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Abstract

We are concerned with the computation of the spectra of highly oscillategheim
problems, in particular with thBox—Li operator

1
/ F(@)e " dz = Af(y), -1<y<1,
-1

wherew > 1. Our main tool is the finite section method: an eigenfunction is expanded in
an orthonormal basis of the underlying space, resulting in an algelgaio@lue problem.

We consider two competing bases: a basis of Legendre polynomialstesisaconsisting

of modified Fourier functions (cosines and shifted sines), and ddeteiled asymptotic
estimates of the rate of decay of the coefficients.

Although the Legendre basis enjoys in principle much faster conveegéhis does
not lead to much smaller matrices. Since the computation of Legendrécres is
expensive, while modified Fourier coefficients can be computed effigizvith FFT, we
deduce that modified Fourier expansions, implemented in a manner kbatadvantage
of their structure, present a considerably more effective tool foctingputation of highly
oscillatory Fredholm spectra.
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1 Introduction

Our understanding of highly oscillatory phenomena andr tbe@inputation has advanced in
leaps and bounds in the last decade. In particular, the culsjatter of highly oscillatory
quadrature is, to all intents and purposes, satisfactarijerstood and there exists a wealth
of efficient and affordable numerical methods for integadithe form

[ @y az,
Q

where() is a multivariate domain and > 1 (Huybrechs & Vandewalle 2006, Iserles &
Ngrsett 2005, Olver 2006). This has led to a wealth of apfiina in rapid approximation of
functions (Huybrechs, Iserles & Ngrsett 2007, Huybrecbsrlés & Ngrsett 2009, Iserles &
Ngrsett 2008, Iserles & Ngrsett 2006, Iserles & Ngrsett 280d in the numerical analysis of
highly oscillatory differential equations (Adcock 200&@ion, Deé&o & Iserles 2008, Iserles
2002, Khanamirian 2008). In this paper we attempt to applyilar methodology to the
computation of spectra of highly oscillatory Fredholm @ders, of a form ubiquitous in laser
theory.

An excellent early reference to spectral problems occgiirirthe modelling of laser res-
onators is (Cochran & Hinds 1974). The underlying problenoigompute the spectrum
o(F.,) of a complex-valued integral operator

1
Fulfl = /_lf(x)ei‘”-"(x’y) dz, w>1, (1.1)

where theoscillator g is a real function: important examples of oscillators, vishign through
this paper, arg(z,y) = (v — y)? (the Fox-Li operator) and(z,y) = (= — y)*, while the
casey(z,y) = |z — y| was the subject of (Brunner, Iserles & Ngrsett 2008). Thetspm in
the casey(z,y) = xy was completely determined in (Cochran & Hinds 1974).

It follows readily from standard theory of Fredholm operatcf. for example (Atkinson
1997)) thatF,, is compact, hence(F,,) is a point spectrum with a single accumulation point
at the origin. However, being complex-symmetric, the ofmeria not self-adjoint and standard
Hilbert—Schmidt theory is not applicable.

Bearing in mind the importance of equations (1.1) in laseyireeering, the state of the
theory and computation of their spectra is deeply disagpmn The pseudo-spectrum of
the Fox-Li operator has been determined by Henry Landau7(Z8Y and its physical fea-
tures discussed at great detail by Sir Michael Berry anddvaarkers in (Berry 2001, Berry
2003, Berry, Strom & van Saarlos 2001). However, both mattimal analysis and effec-
tive computational methods for the Fox—Li operator, to sathing of more general prob-
lems (1.1), is woefully inadequate. This, we should perteis is not for a lack of struc-
ture. Fig. 1.2 displays the spectra for the Fox—Li oscillator,y) = (= — y)? and for
g(z,y) = (z — y)* and frequencyw = 100. In both cases it is clear that, consistently with
theory, eigenvalues accumulate at the origin, but eviglehd structure of the spectrum is con-
siderably richer. In both cases eigenvalues appear to lepwal curves which approach the
origin fairly rapidly — yet a formula for these spirals, evaran asymptotic form, is unknown.

