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Abstract
We consider in this paper asymptotic and numerical aspects of highly oscillatory in-

tegrals of the form
∫

b

a
f(x)g(sin[ωθ(x)]) dx, whereω ≫ 1. Such integrals occur in the

simulation of electronic circuits, but they are also of an independent mathematical interest.
The integral is expanded in asymptotic series in inverse powers ofω. This expansion

clarifies the behaviour for largeω and also provides powerful means to design effective
computational algorithms. In particular, we introduce and analyse Filon-type methods for
this integral.

1 Introduction

The theory of highly oscillatory integrals is a mature subject and our theoretical understanding
of the behaviour of integrals of the form

∫ b

a

f(x)eiωg(x) dx (1.1)

and their multivariate counterparts is fairly complete (Olver 1974, Stein 1993, Wong 2001).
In the last few years this has been complemented by comprehensive understanding of the
numerical quadrature of such integrals by a range of methods: Filon-type (Iserles & Nørsett
2004, Iserles & Nørsett 2005), Levin-type (Levin 1996, Olver 2006) and numerical steepest
descent (Huybrechs & Vandewalle 2006). It is however in the nature of mathematical re-
search that, no sooner than we declare a theory ‘complete’ , anew application comes to light,
provides a counter-example and challenges our understanding of the subject.
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A major stumbling block in the simulation of electronic circuits is the resolution of high
frequency modulated signals. An important example is the modulation of adiode rectifier
circuit, which is modelled by a nonlinear ordinary differential equation of the form

Cv′ = − v

R
+ I0[e

b(t)−v − 1], t ≥ 0, v(0) = v0, (1.2)

whereC is the capacitance,R the resistance andI0 the diode inverse bias current,b(t) is
the input signal and the unknownv is the voltage (Dautbegovic, Condon & Brennan 2005).
Analogue modulationof (1.2) is associated with the input signalb(t) = κsin(ωt), where
ω ≫ 1. Effective numerical solution of (1.2) with this value ofb, using waveform relaxation,
requires efficient computation of integrals of the form

∫ b

a

f(x)eκ sin(ωx) dx (1.3)

(Condon, Deãno, Iserles, Maczynski & Xu 2008b). The integral (1.3) does not fit into the clas-
sical pattern (1.1) of highly oscillatory integrals or of its generalizations, wherebyexp[iωg(x)]
is replaced by a suitable fundamental solution of a linear ordinary differential equation (Olver
2008) and, indeed, as will transpire shortly, its behaviouris altogether different. In particular,
while (for −∞ < a < b < ∞) the integral (1.1) behaves likeO

(

ω−1/(r+1)
)

for ω → ∞,
wherer is the highest degree of a stationary point (r = 0 if g′ 6= 0 in the closed interval), the
integral (1.3) isO(1) for ω → ∞.

It is possible to analyse (and, indeed, compute) the integral (1.3) by exploiting a serendip-
itous identity,

eκ sin θ = I0(κ) + 2

∞
∑

m=0

(−1)mIm(κ) sin[(2m+ 1)θ] + 2

∞
∑

m=1

(−1)mI2m(κ) cos(2mθ),

whereIm is themth modified Bessel function (Abramowitz & Stegun 1964, p. 376), and this
has been already done in (Condon, Deaño & Iserles 2008a). The purpose of the present paper
is more ambitious, namely to consider integrals of the form

I[f, g] =

∫ b

a

f(x)g(sin(ωx)) dx, ω ≫ 1, (1.4)

wheref ∈ C∞[a, b], g is analytic in the disc|z| < r for somer > 1 andω ≫ 1. In that case
we no longer enjoy the benefits of serendipity and need to workout the asymptotic behaviour
of (1.4) from basic premises.

An interesting generalisation of (1.4) is to the integral

I[f, g, θ] =

∫ b

a

f(x)g(sin[ωθ(x)]) dx, (1.5)

whereθ ∈ C∞[a, b].1 Provided thatθ′ 6= 0 in [a, b], our analysis can be easily extended to
this setting. Matters are more difficult whenθ′ is allowed to vanish, a situation similar to the

1Here and elsewhere theC∞[a, b] assumption can be relaxed and replaced byCν [a, b] for someν ≥ 1, except
that in that case only finite number of leading terms in our expansions are valid.
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presence of stationary points in classical theory. In that case we indicate how to obtain an
expansion using an approach similar to (Iserles & Nørsett 2005).

In Section 2 we expand (1.4) into asymptotic series in inverse powers ofω, while Section 3
is devoted to efficient numerical quadrature of this integral by means of a variant of a Filon-
type method.

We note in passing that our approach is applicable also to theintegral

∫ b

a

f(x)g(cos(ωx)) dx, ω ≫ 1.

Since an identical methodology applies and the results are similar, we do not dwell further on
this.

2 The asymptotic expansion of the integral

2.1 The basic expansion

Expanding the analytic functiong into Taylor series, we have

I[f, g] =

∞
∑

n=0

g(n)(0)

n!
Sn[f ], (2.1)

where

Sn[f ] =

∫ b

a

f(x) sinn(ωx) dx, n ∈ Z+.

Thus, our first goal is to expand each functionalSn[f ] asymptotically inω.
Noting that

Sn[f ] =
1

(2i)n

∫ b

a

f(x)(eiωx − e−iωx)n dx

=
1

(2i)n

n
∑

m=0

(−1)n−m

(

n

m

)
∫ b

a

f(x)eiω(2m−n)x dx,

we need to distinguish between even and odd values ofn. This leads to calculations which,
although lengthy, are quite elementary.

