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Abstract

We consider in this paper asymptotic and numerical aspects of highly tmgilia-
tegrals of the formf; f(z)g(sin[wb(z)]) dz, wherew > 1. Such integrals occur in the
simulation of electronic circuits, but they are also of an independent maittieal interest.

The integral is expanded in asymptotic series in inverse powess ®his expansion
clarifies the behaviour for large and also provides powerful means to design effective
computational algorithms. In particular, we introduce and analyse Fijpa+tyethods for
this integral.

I ntroduction

The theory of highly oscillatory integrals is a mature sebgnd our theoretical understanding
of the behaviour of integrals of the form

/b f(x)ei“g(“') do (1.2)

and their multivariate counterparts is fairly complete@I|1974, Stein 1993, Wong 2001).
In the last few years this has been complemented by compieeunnderstanding of the

numerical quadrature of such integrals by a range of metheittn-type (Iserles & Narsett

2004, Iserles & Ngrsett 2005), Levin-type (Levin 1996, @I20806) and numerical steepest
descent (Huybrechs & Vandewalle 2006). It is however in tatuire of mathematical re-

search that, no sooner than we declare a theory ‘completgwaapplication comes to light,

provides a counter-example and challenges our understaoflthe subject.



A major stumbling block in the simulation of electronic diits is the resolution of high
frequency modulated signals. An important example is theutation of adiode rectifier
circuit, which is modelled by a nonlinear ordinary differential etijpia of the form

C'U/ — _% _|_ Io[eb(t)iv — 1]’ t 2 0, U(O) - UO, (12)

whereC' is the capacitanceR the resistance anf}, the diode inverse bias currerift) is
the input signal and the unknownis the voltage (Dautbegovic, Condon & Brennan 2005).
Analogue modulatiof (1.2) is associated with the input sigrigl) = ksin(wt), where

w > 1. Effective numerical solution of (1.2) with this value lofusing waveform relaxation,
requires efficient computation of integrals of the form

b
/ f(z)ersmw) gy (1.3)

(Condon, Deho, Iserles, Maczynski & Xu 20@. The integral (1.3) does not fit into the clas-
sical pattern (1.1) of highly oscillatory integrals or af generalizations, wherebyp|iwg(z)]
is replaced by a suitable fundamental solution of a linedinarry differential equation (Olver
2008) and, indeed, as will transpire shortly, its behavisaitogether different. In particular,
while (for —co < a < b < o0) the integral (1.1) behaves I|I(é( ~Y ) for w — oo,
wherer is the highest degree of a stationary point=( 0 if ¢’ # 0 in the closed interval), the
integral (1.3) isO(1) for w — .

Itis possible to analyse (and, indeed, compute) the ink€f2) by exploiting a serendip-
itous identity,

efosing _ )+ 2 Z 1)™ I (k) sin[(2m + 1)0] + 2 Z 1) I3 (k) cos(2mb),

m=0

wherel,, is themth modified Bessel function (Abramowitz & Stegun 1964, p.)3a®d this
has been already done in (Condon, De& Iserles 2008). The purpose of the present paper
is more ambitious, namely to consider integrals of the form

/ f(@)g(sin(wa)) de, w>1, 1.4)

wheref € C*[a,b], g is analytic in the dis¢z| < r for somer > 1 andw > 1. In that case
we no longer enjoy the benefits of serendipity and need to wotkhe asymptotic behaviour
of (1.4) from basic premises.

An interesting generalisation of (1.4) is to the integral

I[f, g,0] / f(x)g(sinwd(zx)]) dz, (1.5)

whered € C>=[a,b].! Provided that’ # 0 in [a, b], our analysis can be easily extended to
this setting. Matters are more difficult whéhis allowed to vanish, a situation similar to the

IHere and elsewhere tH@&> [, b] assumption can be relaxed and replacedbya, b] for somer > 1, except
that in that case only finite number of leading terms in our egjmans are valid.



presence of stationary points in classical theory. In tlageowve indicate how to obtain an
expansion using an approach similar to (Iserles & Ngrs€ib0

In Section 2 we expand (1.4) into asymptotic series in irvpmwvers ofu, while Section 3
is devoted to efficient numerical quadrature of this integyameans of a variant of a Filon-
type method.

