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Abstract

In this brief review we describe the coming of age of Magnus expansionsas an asymp-
totic and numerical tool in the investigation of linear differential equations in aLie-group
and homogeneous-space setting. Special attention is afforded to the many connections be-
tween modern theory ofgeometric numerical integrationand other parts of mathematics:
from abstract algebra to differential geometry and combinatorics, all the way to classical
numerical analysis.

1 Lie-group equations

Numerical solution of evolutionary differential equations is as old as the theory of differential
equations itself: although proper numerical analysis of differential equations commenced with
Leonhard Euler, earlierad hocnumerical ideas abound in the works of Sir Isaac Newton and
of Gottfried von Leibnitz. (A brief, yet outstanding historical synopsis can be found in (Hairer,
Nørsett & Wanner 1986).) In the last fifty years numerical analysis of differential equations
has developed in leaps and bounds, in parallel with the evolution in computing power and
speed.

On the face of it, all is well in the numerical kingdom. However, a closer look reveals a
worrying gap between the efforts of numerical analysts and of pure mathematicians. Thus,
pure mathematicians expand a very great deal of effort to analyse qualitative properties of
differential equations but they usually fall short of fleshing out numbers. At the same time,
numerical analysts are extraordinarily successful in producing numbers and figures with ap-
propriately small errors but these numbers and figures typically fail to respect qualitative prop-
erties of differential equations. This disparity between analysis and computation motivated in
the last decade the emergence of a new paradigm ofgeometric numerical integration (GNI):
to seek computational methods that render exactly important qualitative features of differen-
tial equations. Examples of qualitative features whose preservation under discretization is
important include the symplectic structure of Hamiltonianand Lie–Poisson systems (Hairer,
Lubich & Wanner 2003, Hairer, Lubich & Wanner 2006, Leimkuhler & Reich 2004, Marsden
& West 2001), volume conservation of divergence-free differential systems (McLachlan &
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Quispel 2002), Lie symmetries (Hubert 2000) and, closer to the subject matter of this review,
evolution on a Lie group or a homogeneous space (Iserles, Munthe-Kaas, Nørsett & Zanna
2000).

It is vital to emphasize that this respect for qualitative and geometric features under dis-
cretization has a threefold purpose. Firstly, qualitativeattributes are central to the mathe-
matical description of differential equations. Secondly,they often have profound physical
significance – after all, conservation of volume, angular momentum or particle labelling is
critical once we model scientific phenomena with differential equations. Finally, both numer-
ical experience and a wealth of mathematical results indicate that conservation of geometric
features leads to numerical algorithms that produce significantly smaller error in long-term
integration (Hairer et al. 2006).

The concern of this review is in differential equations evolving in homogeneous spaces.
We recall thatM is a homogeneous space, acted upon by the Lie groupG, if there exists a
mapλ : G ×M → M such that

λ(g1, λ(g2, x)) = λ(g1 · g2, x) ∀ g1, g2 ∈ G, x ∈ M,

∀ x1, x2 ∈ M ∃ g ∈ G : λ(g, x1) = x2.

A differential equation evolving inM can be always written in the form

y′ = λ∗(A(t, y))y, t ≥ t0, y(t0) ∈ M, (1.1)

whereλ∗ : g → X (M) andA : [t0,∞) ×M → g. Hereg is the Lie algebra corresponding
to the Lie groupG, while X (M) is the linear space (actually, a Lie algebra equipped with
a suitable bracket) of vector fields onM (Iserles et al. 2000). For (1.1) to make sense as a
differential equation, we require thatA is Lipschitz in a suitable norm, but in practice it is
usual to impose greater smoothness. Not to be let astray by considerations marginal to our
main narrative, we assume in the sequel thatA is aC∞ function.

Important examples of (1.1) include

• Lie-group equations

y′ = A(t, y)y, t ≥ t0, A : [t0,∞) × G → g, (1.2)

whenG acts on itself,M = G.

• Isospectral flows

y′ = [B(t, y), y], t ≥ t0, y(0) ∈ Sym(n), B : [t0,∞)×Sym(n) → so(n),

whereSym(n) andso(n) are then × n real symmetric and skew-symmetric matrices,
respectively. In that case it is known that the invariants ofthe system are the eigenvalues
of y(0) and that the underlying group action is ofSO(n), acting by similarity.

• Ordinary differential equations evolving on a sphere,

y′ = A(y(t)) × y(t), t ≥ t0, A : R
3 → R

3.

• Differential flows onStiefeland Grassmann manifolds, Frenet–Serret equationsand
many other differential systems of interest.
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Typically, the manifoldM, once embedded in a Euclidean space, is a nonlinear structure.
Classical discretization methods are notoriously bad in respecting nonlinear invariants. The
main paradigm ofLie-group methodsis to rephrase the underlying equation (1.1) as analgebra
actionby g. Sinceg is a linear space, we can expect all reasonable discretization methods to
respect its structure.