For evenn we have

S2n[f ] =
(−1)n

4n

{

(−1)n

(

2n

n

)
∫ b

a

f(x) dx

+

n−1
∑

m=0

(−1)m

(

2n

m

)
∫ b

a

f(x)[e2iω(n−m)x + e−2iω(n−m)x] dx

}

∼ 1

4n

(

2n

n

)
∫ b

a

f(x) dx− (−1)n

4n

n−1
∑

m=0

(−1)m

(

2n

m

) ∞
∑

k=0

1

(−iω)k+1
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×
{

f (k)(b)

[

e2iω(n−m)b

(2n− 2m)k+1
+

e−2iω(n−m)b

(2m− 2n)k+1

]

− f (k)(a)

[

e2iω(n−m)a

(2n− 2m)k+1
+

e−2iω(n−m)a

(2m− 2n)k+1

]}

=
1

4n

(

2n

n

)
∫ b

a

f(x) dx− (−1)n

4n

n−1
∑

m=0

(−1)m

(

2n

m

) ∞
∑

k=0

1

[−2iω(n−m)]k+1

×
{

f (k)(b)[e2iω(n−m)b − (−1)ke−2iω(n−m)b]

− f (k)(a)[e2iω(n−m)a − (−1)ke−2iω(n−m)a]
}

=
1

4n

(

2n

n

)
∫ b

a

f(x) dx+
2(−1)n

4n

n−1
∑

m=0

(−1)m

(

2n

m

)

×
{

∞
∑

k=0

(−1)k

[2ω(n−m)]2k+1
[f (2k)(b) sin 2ω(n−m)b− f (2k)(a) sin 2ω(n−m)a]

+

∞
∑

k=0

(−1)k

[2ω(n−m)]2k+2
[f (2k+1)(b) cos 2ω(n−m)b

− f (2k+1)(a) cos 2ω(n−m)a]
}

=
1

4n

(

2n

n

)
∫ b

a

f(x) dx

+
2(−1)n

4n

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

n−1
∑

m=0

(−1)m

(

2n

m

)

sin 2ω(n−m)b

[2(n−m)]2k+1

− 2(−1)n

4n

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

n−1
∑

m=0

(−1)m

(

2n

m

)

sin 2ω(n−m)a

[2(n−m)]2k+1

+
2(−1)n

4n

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

n−1
∑

m=0

(−1)m

(

2n

m

)

cos 2ω(n−m)b

[2(n−m)]2k+2

− 2(−1)n

4n

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

n−1
∑

m=0

(−1)m

(

2n

m

)

cos 2ω(n−m)a

[2(n−m)]2k+2

=
1

4n

(

2n

n

)
∫ b

a

f(x) dx+
2

4n

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

n
∑

m=1

(−1)m

(

2n

n−m

)

sin 2ωmb

(2m)2k+1

− 2

4n

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

n
∑

m=1

(−1)m

(

2n

n−m

)

sin 2ωma

(2m)2k+1

+
2

4n

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

n
∑

m=1

(−1)m

(

2n

n−m

)

cos 2ωmb

(2m)2k+2

− 2

4n

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

n
∑

m=1

(−1)m

(

2n

n−m

)

cos 2ωma

(2m)2k+2
.
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Thus, we have expandedS2n[f ] in inverse powers ofω. Similarly to the familiar expansions
of integrals (1.1) in the absence of stationary points, the coefficients of the expansion depend
on f and its derivatives at the endpoints. However, an importantdifference is that, while the
integral in (1.1) tends to zero forω → ∞, we have

S2n[f ] ∼ 1

4n

(

2n

n

)
∫ b

a

f(x) dx, ω → ∞.

Note that it is sufficient thatf ∈ C[a, b] for this to be true.
The expansion for odd index, is similar,

S2n+1[f ] = − 1

(2i)2n+1

2n+1
∑

m=0

(−1)m

(

2n+ 1

m

)
∫ b

a

f(x)eiω(2m−2n−1)x dx

= − (−1)ni

2 · 4n

n
∑

m=0

(−1)m

(

2n+ 1

m

)
∫ b

a

f(x)[eiω(2n−2m+1)x − e−iω(2n−2m+1)x] dx

∼ (−1)ni

2 · 4n

n
∑

m=0

(−1)m

(

2n+ 1

m

) ∞
∑

k=0

1

(−iω)k+1

{

f (k)(b)

[

eiω(2n−2m+1)b

(2n− 2m+ 1)k+1

+ (−1)k e−iω(2n−2m+1)b

(2n− 2m+ 1)k+1

]

− f (k)(a)

[

eiω(2n−2m+1)a

(2n− 2m+ 1)k+1

+ (−1)k e−iω(2n−2m+1)a

(2n− 2m+ 1)k+1

]}

=
(−1)n

4n

n
∑

m=0

(−1)m

(

2n+ 1

m

)

{

−
∞
∑

k=0

(−1)k

[ω(2n− 2m+ 1)]2k+1

× [f (2k)(b) cosω(2n− 2m+ 1)b− f (2k)(a) cosω(2n− 2m+ 1)a]

+

∞
∑

k=0

(−1)k

[ω(2n− 2m+ 1)]2k+2
[f (2k+1)(b) sinω(2n− 2m+ 1)b

− f (2k+1)(a) sinω(2n− 2m+ 1)a]
}

=
(−1)n

4n

[

−
∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

n
∑

m=0

(−1)m

(

2n+ 1

m

)

cosω(2n− 2m+ 1)b

(2n− 2m+ 1)2k+1

+

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

n
∑

m=0

(−1)m

(

2n+ 1

m

)

cosω(2n− 2m+ 1)a

(2n− 2m+ 1)2k+1

+

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

n
∑

m=0

(−1)m

(

2n+ 1

m

)

sinω(2n− 2m+ 1)b

(2n− 2m+ 1)2k+2

−
∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

n
∑

m=0

(−1)m

(

2n+ 1

m

)

sinω(2n− 2m+ 1)a

(2n− 2m+ 1)2k+2

]

= − 1

4n

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

n
∑

m=0

(−1)m

(

2n+ 1

n−m

)

cosω(2m+ 1)b

(2m+ 1)2k+1
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+
1

4n

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

n
∑

m=0

(−1)m

(

2n+ 1

n−m

)

cosω(2m+ 1)a

(2m+ 1)2k+1

+
1

4n

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

n
∑

m=0

(−1)m

(

2n+ 1

n−m

)

sinω(2m+ 1)b

(2m+ 1)2k+2

− 1

4n

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

n
∑

m=0

(−1)m

(

2n+ 1

n−m

)

sinω(2m+ 1)a

(2m+ 1)2k+2
.

