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Abstract

In this brief review we describe the coming of age of Magnus expans®as asymp-
totic and numerical tool in the investigation of linear differential equationslireayroup
and homogeneous-space setting. Special attention is afforded to thieomections be-
tween modern theory afeometric numerical integratioand other parts of mathematics:
from abstract algebra to differential geometry and combinatorics, elvtty to classical
numerical analysis.

1 Liegroup equations

Numerical solution of evolutionary differential equatfis as old as the theory of differential
equations itself: although proper numerical analysis féBntial equations commenced with
Leonhard Euler, earliead hocnumerical ideas abound in the works of Sir Isaac Newton and
of Gottfried von Leibnitz. (A brief, yet outstanding hisical synopsis can be found in (Hairer,
Ngrsett & Wanner 1986).) In the last fifty years numericallgsia of differential equations
has developed in leaps and bounds, in parallel with the #walin computing power and
speed.

On the face of it, all is well in the numerical kingdom. Howgve closer look reveals a
worrying gap between the efforts of numerical analysts dngluoe mathematicians. Thus,
pure mathematicians expand a very great deal of effort ttys@ajualitative properties of
differential equations but they usually fall short of flagliout numbers. At the same time,
numerical analysts are extraordinarily successful in peaty numbers and figures with ap-
propriately small errors but these numbers and figuresaylgitail to respect qualitative prop-
erties of differential equations. This disparity betweaalgsis and computation motivated in
the last decade the emergence of a new paradigge@fetric numerical integration (GNI):
to seek computational methods that render exactly impbegaalitative features of differen-
tial equations. Examples of qualitative features whoseemation under discretization is
important include the symplectic structure of Hamilton&rd Lie—Poisson systems (Hairer,
Lubich & Wanner 2003, Hairer, Lubich & Wanner 2006, Leimkeih& Reich 2004, Marsden
& West 2001), volume conservation of divergence-free défftial systems (McLachlan &



Quispel 2002), Lie symmetries (Hubert 2000) and, closenéostubject matter of this review,
evolution on a Lie group or a homogeneous space (Iserlestidufaas, Ngrsett & Zanna
2000).

It is vital to emphasize that this respect for qualitativel geometric features under dis-
cretization has a threefold purpose. Firstly, qualitatiibutes are central to the mathe-
matical description of differential equations. Secondhey often have profound physical
significance — after all, conservation of volume, angulammantum or particle labelling is
critical once we model scientific phenomena with differahgiquations. Finally, both numer-
ical experience and a wealth of mathematical results ineliteat conservation of geometric
features leads to numerical algorithms that produce sagmtly smaller error in long-term
integration (Hairer et al. 2006).

The concern of this review is in differential equations iy in homogeneous spaces.
We recall thatM is a homogeneous space, acted upon by the Lie géoupthere exists a
mapA : G x M — M such that

)\(gla)‘(927x)) = )\(gl '927x) v g1, 92 € g7 HARS M7
Vaj,ze €M Jg€G:  Ag,z1) = 2a.

A differential equation evolving io\1 can be always written in the form
Y =N(Aty)y, t=to,  ylto) €M, 1.1

where), : g — X (M) andA : [tg,00) x M — g. Hereg is the Lie algebra corresponding
to the Lie groupg, while X (M) is the linear space (actually, a Lie algebra equipped with
a suitable bracket) of vector fields ovt (Iserles et al. 2000). For (1.1) to make sense as a
differential equation, we require that is Lipschitz in a suitable norm, but in practice it is
usual to impose greater smoothness. Not to be let astray sidgrations marginal to our
main narrative, we assume in the sequel tha a C*> function.

Important examples of (1.1) include

e Lie-group equations
y = A(t,y)y, t>to,  A:l[to,00)xG —g, (1.2)
wheng acts on itself M = G.
e Isospectral flows
y' =I[Bty),yl, t=to, y(0)€Sym(n),  B:ty,00)xSym(n) — so(n),

whereSym(n) andso(n) are then x n real symmetric and skew-symmetric matrices,
respectively. In that case it is known that the invarianthefsystem are the eigenvalues
of y(0) and that the underlying group action is$(n), acting by similarity.

e Ordinary differential equations evolving on a sphere,

Y =A(yt) xy(t), t>ts, A:R* R

o Differential flows onStiefeland Grassmann manifolds, Frenet—Serret equatians
many other differential systems of interest.