Except for minor implementational details, there is no lossof generality in considering
the Lie-group equation (1.2) in place of the homogeneous-space equation (1.1): once we can
discretize inG, we can extend the procedure to all manifolds acted upon by the group through
algebra actions (Iserles et al. 2000).

We say that the smooth mapφ : G → g is a trivialisation if it is one-to-one in a neigh-
bourhood of the identity andφ(I) = 0. (HereI and0 are the identity ofG and the zero ofg,
respectively.)

Similarly to classical discretization methods for ordinary differential equations, Lie-group
methods advance in a step-by-step fashion. Thus, we aim to computeyN ≈ y(tN ), where
tN = tN−1 + hN−1, hN−1 > 0, N ∈ N. To lift the equation from the group to its algebra,
we let

ỹ(t) = φ(Ω(t))yN , t ∈ [tN , tN+1],

whereΩ is our new unknown,which evolves in the Lie algebrag. Substituting into (1.2), we
obtain thetrivialised equation

Ω′ = dφ−1
Ω A(t, φ(Ω)yN ), t ≥ tN , Ω(tN ) = 0. (1.3)

The mappingdφ−1
Ω need be computed individually for each trivialisation. Themost nat-

ural important and ubiquitous is the exponential trivialisation φ(Ω) = eΩ, where the expo-
nential map from the algebra to the group is defined in the usual manner. Note that onceg
is represented by matrices and[ · , · ] is the standard matrix commutator, the exponential map
becomes the standard matrix exponentialeΩ =

∑∞
m=0

1
m!Ω

m. In that case we obtain the
dexpinv equation

Ω′ = dexp−1
Ω A =

∞∑

m=0

Bm

m!
adm

Ω A, (1.4)

where{Bm}m≥0 are Bernoulli numbers andadΩ is the adjoint operator (Hausdorff 1906).
Another useful trivialisation applies only in the important case whenG is a quadratic

matrix Lie group. Assuming thatG is represented by matrices, this means that there exists
p ∈ GL(n) such that

G = {x ∈ GL(n) : xpx⊤ = p}.

Examples include the orthogonal groupO(n), the symplectic groupSp(n) and the Lorenz
groupO3,1. The corresponding Lie algebra is

g = {b ∈ gl(n) : bp + pb⊤ = 0}.

In the instance of quadratic Lie groups we might use theCayley trivialisation

φ(x) = (I − 1
2x)−1(I + 1

2x), x ∈ g

and the outcome is thedcayinv equation

Ω′ = dcay−1
Ω A = A − 1

2 [Ω, A] − 1
4ΩAΩ (1.5)

– it is easy to prove that in a quadratic Lie algebrab, c ∈ g impliesbcb ∈ g (Lewis & Simo
1994).
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2 Lie-algebraic expansions

2.1 The Magnus expansion

We consider the Lie-group equation (1.2), except that, for the time being, we stipulate that
A = A(t). The outcome is the linear equation

y′ = A(t)y, t ≥ t0, y(t0) = y0 ∈ G. (2.1)

Our point of departure is a paper by Magnus (1954), which presented an intriguing expansion
of the solution of (2.1) subject to exponential trivialisation. Thus, the functionΩ in (1.4) can
be expanded in the form

Ω(t) =

∫ t

tN

A(ξ) dξ − 1
2

∫ t

tN

∫ ξ1

tN

[A(ξ2), A(ξ1)] dξ2 dξ1 (2.2)

+ 1
12

∫ t

tN

∫ ξ1

tN

∫ ξ1

tN

[A(ξ3), [A(ξ2), A(ξ1)]] dξ3 dξ2 dξ1

+ 1
4

∫ t

tN

∫ ξ1

tN

∫ ξ2

tN

[[A(ξ3), A(ξ2)], A(ξ1)] dξ3 dξ2 dξ1

− 1
8

∫ t

tN

∫ ξ1

tN

∫ ξ2

tN

∫ ξ3

tN

[[[A(ξ4), A(ξ3)], A(ξ2)], A(ξ1)] dξ4 dξ3 dξ2 dξ1

− 1
24

∫ t

tN

∫ ξ1

tN

∫ ξ1

tN

∫ ξ2

tN

[A(ξ4), [[A(ξ3), A(ξ2)], A(ξ1)]] dξ4 dξ3 dξ2 dξ1

− 1
24

∫ t

tN

∫ ξ1

tN

∫ ξ2

tN

∫ ξ2

tN

[[A(ξ4), [A(ξ3), A(ξ2)]], A(ξ1)] dξ4 dξ3 dξ2 dξ1

− 1
24

∫ t

tN

∫ ξ1

tN

∫ ξ2

tN

∫ ξ1

tN

[[A(ξ4), A(ξ2)], [A(ξ3), A(ξ1)]] dξ4 dξ3 dξ2 dξ1 + · · · .