We substitute asymptotic expansions ofSn[f ] for even and odd values ofn into (2.1).
The outcome is an asymptotic expansion of the integralI[f, g] in inverse powers of large
parameterω,

I[f ] ∼ 2

∞
∑

n=0

g(2n)(0)

22n

[

1
2

1

(n!)2

∫ b

a

f(x) dx

+

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

n
∑

m=1

(−1)m

(n−m)!(n+m)!

sin 2ωmb

(2m)2k+1

−
∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

n
∑

m=1

(−1)m

(n−m)!(n+m)!

sin 2ωma

(2m)2k+1

+

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

n
∑

m=1

(−1)m

(n−m)!(n+m)!

cos 2ωmb

(2m)2k+2

−
∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

n
∑

m=1

(−1)m

(n−m)!(n+m)!

cos 2ωma

(2m)2k+2

]

+ 2

∞
∑

n=0

g(2n+1)(0)

22n+1

[

−
∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

n
∑

m=0

(−1)m

(n−m)!(n+m+1)!

cosω(2m+ 1)b

(2m+ 1)2k+1

+

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

n
∑

m=0

(−1)m

(n−m)!(n+m+ 1)!

cosω(2m+ 1)a

(2m+ 1)2k+1

+

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

n
∑

m=0

(−1)m

(n−m)!(n+m+ 1)!

sinω(2m+ 1)b

(2m+ 1)2k+2

−
∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

n
∑

m=0

(−1)m

(n−m)!(n+m+ 1)!

sinω(2m+ 1)a

(2m+ 1)2k+2

]

=

∞
∑

n=0

g(2n)(0)

(n!)2
1

22n

∫ b

a

f(x) dx

+ 2

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

∞
∑

m=1

(−1)m

(2m)2k+1

sin 2ωmb

22m

∞
∑

n=0

g(2m+2n)(0)

n!(2m+ n)!

1

4n

− 2

∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

∞
∑

m=1

(−1)m

(2m)2k+1

sin 2ωma

22m

∞
∑

n=0

g(2m+2n)(0)

n!(2m+ n)!

1

4n
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− 2
∞
∑

k=0

(−1)k

ω2k+1
f (2k)(b)

∞
∑

m=0

(−1)m

(2m+1)2k+1

cosω(2m+ 1)b

22m+1

∞
∑

n=0

g(2m+2n+1)(0)

n!(2m+1+n)!

1

4n

+ 2
∞
∑

k=0

(−1)k

ω2k+1
f (2k)(a)

∞
∑

m=0

(−1)m

(2m+1)2k+1

cosω(2m+ 1)a

22m+1

∞
∑

n=0

g(2m+2n+1)(0)

n!(2m+1+n)!

1

4n

+ 2
∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

∞
∑

m=1

(−1)m

(2m)2k+2

cos 2ωmb

22m

∞
∑

n=0

g(2m+2n)(0)

n!(2m+ n)!

1

4n

− 2
∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

∞
∑

m=1

(−1)m

(2m)2k+2

cos 2ωma

22m

∞
∑

n=0

g(2m+2n)(0)

n!(2m+ n)!

1

4n

+ 2

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(b)

∞
∑

m=0

(−1)m

(2m+1)2k+2

sinω(2m+1)b

22m+1

∞
∑

n=0

g(2m+2n+1)(0)

n!(2m+1+n)!

1

4n

− 2

∞
∑

k=0

(−1)k

ω2k+2
f (2k+1)(a)

∞
∑

m=0

(−1)m

(2m+1)2k+2

sinω(2m+1)a

22m+1

∞
∑

n=0

g(2m+2n+1)(0)

n!(2m+1+n)!

1

4n
.

Let

ρm =
1

2m−1

∞
∑

n=0

g(m+2n)(0)

n!(m+ n)!

1

4n
, m ∈ Z+, (2.2)

and set for allk ∈ Z+

Uk(t) =

∞
∑

m=1

(−1)m

(2m)2k+1
ρ2m sin(2ωmt) −

∞
∑

m=0

(−1)m

(2m+ 1)2k+1
ρ2m+1 cos[ω(2m+ 1)t],

Vk(t) =

∞
∑

m=1

(−1)m

(2m)2k+2
ρ2m cos(2ωmt) +

∞
∑

m=0

(−1)m

(2m+ 1)2k+2
ρ2m+1 sin[ω(2m+ 1)t].

Then

I[f, g] ∼ 1
2ρ0

∫ b

a

f(x) dx+
∞
∑

k=0

(−1)k

ω2k+1
[f (2k)(b)Uk(b) − f (2k)(a)Uk(a)] (2.3)

+
∞
∑

k=0

(−1)k

ω2k+2
[f (2k+1)(b)Vk(b) − f (2k+1)(a)Vk(a)].

Note that the functiong enters the asymptotic expansion solely through the sequence
ρ = {ρm}m∈Z+

, while f contributes both through a nonoscillatory integral and derivatives at
the endpoints.