Typically, the manifoldM, once embedded in a Euclidean space, is a nonlinear steuctur
Classical discretization methods are notoriously bad speeting nonlinear invariants. The
main paradigm oEie-group methodss to rephrase the underlying equation (1.1) aalgebra
actionby g. Sinceg is a linear space, we can expect all reasonable discretizatethods to
respect its structure.

Except for minor implementational details, there is no losgenerality in considering
the Lie-group equation (1.2) in place of the homogeneoasegquation (1.1): once we can
discretize inG, we can extend the procedure to all manifolds acted uponéogribup through
algebra actions (Iserles et al. 2000).

We say that the smooth map: G — g is atrivialisation if it is one-to-one in a neigh-
bourhood of the identity and(I) = 0. (HereI and0 are the identity off and the zero of,
respectively.)

Similarly to classical discretization methods for ordindifferential equations, Lie-group
methods advance in a step-by-step fashion. Thus, we aimnpueyy ~ y(ty), where
ty =ty_1+hy_1, hy_1 > 0, N € N. To lift the equation from the group to its algebra,
we let

4(t) = o(Qt))yn,  tE[tn,tNt1],
wheref2 is our new unknownyhich evolves in the Lie algebga Substituting into (1.2), we
obtain thetrivialised equation

Q' =dog A, p(yn), t>tn, Qty) = 0. (1.3)
The mappingjqb;f need be computed individually for each trivialisation. Thest nat-
ural important and ubiquitous is the exponential trivialisn #(2) = e}, where the expo-
nential map from the algebra to the group is defined in thelusaaner. Note that oncg
is represented by matrices and -] is the standard matrix commutator, the exponential map

becomes the standard matrix exponentfal= Y"1 Q™. In that case we obtain the
dexpinv equation

o0 Bm
O =dexpy'A =) —radg A, (1.4)
m=0 :

where{B,, },,,>o are Bernoulli numbers andl, is the adjoint operator (Hausdorff 1906).
Another useful trivialisation applies only in the importazase wherg is a quadratic
matrix Lie group. Assuming thaf is represented by matrices, this means that there exists
p € GL(n) such that
G ={x € GL(n) : apz’ =p}.
Examples include the orthogonal groin), the symplectic grouSp(n) and the Lorenz
groupOs ;. The corresponding Lie algebra is

g={begln): bp+pb" =0}.
In the instance of quadratic Lie groups we might useGhagley trivialisation
o) =~ Lto)'(I+42), zeg
and the outcome is thdcayinv equation
Q' =deayg' A=A — 3[Q, A] - 10AQ (1.5)

— it is easy to prove that in a quadratic Lie algebya € g impliesbeb € g (Lewis & Simo
1994).



2 Lie-algebraic expansions

2.1 TheMagnusexpansion

We consider the Lie-group equation (1.2), except that, Herttme being, we stipulate that
A = A(t). The outcome is the linear equation

v =At)y, t>ty, ylto) =y €G. (2.1)

Our point of departure is a paper by Magnus (1954), whichepresl an intriguing expansion
of the solution of (2.1) subject to exponential trivialisat Thus, the functiofi in (1.4) can
be expanded in the form

"t "t &1
a(t) = / A()de — L / / A(E2), A(61)] dés déy (2.2)
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The above expansion has a number of interesting featurestlyFit is guaranteed to remain
within a Lie algebra, since it is a linear combination of tsrwhich, as one can immediately
verify, live in g. Secondly, ifg is Abelian than all the terms except for the leading integrel
zero. Thirdly, the complexity of terms grows rapidly (indeexponentially) and there is little
pointin continuing this expansion (or indeed proving itew&rgence) unless we can identify a
simple recursive or combinatorial rule to generate all eeimma transparent manner. Fourthly,
the use of a truncatellagnus expansiof2.2) as a numerical tool is fraught with potential
difficulties because multivariate quadrature is notoripexpensive (Davis & Rabinowitz
1984).

Wilhelm Magnus himself neither derived a general formulg(#2) nor proved conditions
for convergence. (Indeed, he did not point out the Lie-algielnature of the expansion.) This
did not prevent the Magnus expansion from being used iralifehundreds of papers, mostly
in theoretical physics, quantum chemistry and stochastityais, as a perturbative tool in the
solution of linear systems of the form (2.1).