The above expansion has a number of interesting features. Firstly, it is guaranteed to remain
within a Lie algebra, since it is a linear combination of terms which, as one can immediately
verify, live in g. Secondly, ifg is Abelian than all the terms except for the leading integralare
zero. Thirdly, the complexity of terms grows rapidly (indeed, exponentially) and there is little
point in continuing this expansion (or indeed proving its convergence) unless we can identify a
simple recursive or combinatorial rule to generate all terms in a transparent manner. Fourthly,
the use of a truncatedMagnus expansion(2.2) as a numerical tool is fraught with potential
difficulties because multivariate quadrature is notoriously expensive (Davis & Rabinowitz
1984).

Wilhelm Magnus himself neither derived a general formula for (2.2) nor proved conditions
for convergence. (Indeed, he did not point out the Lie-algebraic nature of the expansion.) This
did not prevent the Magnus expansion from being used in literally hundreds of papers, mostly
in theoretical physics, quantum chemistry and stochastic analysis, as a perturbative tool in the
solution of linear systems of the form (2.1).

Combinatorial formulæ for general terms in the Magnus expansion have been presented
by several authors (Bialynicki-Birula, Mielnik & Plebański 1969, Fomenko & Chakon 1990,
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Mielnik & Plebánski 1970, Strichartz 1987) but they are probably too complicated and un-
wieldy for practical use at high orders. A practical recursive algorithm, allowing for easy and
transparent generation of Magnus expansion terms, has beenpresented by Iserles & Nørsett
(1999) and it is based on a homomorphism between a subset of planar rooted trees and Mag-
nus terms. It rests upon the following two composition rules:

1. The termA(t) is associated with the trivial treet;

2. If Cτ1
(t) andCτ2

are associated with the rooted treesτ1 andτ2 respectively then

[∫ t

tN

Cτ1
(ξ) dξ, Cτ2

(t)

]
is associated with t@@ ��

t

τ1

τ2

.

Let T denote the set of all trees that can be generated by this procedure. Moreover, we
denote byTm ⊂ T , m ∈ Z+, the set of all such trees of heightm (i.e., with m ‘vertical’
edges), henceT =

⋃
m≥0 Tm.

It is easy to confirm that eachτ ∈ Tm, m ∈ N, can be expressed in the form

τ = t

t

t

t

t

t

t

t

t

@@
@@

@@
@@

�
��

��

···
···τ1

τ2

τ3

τs

, (2.3)

whereτk ∈ Tℓk
and

∑s
k=1 ℓk + s = m. We define a functionα : T → Q inductively as

follows. For the sole element inT0 we letα( t) = 1, otherwise we use (2.3) and set

α(τ) =
Bs

s!

s∏

j=1

α(τj),

whereBs is thesth Bernoulli number.

Theorem 1 The expansion

Ω(t) =
∞∑

m=0

∑

τ∈Tm

α(τ)

∫ t

tN

Cτ (ξ) dξ (2.4)

converges to the solution of the dexpinv equation (1.4) (Iserles & Nørsett 1999). Given a norm
‖ · ‖, the optimal convergence condition is

∫ t

tN

‖A(ξ)‖dξ ≤ π (2.5)

(Moan & Niesen 2008).
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Appending a root to trees inT , a procedure which, consistently with our composition
rules, stands for integration, we can render the Magnus expansion (2.2) concisely and trans-
parently in terms of rooted trees,

Ω ; t

t

− 1
2 t

t

t t

t

@@ ��

+ 1
12 t

t

t t

t t t

t

@@ �
��@@

+ 1
4 t

t

t t

t

t t

t

@@ ��

@@ ��

− 1
8 t

t

t

t

t

t

t

t

t

t

t

t

t

t

@@

@@

@@

��

��

��

− 1
24 t

t

t t

t t t

t

t t

t

@@ �
��@@

@@ ��

− 1
24 t

t

t t

t

t t

t

t t

t

Q
Q

�
�

@@ ��

@@ ��

− 1
24 t

t

t t

t

t t

t t t

t

@@ ��

@@ �
��@@

+ · · · .

With minimal training, it becomes surprisingly easy to ‘read’ the structure of an expansion
term, expressed in the terminology of commutators and integrals, directly from the underlying
tree.