2.2 The sequence ρ

In the present subsection we consider the sequenceρ = {ρm}m∈Z+
. Our main concern is

with the asymptotic behaviour of the sequence. Examining the functionsUk andVk, it is clear
that geometric decay,ρm ≈ cρ̃m for someρ̃ ∈ (0, 1), is sufficient for their existence and
boundedness for allk ∈ Z+, asine qua nonfor the applicability of the expansion (2.3)
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We commence with three detailed examples. Firstly we letg(x) = eκx, κ ∈ R \ {0},
therefore consider the integral (1.3). This yields

ρm = 21−mκm
∞
∑

n=0

1

n!(m+ n)!

(κ

2

)2n

= 2
(κ/2)m

m!
0F1

[

—;
m+ 1;

κ2

2

]

= 2Im(κ),

where we have used the hypergeometric representation of modified Bessel functions (Rainville
1960, p. 116). After brief manipulation, we recover the serendipitous asymptotic expansion
from (Condon et al. 2008a). Note that standard asymptotic expansions of modified Bessel
functions for large index demonstrate at once the extraordinarily rapid decay of the sequence
ρ, becauseIm(κ) = O(1/m!).

We next consider the caseg(x) = sinκx, whereκ ∈ R \ {0}. Similar algebra conforms
that

ρ2m = 0, ρ2m+1 = 2(−1)mJ2m+1(κ),

whereJm is the Bessel function. Again, the sequenceρ decays at a faster-than-exponential
speed.

A more interesting example, of which we will make use in the sequel, isg(x) = (1−κx),
where|κ| < 1. Thereforeg(n)(0) = n!κn and

ρm =
1

2m−1

∞
∑

n=0

(m+ 2n)!κm+2n

n!(m+ n)!4n
= 2

(κ

2

)m

2F1

[

m+1
2 , m+2

2 ;
m+ 1;

κ2

4

]

.

Let

χ(z) = 2F1

[

m+1
2 , m+2

2 ;
m+ 1;

z

]

, |z| < 1.

We use the identity

1

(1 + x)2a 2F1

[

a, b;
2b;

4x

(1 + x)2

]

= 2F1

[

a, a− b+ 1
2 ;

b+ 1
2 ;

x2

]

(Rainville 1960, p. 65) witha = m/2 + 1, b = (m + 1)/2 andx = (2 − t − 2
√

1 − t)/t.
After long, yet elementary algebra, and bearing in mind thatfor our values ofa andb it is true
that

2F1

[

a, a− b+ 1
2 ;

b+ 1
2 ;

x2

]

= 2F1

[

m+2
2 , 1;

m+2
2 ;

x2

]

=
1

1 − x2
,

we have

χ(z) =
1√

1 − z

[

2(1 −
√

1 − z)

z

]m

=
1√

1 − z

(

2

1 +
√

1 − z

)m

.

In particular, recalling that|κ| < 1, we deduce

ρm =
1

√

1 − κ2/4

(

κ

1 +
√

1 − κ2/4

)m

, m ∈ Z+,

an exponential decay.
Note that the above identity from (Rainville 1960) is true only when |x| < 1 and4|x| <

|1 + x|2. This is not a problem, because we can extend our explicit form of χ elsewhere by
analytic continuation. The only subtle point about it is that we might need to change the sign
of the square root once we cross the branch cutRe z = 0.
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Theorem 1 Given any analytic functiong with radius of convergencer > 1, it is true that
limm→∞ ρm = 0. Moreover, ifr <∞ thenρm = o(r−2m), while if g is entire, i.e.r = +∞,
thenρ decays faster than a reciprocal of a polynomial.

Proof Applying the Cauchy test to the Taylor expansion ofg about the origin,

1

r
=

∣

∣

∣

∣

g(n)(0)

n!

∣

∣

∣

∣

1/n

=
e|g(n)(0)|1/n

n
+ o(1), n→ ∞,

where we have used the Stirling formula to approximate the factorial. Next, we apply the
Cauchy test to the definition ofρm: convergence is equivalent to

1 > lim sup
n→∞

∣

∣

∣

∣

g(m+2n)(0)

n!(m+ n)!4n

∣

∣

∣

∣

1/n

= lim sup
n→∞

[

∣

∣g(m+2n)(0)
∣

∣

1/(m+2n)
]2+m/n

4(n!)1/n[(m+ n)!]1/n
.

Using again the Stirling formula and exploiting the fact that

lim sup
n→∞

∣

∣g(m+2n)(0)
∣

∣

1/(m+2n)

m+ 2n
≤ lim sup

n→∞

∣

∣g(n)(0)
∣

∣

1/n

n
=

1

er
,

we deduce that the limsup on the right isr−2 < 1, hence convergence.
The assertion on speed of convergence follows at once from the Cauchy criterion. 2

Noting the importance of Theorem 1 in justifying the validity of the asymptotic expansion
(2.3), we also observe an important potential shortcoming of the definition (2.2). Numerical
computation of high derivatives of a functiong, its smoothness notwithstanding, is a notori-
ously ill-conditioned problem. We will return to this issuein the sequel, but at present we
generalize from our examples and provide an explicit formula for a very important subset of
functionsg.

Recall that ageneralized hypergeometric functionis

pFq

[

α1, α2, . . . , αp;
β1, β2, . . . , βq;

x

]

=

∞
∑

n=0

1

n!

∏p
i=1(αi)n

∏q
i=1(βi)n

xn,

where thePochhammer symbol(z)n is defined recursively,(z)0 = 1 and(z)n = (z)n−1(z +
n − 1), n ∈ N (Rainville 1960). The parametersαi andβi are arbitrary complex numbers,
except that theβis can be neither zero nor negative integers. Not just our three examples but
many other important functions in applied mathematics and theoretical physics can be written
using hypergeometric functions.