Combinatorial formulae for general terms in the Magnus egjmmhave been presented
by several authors (Bialynicki-Birula, Mielnik & Plebaki 1969, Fomenko & Chakon 1990,



Mielnik & Plebahski 1970, Strichartz 1987) but they are probably too coocapéid and un-
wieldy for practical use at high orders. A practical recugsalgorithm, allowing for easy and
transparent generation of Magnus expansion terms, haspgoesented by Iserles & Narsett
(1999) and it is based on a homomorphism between a subsetramiooted trees and Mag-
nus terms. It rests upon the following two composition rules

1. The termA(t) is associated with the trivial tree;

2. If C., (t) andC,, are associated with the rooted tregsandr, respectively then

T1

t 72
[ / C-(8)dg, CL (1) is associated with i\/
tN

Let 7 denote the set of all trees that can be generated by thisquozeMoreover, we
denote by7Z,, ¢ 7, m € Z., the set of all such trees of height (i.e., with m ‘vertical
edges), henc& = J,,,~o Zm-

It is easy to confirm that eache 7,,, m € N, can be expressed in the form

Ts

T3
T2

T= , (2.3)

T1

wherer, € 7, and 22:1 I + s = m. We define a functiomv : 7 — Q inductively as
follows. For the sole element iy, we letw(®) = 1, otherwise we use (2.3) and set

a(r) = 22 T alry),

sl
whereB; is thesth Bernoulli number.

Theorem 1 The expansion

mw=§j§jwﬂ[tm9% (2.4)

m=0r1€e7,,

converges to the solution of the dexpinv equation (1.4jlds& Ngrsett 1999). Given a norm
|| - ||, the optimal convergence condition is

llM@M%Sw 2.5)

(Moan & Niesen 2008).



Appending a root to trees ifi, a procedure which, consistently with our composition

rules, stands for integration, we can render the Magnusrsipa (2.2) concisely and trans-
parently in terms of rooted trees,

QMI%%/MEH&/HL%R;L&

With minimal training, it becomes surprisingly easy to dé¢he structure of an expansion
term, expressed in the terminology of commutators and iategdirectly from the underlying
tree.

As an example of synthesising a complex tree from simplestitments, consider the
following member of7y,

T =

(There are ten ‘vertical’ edges but we do not count the onenativeg from the root.) More-
over,s = 4 and we identify the four “sub-trees” as

7'1& 7'2=I7 7'3%/, 74%

with



SinceB, /4! = 720, we deduce that
_ 1 1 1 1 _ 1
oT) = =75 X 13 X 1 X (=3) X 1 = o130~

2.2 Truncating Magnus expansions

Once we wish to use (2.4) as either numerical or perturb&biok we need to truncate the
expansion. The most obvious truncation is

Q.(t) = a(r / C- (&) d¢, tetn,tng]
m= O'reTm

Sincer € 7, implies thatC,(t) = O(h}}) (recall thatty1 = tx + hy), we deduce that
Q. (t) = Q(t)+O(Ry™). This, however, is suboptimal (Iserles, Ngrsett & Rasmugee1).

The underlying idea in the above truncation was to alloaatathC,, v € 7,,, thegrade
B(7) = m and allow the grades to propagate according to the rule

T1

TZK/ = B(r) = B(m1) + B(12) + 1

In that case’; (t) = O(hX,) wherep > (7). However, if last inequality is sharp then we
might be including superfluous terms in the truncation.

The remedy is to allocate grades differently. Thus, we saythe 7 is of gradey(r)
if C-(t) = O(hY,) for p > ~(7) and, for at least onel : C([tn,tn11] — @), itis true

thatC-(t) = O(h']\,(”) 1 We let %, stand for the set of alt € 7 such thaty(r) = m and

truncate
0= 3 / (©)de, L€ ftnstnril:

m=0T1€EF,,

The tail is agair@(h}"\,“) but, by constructions2(,; contains the least possible number of
terms! Specifically, thes function propagates according to the recursion

T1

T2
T :L\/ = v(r) = { '7(7'1; izgzg i ;: 1 # T2,

~v(71 T = To.

This minor difference with3(7) leads to significant saving in the number of terms for large
Asymptotically,

limsup(#7,,)Y™ =4,  limsup(#F,,)"™ ~ 3.1167417747

m—0o0 m—00

(Iserles et al. 2001).

1t is useful to regardd as a matrix — because of the Ado theorem every finite-dimenisisgmalgebra admits a
faithful representation, hence this represents no loseéglity (Varadarajan 1984).