As an example of synthesising a complex tree from simpler constituents, consider the
following member ofT9,

τ = t

tQ
Q

�
�

�
�

�
��

t

t@@ �
��t t

t

@@
t t

t

t@@
t

t

t@@
t

t@@ ��
t t

t

t@@
t

t@@ ��
t t

t@@ ��
t t

t

t

(There are ten ‘vertical’ edges but we do not count the one emanating from the root.) More-
over,s = 4 and we identify the four “sub-trees” as

τ1 = t

t@@ �
��t

t

t@@
t

t

t

, τ2 = t

t

, τ3 = t

t@@ ��
t

t

t

, τ4 = t

t@@ ��
t t

t@@ ��
t t

t

,

with
α(τ1) = 1

12 , α(τ2) = 1, α(τ3) = − 1
2 , α(τ4) = 1

4 .
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SinceB4/4! = − 1
720 , we deduce that

α(τ) = − 1
720 × 1

12 × 1 × (− 1
2 ) × 1

4 = 1
69120 .

2.2 Truncating Magnus expansions

Once we wish to use (2.4) as either numerical or perturbativetool, we need to truncate the
expansion. The most obvious truncation is

Ωr(t) =

r−1∑

m=0

∑

τ∈Tm

α(τ)

∫ t

tN

Cτ (ξ) dξ, t ∈ [tN , tN+1].

Sinceτ ∈ Tm implies thatCτ (t) = O(hm
N ) (recall thattN+1 = tN + hN ), we deduce that

Ωr(t) = Ω(t)+O
(
hr+1

N

)
. This, however, is suboptimal (Iserles, Nørsett & Rasmussen 2001).

The underlying idea in the above truncation was to allocate to eachCτ , τ ∈ Tm, thegrade
β(τ) = m and allow the grades to propagate according to the rule

τ = t@@ ��
t

τ1

τ2

⇒ β(τ) = β(τ1) + β(τ2) + 1.

In that caseCτ (t) = O(hp
N ) wherep ≥ β(τ). However, if last inequality is sharp then we

might be including superfluous terms in the truncation.
The remedy is to allocate grades differently. Thus, we say that τ ∈ T is of gradeγ(τ)

if Cτ (t) = O(hp
N ) for p ≥ γ(τ) and, for at least oneA : C∞([tN , tN+1] → g), it is true

thatCτ (t) = O
(
h

γ(τ)
N

)
.1 We letFm stand for the set of allτ ∈ T such thatγ(τ) = m and

truncate

Ω[r](t) =
r−1∑

m=0

∑

τ∈Fm

α(τ)

∫ t

tN

Cτ (ξ) dξ, t ∈ [tN , tN+1].

The tail is againO
(
hr+1

N

)
but, by construction,Ω[r] contains the least possible number of

terms! Specifically, theγ function propagates according to the recursion

τ = t@@ ��
t

τ1

τ2

⇒ γ(τ) =

{
γ(τ1) + γ(τ2) + 1, τ1 6= τ2,
γ(τ1) + γ(τ2) + 2, τ1 = τ2.

This minor difference withβ(τ) leads to significant saving in the number of terms for larger.
Asymptotically,

lim sup
m→∞

(#Tm)1/m = 4, lim sup
m→∞

(#Fm)1/m ≈ 3.1167417747

(Iserles et al. 2001).

1It is useful to regardA as a matrix – because of the Ado theorem every finite-dimensional Lie algebra admits a
faithful representation, hence this represents no loss of generality (Varadarajan 1984).
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2.3 Alternative Lie-algebraic expansions

Magnus expansions represent just one, although arguably the most important, instance of a
Lie-algebraic expansion. One alternative are theFer expansions

y(tN+1) = exp

(∫ tN+1

tN

B0(ξ) dξ

)
exp

(∫ tN+1

tN

B1(ξ) dξ

)
exp

(∫ tN+1

tN

B2(ξ) dξ

)
· · · y(tN )

whereB0 = A, while eachBm for m ∈ N can be computed fromBm−1 (Fer 1958). Although
it can also be rendered conveniently in the terminology or rooted trees (Iserles et al. 2000),
it is possible to prove that its numerical implementation isconsistently more expensive than
that of Magnus expansions (Celledoni, Iserles, Nørsett & Orel 2002).

A version of Magnus expansions, using rooted trees with coloured leaves, has been devel-
oped for equations of the formy′ = A(t)y − yB(t), where bothA andB evolve ing (Iserles
2001a). Equations of this kind feature in the computation of Floquet exponents. Another
Magnus expansion was presented for the computation of the (nonlinear)so(n) action in the
computation of the isospectraldouble-bracket equationsy′ = [y, [M,y]], y(0) ∈ Sym(n),
whereM ∈ so(n) (Iserles 2002).

It is possible to extend Magnus expansions to a general nonlinear settingy′ = A(t, y)y,
y(t0) ∈ G, whereA : [t0, 0) × G → g (Zanna 1999, Casas & Iserles 2006), but this is ar-
guably less efficient and more complicated than the use ofRunge–Kutta–Munthe-Kaas meth-
ods(Munthe-Kaas 1998).