Let us assume thata = −1, b = 1 and

g(x) = pFq

[

α1, α2, . . . , αp;
β1, β2, . . . , βq;

κx

]

.

To assure ourselves of analyticity in[−1, 1], we requireq + 1 ≥ p and that ifq + 1 = p then
|κ| < 1. Since

g(n)(0) =

∏p
i=1(αi)n

∏q
i=1(βi)n

κn,
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substitution in (2.2) yields

ρm =
1

2m−1

∞
∑

n=0

1

n!(m+ n)!

∏p
i=1(αi)m+2n

∏q
i=1(βi)m+2n

κm+2n.

But

(γ)m+2n = (γ)m(γ +m)2n = 4n(γ)m

(

γ+m
2

)

n

(

γ+m+1
2

)

n
, γ ∈ C, m, n ∈ Z+,

therefore

ρm = 2

∏p
i=1(αi)m

m!
∏q

i=1(βi)m

(κ

2

)m ∞
∑

n=0

∏p
i=1

(

αi+m
2

)

n

(

αi+m+1
2

)

n

n!(m+ 1)n

∏q
i=1

(

βi+m
2

)

n

(

βi+m+1
2

)

n

κ2n

4(1+q−p)n

= 2

∏p
i=1(αi)m

m!
∏q

i=1(βj)m

(κ

2

)m

2pF2q+1

[

α̃1, α̃2, . . . , α̃2p;

m+ 1, β̃1, β̃2, . . . , β̃2q;

κ2

41+q−p

]

,

where

α̃i =
αi +m

2
, α̃p+i =

αi +m+ 1

2
, i = 1, 2, . . . , p;

β̃i =
βi +m

2
, β̃q+i =

βi +m+ 1

2
, i = 1, 2, . . . , q.

Thereforeρm itself can be expressed as a generalized hypergeometric function. Note that
q + 1 ≥ p implies that(2q + 1) + 1 ≥ 2p andρm is analytic in[−1, 1] as a function ofκ (or,
for that matter, ofκ/41+q−p). This is consistent with Theorem 1.

The importance of this hypergeometric representation ofρ is that most modern software,
e.g. MAPLE. MATHEMATICA and MATLAB , is well equipped to calculate generalized hy-
pergeometric functions. This avoids the need to calculate high derivatives and provides an
effective means to computeρ, hence the asymptotic expansion (2.3), wheng is a generalized
hypergeometric function.

2.3 A generalised oscillator

Our results can be generalized with ease to the integralI[f, g, θ] defined in (1.5), provided
thatθ′ 6= 0 in [a, b]. Letting t = θ(x), a trivial change of variables results in

I[f, g, θ] =

∫ θ(b)

θ(a)

f(θ−1(t))

θ′(θ−1(t))
g(sinωt) dt = I[f̃ , g], (2.4)

where

f̃(x) =
f(θ−1(x))

θ′(θ−1(x))
.

Therefore, since
∫ θ(b)

θ(a)

f̃(t) dt =

∫ b

a

f(x) dx,
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we deduce from (2.3) that

I[f, g, θ] ∼ 1
2ρ0

∫ b

a

f(x) dx

+

∞
∑

k=0

(−1)k

ω2k+1
[f̃ (2k)(θ(b))Uk(θ(b)) − f̃ (2k)(θ(a))Uk(θ(a))] (2.5)

+

∞
∑

k=0

(−1)k

ω2k+2
[f̃ (2k+1)(θ(b))Vk(θ(b)) − f̃ (2k+1)(θ(a))Vk(θ(a))].

Matters are more complicated in the presence of stationary points, whereθ′ vanishes. We
may assume without loss of generality thatθ′(b) = 0 andθ′(x) 6= 0 for x ∈ [a, b), since any
integral (1.5) withr ≥ 1 stationary points can be written as a sum ofr + 1 integrals with a
stationary point at an endpoint and the latter can be assumedat the larger endpoint through
possible linear transformation of variable.

The change of variables (2.4) remains valid but the expansion (2.5) is unusable, because
f̃ and its derivatives have singularity atb. Yet, we can extract from (2.4) an important morsel
of information. Thus, suppose thatθ(i)(b) = 0, i = 1, 2, . . . , q, andθ(q+1)(b) 6= 0. We
assume in addition, without loss of generality, thatθ(b) = 0. It is trivial to deduce that
θ′(θ−1(t)) ≈ c(b− t)q/(q+1) ast→ b for somec ∈ C \ {0} and it follows at once that

I[f, g, θ] ∼ O
(

ω−1/(q+1)
)

, ω → ∞,

a result similar to the classicalvan der Corput lemmafor integrals (1.1) (Stein 1993).
To obtain an asymptotic expansion, we take a leaf off (Iserles & Nørsett 2005). Assume

for simplicity thatq = 1, thereforeθ′(b) = 0 andθ′′(b) 6= 0. We add and subtractf(b),

I[f, g, θ] = f(b)

∫ b

a

g(sin[ωθ(x)]) dx+

∫ b

a

[f(x) − f(b)]g(sin[ωθ(x)]) dx

= f(b)

∫ b

a

g(sin[ωθ(x)]) dx+

∫ θ(b)

θ(a)

f(θ−1(t)) − f(b)

θ′(θ−1(t))
g(sinωt) dt.