2.3 Alternative Lie-algebraic expansions

Magnus expansions represent just one, although arguablintst important, instance of a
Lie-algebraic expansion. One alternative arefeexpansions

Yltn ) = exp ( / Bt dé‘) exp ( / B ds) exp ( / B d&) i)

tN tN tn

whereB, = A, while eachB,, form € N can be computed from,,, | (Fer 1958). Although

it can also be rendered conveniently in the terminology oted trees (Iserles et al. 2000),
it is possible to prove that its numerical implementatiosassistently more expensive than
that of Magnus expansions (Celledoni, Iserles, Ngrsett & @002).

A version of Magnus expansions, using rooted trees withueldleaves, has been devel-
oped for equations of the forgl = A(t)y — yB(t), where both4 and B evolve ing (Iserles
2001a). Equations of this kind feature in the computation of Flegexponents. Another
Magnus expansion was presented for the computation of tdifear)so(n) action in the
computation of the isospectrdbuble-bracket equationg = [y, [M,y]], y(0) € Sym(n),
whereM € so(n) (Iserles 2002).

It is possible to extend Magnus expansions to a generalmeatisetting/’ = A(t, y)y,
y(to) € G, whereA : [tp,0) x G — g (Zanna 1999, Casas & Iserles 2006), but this is ar-
guably less efficient and more complicated than the ustuoige—Kutta—Munthe-Kaas meth-
ods(Munthe-Kaas 1998).

An important alternative to the expansions of the kind neei@ in this paper is provided
by expansions based @anonical coordinates of the second kind

y(t) = e71()C1 o2 (1)Cs ~e"q(t)CQy(tN),

whereq > dimg, {C4,...,C,} is aframe ofg andoy, ..., 0, are scalar functions (Crouch
& Grossman 1993, Owren & Marthinsen 2001).

All the above are based on the exponential trivialisatiomc&) however, we expand
Lie-group and homogeneous-space equations acted by geddeagroups, there are clear
advantages in cost and complexity in using the Cayley tigation and the dcayinv equation
(1.5). The entire theory of this section can be extended i g&tting once we associate
expansion terms withicolour rooted treesSpecifically, we have the expansion

a =3 T S oD, i, (2.6)

m=0 TESm

where expansion terms are assembled according to the fojav@mposition rules,

1. We commence frorﬁttN A(€) d¢ and associate to it the trae

2. Having already associatdd. (¢) with the treer, we associate

T1

/[Df(é),A(g)]dg with Y

tN



3. Having already associatdd,, (t) and D, (t) with the treesr, andr,, respectively, we

associate
T1 T2

/tDﬂ@)A(s)Dﬁ(odf with Y

S, stands for the set of all such trees with+ 1 ‘vertical’ edges (corresponding to integra-
tion), while §(7) stands for the number of white nodes in the rooted tréiserles 2001).
The Cayley expansiois

QMI§T/+; ff;Lj;;/+jE§/
+;Y(‘+;k?+---.

It is easy to verify that the term corresponding to the sixée tbelongs to the quadratic Lie
algebra, but this is not the case with regard to either thergbvor the eighth tree. Fortunately,
the sum of these two terms lies in the algebra. We will retartinis issue in Section 3.

2.4 Rooted treesand Hopf algebras

Rooted trees and forests have played an important role irericah mathematics as a conve-
nient organising principle to elucidate combinatoriatisture of algorithms. An incomplete
list includes

e Runge—Kutta methods and their expansiorBiseries(Butcher 1963, Butcher 1972,
Hairer & Wanner 1974);

e Symplectic and partitioned Runge—Kutta methods (Abia &zS8arna 1993, Hairer et
al. 2006);

e Splitting and composition of vector fields (Murua & Sanz8e1999, McLachlan &
Quispel 2002);

e Expansions of iterated integrals (Chen 1977);
e Nonlinear functional equations with proportional delasefles 1994);

e \olume preservation under discretization (Chartier & Mu2007, Iserles, Quispel &
Tse 2007).
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Some time ago Grossman & Larson (1989) identifiedBh&her groupthe algebraic struc-
ture underlying B-series, with Hopf algebra. The fundamental importance of algebras of
rooted trees and their connections with the representatidghe renormalisation group of
quantum field theory has been recognised in (Connes & Krelri88, Connes & Kreimer
2000), and this has led to a great deal of interest and furdsearch, not least on geometric
integrators: cf. for example (Munthe-Kaas & Wright 2008, Mai2006).

