τ)− ψ ′(0) ] dτ |

= |
∫ τ̂
0 s

T
k [∇F (xk+ τ sk)−∇F (xk) ] dτ | ≤ 1

2
Λ τ̂ 2 ‖sk‖2. (3.4)

It follows that F (xk+τ̂ sk)=ψ(τ̂) has the property

F (xk+ τ̂ sk) ≤ ψ(0) + τ̂ ψ ′(0) + 1
2
Λ τ̂ 2 ‖sk‖2

≤ F (xk) + 1
2
τ̂ ∆k (−‖g

k
‖+ ‖Bk‖∆k + Λ ∆k ), (3.5)

where the last line is derived from F (xk) =ψ(0) and from the bounds (3.3) and
τ̂ 2‖sk‖2≤ τ̂∆2

k. Therefore the restriction (3.1) on ∆k yields the strict inequality
F (xk+τ̂ sk)<F (xk), which implies τ̂=1.

Finally, we consider the ratio (1.4). Expression (3.4) with τ̂=1 and ‖sk‖≤∆k

provide the condition

|F (xk+ sk)− F (xk)− sT
k gk

| ≤ 1
2
Λ∆2

k, (3.6)
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while the first line of expression (3.3) with ‖sk‖≤∆k give the relation

|Qk(sk)− F (xk)− sT
k gk

| ≤ 1
2
‖Bk‖∆2

k. (3.7)

By combining these last two displays, we deduce the inequality

|F (xk+ sk)−Qk(sk) | ≤ 1
2
(Λ + ‖Bk‖ ) ∆2

k. (3.8)

It follows from the property (3.2) that the condition

F (xk+ sk)−Qk(sk)

F (xk)−Qk(sk)
≤ (Λ + ‖Bk‖) ∆k

‖g
k
‖

(3.9)

is achieved. Further, because of the definition (1.4), the left hand side of expression
(3.9) is 1−ρk. Hence, by rearranging terms and by invoking the assumption (3.1)
again, we find the bound

ρk ≥ 1− (Λ + ‖Bk‖ ) ∆k / ‖gk
‖ ≥ ρ∗, (3.10)

which completes the proof. ./

Lemma 2 Let ρ∗, ε and µ be taken from expression (2.7), from the termination
condition (1.2) and from the bound (2.10), respectively. There exist positive
constants δ and M such that the trust region radii have the lower bounds

∆k ≥ δ / (M + µk), k=1, 2, 3, . . . , (3.11)

and such that, if ρk≥ρ∗ holds, then the k-th iteration achieves a reduction in the
objective function that satisfies the condition

F (xk)− F (xk+1) ≥ 1
2
ρ∗ δ ε / (M + µk). (3.12)

Proof It will be shown that it is suitable to pick the values

δ = min [∆1, α (1−ρ∗) ε ] and M = max [ 1, Λ+λ ], (3.13)

where ∆1 is the initial trust region radius that is supplied by the user, and where
α, Λ and λ are given in expressions (2.8), (1.6) and (2.10), respectively. It follows
from δ ≤∆1 and M ≥ 1 that inequality (3.11) is satisfied in the case k = 1. We
employ induction to establish the inequality for larger values of k.

Let the property (3.11) hold for a general iteration number k. If ρ<ρ∗, then
conditions (2.8) and (2.4) with Lemma 1 provide the bound

∆k+1 ≥ α ‖ŝk‖ ≥ α min [∆k, ‖gk
‖ / ‖Bk‖ ]

≥ α (1−ρ∗) ‖gk
‖ / (Λ + ‖Bk‖). (3.14)
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Hence the assumptions ‖g
k
‖≥ε and ‖Bk‖≤λ+µk with the values (3.13) give the

inequality

∆k+1 ≥ α (1−ρ∗) ε / (Λ + λ+ µk) ≥ δ / (M + µk). (3.15)

Alternatively, if ρk≥ρ∗, then conditions (2.8) and (2.4) provide the bound

∆k+1 ≥ ‖ŝk‖ ≥ min [∆k, ‖gk
‖ / ‖Bk‖ ]

≥ min [ δ / (M + µk), ε / (λ+ µk) ] = δ / (M + µk), (3.16)

the last line being derived from the inductive hypothesis and the reasons for
inequality (3.15). It follows from the last two displays that the assertion (3.11)
remains true when k is increased by one, so by induction it is valid for every k.