The function

f̆(x) =
f(θ−1(x)) − f(b)

θ′(θ−1(x))

has a removable singularity atθ(b) and isC∞[θ(a), θ(b)]. Therefore we can again use (2.3)
to expand

I[f, g, θ] ∼ f(b)

∫ b

a

g(sin[ωθ(x)]) dx+ 1
2ρ0

∫ b

a

[f(x) − f(b)] dx

+

∞
∑

k=0

(−1)k

ω2k+1
[f̆ (2k)(θ(b))Uk(θ(b)) − f̆ (2k)(θ(a))Uk(θ(a))] (2.6)

+

∞
∑

k=0

(−1)k

ω2k+2
[f̆ (2k+1)(θ(b))Vk(θ(b)) − f̆ (2k+1)(θ(a))Vk(θ(a))].
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Note two important differences between (2.5) and (2.6). Firstly, in the latter equation there is
an additional integral which, in general, is unknown – except that, by our analysis, we know
that it is∼ O

(

ω−1/2
)

. Secondly, while each̃f (k)(θ(b)) can be written as a linear combination

of f (i)(b) for i = 0, 1, . . . , k, evaluatingf̆ (k)(θ(b)) requiresf (i)(b) for i = 0, 1, . . . , 2k,
roughly twice the data, because the endpoint is a removable singularity.

3 The quadrature of I[f, g]

3.1 Asymptotic method

An obvious approach toward the calculation of the integralI[f, g] is to truncate the asymptotic
expansion (2.3). In the terminology of (Iserles & Nørsett 2005), the outcome is theasymptotic
method

As[f, g] = 1
2ρ0

∫ b

a

f(x) dx+

s−1
∑

k=0

(−1)k

ω2k+1
[f (2k)(b)Uk(b) − f (2k)(a)Uk(a)] (3.1)

+
s−1
∑

k=0

(−1)k

ω2k+2
[f (2k+1)(b)Vk(b) − f (2k+1)(a)Vk(a)],

wheres ∈ N is given. Comparing (2.3) with (3.1) demonstrates at once that

As[f, g] = I[f, g] + O
(

ω−2s−1
)

, ω → ∞. (3.2)

Therefore, similarly to the numerical theory for classicalhighly oscillatory integrals (1.1), the
more are we willing to invest in computing derivatives off at the endpoints, the better the
accuracy for largeω.

Figure 3.1 displays the scaled error committed by the asymptotic method (3.1), as applied
to f(x) = ex, g(x) = (2 − x)−1 in the interval[−1, 1]. For eachω ∈ [0, 100] we have
computed the absolute error|As[f ] − I[f ]| and scaled it byω2s+1. The asymptotic formula
(3.2) indicates thatω2s+1|As[f ] − I[f ]| should be bounded away from infinity forω ≫ 1
and this is confirmed by the figure. As a matter of fact, the onset of asymptotic behaviour is
almost immediate!

An implicit assumption underlying (3.2) is that all the quantities in (3.1) are available in
an explicit form. In reality, we require three levels of approximation;

1. For generalf we need to replace the integral by quadrature;

2. The sequenceρ might need to be approximated; and

3. The functionsUk andVk are given as infinite sums and need be truncated in practical
computation.

We address these three approximations in detail
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Figure 3.1: Scaled errorsω2s+1|As[f ] − I[f ]| for f(x) = ex, g(x) = (2 − x)−1, [a, b] =
[−1, 2] ands = 1, 2, 3.

3.1.1 Computing the non-oscillatory integral

Often the integral off is known. Otherwise we propose to compute it using an approach
from (Iserles & Nørsett 2008). In order to implement (3.1), we need to computef (k)(a) and
f (k)(b) for k = 0, . . . , 2s − 1. The idea is to reuse these values in aBirkhoff quadratureof
the form

∫ b

a

f(x) dx ≈
2s−1
∑

k=0

[wa
kf

(k)(a) + wb
kf

(k)(b)], (3.3)

where the weightswa
k andwb

k are chosen to maximize classical quadrature order. It is easy
to verify that (3.3) can be made exact for all polynomialsf of order4s − 1 and to compute
the weights for anys and interval[a, b]. For example, for[a, b] = [−1, 1] we havewb

k =
(−1)kwa

k , k = 0, 1, . . . , 2s− 1, and

s = 1 : wa =

[

1
1
3

]

, s = 2 : wa =









1
3
7
2
21
1

105









, s = 3 : wa =

















1
5
11
4
33
2
99
1

495
1

10395

















.

One way of improving upon the quadrature (3.3) is to allow thecomputation of interme-
diate points,

∫ b

a

f(x) dx ≈
2s−1
∑

k=0

[wa
kf

(k)(a) + wb
kf

(k)(b)] +

ν
∑

l=1

wi
kf(ck), (3.4)

whereck ∈ (a, b) are given internal nodes. It is easy to verify that for[a, b] = [−1, 1] the
optimal choice of internal nodes is the zeros of the Jacobi polynomialP (2s,2s)

ν : the outcome
is exact for all polynomialsf of degree4s− 1 + 2ν. This can be easily extended to arbitrary
finite intervals by linear translation.
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Table 1: Errors of different Birkhoff quadrature rules

f(x) (3.3),s = 1 (3.3),s = 2 (3.3),s = 3 (3.4),s = ν = 3
ex 4.77−02 2.11−05 1.47−09 1.11−19

(2 − x)−1 6.18−02 5.14−03 4.76−04 8.85−09

cosx 4.14−02 1.93−05 1.38−09 1.07−19

Addition of internal nodes improves drastically the accuracy, as illustrated by Table 1.
We present there the absolute error of different quadratureschemes (3.3) and (3.4) for three
functionsf . The dramatic improvement upon the addition of internal points is self evident.

3.1.2 The approximation of ρm

The second step in need of approximation is the computation of the sequenceρ defined in
(2.2). We have already seen in Subsection 2.2 that the sequence can be explicitly computed
for some functionsg and that, onceg is a generalized hypergeometric function, eachρm

can be expressed in terms of generalized hypergeometric functions. Such functions can be
computed efficiently, often to machine accuracy, with most leading software packages.