3 Quadratureand graded algebras

3.1 Magnusquadrature

Consider again the expansion (2.2), this time from a prakstandpoint. Given a matrix
function A and lettingt = tx.1, we wish to compute integrals therein by quadrature. Each
term is an integral of a nested commutator over a multivagatytope and it is well known
that multivariate quadrature is excessively expensiveeims both of function evaluations
and algebraic operations (Davis & Rabinowitz 1984). Indegslved from the standpoint of
conventional quadrature, the computation of truncatedesion(2,(ty1) for r > 2 isim-
practical. However, the special structure of Magnus exiparterms lends itself to quadrature
formulae that are surprisingly economical in terms of fumetevaluations.

For simplicity, we assume in this section thiat = 0 and leth = hy.

Theorem 2 (Iserles & Ngrsett 1999) Let;, co, ..., ¢, be distinct points in0, 1] and set
Ay, = hA(cgh), k=1,...,v. Given aterm

ImszwwA@wA@M&~@%l (3.1)

that features in the Magnus expansion (2.4) (hefeis a polytope, whilel is a multilinear
form, consisting of nested commutators), we approximde the quadrature formula

QPI= Y beL(Ay,, Ay, -+, AL), (3.2)
ecC?
whereC is the set of all words of lengthfrom the alphabef1, 2, ..., v}, while the weights

be can be computed by an appropriate explicit formula. Then
QIP]=1[Pl+O(h"™),

whereo is the order of classical interpolatory quadrature iy 1] with constant weight func-
tion and the nodesy, co, . .., c,.

In particular, ifeq, . . ., ¢, are the nodes of Gaussian quadrature (that is, zeros of tie Le
endre polynomiaP,,, shifted to[0, 1]) theno = 2v.

Note that the calculation af)[P] requires justs function values. Moreovethe same
function values are recycled for all the polytopés!other words, to discretiz€,;(h) con-
sistently with erroiO (h"+1), we require just (- + 1)/2] function evaluations altogether.

Thequid pro quais the huge number of algebraic operations needed to comjjiigfor
all terms in the truncated Magnus expansion, both becagsaumber of expansion terms
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grows exponentially fast and sin€g) is a large set of cardinality that, again, grows expo-
nentially with p. The cost of linear algebra can be reduced dramatically bpl@rimg an
idea originally due to Munthe-Kaas & Owren (1999). To thisleve need to assume that the
nodescy, ca, . . ., ¢, are symmetric with respect to the poiiflt— not an undue hardship since
our natural choice, Gaussian points, obey this.

We replace{ Ay, As, ..., A, } by their linear combination§By, Bs, ..., B, } such that

v

Z(Ck—%)lilBl = Ay, k=1,2,...,v.
=1

While Aj, = O(h), itis possible to prove thaB, = O(h*), k= 1,...,v. Consequently,
L(Apy, Apyy oo Ar)) = O(RP),  L(By,, B, ..., Bi,) = O(hFTh2t+h) - (3.3)

We say thatL(Ay,, Ay,, ..., Ay,) is of gradep, while L(By,, By,, ..., By,) is of grade
P k
i=1 "
Since each,. is a linear combination oB;s while L is a multilinear function, we can
replace (3.2) with

Q[P] = Z BgL(Bll , By, ... ,Blp), (3.4)
0cC”

where the weights, can be obtained from thigs by labourous, yet transparent calculation.
Rewriting (3.2) in the form (3.4) is a prerequisite for thrgeps that, in their totality,
discard the great majority of terms, thereby rendering tist of linear algebra considerably
more affordable.
Firstly, recalling that is the order of the quadrature, hence that we already incarran
of O(he 1) in the formation ofQ[P], we can discard in (3.4) all terms which afgh""!)
for k > o. This means that we replacg; by EJ; C C, such that € 6‘: if > 1l <o.
Secondly, it has been proved by Iserles et al. (2001) thatthet Magnus expansion (2.4)
and the truncated expansiéh,; aretime symmetricthey can be expanded in odd powers
of h. Because of the symmetry of the nodss. .., c, with respect to the midpoint, this
feature is inherited by the quadrature formula. This mehaslinear combinations of terms
of even grade vanish and we may discard them from the lineabowtion. We thus sum
overC’; C 5; wherel € 6; if 2221 l; is even: this gets rid of roughly half the terms!
Finally, we exploit in an organised manner the range of redanies inherent in a Lie
algebra by virtue of the skew symmetry of the Lie bracket &edJacobi identity. The suitable
formalism is that ofyraded Lie algebraand we have already alluded to it in our definition of
a grade of an expansion term.
Let G = {G,}icr be a set ofgeneratorswhere  is either finite or countable. A Lie
algebraf is freeover I if