Let k be the number of any iteration that satisfies ρk≥ ρ∗. Our proof of the
property (3.12) begins with the remark that the bounds (2.6) and (3.11), with
‖g

k
‖≥ε>δ and ‖Bk‖≤λ+µk≤M+µk, provide the condition

F (xk)−Qk(sk) ≥ 1
2
ε min [∆k, ‖gk

‖ / ‖Bk‖ ] ≥ 1
2
δ ε / (M + µk). (3.17)

Therefore, using the definition (1.4) and ρk≥ρ∗, we find the inequality

F (xk)− F (xk+ sk) = ρk [F (xk)−Qk(sk) ] ≥ 1
2
ρ∗ δ ε / (M + µk). (3.18)

We recall from the second line of expression (2.9) that xk+1 is allowed to be any
vector in Rn that satisfies F (xk+1)≤F (xk+sk). Therefore the required reduction
(3.12) in the objective function is achieved. ./

Theorem Let the given conditions on F (x), x∈Rn, and on the range of trust
region methods be satisfied, as specified in Sections 1 and 2. Then the termination
property (1.2) is achieved for some iteration number k, where ε is any positive
constant.

Proof As mentioned already, we assume that ‖∇F (xk)‖ exceeds ε for every k,
and we deduce a contradiction. We define the subset K of the positive integers by
putting the iteration number k in K if and only if ρk≥ρ∗ holds. Lemma 2 provides
a lower bound on F (xk)−F (xk+1) for these iteration numbers. The contradiction
is that the sum of the terms 1

2
ρ∗δε/(M+µk), k∈K, is infinite.

The constraints (2.8) include the condition

∆k+1 ≤ β∆k, k /∈K, (3.19)

where β is a constant that is strictly less than one. They also include the bound

∆k+1 ≤ max [∆∗ /∆k, γ ] ∆k

≤ max [∆∗ δ
−1 , γ (M + µk)−1 ] (M + µk) ∆k, k∈K, (3.20)
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the last part being obtained from the property (3.11). We replace expression
(3.20) by the weaker condition

∆k+1 ≤ η (M + µk) ∆k, k∈K, (3.21)

where η is the constant max [∆∗ δ
−1, γ (M+µ)−1]. Inequalities (3.11), (3.19) and

(3.21) imply that K has an infinite number of elements. We let q(`) be the number
of elements of K that are in the interval [1, `], where ` is any positive integer.

We derive a useful lower bound on q(`) from the remark that inequalities
(3.11), (3.19) and (3.21) also imply the relation

δ / (M + µ+ µ `) ≤ ∆`+1 ≤ β `−q(`) {η (M + µ `)}q(`) ∆1, (3.22)

which we write in the form(
η (M`−1 + µ)

β
`

)q(`)

≥ δ

(M + µ+ µ `) ∆1

(
1

β

)`

. (3.23)

Let L be a fixed positive integer that supplies the conditions

log {η (M`−1 + µ) / β} ≤ 0.05 log `

log {(M + µ+ µ `) ∆1 / δ} ≤ 0.05 ` log (1/β)

}
, `≥L. (3.24)

By taking logarithms of both sides of expression (3.23), we find the inequality

1.05 q(`) log ` ≥ 0.95 ` log(1/β), `≥L, (3.25)

which leads to the lower bound

q(`) ≥ 0.9 log(β −1) ` / log `, `≥L. (3.26)

We see that q(`) diverges as `→∞, which confirms that the number of elements
of K is infinite.