Given general functiong which cannot be reduced to a generalized hypergeometric form,
an alternative is to interpolate it by a polynomialϕ, say, at pointsϑ1 < ϑ2 < · · · < ϑν in
[−1, 1] – in other words

g(x) ≈ ϕ(x) =
ν
∑

j=1

ℓj(x)g(ϑj),

where theℓjs are cardinal polynomials of Lagrange’s interpolation atϑ1, ϑ2, . . . , ϑν . Other
things being equal, the natural choice ofϑks is asChebyshev points,since this renders the
error‖g − ϕ‖L∞[−1,1] small. We then approximate

ρm ≈ ρ̃m =
1

2m−1

∞
∑

n=0

ϕ(m+2n)(0)

m!(m+ n)!4n

=
1

2m−1

ν
∑

j=1

g(cj)

⌊(ν−m−1)/2⌋
∑

n=0

ℓ
(m+2n)
j (0)

n!(m+ n)!4n
. (3.5)

Note that the computation of each̃ρm is a finite sum. However,̃ρm = 0 for m ≥ ν. This, as
well as the need to attain good accuracy, means that we need a sufficiently large value ofν.

An alternative to Lagrangian interpolation is rational approximation. Mindful of the need
to ensure analyticity, we consider a function of the form

ψ(x) =

ν
∑

j=1

αj

x− βj

whereβ1, β2, . . . , βν 6∈ [−1, 1]. For example, we can fix the polesβj along a perimeter of an
ellipse surrounding the interval[−1, 1] and determinea1, a2, . . . , aν by imposing interpola-
tion conditionsψ(ϑj) = g(ϑj) for someϑ1, ϑ2, . . . , ϑν ∈ [a, b].
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Since

ψ(m)(x) = (−1)mm!
ν
∑

j=1

αj

(x− βj)m+1
, we have ψ(m)(0) = −m!

ν
∑

j=1

αj

βm+1
j

and we approximate

ρm ≈ ρ̄m =
1

2m−1

∞
∑

n=0

ψ(m+2n)(0)

n!(m+ n)!4n
= − 1

2m−1

ν
∑

j=1

αj

βj

∞
∑

n=0

(m+ 2n)!

n!(m+ n)!

1

(2βj)m+2n
.

Bearing in mind that(m+ n)! = m!(m+ 1)n and(m+ 2n)! = 4nm!((m+ 1)/2)m((m+
2)/2)n, we deduce that

ρ̄m = − 1

2m−1

ν
∑

j=1

αj

βm+1
j

χ(β−2
j ) = −

ν
∑

j=1

αj
√

β2
j − 1

1
(

βj +
√

β2
j − 1

)m , (3.6)

where the functionχ has been defined and discussed in Subsection 2.2. Note that wemust be

careful in the choice of the sign of
√

β2
j − 1: since the branch cut is along the lineRe z = 0,

its sign must be the same as the sign ofReβj .

Note thatβj 6∈ [−1, 1] implies
∣

∣

∣
βj +

√

β2
j − 1

∣

∣

∣
> 1, therefore the sequence{ρ̄}m∈Z+

decays geometrically. Similarly to (3.5), the computationof eachρ̄m consists of a finite
summation and is probably better conditioned since it does not require the computation of
derivatives.

We did not analyse in detail the approximations (3.5) and (3.6) but preliminary computa-
tional results indicate the superiority of using rational interpolation.

3.1.3 Computing Uk and Vk

Because of the rapid decay ofρ, the four infinite sums required for the computation of
{Um(t), Vk(t)} converge rapidly. Therefore we can afford to truncate the sums, retaining
relatively small number of terms – the largestk, the fewer terms we require.

3.2 A Filon-type method

Let a = c1 < c2 < · · · < cν = b by arbitraryquadrature nodesandµ1, µ2, . . . , µν ∈ N

correspondingmultiplicities. Similarly to Filon-type methods for integrals (1.1) in (Iserles &
Nørsett 2005), we interpolate the functionf by a polynomialφ of degreeN =

∑ν
k=1 µk − 1,

φ(i)(ck) = f (i)(ck), i = 0, 1, . . . , µk − 1, k = 1, 2, . . . , ν, (3.7)

and set
F r[f, g] := I[φ, g], (3.8)

wherer = min{µ1, µν}.
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An important feature of theFilon-type method(3.8) is thatI[ϕ, g] can be evaluated ex-
plicitly, since the asymptotic expansion (2.3) terminatesfor polynomials,

F [φ, g] = 1
2ρ0

∫ b

a

φ(x) dx+

⌊N/2⌋
∑

k=0

(−1)k

ω2k+1
[φ(2k)(b)Uk(b) − φ(2k)(a)Uk(a)] (3.9)

+

⌊(N−1)/2⌋
∑

k=0

(−1)k

ω2k+2
[φ(2k+1)(b)Vk(b) − φ(2k+1)(a)Vk(a)].

Theorem 2 The error of the Filon-type method (3.9) is

F r[f, g] − I[f, g] ∼ E[φ, f ] + O
(

ω−r−1
)

, ω → ∞, (3.10)

where

E[φ, f ] =

∣

∣

∣

∣

∣

∫ b

a

[φ(x) − f(x)] dx

∣

∣

∣

∣

∣

is the error of the underlying Birkhoff quadrature.

Proof SinceF r[f, g]−I[f, g] = I[φ−f, g], the theorem follows at once by substituting
φ− f in place off in the asymptotic expansion (2.3). 2

The two above error components, one originating in non-oscillatory quadrature and the
other asymptotic, are similar to what we have observed for the asymptotic method and they
have been already discussed for the special caseg(x) = eκx in (Condon et al. 2008a).