i. ltistrue thatG; € f,i € I,

ii. Forany Lie algebrd and any function — b there exists a unique Lie-algebra homo-
morphismr : § — b such thatr(G;) = H; € hforalli € I.
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Let f be a free Lie algebra. A function : G — N is said to be agradingof j. Itis
extended ta : f — N by recursion,

H = [Hl,HQ] = W(H) = w(Hl) +W(H2)

Grading imposes an order upfrGivenG, H € §, we say thaG < H if eitherw(G) < w(H)
or w(G) = w(H) and G precedesH in the lexicographic order imposed by the recursive
construction off from the generatoré&:.

The Hall basisH of f is constructed recursively so as to contain terms of leasiegr
specifically, it consists of

1. The seti of generators;

3. Elements of the forfH;, [H;, Hy]] whereH,, H;, Hy,, [H;, H;] € HandH; < H; <
[Hj, Hy].

Let/ ={1,2,...,v}. We denote byC!" the linear space of all terms of gradec N and
observe thaf = @,°_, K. The algorithm that has led us to the Hall basis can be extende
transparently to provide a basis/of.

We consider free Lie algebras generated By, As,..., A, } and{B;, By, ..., B,} re-
spectively, with the gradings(Ay) = 1 andw(Bj) = k. Note the significance of grades to
our narrativew(G) = k means tha& = O(h*). Note further that we need to retain @{P]
only termsH such thatw(H) < o. Thus, and in addition to the steps that have taken us from
C,to 6’; to 6’: we express all terms of gradeso as linear combinations of elements in
the Hall bases ok} for m < ¢. The savings implicit in this procedure are underlied by a
generalisation of the Witt formula,

dim K7 = % > p(d) (2 AT/ d)

d|m

(Munthe-Kaas & Owren 1999), wheyeis theMobius function

1, d=1,
p(d) = ¢ (=1)9, d=pipa---pg, P1 < p2 < -+ < pg Prime
0, otherwise,
r = max;—1, _,w(G;) and Ay, Ao, ..., A\, € C are the zeros of — >/ | 2<% Our

conclusion is thadim £} is surprisingly small, and this can be exploited to redueesiiume
of linear algebra.

We let p,, = dim K" for the generatoré&s = {4, As,..., A} andp,, = dim K
for G = {By, Bs,...,B,}. Choosing Gaussian nodes, cs,...,c, (hencec = 2v) and
expressing all terms i@[P] in a Hall basis, we compare in Table 1 the number of terms using
the two sets of generators and, for the latter, discardintgiahs of even grade. The savings,
in particular for largev, are remarkable. Insofar as numerical analysis is condetthey
represent a difference between a mere curiosity and artigfe@omputational algorithm.

Even this, though, is not the final word in applying algoritbimmgenuity, underpinned by
algebraic theory, to the design of effective numerical Megyimtegrators. Blanes, Casas &
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Table 1: The number of terms in different quadrature formigle€&saussian nodes.
1 2 3 4 5
c=2v |2 4 6 8 10

2v—1

me 1 5 80 3304 1256567
m=1

2v—1

> m |1 3 10 33 111
m=1
2v—1

pm |1 2 7 22 73
nTo:dld

Ros (2000) have developed a technique which, exploitintpéursymmetries and structure of
the underlying problem, allows to aggregate terms and eeéluther the cost of computation
per step. For example, for= 3 we commence from Gaussian nodes, whereby
Ay =hA((S = YB)h), Ay =hA(SR),  As = hA((L + ¥3)h)
and
By =4y,  By=YI5(A3-A)),  By=19(4;3 24, + A)).

Once we exploit all the three mechanisms that have led usetbdttom row of Table 1, we
obtain the sixth-order method

Q= By + 1583 — 15[B1, Ba] + 5i5(B2, Bs] + 555(B1. [B1, Bs]] — 515 [Ba, [B1, Ba]]
+%[Bla [Bla [81732]]]

Note that only odd-grade terms are present and that we nesairipute seven commutators:
this is consistent with Table 1.