An important alternative to the expansions of the kind reviewed in this paper is provided
by expansions based oncanonical coordinates of the second kind

y(t) = eσ1(t)C1eσ2(t)C2 · · · eσq(t)Cqy(tN ),

whereq ≥ dim g, {C1, . . . , Cq} is a frame ofg andσ1, . . . , σq are scalar functions (Crouch
& Grossman 1993, Owren & Marthinsen 2001).

All the above are based on the exponential trivialisation. Once, however, we expand
Lie-group and homogeneous-space equations acted by quadratic Lie-groups, there are clear
advantages in cost and complexity in using the Cayley trivialisation and the dcayinv equation
(1.5). The entire theory of this section can be extended to this setting once we associate
expansion terms withbicolour rooted trees.Specifically, we have the expansion

Ω(t) =
∞∑

m=0

(−1)m

2m

∑

τ∈Sm

(−1)δ(τ)Dτ (t), t ≥ tN , (2.6)

where expansion terms are assembled according to the following composition rules,

1. We commence from
∫ t

tN
A(ξ) dξ and associate to it the treet

t

;

2. Having already associatedDτ (t) with the treeτ , we associate

∫ t

tN

[Dτ (ξ), A(ξ)] dξ with t

t@@��
t

τ1
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3. Having already associatedDτ1
(t) andDτ2

(t) with the treesτ1 andτ2, respectively, we
associate

∫ t

tN

Dτ1
(ξ)A(ξ)Dτ2

(ξ) dξ with t

d@ �
τ1 τ2

.

Sm stands for the set of all such trees withm + 1 ‘vertical’ edges (corresponding to integra-
tion), whileδ(τ) stands for the number of white nodes in the rooted treeτ (Iserles 2001b).

TheCayley expansionis

Ω ; t

t

− 1
2 t

t

t t

t

@@ ��

+ 1
4 t

t

t t

t

t t

t

@@ ��

@@ ��

− 1
4 t

d@ �
t t

t t

− 1
8 t

t

t

t

t

t

t

t

t

t

t

t

t

t

@@

@@

@@

��

��

��

+ 1
8 t

t@@ ��
t t

d@ �
t t

t t

+ 1
8 t

d@ �
t t

t t@@ ��
t t

t

+ 1
8 t

d@ �
t t

t t@@ ��
t t

t

+ · · · .

It is easy to verify that the term corresponding to the sixth tree belongs to the quadratic Lie
algebra, but this is not the case with regard to either the seventh or the eighth tree. Fortunately,
the sum of these two terms lies in the algebra. We will return to this issue in Section 3.

2.4 Rooted trees and Hopf algebras

Rooted trees and forests have played an important role in numerical mathematics as a conve-
nient organising principle to elucidate combinatorial structure of algorithms. An incomplete
list includes

• Runge–Kutta methods and their expansion inB-series(Butcher 1963, Butcher 1972,
Hairer & Wanner 1974);

• Symplectic and partitioned Runge–Kutta methods (Abia & Sanz-Serna 1993, Hairer et
al. 2006);

• Splitting and composition of vector fields (Murua & Sanz-Serna 1999, McLachlan &
Quispel 2002);

• Expansions of iterated integrals (Chen 1977);

• Nonlinear functional equations with proportional delay (Iserles 1994);

• Volume preservation under discretization (Chartier & Murua 2007, Iserles, Quispel &
Tse 2007).
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Some time ago Grossman & Larson (1989) identified theButcher group,the algebraic struc-
ture underlying B-series, with aHopf algebra. The fundamental importance of algebras of
rooted trees and their connections with the representationof the renormalisation group of
quantum field theory has been recognised in (Connes & Kreimer1998, Connes & Kreimer
2000), and this has led to a great deal of interest and furtherresearch, not least on geometric
integrators: cf. for example (Munthe-Kaas & Wright 2008, Murua 2006).

3 Quadrature and graded algebras

3.1 Magnus quadrature

Consider again the expansion (2.2), this time from a practical standpoint. Given a matrix
functionA and lettingt = tN+1, we wish to compute integrals therein by quadrature. Each
term is an integral of a nested commutator over a multivariate polytope and it is well known
that multivariate quadrature is excessively expensive in terms both of function evaluations
and algebraic operations (Davis & Rabinowitz 1984). Indeed, viewed from the standpoint of
conventional quadrature, the computation of truncated expansionΩ[r](tN+1) for r ≥ 2 is im-
practical. However, the special structure of Magnus expansion terms lends itself to quadrature
formulæ that are surprisingly economical in terms of function evaluations.

For simplicity, we assume in this section thattN = 0 and leth = hN .