We note in passing that our approach is applicable also tmtegral

b
/ f(z)g(cos(wx)) dz, w> 1.

Since an identical methodology applies and the resultsianitas, we do not dwell further on
this.

2 Theasymptotic expansion of theintegral

2.1 Thebasic expansion

Expanding the analytic functiopinto Taylor series, we have

> q(n)
=37 n!(O)Sn[f], (2.1)
where ,
:/ f(z)sin" (wzx) dz, ne€Zy.

Thus, our first goal is to expand each functioSg|[ /] asymptotically inw.
Noting that

IUJI‘ _ —lwfI,')TL d{L‘

(21) mX::O( 1>n nL(Tn)/ f 1w(2m n)mdx

we need to distinguish between even and odd values dthis leads to calculations which,
although lengthy, are quite elementary.
For evenn we have

salr) = 0 { 0 () [ s

n—1 b
2 : .
+ E (_1)7”(”’:) /a f(x)[e%w(n—m)x 4 e—21w(n—m)x] dl‘}

m=0

<3 () [ GE S () S e

m=0 k=0
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Thus, we have expandesh,,[f] in inverse powers ab. Similarly to the familiar expansions
of integrals (1.1) in the absence of stationary points, thedficients of the expansion depend

on f and its derivatives at the endpoints. However, an impodéférence is that, while the
integral in (1.1) tends to zero far — oo, we have

b
SZn[f] ~ ;(2:) / f(l’) dx, w — 0O0.

Note that it is sufficient thaf € C[a, ] for this to be true.
The expansion for odd index, is similar,

2n+1

2n+1 ’ iw(2m—2n—1)z
SQn+1[f] )2'n+1 Z ( - )/ f(x)e (2 2n—1) dx
_ ( 1) Z (_1)m 2n+1 /bf(x)[eiw(2n—2m+1)z _ e—iw(2n—2m+1)w] dax
2.4n m a

m=0
(_1)711 n " 2n +1 o) 1 *) eiu(2n—2m+1)b
~ -1 -
2-4n mz:()( ) 1;) (—iw)k+1 ;) (2n — 2m + 1)k+1

m
|: iw(2n72m+1)a
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m=0
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We substitute asymptotic expansions$f[f] for even and odd values of into (2.1).
The outcome is an asymptotic expansion of the intedfdl ] in inverse powers of large
parametew,
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[e=]

(=)™ sinwm+1)a o= g@m 2 (0) 1
(2m+1)2k+2  22m+l = nl(2m~+14n)l4n

Mg

m=0
Let ( )
1 0 g m-+2n (0) 1
Pm = 2m71 n'(m T n)' 477 m e Z+, (22)
n=0
and setforalk € Z
> 77) oo ( 1)m
= Z 2m 2k+1 T ~ora11 P2m Sln(2wmt Z Wp2m+l COS[ (2m + ) }
m:1 m=0
= (=™ o ym
Vi(t) = Z mpgm cos(2wmt) + Z 2m+ 1 o ahga P2mtl sinfw(2m + 1)¢].
1 m:O
Then

1 ’ — (=% an) (2k)
I[f,g] ~ 500/ f(z)dz + E WS [ 0)Uk(b) — f(a)Uk(a)]  (2.3)
@ k=0

Note that the functiory enters the asymptotic expansion solely through the seguenc
p = {pm}mez,, while f contributes both through a nonoscillatory integral andvdéves at
the endpoints.

2.2 Thesequence p

In the present subsection we consider the sequpgnee{p,, }mcz,. Our main concern is
with the asymptotic behaviour of the sequence. ExaminiaduhctionsU,, andV, it is clear
that geometric decayy,, ~ ¢p™ for somep € (0,1), is sufficient for their existence and
boundedness for all € Z., asine qua norior the applicability of the expansion (2.3)



We commence with three detailed examples. Firstly wele) = e, k € R\ {0},
therefore consider the integral (1.3). This yields

_ - 1 K\ 2n (k/2)™ : K>
= 27 7(7) =2 | T = 27, (k),
P " ;n!(ern)! 2 ml ° 1[m+1 P ()

where we have used the hypergeometric representation afietbBessel functions (Rainville
1960, p. 116). After brief manipulation, we recover the sdigitous asymptotic expansion
from (Condon et al. 20G8. Note that standard asymptotic expansions of modified @ess
functions for large index demonstrate at once the extraardy rapid decay of the sequence
p, becausd,,, (k) = O(1/m!).