Let k(q) be the q-th element of K when its elements are arranged in ascending
order, let Qj, j=1, 2, 3, . . ., be the set of integers q that are in the interval

0.9 log(β −1) 2 j

j log 2
≤ q <

0.9 log(β −1) 2 j+1

(j+1) log 2
, (3.27)

and let J be a fixed positive integer that supplies the properties

2 j+1 ≥ L and |Qj| ≥ 2, j≥J, (3.28)

where L is introduced in the previous paragraph and where |Qj| is the number
of elements in Qj. We compare the bound (3.26) with the right hand side of
expression (3.27) in the cases (3.28). Condition (3.26) states that the number of
elements of K in the first 2j+1 iterations is at least 0.9 log(β−1) 2j+1/{(j+1) log 2}.
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Therefore, when q is in the interval (3.27), then the q-th element of K, namely
k(q), satisfies k(q)<2j+1. Thus Lemma 2 with k(q)∈K give the inequality

F (xk(q))− F (xk(q)+1) > 1
2
ρ∗ δ ε / (M + µ 2j+1). (3.29)

Hence, because the sets Qj, j ≥ J , are disjoint, because the positive integers
k(q), q = 1, 2, 3, . . ., are all different, and because the constraints (2.9) maintain
F (xk+1)≤F (xk) on every iteration, we deduce the condition∑∞

k=1 {F (xk)− F (xk+1) } ≥ ∑∞
j=J

∑
q∈Qj

{F (xk(q))− F (xk(q)+1) }

≥ 1
2
ρ∗ δ ε

∑∞
j=J |Qj| / (M + µ 2j+1). (3.30)

We derive a lower bound on |Qj| from the length of the interval (3.27), but,
because the end-points of the interval are not integers in general, the difference
between the end-points may exceed |Qj| by a perturbation that is less than one.
The perturbation is also less than 0.5 |Qj|, due to the constraint |Qj| ≥ 2, j≥J ,
which admits the inequality

1.5 |Qj| > 0.9 log(β −1) 2 j+1 / {(j+1) log 2} − 0.9 log(β −1) 2 j / {j log 2}
= 0.9 log(β −1) 2 j (j−1) / {j (j+1) log 2}, j≥J. (3.31)

Hence, because J is at least 2, due to Q1 being empty, we find the property

|Qj| > 0.2 log(β −1) 2 j / (j log 2), j≥J. (3.32)

Let ε̂ be the positive constant 1
10
ρ∗δε log(β−1)/ log 2. Conditions (3.30) and (3.32)

imply the bound∑∞
k=1 {F (xk)− F (xk+1) } ε̂

∑∞
j=J 2 j / { (M + 2 j+1µ) j) }

> ε̂
∑∞

j=J 1 / { (M + 2µ) j }, (3.33)

the last line being elementary. We see that the sum (3.33) is divergent, in con-
tradiction to the assumption that F is bounded below. Therefore the theorem is
true. ./

4. Discussion

Let a trust region method that satisfies the conditions of Section 2 be applied to
an objective function F (x), x∈Rn, that satisfies the conditions of the penultimate
paragraph of Section 1, let all arithmetic be exact, and let the parameter ε of the
test (1.2) for termination be set to zero. It follows from the theorem of Section 3
that, if termination does not occur, then an infinite subsequence of the gradient
norms ‖∇F (xk)‖, k = 1, 2, 3, . . ., converges to zero. It is suggested in Section 1,
however, that sometimes the limit ‖∇F (xk)‖→0 as k→∞ is not achieved. This
possibility is demonstrated by the following example.
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There are only two variables, and we pick the objective function

F (x) = F (x, y) = u(x) + v(y), x∈R2, (4.1)

where x and y are the components of x, and where u and v are the functions

u(x) = x2/ 2, x∈R, and

v(y) = y2 (y + 5) (y − 3) / { 4 (y − 1)2 + 56 }, y∈R.