Theorem 2 (Iserles & Nørsett 1999) Letc1, c2, . . . , cν be distinct points in[0, 1] and set
Ak = hA(ckh), k = 1, . . . , ν. Given a term

I[P] =

∫

hP
L(A(ξ1), A(ξ2), . . . , A(ξp)) dξp · · · dξ2 dξ1 (3.1)

that features in the Magnus expansion (2.4) (herehP is a polytope, whileL is a multilinear
form, consisting of nested commutators), we approximate itby the quadrature formula

Q[P] =
∑

ℓ∈C
ν

p

bℓL(Al1 , Al2 , · · · , Alp), (3.2)

whereC
ν
p is the set of all words of lengthp from the alphabet{1, 2, . . . , ν}, while the weights

bℓ can be computed by an appropriate explicit formula. Then

Q[P] = I[P] + O
(
hσ+1

)
,

whereσ is the order of classical interpolatory quadrature in[0, 1] with constant weight func-
tion and the nodesc1, c2, . . . , cν .

In particular, ifc1, . . . , cν are the nodes of Gaussian quadrature (that is, zeros of the Leg-
endre polynomialPν , shifted to[0, 1]) thenσ = 2ν.

Note that the calculation ofQ[P] requires justν function values. Moreover,the same
function values are recycled for all the polytopes!In other words, to discretizeΩ[r](h) con-
sistently with errorO

(
hr+1

)
, we require just⌊(r + 1)/2⌋ function evaluations altogether.

Thequid pro quois the huge number of algebraic operations needed to computeQ[P] for
all terms in the truncated Magnus expansion, both because the number of expansion terms
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grows exponentially fast and sinceCν
p is a large set of cardinality that, again, grows expo-

nentially with p. The cost of linear algebra can be reduced dramatically by employing an
idea originally due to Munthe-Kaas & Owren (1999). To this end we need to assume that the
nodesc1, c2, . . . , cν are symmetric with respect to the point1

2 – not an undue hardship since
our natural choice, Gaussian points, obey this.

We replace{A1, A2, . . . , Aν} by their linear combinations{B1, B2, . . . , Bν} such that

ν∑

l=1

(ck − 1
2 )l−1Bl = Ak, k = 1, 2, . . . , ν.

While Ak = O(h), it is possible to prove thatBk = O
(
hk
)
, k = 1, . . . , ν. Consequently,

L(Ak1
, Ak2

, . . . , Akp
) = O(hp) , L(Bk1

, Bk2
, . . . , Bkp

) = O
(
hk1+k2+···+kp

)
. (3.3)

We say thatL(Ak1
, Ak2

, . . . , Akp
) is of gradep, while L(Bk1

, Bk2
, . . . , Bkp

) is of grade∑p
i=1 ki.
Since eachAk is a linear combination ofBls whileL is a multilinear function, we can

replace (3.2) with

Q[P] =
∑

ℓ∈C
ν

p

b̃ℓL(Bl1 , Bl2 , . . . , Blp), (3.4)

where the weights̃bℓ can be obtained from thebℓs by labourous, yet transparent calculation.
Rewriting (3.2) in the form (3.4) is a prerequisite for threesteps that, in their totality,

discard the great majority of terms, thereby rendering the cost of linear algebra considerably
more affordable.

Firstly, recalling thatσ is the order of the quadrature, hence that we already incur anerror
of O

(
hσ+1

)
in the formation ofQ[P], we can discard in (3.4) all terms which areO

(
hκ+1

)

for κ ≥ σ. This means that we replaceCν
p by C̃

ν

p ⊂ C
ν
p such thatℓ ∈ C̃

ν

p if
∑p

i=1 li ≤ σ.
Secondly, it has been proved by Iserles et al. (2001) that both the Magnus expansion (2.4)

and the truncated expansionΩ[r] are time symmetric:they can be expanded in odd powers
of h. Because of the symmetry of the nodesc1, . . . , cν with respect to the midpoint, this
feature is inherited by the quadrature formula. This means that linear combinations of terms
of even grade vanish and we may discard them from the linear combination. We thus sum
overĈ

ν

p ⊂ C̃
ν

p whereℓ ∈ Ĉ
ν

p if
∑l

i=1 li is even: this gets rid of roughly half the terms!
Finally, we exploit in an organised manner the range of redundancies inherent in a Lie

algebra by virtue of the skew symmetry of the Lie bracket and the Jacobi identity. The suitable
formalism is that ofgraded Lie algebraand we have already alluded to it in our definition of
a grade of an expansion term.

Let G = {Gi}i∈I be a set ofgenerators,whereI is either finite or countable. A Lie
algebraf is freeoverI if

i. It is true thatGi ∈ f, i ∈ I;

ii. For any Lie algebrah and any functionI → h there exists a unique Lie-algebra homo-
morphismπ : f → h such thatπ(Gi) = Hi ∈ h for all i ∈ I.
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Let f be a free Lie algebra. A functionω : G → N is said to be agrading of f. It is
extended toω : f → N by recursion,

H = [H1,H2] ⇒ ω(H) = ω(H1) + ω(H2).