We next consider the cagér) = sin xkz, wherex € R\ {0}. Similar algebra conforms
that

P2m = 0, P2m+1 = 2(_1)mJ2m+1("<5)u

whereJ,, is the Bessel function. Again, the sequepcdecays at a faster-than-exponential
speed.

A more interesting example, of which we will make use in thguss, isg(x) = (1 — kx),
where|x| < 1. Thereforeg(”) (0) = n!x™ and

m+42n m m+1l m+2. 2
P = Z m—|—2n 'K, :2<E> 2F1 ; ) ;’ ’ i .
2m—1 nl(m + n)l4n 2 m+ 1; 4

Let
m-+ 1 42 .,

X(Z)ZQFl[ 202 ’z}, |z| < 1.

We use the identity
1 a, b; 4z B a,a—b—i—%; 9
(1+x)2“2F1[2b; (1+x)2]_2F1{b+%; ‘

(Rainville 1960, p. 65) wittu = m/2+1,b = (m + 1)/2 andx = (2 —t — 2y/1 —t)/t.
After long, yet elementary algebra, and bearing in mind filiabur values of: andb it is true

that o
b+ L mi2 L] 1
2F1 {b+2, }_QE[W”, Sl =l

we have

X(z) = \/11772 [2(1_\?@)}’”: \/11? (1+jﬁ>m'

In particular, recalling that:| < 1, we deduce

1 K "
Pm = T —r2/4 <1 +4/1— K2/4> ’
an exponential decay.
Note that the above identity from (Rainville 1960) is trudyowhen |z| < 1 and4|z| <
|1 + |2, This is not a problem, because we can extend our expliait fafry elsewhere by

analytic continuation. The only subtle point about it istttv@ might need to change the sign
of the square root once we cross the branchReut = 0.

m€Z+,



Theorem 1 Given any analytic functiog with radius of convergence > 1, it is true that
lim,,, .00 P = 0. Moreover, ifr < oo thenp,,, = o(r=2™), while if g is entire, i.er = +oo,
thenp decays faster than a reciprocal of a polynomial.

Proof Applying the Cauchy test to the Taylor expansiory@bout the origin,
1/n n n
_elg™ ()

n

to(l),  n— oo

JELD

r n!

where we have used the Stirling formula to approximate tleeofal. Next, we apply the
Cauchy test to the definition @f,,: convergence is equivalent to

tin gm0 (0)]

= S e U G + )i/

1/(’rn+2n):| 24+m/n

1 > limsup

n—oo

g(m+2n) (O)
nl(m + n)l4»

Using again the Stirling formula and exploiting the factttha

o fgtmrr ) gm g
lim sup ) <limsup ————— = —|
n—oo m n n—oo n er

we deduce that the limsup on the rightis? < 1, hence convergence.
The assertion on speed of convergence follows at once frer@#uchy criterion. O

Noting the importance of Theorem 1 in justifying the valdiif the asymptotic expansion
(2.3), we also observe an important potential shortcomfrthedefinition (2.2). Numerical
computation of high derivatives of a functign its smoothness notwithstanding, is a notori-
ously ill-conditioned problem. We will return to this issurethe sequel, but at present we
generalize from our examples and provide an explicit foerfal a very important subset of
functionsg.

Recall that ageneralized hypergeometric functitn

a1, 0, ..., 0p; B > I (i)
Fa| 81,6,  Bg; 4 =2 W T, (B)n
where thePochhammer symbgt),, is defined recursivelyz)y = 1 and(z),, = (z)n—1(z +
n — 1), n € N (Rainville 1960). The parametets and3; are arbitrary complex numbers,
except that theg;s can be neither zero nor negative integers. Not just oue tbxamples but
many other important functions in applied mathematics aerdretical physics can be written
using hypergeometric functions.
Let us assume that= —1,b =1 and

n=0

RI| .

K ﬂla ﬂ27 RS}
To assure ourselves of analyticity i1, 1], we requireg + 1 > p and that ifg + 1 = p then

|k| < 1. Since
Il (@i

) (o) = Lli=1\"v/n
J (0) 3:1 (67)71 .