 (4.2)

This choice of v is made because it has the properties

v(−5) = v(0) = v(3) = 0, v ′(−5) = −1, v ′(0) = 0 and v ′(3) = 1. (4.3)

We will find that the vectors xk, k=1, 2, 3, . . ., can have the components xk =2−k

and yk = 0, 3, or −5 in the cases k = 3j+1, 3j+2, or 3j+3, respectively, for
all nonnegative integers j. Thus u(xk) = 2−2k−1 and v(yk) = 0 hold for every
iteration number k, and the objective function takes the values F (xk) = 2−2k−1,
k = 1, 2, 3, . . ., which decrease strictly montonically. Further, the subsequence
‖∇F (x3j+1)‖, j = 0, 1, 2, . . ., of gradient norms tends to zero in agreement with
the theorem, but ‖∇F (x3j+2)‖ and ‖∇F (x3j+3‖ tend to one as j→∞.

The second derivative matrix Bk of the quadratic model (1.1) is allowed to be
any symmetric matrix that has the property (2.10). Therefore we may employ
the models

Qk(s) =


F (xk) + ξ xk + ξ2 if yk = 0,

F (xk) + ξ xk + ξ2 + η + η2/ 16 if yk = 3,

F (xk) + ξ xk + ξ2 − η + η2/ 10 if yk = −5,

(4.4)

which satisfy Qk(0)=F (xk) and ∇Qk(0)=∇F (xk) as required, ξ and η being the
components of s. Assuming that the trust region radii ∆k are sufficiently large,
which is addressed in the next paragraph, the conditions (2.1) are maintained
by choosing each sk so that Qk(sk) is the least value of Qk(s), s ∈ R2. This
construction gives sk the components ξk =−1

2
xk and ηk =−8 or ηk =5 in the cases

yk =3 or yk =−5, respectively, and we keep the example going by selecting ηk =3
whenever yk is zero. It follows that every iteration provides the strict reduction

F (xk+ sk) = F (xk)− 3
8
x2

k < F (xk) (4.5)

in the objective function. Therefore the “any decrease” implementation of the
conditions (2.9) makes the choice xk+1 = xk + sk for each k, regardless of the
sufficient decrease parameter ρ∗. Thus the sequence xk, k = 1, 2, 3, . . ., of the
previous paragraph is generated, after letting x1 have the components x1 = 0.5
and y1 =0.

The given choices of sk are permitted if the trust region radius is ∆k = 4,
∆k =10 and ∆k =6 in the cases yk =0, yk =3 and yk =−5, respectively. We find
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by easy calculations that the ratio (1.4) takes the values

ρk =
F (xk)− F (xk+ sk)

F (xk)−Qk(sk)
=


3
8
x2

k / ( 1
4
x2

k ) if yk = 0,

3
8
x2

k / ( 4 + 1
4
x2

k ) if yk = 3,

3
8
x2

k / ( 5
2

+ 1
4
x2

k ) if yk = −5.

(4.6)

Therefore, letting ρ∗ be at least 0.1 as usual and recalling xk = 2−k, the second
or first line of expression (2.8) applies when yk is zero or nonzero, respectively.
Hence, by setting α=1/2, β=2/3, γ=5/2 and ∆1 =4, the new trust region radii
∆k+1 = 10, ∆k+1 = 6 and ∆k+1 = 4 become admissible as required in the cases
yk =0, yk =3 and yk =−5. The description of the example is complete.

Many objective functions F (x), x ∈ Rn, of unconstrained calculations have
unbounded second derivatives, sometimes as ‖x‖ →∞, and especially when in-
equality constraints on the variables are handled by the use of barrier functions. It
is important, therefore, that the Lipschitz condition (1.6) has to hold only on the
level set L= {x : F (x)≤F (x1)}. In some other proofs of convergence, however,
the Lipschitz condition is required on a larger region of Rn, such as the convex
hull of L. For example, see the discussion of Assumption AF3 on page 121 of
Conn, Gould and Toint (2000). Our less restrictive condition (1.6) adds some
interesting refinements to the proof of Lemma 1 in Section 3. Further, it brings
the advantage of allowing F to include an infinite barrier function of a feasible
region that is not convex.