Other oscillators, e.qgy(x,y) = |z — y| or g(x,y) = xy, do not produce spirals but
their spectra are structured as well — cf. (Brunner et al82@0d (Cochran & Hinds 1974)
respectively. In particular, the spectrum fge, y) = |z — y|, as displayed in Fig. 1.1, lies
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Figure 1.1: The spectrum fai(z, y) = |z — y| with w = 100.

asymptotically on the segment of the complex cifele- 1| = 1: the eigenvalue$,, }55_,
commence in the upper complex half plane, at a distéh@e*l) from the origin, continue
within O (w*l) from the circle until, within the intermediate asymptoggime, they meander
away — only to return to withit© (m %) from the circle form > w and approach the origin
in the lower half plane.

The general picture is complicated and fairly sensitivéneochoice of the oscillator. This
is demonstrated in Fig. 1.3, where the oscillagér,y) = cos[37(z — y)] results in an
‘drunken spiral’, while the eigenvalues corresponding o, y) = cos[w(x — y)] (more on
these soon) lie on real and imaginary axes. For some oscdldtis difficult to discern a
pattern: cf. Fig. 1.4, where we have lgtr, y) = sin[(z — y)?]. Another example is provided
by g(z,y) = sin[k(z — y)] for & # 0: once the spectral problem for the operafey is
approximated by an algebraic eigenvalue probléfh= A f (as explained in Section 2), we
haveA,, ,, = [lm,n, m,n € Z4, the system is Hermitian and all eigenvalues are real. By thi
stage it is too early to venture even a conjecture on morergepatterns of behaviour of the
spectra of (1.1).

Although this is tangential to the narrative of this papeis interesting (and fairly easy)
to explain the cross-like structure in Fig. 1.3 and, indegelntify the spectrum for the oscil-
lator g(x) = cos[r(z — y)]: our claim is that the eigenvalues axg = 2i"J,,(w) with the
corresponding eigenfunctionfs (z) = e"*, n € Z. Herel,, is thenth Bessel function. To
prove this assertion we use identities 9.1.44-45 in (Abkaitzo& Stegun 1964, p.361) to
argue that

olw cos[m(z—y)] _ JO(W) 492 Z ime(w) COS[ﬂ'm(l‘ o y)]
m=1

Therefore for every, € Z

1 oo
]:w[eiﬂ'ny} :/ eifrna: {JO(W) + Z ime(w)[eiwm(:rfy) +ei7rm(acy)}} dx

-1 m=1
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Figure 1.3: The spectra fof(z,y) = cos[in(z — y)] andg(z,y) = cos[r(z — y)] with
w = 100.

1

1 0o
— / eiﬂnm deO(UJ) + Z ime(W)e—iﬂ'my/ eiw(n,+7n)m dz
- m=1

1 —1

00 1
)T (w)e ™Y / (=M g = 917, (w)el ™Y,
m=1

—1

Note thathy, € R, A2, 41 € iR and that|,,| tends to zero as — oo spectrally fast.

This paper is devoted to efficient computational algoritfionshe calculation of the eigen-
values of the operator (1.1) in the generic case, when ttex leinnot be derived in a closed
form. Itis usual in the computation of spectra of integradigtors to employ thnite section
method(Arveson 1994, Hagen, Roch & Silbermann 2001). Thus®let {¢,, } ez, be an
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Figure 1.4: The spectrum fgi(x, y) = sin[(z — y)?] with w = 100.

orthonormal basis df;[—1, 1]. Expanding an eigenfunctiofin this basis,
F@) =" fmtm(x),
m=0

substitution into (1.1) and integration in€ [—1, 1] result in the infinite-dimensional alge-
braic eigenvalue problem

iAn,mfm:Afn7 n€Z+>

m=0
where

1,1
Apm = / / ¢n(x)¢m(y)ei‘”g(””’y) dx dy, m,n € Z,. 1.2)
1J

The standard procedure, justified by the compactness ofrttierlying problem, is to trun-
cate the matrix4 and solve the resulting finite-dimensional algebraic eigkre problem by
the very efficient methods of numerical linear algebra. Thallenge is to choose a bagks
satisfying two desiderata: rapid convergence of the tiattaxpansion to an eigenfunction
(since this means that the underlying finite matrix need eatXcessively large) and afford-
able computation of the double integrals (1.2). An aggiagd@actor is the presence of two
different mechanisms that generate high oscillation iR)(IFirstly, we are interested in large
values ofw; secondly for largen (smooth) orthogonal functions,, are themselves highly
oscillatory. This competition between two forms of highiiation is an important organising
principle underlying our work.