_ a1, Q2, ..., p;
x) =,F
g(z) = o
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substitution in (2.2) yields

Pm = 1 i 1 Hf:l(ai)m-i-%t Hm+2n'
2m=t e nl(m +n)! [T (Bi)mson
But
(Nmt2n = Nm(y +m)2n = 4" (N (57),, (F55),,  7€C, mnely,
therefore
e o] a;+m a;+m—+1 n
p —2M (f)m o (5), (), K’
m = q i+ i+ —p)n
m! i1 (Bi)m \2 nmon!(m+ 1), 12, (ﬁﬂzr L)n (ﬁ,+2L+1>n 4(14+q—p)
_ oy Alisi(@i)m (%) [@1@27...,@2,,; K }
m! ngl(ﬁj)m 2 T2y + 1,081,082, .. 762(15 Al+q-p |’
where
_ o +m ~ o +m+1 .
Q; = 5 Oéeri:f, 1=1,2,...,p;
= Bit+m > Bi +m+1 ,
Bi = ) Boti = ————, 1=1,2,...,q.

2 2

Thereforep,, itself can be expressed as a generalized hypergeometigtidon Note that
q+1 > pimplies that(2¢q + 1) + 1 > 2p andp,, is analytic in[—1, 1] as a function of: (or,
for that matter, ofs/4'T4=?), This is consistent with Theorem 1.

The importance of this hypergeometric representation isfthat most modern software,
e.g. MAPLE. MATHEMATICA and MATLAB, is well equipped to calculate generalized hy-
pergeometric functions. This avoids the need to calculagk Herivatives and provides an
effective means to compuje hence the asymptotic expansion (2.3), wheés a generalized
hypergeometric function.

2.3 A generalised oscillator

Our results can be generalized with ease to the intejfaly, 6] defined in (1.5), provided
thatd’ # 01in [a, b]. Lettingt = 6(z), a trivial change of variables results in

o) £(p—1 .
11f.9.6] = /9 . mg@inwt) at = I|f. g, (2.4)

where

Therefore, since
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we deduce from (2.3) that

b
I[f,9.0] ~ Lpo / f(z) dz
Ry

—1)k 3
> G e ) ) - FG@)Ub@)]  (25)
k=0

+ 5;,33’; [FEDO(0) Vi (B(b)) — FF1(8(a)) Vi (8(a))].
k=0

Matters are more complicated in the presence of station@intg where)’ vanishes. We
may assume without loss of generality thath) = 0 andd’(z) # 0 for x € [a,b), since any
integral (1.5) withr > 1 stationary points can be written as a sum-ef 1 integrals with a
stationary point at an endpoint and the latter can be assaint larger endpoint through
possible linear transformation of variable.

The change of variables (2.4) remains valid but the expan@d) is unusable, because
f and its derivatives have singularitylatYet, we can extract from (2.4) an important morsel
of information. Thus, suppose that)(b) = 0, i = 1,2,...,q, and@@+(b) # 0. We
assume in addition, without loss of generality, th&t) = 0. It is trivial to deduce that
0' (0~ (t)) = c(b — t)9/(a+1) ast — b for somec € C \ {0} and it follows at once that

Ilf.g,0] ~ (f)(w—l/(q+1)) ’ W — oo,

a result similar to the classicahn der Corput lemméor integrals (1.1) (Stein 1993).
To obtain an asymptotic expansion, we take a leaf off (Isefié&grsett 2005). Assume
for simplicity thatq = 1, therefored’(b) = 0 and#” (b) # 0. We add and subtragi(b),

b b
I[f,9,0] :f(b)/ g(Sin[w(’(fC)Ddz+/ [f(x) = f(b)lg(sinfwb(z)]) dz

"0 Fo-1(t)) — f(b)

PEAGEO)) g(sinwt) dt.