It is mentioned after expression (2.8) that Conn, Gould and Toint (2000) do not
require an upper bound on ∆k+1 in the cases ρk≥ρ∗, but their convergence theory
depends on the assumption that the matrices Bk, k = 1, 2, 3, . . ., are uniformly
bounded, while our condition (2.10) allows ‖Bk‖ to grow linearly as k→∞. We
compare these approaches by considering the differences k(q+1)−k(q), where k(q)
is still the q-th element of the set K = {k : ρk ≥ ρ∗}, this notation being taken
from the beginning of the sentence that includes the interval (3.27). If ∆k(q)+1 can
be arbitrarily large, and if the first line of expression (2.8) is satisfied by setting
∆k+1 =β∆k in the cases ρk<ρ∗, then each k(q+1)−k(q) can be arbitrarily large
too. Thus condition (2.10) does not restrict the growth of the sequence ‖Bk(q)‖,
q=1, 2, 3, . . . . It follows that the steplengths ‖xk(q)+1−xk(q)‖, q=1, 2, 3, . . ., can
tend to zero so rapidly that their sum is finite, even if the constant ε is positive
and ‖g

k
‖≥ ε holds on every iteration. Moreover, the constraints (2.9) allow the

choice xk+1 =xk in all the cases ρk <ρ∗. Thus it is possible for the sequence xk,
k=1, 2, 3, . . ., to converge when ‖g

k
‖ is bounded away from zero, which would be

a failure of the trust region method. Therefore the upper bound on ∆k+1 in the
second line of expression (2.8) is important to our analysis.

Another departure from the “basic algorithm” on page 116 of Conn, Gould
and Toint (2000) occurs when the parameters η1 and η2 of their expression (6.1.5)
satisfy η1<η2<1. Then, if the ratio (1.4) has the property η1≤ρk<η2, they allow
the new trust region radius ∆k+1 to take any value from the interval [γ2∆k,∆k],
where γ2 is another positive parameter that is less than one. On the other hand,
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when ‖ŝk‖=∆k and ∆k+1<∆k occur in our range of trust region methods, then
our conditions (2.8) do not allow the relative change in the trust region radius to
be arbitrarily small, which agrees with most implementations. When comparing
our theory with a particular implementation, we pick the ρ∗ in expression (2.8)
that is most suitable for the choice of ∆k+1. Then, if a sufficient decrease condition
is required, the freedom (2.9) in xk+1 allows the formula

xk+1 =

{
xk if ρk < ρ̂∗

xk + sk if ρk ≥ ρ̂∗,
(4.7)

where ρ̂∗ is any constant that satisfies 0<ρ̂∗≤ρ∗.
I am grateful to Ya-xiang Yuan for studying a draft of this paper, partly

because he raised the interesting possibility of replacing ŝk by sk on the left hand
side of both lines of expression (2.8). Thus the steplength that contributes to the
constraints on ∆k+1 would become the steplength that is most relevant to the
definition (2.7) of ρk. On the other hand, we want the theorem of Section 3 to
apply to a range of trust region methods without unnecessary restrictions. Hence
the perfect response to Yuan’s suggestion would be to find a proof of the theorem
after replacing the constraints (2.8) on ∆k+1 by the weaker conditions

α min[ ‖ŝk‖, ‖sk‖ ] ≤ ∆k+1 ≤ β∆k if ρk < ρ∗

min[ ‖ŝk‖, ‖sk‖ ] ≤ ∆k+1 ≤ max [∆∗, γ∆k ] if ρk ≥ ρ∗

 . (4.8)