In case
∫ b

a
f(x) dx is known, we replace (3.8) with

F̃ [φ, g] = 1
2ρ0

∫ b

a

f(x) dx+

⌊N/2⌋
∑

k=0

(−1)k

ω2k+1
[φ(2k)(b)Uk(b) − φ(2k)(a)Uk(a)] (3.11)

+

⌊(N−1)/2⌋
∑

k=0

(−1)k

ω2k+2
[φ(2k+1)(b)Vk(b) − φ(2k+1)(a)Vk(a)].

It is now trivial to observe that, in place of (3.10), we have

F̃ r[f, g] − I[f, g] ∼ O
(

ω−r−1
)

, ω → ∞,

without any derogatory influence of Birkhoff quadrature error.
In Fig. 3.2 we display scaled error for six Filon-type approximations (3.11): note that

in our example the non-oscillatory integral is trivial and we computed it explicitly but, in
fairness, so it was in Fig. 3.1 hence we compare alike with alike.

Our first observation is that, even when the asymptotic and Filon-type methods employ
exactly the same information (i.e., whenν = 2, µ1 = µ2 and there are no internal nodes),
the Filon-type method is more precise. This is clear when comparing Figs 3.1a with 3.2a
and 3.1b with 3.2f respectively. This is consistent with a comparison of asymptotic and Filon-
type methods for integrals (1.1) and can break down when interpolation off by φ is of poor
quality (the Runge example), cf. (Olver 2008).
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Figure 3.2: Scaled errorsωr+1|F̃ s[f, g]− I[f, g]| for f(x) = ex, g(x) = (2− x)−1, [a, b] =
[−1, 2] and six different Filon-type methods (3.11): (a)r = 2, ν = 2; (b) r = 2, ν = 4;
c2 = 0, c3 = 1; (c) r = 3, ν = 2; (d) r = 3, ν = 3, c2 = 1; (e) r = 3, ν = 4, c2 = 0, c3 = 1;
(f) r = 4, ν = 2. In all these methodsµ1 = µν = r, otherwiseµk = 1.

Our second observation is again in line with the theory of Filon-type methods for ‘clas-
sical’ integrals (1.1). The addition of internal nodes leaves the asymptotic errorO

(

ω−r−1
)

intact. Yet, at a small extra cost, it significantly lowers the amplitude of the error. This is
apparent when comparing Figs 2.2a and 2.2b or Figs 2.2c, 2.2dand 2.2e. The intuitive reason
is that addition of internal points makes the interpolationerror smaller, and this is reflected in
the error of the Filon-type method.

3.3 Computing the generalised oscillator

As long asθ′ 6= 0, the scope of both asymptotic and Filon-type methods generalizes at once
to the integralI[f, g, θ]. In place of the asymptotic method (3.1) we truncate (2.5), while
expressing each̃f (k)(x) for x ∈ {a, b} as a linear combination off (i)(x), i = 0, 1, . . . , k,
with coefficients that depend uponθ.

A generalization of the Filon-type method to this setting iseven simpler. We again choose
nodesa = c1 < c2 < · · · < cν = b and corresponding weightsµ1, µ2, . . . , µν ≥ 1. The



18

function f̃ is interpolated by

φ̃(t) =

N
∑

l=0

φl[θ
−1(t)]l.

Specifically, we require

φ̃(i)(θ(ck)) = f̃ (i)(θ(ck)), i = 0, . . . , µk − 1, k = 1, 2, . . . , ν. (3.12)

However, since each̃f (i)(θ(x)) is a linear combination off(x), f ′(x), . . . , f (i)(x), it follows
at once that (3.12) is equivalent to (3.7) where, again,φ is annth-degree algebraic polynomial.
Therefore, in the absence of stationary points, a Filon-type method for (1.5) is identical to that
for (1.4).

The computation of the generalised oscillator (1.5) in the presence of stationary points is
made considerably more complicated by the presence of the term

ζ(ω) =

∫ b

a

g(sin[ωθ(x)]) dx.

In principle, we can expandζ similarly to (2.1),

ζ(ω) =
∞
∑

n=0

g(n)(0)

n!

∫ b

a

sinn[ωθ(x)] dx,

and proceed like in Subsection 2.1, but fairly rapidly we arefaced by fairly unpleasant expres-
sions. Although all this can be accomplished, with great deal of effort, for simple functions
θ, e.g.θ(x) = xq for q ∈ N, we see no point of embarking on such long calculation without
further motivation of a specific application.

Onceζ can be computed, we generalize our method along similar lines to the Filon-type
method in the presence stationary points in (Iserles & Nørsett 2005). Thus, in addition to
multiplicity-r interpolation at the endpoint, we interpolate to multiplicity (m + 1)r at any
stationary pointc of degreem ≥ 1 (that is,θ(i)(c) = 0, i = 1, 2, . . . ,m, θ(m+1)(c) 6= 0), and
perhaps at additional points.

4 Discussion

The main purpose of this paper has been to explore asymptoticand numerical features of
a new model for composite highly oscillatory integrals. This model is of relevance in the
simulation of electronic circuits, but we believe that its potential importance ranges wider and
that it is of an independent mathematical interest.

We have singled Filon-type methods as the method of choice for our integrals. It might
well have been possible to extend Levin-type methods to thissetting. However, the remaining
member of the triad of modern methods for highly oscillatoryquadrature, the method of
numerical steepest descent of Huybrechs & Vandewalle (2006), is probably of no use in the
current situation. The idea underlying this approach is to integrate in the complex plane, along
trajectories where the integral decays exponentially. This can be done very effectively with
integrals of the form (1.1) but not, say, (1.3), since there is no trajectoryz(x + iy) linking a,
∞ andb in the complex plane along whichsin[ωz(x + iy)] decays exponentially along the
segments linkinga andb to∞.
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Condon, M., Deãno, A. & Iserles, A. (2008a), On highly oscillatory problems arising in elec-
tronic engineering, Technical Report NA2008/10, DAMTP, University of Cambridge.
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