= f(b) / " g(sinfwd(@)) do + /9

The function

0 =51 w)

has a removable singularity &¢b) and isC>[0(a), 8(b)]. Therefore we can again use (2.3)
to expand

b b
I[f,9.0] ~ f(b)/ g(sinfwd(z)]) dz + %po/ [f(z) = f(b)] dz

+ 3 COe0 m)em) - FO0@)Ue@)]  @6)

> (;ﬁz [FED(0(0))Vi(0(0)) — FEHD(6(a) Vi(B(a)].
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Note two important differences between (2.5) and (2.6)sthirin the latter equation there is
an additional integral which, in general, is unknown — exdbgt, by our analysis, we know
thatitis~ O(w~'/2). Secondly, while eacli*) ((b)) can be written as a linear combination
of fA(b) fori = 0,1,...,k, evaluatingf*)(4(b)) requiresf @ (b) for i = 0,1,...,2k,
roughly twice the data, because the endpoint is a removaigealarity.

3 Thequadratureof I[f,g]

3.1 Asymptotic method

An obvious approach toward the calculation of the intedf#l ¢] is to truncate the asymptotic
expansion (2.3). In the terminology of (Iserles & Ngrset®2)) the outcome is thesymptotic
method

b

As[fag] = %/00/

S

+

s—1 C1\k
s+ Y SO 00 - 9 @@ 6D
k=0

Q

I
—
B

(=1
w2k+2
=0

[FEHD D) Vi(b) — f#H D (@) Vi(a)],

=

wheres € N is given. Comparing (2.3) with (3.1) demonstrates at onae th
Af g =If, 9] + O(w™ ), w— oo (3.2)

Therefore, similarly to the numerical theory for classiaigihly oscillatory integrals (1.1), the
more are we willing to invest in computing derivatives fofit the endpoints, the better the
accuracy for largev.

Figure 3.1 displays the scaled error committed by the asyticphethod (3.1), as applied
to f(z) = e, g(x) = (2 — x)~!in the interval[-1,1]. For eachw € [0,100] we have
computed the absolute errpd ;[ f] — I[f]| and scaled it bw?**!. The asymptotic formula
(3.2) indicates that>*T1| A,[f] — I[f]| should be bounded away from infinity far > 1
and this is confirmed by the figure. As a matter of fact, the boasymptotic behaviour is
almost immediate!

An implicit assumption underlying (3.2) is that all the gtities in (3.1) are available in
an explicit form. In reality, we require three levels of apgmation;

1. For generaf we need to replace the integral by quadrature;
2. The sequencg might need to be approximated; and

3. The functiondJ,, andV,, are given as infinite sums and need be truncated in practical
computation.

We address these three approximations in detail
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Figure 3.1: Scaled errots®>**1| A,[f] — I[f]| for f(x) = €%, g(z) = (2 — 2)7L, [a,b] =
[-1,2] ands = 1,2, 3.

3.1.1 Computing the non-oscillatory integral

Often the integral off is known. Otherwise we propose to compute it using an approac
from (Iserles & Ngrsett 2008). In order to implement (3.1% meed to computg*) (a) and
f® by for k = 0,...,2s — 1. The idea is to reuse these values iBiekhoff quadratureof

the form

b 2s—1
/ fayde~ 3 [ f9 (@) + wh fO ), (3.3)
a k=0

where the weights¢ andw? are chosen to maximize classical quadrature order. It ig eas
to verify that (3.3) can be made exact for all polynomiflsf order4s — 1 and to compute
the weights for any and intervalla, b]. For example, fofa,b] = [—1,1] we havew? =
(-D)*wg, k=0,1,...,2s — 1, and

VA
Il
—
g
2
Il
| — |
Wl =
—_
VA
Il
[N}
g
2
Il
‘Hﬁ\Nnnw —
w
I
w
g
)
I
o R N
ngﬂwh%ﬁhyJ@P—

10395

One way of improving upon the quadrature (3.3) is to allowdbmputation of interme-
diate points,

2s—1

b — v
[ H@)dem Y wif @)+ uls O o)+ Y wif (o). (3.4
@ k=0 =1
wherec;, € (a,b) are given internal nodes. It is easy to verify that ferb] = [—1, 1] the

optimal choice of internal nodes is the zeros of the Jacolyipmnial P\****); the outcome
is exact for all polynomialg of degreets — 1 + 2v. This can be easily extended to arbitrary
finite intervals by linear translation.
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Table 1: Errors of different Birkhoff quadrature rules
fl@) [(B3),s=1 (33),s=2 (33),s=3 (34),s=v=3

e’ 4.77,02 2.11,05 1.47,09 1.11,19
(2 - a?)_l 6.18 g9 5.14_03 4.76 _o4 8.85_09
COS T 4.14_02 1.93_05 1.38_09 1.07_19

Addition of internal nodes improves drastically the aceyras illustrated by Table 1.
We present there the absolute error of different quadrattinemes (3.3) and (3.4) for three
functionsf. The dramatic improvement upon the addition of internahfis self evident.