An obvious alternative to the finite section method is to diize the integral in (1.1) by
quadrature. Thus, givel\V + 1 quadrature points

—1§C,N<C,N+1<-‘-<CN§1
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and corresponding weights n,b_n11,...,bxy, We can approximate the spectral problem
for (1.1) by the finite-dimensional algebraic eigenvaluelgem

N
> fmedlemen) = \f, m=-N,-N+1,...,N, (1.3)
m=—N

where f,,, ~ f(¢;,). (In principle, we can bring (1.3) into the formalism of thaifé sec-
tion approach, letting the orthogonal functiops, be delta functions, but this helps little
in understanding this method.) Clearly, (1.3) belabourdeunrthree disadvantages. Firstly,
the (m, n) element of the matrix whose eigenvalues we seeR (iQf—l), hence we need to
choose very large values of to attain good accuracy. Secondly, oncés large, we need to
take truly huge value oV, so that integration occurs in a non-oscillatory regimengEur-
rent approach denies us the benefits of highly oscillatoadeature.) Finally, oncé' is very
large, although it is possible to compute rapidly nodes aegjlts associated with nontrivial
quadrature schemes (Glaser, Liu & Rokhlin 2007), efficienglementation of, say, Gaussian
rules is impractical. Therefore, we are compelled in pcactd choose equally-spaced nodes
cm = m/N, with weightsb,, = 1/(N + 1), thus denied the benefits of such quadrature
methods as Gauss—Legendre or Clenshaw—Curtis.

The plan of this paper is as follows. In Section 2 we addressbst natural approach
to the choice of the basi®, namely Legendre polynomials. Although general consiitara
originating in the theory of spectral methods indicate waid convergence as the size of a
section increases, it turns out that this approach has a ewailsubstantive disadvantages.
This motivates our exploration in Section 3 of the altenetf using expansions in exponen-
tials, focusing on modified Fourier expansion. Finally, econ 4 we show how the idea of
hyperbolic cross leads to substantial cost savings onceserenodified Fourier expansions.

2 Expansion in Legendre polynomials

2.1 An explicit formula

Choosing the Legendre basis, (z) = (m + %)%Pm(x), m € Z4, we have

1

A = (m+ 1)3( *// y)e“9@Y) 4z dy (2.1)

/ / Ko (2, y) ddy

for all m,n € Z,, whereK, (z,y) = ¢“9=¥) |t follows from standard theory of spectral
methods (cf. (Hesthaven, Gottlieb & Gottlieb 2007) or angniver of similar references) that,
providedg € C*([—1,1]?), the coefficientsA,,, ,, decay at a spectral speedrast n — oo,
that is faster than a reciprocal of any polynomiahirandn.

We let

M\»—A

=(m+3) )2 (n

1 1.
Amn = (m+ %)2 (n+ %)ZAm,n

and work in the future with the somewhat simpler coeﬁicie&@n.
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It is convenient by this stage to generalize a univariatmtda for Legendre expansions
to our setting. Given function
-3 fen

analytic in[—1, 1], it is true that

oo oo

fa) =3 a2 p 2.2)

— Pt 2n+2kk!(%)n+k

(Rainville 1960, p.181). Herg:),, is thePochhammer symbolz), = z and(z),, = z(z +
n—1)forn € N. Sincef_l1 P2(z) dz = n+ 3, it thus follows that

o = fn+2k
/ f(x x)de = ];) 2n+2k—1k!(%)n+kv ne€ L. (2.3)

Likewise, suppose that the kernil, is an analytic function ofx, y) € [—1, 1]?,

:ZZ]{L yl7 T,y € [_1’1]a

k=0 1=0

wherery,; = 8’;8@[@(0, 0). Generalizing (2.3) to this setting is straightforward,

(o) o r
m+2k,n+21
’ , m,n € Zy. (2.4)
;; m+n+2(k+l71)k!”(%)m+k(%)nH

An important special case is that of Abel kernelK , (x, y) = p., (z —y), €.9. the Fox—Li
operator. In that case, letting. = p(*)(0), we have