The inequalities (2.1) allow sk to be the shortest vector that satisfies Qk(sk) ≤
Qk(ŝk). By considering the KKT conditions of this extreme choice, we find that
sk = ŝk occurs only if ŝk, which is a multiple of g

k
, is also a multiple of Bkgk

, the
alternative being ‖sk‖< ‖ŝk‖. Therefore we expect the new conditions (4.8) to
permit a strict reduction in the trust region radius on every iteration, which may
provide some challenging analysis. In practice, however, sk is calculated usually
by minimizing the model Qk(s) subject to ‖s‖≤∆k, either to high accuracy or by
the truncated conjugate gradient algorithm from the starting point s=0. Both of
these methods give the property ‖sk‖≥‖ŝk‖ automatically, and then the bounds
(2.8) and (4.8) on ∆k+1 are the same.

The trust regions of some algorithms have the form {s : ‖s‖TR≤∆k}, where
the vector norm ‖ ·‖TR is not Euclidean. For example, advantage may be taken of
the remark that, if the infinity norm is preferred, then the minimization of Qk(s)
within the trust region is a quadratic programming problem, even if there are
linear constraints on the variables. We address this situation briefly by retaining
Euclidean vector norms and by generalizing the condition ‖s‖ ≤ ∆k for each
iteration number k to s∈Nk, where Nk is any subset of Rn that has the properties

‖s‖ ≤ ω∆k ⇒ s ∈ Nk and s ∈ Nk ⇒ ‖s‖ ≤ Ω∆k, (4.9)

ω and Ω being constants. By introducing scaling if necessary, we assume the value
ω = 1 without loss of generality. Thus the old trust region {s : ‖s‖ ≤∆k} is a
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subset of Nk, implying that the important property (2.6) remains valid when ŝk

is changed to the Cauchy step of Nk, but the right hand side of inequality (2.4)
becomes Ω∆k. It follows that the right hand sides of expressions (3.6)–(3.9) are all
multiplied by Ω2, so, in order to establish that ρk≥ρ∗ is achieved for sufficiently
small ∆k, we replace assumption (3.1) in the statement of Lemma 1 by the more
restrictive condition

∆k ≤ (1− ρ∗) ‖gk
‖Ω−2 / ( Λ + ‖Bk ‖). (4.10)

Similar factors in the proof of Lemma 2 are treated by changing the definition
(3.13) of δ to min[∆1, α(1−ρ∗)Ω−2 ε]. These modifications seem to be sufficient
to prove not only the lemmas but also the theorem of Section 3, after replacing
‖sk‖≤∆k by sk∈Nk in the conditions (2.1) on sk.

One can try to estimate from the theory of Section 3 a bound on the number of
iterations before the termination condition (1.2) holds. We find that all iterations
with numbers k in the interval 2j ≤ k < 2j+1 are guaranteed to provide a total
reduction in F that is only of magnitude ε2/j, which is sufficient to prove the
theorem. Let ε and every ‖g

k
‖ be of magnitude one, and let it be necessary for

the reduction in F to be about 10 in order to achieve termination. Then the
largest value of j that is relevant, j∗ say, may have to satisfy

∑j∗
j=1 j

−1 = 10,
which implies j∗ ≈ e10 > 22000, giving the possibility that 222000 iterations may
be required. Although this number is monstrous, our proof of convergence may
be welcome, because each Bk can be the least favourable matrix that satisfies the
bound (2.10), each xk can be any vector in Rn that is permitted by the conditions
(2.9), and the constraints (2.8) allow much freedom in the adjustment of the trust
region radius. One benefit of our work is that there is now no need to search
for a counter-example if one wishes to know whether or not the test (1.2) for
termination is satisfied eventually. Furthermore, if the convergence of a single
efficient trust region method is investigated, then it is likely that our theorem
will make a useful start by providing the property that ‖∇F (xk)‖ does not stay
bounded away from zero as k→∞.
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