3.1.2 Theapproximation of p,,

The second step in need of approximation is the computaficheosequence defined in
(2.2). We have already seen in Subsection 2.2 that the seguwam be explicitly computed
for some functiong; and that, once is a generalized hypergeometric function, eagh
can be expressed in terms of generalized hypergeometritidas. Such functions can be
computed efficiently, often to machine accuracy, with meatling software packages.
Given general functiog which cannot be reduced to a generalized hypergeometrit, for
an alternative is to interpolate it by a polynomial say, at points}; < 5 < --- < 9, in

[—1,1] —in other words
g9(z) = p(x) =Y L(x)g(9;)
j=1

where the/;s are cardinal polynomials of Lagrange’s interpolatiod ats, . . ., ¥,. Other
things being equal, the natural choicewfs is asChebyshev pointsince this renders the
error||g — ¢l|1._.[-1,1) Small. We then approximate

m+2n O)
Pm =~ Pm :2m 1Zmlm_|_nl4n

1 v
= g1 2 9(¢)
j=1

Note that the computation of eagh, is a finite sum. Howevep,,, = 0 for m > v. This, as
well as the need to attain good accuracy, means that we nedficéestly large value of .

An alternative to Lagrangian interpolation is rational epgimation. Mindful of the need
to ensure analyticity, we consider a function of the form

v =3 2

[(v=m—1)/2] E(-erQn)(O)
J
yrx

n=0 nl(m + n)l4r (3:9)

j=1
wherefy, fa, . .., 0, & [—1,1]. For example, we can fix the polgs along a perimeter of an
ellipse surrounding the intervél-1, 1] and determine, , ao, . . ., a,, by imposing interpola-

tion conditionsy(v¥;) = g(«¥;) for somed, ¥z, ..., 9, € [a,].
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Since

P (@) = (~1)™m! Y (_“7

Jj=1

we have = —m! Z

m+1

and we approximate

1 (m+2n) (0 +2n) 1
s = B 2 i

Pm = Pm = om— 1 n'm—|—n) < On'm+” 25 )m+2n

Bearing in mind thatm + n)! = m!(m + 1), and(m + 2n)! = 4"m!((m + 1)/2)m ((m +
2)/2),,, we deduce that

v

Pm = " gm=1 Z ﬁ”“rlx D : " (3-6)

where the functiory has been defined and discussed in Subsection 2.2. Note timatigtde
careful in the choice of the sign Qyﬁf — 1: since the branch cut is along the liRe z = 0,
its sign must be the same as the sigiRefs;.

Note thats; ¢ [—1,1] implies‘ﬁj + w/ﬂf — 1’ > 1, therefore the sequende}.cz,
decays geometrically. Similarly to (3.5), the computataireachp,, consists of a finite
summation and is probably better conditioned since it dagsequire the computation of
derivatives.

We did not analyse in detail the approximations (3.5) an@)(But preliminary computa-
tional results indicate the superiority of using ratiomaérpolation.

3.1.3 Computing Uy and V},

Because of the rapid decay pf the four infinite sums required for the computation of
{Um(t), Vi(t)} converge rapidly. Therefore we can afford to truncate thessuetaining
relatively small number of terms — the largésthe fewer terms we require.

3.2 A Filon-type method

Leta = ¢; < ¢ < --- < ¢, = b by arbitraryquadrature nodesind 1, 1o, ..., 1, € N
correspondingnultiplicities. Similarly to Filon-type methods for integrals (1.1) in (ks &
Ngrsett 2005), we interpolate the functigiby a polynomiak of degreeN = >"7_, i — 1,

D (er) = fD(ep), i=0,1,...,u,—1, k=1,2,...,v, (3.7)

and set

F.[f,g] = 1I[9,4], (3.8)

wherer = min{uq, p, }-
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An important feature of th&ilon-type method3.8) is thatl [y, g] can be evaluated ex-
plicitly, since the asymptotic expansion (2.3) termindtepolynomials,

b [N/2] (71)1@
Flo.g)=3p0 | o(@)do+ > S50 0)U0) - 6#P(@)Uk(a)]  (3.9)
a k=0
LN /2] gy
D Sl OVR(b) - 6P (@) Vi(a)].
k=0

Theorem 2 The error of the Filon-type method (3.9) is
F.[f.g) = I[f, 9] ~ El¢, [l + O(w™" "),  w— o0, (3.10)
where

b
Blo.f1=| [ fote) - s da

is the error of the underlying Birkhoff quadrature.