Grading imposes an order uponf. GivenG,H ∈ f, we say thatG ≺ H if eitherω(G) < ω(H)
or ω(G) = ω(H) andG precedesH in the lexicographic order imposed by the recursive
construction off from the generatorsG.

The Hall basisH of f is constructed recursively so as to contain terms of least grade.
specifically, it consists of

1. The setG of generators;

2. [Gi, Gj ] if Gi ≺ Gj ;

3. Elements of the form[Hi, [Hj ,Hk]] whereHi,Hj ,Hk, [Hj ,Hk] ∈ H andHj � Hi ≺
[Hj ,Hk].

Let I = {1, 2, . . . , ν}. We denote byKm
ν the linear space of all terms of gradem ∈ N and

observe thatf =
⊕∞

m=1 K
m
ν . The algorithm that has led us to the Hall basis can be extended

transparently to provide a basis ofKm
ν .

We consider free Lie algebras generated by{A1, A2, . . . , Aν} and{B1, B2, . . . , Bν} re-
spectively, with the gradingsω(Ak) ≡ 1 andω(Bk) = k. Note the significance of grades to
our narrative:ω(G) = k means thatG = O

(
hk
)
. Note further that we need to retain inQ[P]

only termsH such thatω(H) ≤ σ. Thus, and in addition to the steps that have taken us from
C

ν
p to C̃

ν

p to Ĉ
ν

p , we express all terms of grades≤ σ as linear combinations of elements in
the Hall bases ofKm

ν for m ≤ σ. The savings implicit in this procedure are underlied by a
generalisation of the Witt formula,

dimKm
ν =

1

m

∑

d|m
µ(d)

(
r∑

i=1

λ
m/d
i

)

(Munthe-Kaas & Owren 1999), whereµ is theMöbius function

µ(d) =





1, d = 1,
(−1)q, d = p1p2 · · · pq, p1 < p2 < · · · < pq prime,
0, otherwise,

r = maxi=1,...,ν ω(Gi) and λ1, λ2, . . . , λr ∈ C are the zeros of1 −
∑ν

i=1 zω(Gi). Our
conclusion is thatdimKm

ν is surprisingly small, and this can be exploited to reduce the volume
of linear algebra.

We let ρm = dimKm
ν for the generatorsG = {A1, A2, . . . , Aν} and ρ̄m = dimKm

ν

for G = {B1, B2, . . . , Bν}. Choosing Gaussian nodesc1, c2, . . . , cν (henceσ = 2ν) and
expressing all terms inQ[P] in a Hall basis, we compare in Table 1 the number of terms using
the two sets of generators and, for the latter, discarding all terms of even grade. The savings,
in particular for largeν, are remarkable. Insofar as numerical analysis is concerned, they
represent a difference between a mere curiosity and an effective computational algorithm.

Even this, though, is not the final word in applying algorithmic ingenuity, underpinned by
algebraic theory, to the design of effective numerical Magnus integrators. Blanes, Casas &
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Table 1: The number of terms in different quadrature formulæfor Gaussian nodes.

ν 1 2 3 4 5

σ = 2ν 2 4 6 8 10

2ν−1∑

m=1

ρm 1 5 80 3304 1256567

2ν−1∑

m=1

ρ̄m 1 3 10 33 111

2ν−1∑

m=1
m odd

ρ̄m 1 2 7 22 73

Ros (2000) have developed a technique which, exploiting further symmetries and structure of
the underlying problem, allows to aggregate terms and reduce further the cost of computation
per step. For example, forν = 3 we commence from Gaussian nodes, whereby

A1 = hA((1
2 −

√
15

10 )h), A2 = hA( 1
2h), A3 = hA((1

2 +
√

15
10 )h)

and
B1 = A2, B2 =

√
15
3 (A3 − A1), B3 = 10

3 (A3 − 2A2 + A1).

Once we exploit all the three mechanisms that have led us to the bottom row of Table 1, we
obtain the sixth-order method

Ω̃ = B1 + 1
12B3 −

1
12 [B1, B2] + 1

240 [B2, B3] + 1
360 [B1, [B1, B3]] −

1
240 [B2, [B1, B2]]

+ 1
720 [B1, [B1, [B1, B2]]].

Note that only odd-grade terms are present and that we need tocompute seven commutators:
this is consistent with Table 1.

Alternatively, introducingO
(
h7
)

changes that have no bearing on the order of the method,
we compute

C1 = [B1, B2],

C2 = [B1, 2B3 + C1],

C3 = [−20B1 − B3 + C1, B2 −
1
60C2],

Ω̄ = B1 + 1
12B3 + 1

240C3,

another sixth-order approximation but requiring just three commutators per step.