:i%(;pi Zfl"l <) 1)k ghyl=h

Thereforery; = (—1)!pr1; and (2.4) simplifies to

n - pm+n+2(k+l)
=(-1) , m,n € Z,. (2.5)

The explicit formulae (2.4) and (2.5) are of limited use. Evfetlerivatives at the origin
are freely and easily available, explicit summation is exgdee and likely to be ill conditioned
because — as we soon see — it involves terms of radicallyréiftenagnitude. The situation is
considerably worse if derivatives are computed numesicafit just because of the very con-
siderable additional expense but also since computatiatefatives is itself a notoriously
ill conditioned procedure.
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The sobering truth is that no computational procedure ity ®ifective in the compu-
tation of Legendre coefficientd,, ,,. Perhaps the most effective is to discretize the inte-
gral at Chebyshev points and use fast algorithms to compateriderlying quadrature: this
is essentially a combination of Clenshaw—Curtis quadeatuith FFT (Clenshaw & Curtis
1960, Potts, Steidl & Tasche 1998), but its origins can beetido the work of F&r (Fegr
1933, Fegr 193d). Yet, even using such rapid algorithms we would require bivariate
setting an excessively large volume of computations. Thigecisely the reason why Leg-
endre expansions are typically avoided in spectral methaltlsough arguably the uniform
Legendre measure is the natural one in defining the undgriyimer product. Instead, it is
usual to employ either Chebyshev expansions (which can ipueted very effectively with
FFT) or Legendre collocation. In the current setting, tHouge cannot impose by fiat the
Chebyshev measure are compelled (at least in this settreydand in Legendre polynomi-
als.

In special cases we can further massage explicit formuld ¢(2.(2.5) to render them
suitable for computation. An important example is provitdgdhe Fox—Li operator.

2.2 The Fox—Li operator

Letting p(z) = ¢“*”, z € [-2, 2], we have

(2m)!

ml (iuJ)"L, P2m+1 = O7 m € Z+.

P2m =

Therefore, substituting in (2.5),

. (2m + 2n + 2k + 21)!(iw mAn+k+l
oz = 30) M)

k=0 l= 04m+n+k+l 1k'l'(m+n+k+l)( )Qm-i-k( )2m+l

Z Z (2m + 2n + 2r)!(iw)™ T
Amtntr— lkl k;) (m—i—n—i—r) ( )2m+k<%>2n+r7k:

k=0r==k
Z (2m + 2n + 2r)! 27": (r) 1 oy
k=0 k (%)2m+k(%)2n+r4€

gmAntr=lim +n 4 r)lr!

B (2m 4+ 2n + 2r)! e AT
; gm+n+r—1 m+n+r)|7,|vr (1w) .
Since
r (=7)k
- (71)]{ R (%)QTH—k - (%)27n(2 + Qm)k,
k k!
(g) k= (_l)k(%)2n+r
2 )2n+r— (_% o — T)k
we have
1 _1_ o
vt = ,721:‘ Ts 2 2n r’l

113 .
" (%)2m(%)2n+7 2 + 2m7
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B 1 L'(2 +2m)(2m + 2n + 2r +1)!
(2)om(Z)2ntr T(E +2m+r)(2m +2n +r +1)!
1 (2m+2n+2r +1)!

(g)mw(g)gn“ 2m+2n+r+ 1)

where,F, denotes dp, ¢) generalized hypergeometric function (Rainville 1960 3p. AVe
deduce that

2m.2n = gt =L(m 4 )l (2m 4 20+ 7 4+ DS )2mar () 2n4r

But
(2m + 2n + 2r)!
grtntr=l(m +n 4 r)!
@m+2n+2r+ 1) 4"(m+n+1),(m+n+32),
@m+2n+r+1) (2m + 2n + 2),
consequently, after some elementary algebra,