Proof SinceF.[f,g|—1I[f,q] = I|¢— f,g], the theorem follows at once by substituting
¢ — f in place off in the asymptotic expansion (2.3). |

The two above error components, one originating in nonHasoiy quadrature and the
other asymptotic, are similar to what we have observed feragymptotic method and they
have been already discussed for the special gase= ¢"* in (Condon et al. 2008.

In casef; f(x) da is known, we replace (3.8) with

B b [N/2] (_1)k
Fl¢, 9] = 300 / fl@)dz+ > e (00 (b)U (b) — ¢*F) (a)Up(a)] (3.12)
@ k=0
LN D/2D gy
" a0 O)Vi(b) — 674 (a)Vi(a)).
k=0

It is now trivial to observe that, in place of (3.10), we have
Fr[fvg]_I[fag] No(wiril)a W — 00,

without any derogatory influence of Birkhoff quadratureoerr

In Fig. 3.2 we display scaled error for six Filon-type appnaations (3.11): note that
in our example the non-oscillatory integral is trivial an@ womputed it explicitly but, in
fairness, so it was in Fig. 3.1 hence we compare alike wikteali

Our first observation is that, even when the asymptotic atmhfype methods employ
exactly the same information (i.e., when= 2, u; = po and there are no internal nodes),
the Filon-type method is more precise. This is clear whenpaning Figs 3.1a with 3.2a
and 3.1b with 3.2f respectively. This is consistent with mparison of asymptotic and Filon-
type methods for integrals (1.1) and can break down whemgatation of f by ¢ is of poor
quality (the Runge example), cf. (Olver 2008).
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Figure 3.2: Scaled errots’ 1| F,[f, g] — I[f, g]| for f(z) = e*, g(z) = (2 — ), [a,b] =
[—1,2] and six different Filon-type methods (3.11): (a= 2, v = 2; (b)r = 2, v = 4;
co=0,c3=1,)r=3,v=2;(d)r=3,v=3,co=1;(€)r=3,v=4,¢c0 =0,c3 = 1;
() » = 4, v = 2. In all these methodg, = u, = r, otherwiseu;, = 1.

Our second observation is again in line with the theory obif-itype methods for ‘clas-
sical’ integrals (1.1). The addition of internal nodes kesithe asymptotic erroi@(wf“l)
intact. Yet, at a small extra cost, it significantly lowerg thmplitude of the error. This is
apparent when comparing Figs 2.2a and 2.2b or Figs 2.2cah@@.2e. The intuitive reason
is that addition of internal points makes the interpolatoror smaller, and this is reflected in
the error of the Filon-type method.

3.3 Computing the generalised oscillator

As long ast’ # 0, the scope of both asymptotic and Filon-type methods génesaat once
to the integral[f, g,0]. In place of the asymptotic method (3.1) we truncate (2.3)ilev
expressing eacli*) (x) for = € {a,b} as a linear combination of")(z), i = 0,1,...,k,
with coefficients that depend upén

A generalization of the Filon-type method to this settinguen simpler. We again choose
nodesa = ¢; < ¢3 < --- < ¢, = b and corresponding weighis,, o, ...,p, > 1. The



18

function f is interpolated by
N
o(t) => o~ (1)]"
=0
Specifically, we require

F0O(cr) = FDO(cr),  i=0, =1, k=12..,m. (3.12)

However, since eacfi(") (6(x)) is a linear combination of (z), f'(x), ..., f@ (z), it follows
atonce that (3.12) is equivalent to (3.7) where, again,annth-degree algebraic polynomial.
Therefore, in the absence of stationary points, a Filor-tyethod for (1.5) is identical to that
for (1.4).