3.2 Cayley expansions and Hierarchical algebras

Wishing to do unto the truncated Cayley expansion (2.6) whatwe have done for Magnus
expansions, we are stumped by the presence of terms of the form BCB ∈ g, whereB,C ∈ g
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and, more generally, by the fact that a quadratic Lie algebrais closed under the symmetric
productBCD + DCB for all B,C,D ∈ g. Graded free Lie algebras are inadequate for the
task in hand, and this has motivated the introduction ofhierarchical algebras(Iserles & Zanna
2000).

Let (g,+) be an Abelian group over a field of zero characteristic and assume the existence
of a countable family ofm-nary operations

[[ · , . . . , · ]]m :

m times︷ ︸︸ ︷
g × g × · · · g → g, m ∈ N,

subject to the following three axioms,

Alternate symmetry: For everym ∈ N andF1, . . . , Fm ∈ g

[[F1, F2, . . . , Fm]]m + (−1)m[[Fm, Fm−1, . . . , F1]]m = 0,

where0 is the zero ofg;

Multilinearity: Each[[ · , . . . , · ]]m is linear in all its components;

Hierarchy condition: For everym,n ∈ N, k ∈ {1, 2, . . . ,m},

F1, . . . , Fk−1, Fk+1, . . . , Fm ∈ g and E1, . . . , En ∈ g

it is true that

[[F1, . . . , Fk−1, [[E1, . . . , En]]n, Fk+1, . . . , Fm]]m

= [[F1, . . . , Fk−1, E1, . . . , En, Fk+1, . . . , Fm]]m+n−1

− (−1)n[[F1, . . . , Fk−1, En, . . . , E1, Fk+1, . . . , Fm]]m+n−1.

Such ag, equipped with the above structure, is called ahierarchical algebra.

Theorem 3 (Iserles & Zanna 2000)

1. Every hierarchical algebra is a Lie algebra with respect to the commutator[F1, F2] =
[[F1, F2]]2;

2. Every quadratic Lie algebra is a hierarchical algebra with

[[F1, F2, . . . , Fm]]m = F1F2 · · ·Fm − (−1)mFmFm−1 · · ·F1, m ∈ N.

We define afree hierarchical algebra (FHA)f in the usual manner. An elementF ∈ f
is said to beprimitive if it is of the form F = [[Gi1 , Gi2 , . . . , Gir

]]r for somer ∈ N, where
G = {G1, . . . , Gν} are the generators of a FHA.

Lemma 4 (Iserles & Zanna 2000) Every element of a free hierarchical algebra can be rep-
resented as a linear combination of primitive elements.
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Grading can be imposed on a FHA exactly like before. Let

u(t) = 1 −

ν∑

k=1

zω(Gk),

whereG = {G1, . . . , Gν}. It is possible to prove with much effort that, formally,

∞∑

m=1

tm−1 dimKm
ν = 1

2

[
1

u(t)
+

u(t)

u(t2)

]
,

where, as before,Km
ν stands for the linear space spanned by grade-m terms.

Assuming further that the zerosλ1, λ2, . . . , λr of u (which we have already encountered
in the previous subsection, recall thatr = max ω(Gi)) are distinct, it follows that

dimK2m
ν = 1

2

r∑

k=1

λ−m−1
k

u′(λk)

{
2 − λ−m

k − 1
2 [u(λ

1/2
k ) + u(−λ

1/2
k )]

}
,

dimK2m+1
µ = 1

2

r∑

k=1

λ
−m−3/2
k

u′(λk)

{
−λ

−m− 1
2

k + 1
2 [u(λ

1/2
k ) − u(−λ

1/2
k )]

}
.

Since Hall-type bases can be obtained by recursion within a FHA setting, we have all the
building blocks to construct efficient quadratures associated with Cayley expansions. For ex-
ample, a sixth-order method (with the sameB1, B2, B3 as for the sixth-order Magnus method
of the last subsection) reads (in terms of them-nary products – this somewhat complicates
the presentation but renders it consistent with our framework)

Ω̌ = [[B1]]1 + 1
12 [[B3]]1 −

1
12 [[B1, B2]]2 −

1
24 [[B1, B1, B1]]3 + 1

240 [[B2, B3]]2

+ 1
240 [[B1, B2, B2]]3 −

1
240 [[B1, B1, B3]]3 −

1
240 [[B2, B1, B2]]3 −

1
160 [[B1, B3, B1]]3

+ 1
120 [[B1, B1, B1, B2]]4 −

1
240 [[B1, B1, B2, B1]]4 + 1

240 [[B1, B1, B1, B1, B1]]5.

Note that, again, only terms of odd grade are required. Although more complicated thañΩ, to
say nothing of̄Ω, this approach has an important advantage in the case of quadratic Lie alge-
bras, in particular when the dimension is large, since solving linear systems is considerably
cheaper than computing a matrix exponential.
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