Alternatively, introducing? (k") changes that have no bearing on the order of the method,
we compute

Cy = [By, Bs],

Cy = [B1,2B3 + (4],

C3 = [-20B; — B3 + C1, By — 55C4],
Q=B1 +1712B3+ﬁ037

another sixth-order approximation but requiring just hecemmutators per step.

3.2 Cayley expansionsand Hierarchical algebras

Wishing to do unto the truncated Cayley expansion (2.6) wiethave done for Magnus
expansions, we are stumped by the presence of terms of thefofB € g, whereB,C € g
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and, more generally, by the fact that a quadratic Lie algebcdosed under the symmetric
productBCD + DCB for all B,C, D € g. Graded free Lie algebras are inadequate for the
task in hand, and this has motivated the introductioniefarchical algebraglserles & Zanna
2000).

Let (g, +) be an Abelian group over a field of zero characteristic andrasghe existence
of a countable family ofn-nary operations

m times

[[-,...,~ﬂm:m—>g, m e N,
subject to the following three axioms,
Alternate symmetry: For everym € NandFy,..., F, € ¢
[F1, Foy ooy Folm + (=) [Fony Frne1y - -« Film = 0,
where0 is the zero ofy;
Multilinearity: Each[-,..., -], is linear in all its components;
Hierarchy condition: Foreverym,n € N, k € {1,2,...,m},
Fi,....,Fx_1,Fps1,....,Fh €9 and Ey,....,E, €9
it is true that

HFlv"'7Fk—17[[Ela"'aEnﬂnaFk+17-"7Fm]]m
- [[Flv--~7Fk—17E1>---aE'rLaFk'—i-la'--;FmHm-‘rn—l
- (_1>7L[[F17'"7F’€717En7-'-7E17F]€+17"-aFmﬂm+n71'

Such ag, equipped with the above structure, is callduerarchical algebra.

Theorem 3 (Iserles & Zanna 2000)

1. Every hierarchical algebra is a Lie algebra with respexthe commutatofF;, F»] =
[F1, F2]2;

2. Every quadratic Lie algebra is a hierarchical algebra fvit

[[F17F25-~-aFmﬂm:F1F2"'Fm_(_l)mFmFm—l"‘Fh m € N.

We define &ree hierarchical algebra (FHAJ in the usual manner. An elemeht € |
is said to beprimitive if it is of the form F' = [G;,, G,,, ..., G, ], for somer € N, where
G ={G4,...,G,} are the generators of a FHA.

Lemma4 (Iserles & Zanna 2000) Every element of a free hierarchidgelra can be rep-
resented as a linear combination of primitive elements.
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Grading can be imposed on a FHA exactly like before. Let

v

u(t)y=1- Z 2#(Cr)

k=1

whereG = {G,,...,G,}. Itis possible to prove with much effort that, formally,

- 1 t
> o dim Ky =4 {u+“( ) } ,

2
] ) " ult?)
where, as beforel’?" stands for the linear space spanned by graderms.
Assuming further that the zerosg, \o, ..., A, of u (which we have already encountered

in the previous subsection, recall that max w(G,)) are distinct, it follows that

- )‘I;mil —m 1 1/2 1/2
o 12 O N
=1

r )\—m—3/2

. 2m+1 __ 1 k

dim K, + 752 ) {
k=1

dim 2™ =

1

2
k

“TE R O = w1

Since Hall-type bases can be obtained by recursion withiA Betting, we have all the
building blocks to construct efficient quadratures assediaith Cayley expansions. For ex-
ample, a sixth-order method (with the safg Bs, Bs as for the sixth-order Magnus method
of the last subsection) reads (in terms of thenary products — this somewhat complicates
the presentation but renders it consistent with our frannkwo

Q = [Bilh + 5[Bsli — 5[B1, Bals — 5 [B1, B1, Bils + 555 [ B2, Bs]»
+ 515 [B1. B2, Ba]s — 555 [B1, Bi, Bs]s — 555 [ B2, B1, Ba]ls — 165 B, B3, Bi]s
+ ﬁ[[BhBl,Bth]]z; - ﬁﬂBhBth,Bﬂh + ﬁ[[Bl,BhBl»BhBl]]Ey

Note that, again, only terms of odd grade are required. Alghamore complicated thap, to
say nothing of?, this approach has an important advantage in the case ofaitalde alge-
bras, in particular when the dimension is large, since aghlinear systems is considerably
cheaper than computing a matrix exponential.
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