The computation of the generalised oscillator (1.5) in ttespnce of stationary points is
made considerably more complicated by the presence ofitime te

b
(@) = [ glsinlut(@) de.

In principle, we can expangd similarly to (2.1),

> (n) b
C(w) = Z g(0) / sin" [wl(z)] dz,
n=0 a

n!

and proceed like in Subsection 2.1, but fairly rapidly wefaoed by fairly unpleasant expres-
sions. Although all this can be accomplished, with great déeffort, for simple functions

0, e.g.0(x) = x? for ¢ € N, we see no point of embarking on such long calculation withou
further motivation of a specific application.

Once( can be computed, we generalize our method along similas timé¢éhe Filon-type
method in the presence stationary points in (Iserles & NpBQ05). Thus, in addition to
multiplicity-r interpolation at the endpoint, we interpolate to multipyic(m + 1)r at any
stationary point: of degreen > 1 (thatis,d (¢) = 0,7 = 1,2,...,m, 8D (¢c) # 0), and
perhaps at additional points.

4 Discussion

The main purpose of this paper has been to explore asymptoticnumerical features of
a new model for composite highly oscillatory integrals. sThodel is of relevance in the
simulation of electronic circuits, but we believe that itagntial importance ranges wider and
that it is of an independent mathematical interest.

We have singled Filon-type methods as the method of choiceupintegrals. It might
well have been possible to extend Levin-type methods tcsttting. However, the remaining
member of the triad of modern methods for highly oscillatgnadrature, the method of
numerical steepest descent of Huybrechs & Vandewalle (2@®@robably of no use in the
current situation. The idea underlying this approach istegrate in the complex plane, along
trajectories where the integral decays exponentially.s Thain be done very effectively with
integrals of the form (1.1) but not, say, (1.3), since therea trajectory:(x + iy) linking a,

oo andb in the complex plane along whichin[wz(z + iy)] decays exponentially along the
segments linking: andb to co.



19

References

Abramowitz, M. & Stegun, I. A., eds (1964landbook of Mathematical Functionsational
Bureau of Standards, Washington, DC.

Condon, M., Dego, A. & Iserles, A. (2008), On highly oscillatory problems arising in elec-
tronic engineering, Technical Report NA2008/10, DAMTP,\émsity of Cambridge.

Condon, M., Deho, A., Iserles, A., Maczynski, K. & Xu, T. (20@3, On numerical meth-
ods for highly oscillatory problems in circuit simulatiofechnical Report NA2008/12,
DAMTP, University of Cambridge.

Dautbegovic, E., Condon, M. & Brennan, C. (2005), ‘An effigiaonlinear circuit simulation
technique’ |EEE Trans. Microwave Theory & Techniqug3, 548-555.

Huybrechs, D. & Vandewalle, S. (2006), ‘On the evaluatiomighly oscillatory integrals by
analytic continuation’SIAM J. Num. Anak4, 1026—-1048.

Iserles, A. & Ngrsett, S. P. (2004), ‘On quadrature methadshighly oscillatory integrals
and their implementationBIT 44, 755-772.

Iserles, A. & Ngrsett, S. P. (2005), ‘Efficient quadraturehimfhly oscillatory integrals using
derivatives’,Proc. Royal Soc. 461, 1383-1399.

Iserles, A. & Ngrsett, S. P. (2008), ‘From high oscillatieréapid approximation I: Modified
Fourier expansionsIMA J. Num. Anal28, 862—887.

Levin, D. (1996), ‘Fast integration of rapidly oscillatofynctions’,J. Comput. Appl. Maths
67, 95-101.

Olver, F. W. J. (1974)Asymptotics and Special Functioiscademic Press, New York.

Olver, S. (2006), ‘Moment-free numerical integration ofthly oscillatory functions’JMA J.
Num. Anal 26, 213-227.

Olver, S. (2008), Numerical Approximation of Highly Osatibry Integrals, PhD thesis,
DAMTP, University of Cambridge.

Rainville, E. D. (1960)Special FunctionsMacmillan, New York.

Stein, E. M. (1993)Harmonic Analysis: Real-variable Methods, Orthogonalityd Oscilla-
tory Integrals Princeton University Press, Princeton, NJ.

Wong, R. (2001)Asymptotic Approximations of IntegralSIAM, Philadelphia.