- 4( % )'rn-ﬁ-n-‘r'm

A )™ Gmen o [ mtnd gmbn s Lmtnt 3
m.2n Bom(B)2n Pl 2m+2n+2,2m+ 5,204 5 ’
Likewise,
i A1) ™ (D mtnt m+n+3m+n+2,m+n+3;
Asmi12n41 = ——3 5 3 2 5 5. 2 diw].
(2)2m+1(3)2n+1 2m+2n+4,2m+ 3,2n + 3;
Therefore, for everyn,n € Z., m + n even,
—1\" (3 l(m+n) 1 m+n 1 m+4n m+n 3.
Apn = 41" (w)® (2)%(m+n)3F3 2 T3 2 —El’ ;_3 T2 4wl
m,n (%)m(%)n m—i—n—i—?,m+5,n+5;
(2.6)

Since, trivially, /LW = 0 forall m,n € Z,, m + n odd, we have all the coefficients of
the matrixA in an explicit form — except that the calculation of geneawdi hypergeometric
functions is neither trivial nor fast even with modern scfte..

2.3 Asymptotics of Fox—Li coefficients

It is central to the subject matter of this paper that coeffits A,,, , possess two kinds of
asymptotics which are germane to the understanding of tite iection methodw — oo
for fixed m, n (largew asymptotics) aneh + n — oo for fixedw (large{m, n) asymptotics).
In this subsection we address the issue of ldrgen) asymptotics for Legendre coefficients.
Our starting point is the explicit representation (2.6).

Theorem 1 For everyn € Z, itis true that

~ —1)njn 3 2 iwx
An n = ()# / e7‘]n+l(“)x) d{E7 (27)
1 0 & 5
B ~1 n+l:n L 2 )

Gt Os(x)e“" ], ;1 (wx)da, 0<s<n, (2.8)
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where

05(:1:)52&{ —st el x]

2; 21"

Proof We commence from (2.7). Letting = n in (2.6) and using the second Kummer
formula for confluent hypergeometric functions (Rainvil@60, p. 126), we have

Ay = n2F2[n+2,n+13 " }

2n+2,n +

(D)) = (n+1),  (diw)"
a (%)n ;T(2n+2)Tn+r+2

ST A o L
n(3),(w)z Jo = rl(2n+2),
(_l)n 4iw _% ’I'L+1
— n F ) d
PETES P E Y S R R
(_1)n2%(%lw)n 2 nol n+1;
= (%)n /0 T 1Fq 2n+2;21wx dx
(_1)n2%(%lw)n 2 n—s iwzx w2x2
T O [t |y - 5 as
Since , ( )
— x I'v+1
F ’ — | = J
0 1|: v+ 1; 4:| (.%/2)” (J))

(Rainville 1960, p. 108), we confirm (2.7).
Next, we choose € N, whence for every, > s (2.6) yields

3 A (W) ()n n—l—%,n—i—ln—kg,
Aot =) T L o e s s+ 51
_ ) G g (ks (At Bk
(%)n—s+1(%)n+s+l k!(2n + 2)7€ (n — s+ %)k(n + s+ %)k
( n+s TL+1 ) i
= k) (4
. 7 3, P
where
a1, ) = ($)n(3)ns1 (n+ 3)e(n+ 3 _(n+k+ 3 —8)s1
7 (%)n 9+1(%)n+s+1 (Tl78+%)k(n+s+%)k (n+k+%)s

Our claim is thats(n, k) = ¢s(n + k), where

s—1
_ _1\s—1-k Qs k (S+k)'
%(m>_k2=()( ) ctk+2 P T REF D —k—D
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This follows at once by representing the rational functiqrin the form

(43 —8)s-1 S 1ok Osk
s\ ) = —————F—— = —1 s 7’(,
#elr) (x+3)s kZ:O( ) r+k+3

where then, ;s are the residues at= —k — 2.
We conclude that

~ ( n+s lw TL—|—]_ .
An—s n+s — k) (4
" ( n41 k' 2n + 2)g ps(n+ k) (4iw)
_ ( 1)n+1(1a))" s—1 O 1 Z k (4iw)n+k+l+§
(3)n+1 (diw)ntits k! 2n+2 Jkn+k+1+3
n s oyn ST iw
- ) Z Ced /4 "t Ty [n + L x] dz
(%)n—i—l —o (4iw)”+l+% 0 2n + 2;
—_1) L) s—1 2
- ( )1 ) Z — 5 / Y O ntl 2iwz | dz
(Pnr1 g 2mtiFe Jo 2n + 2;
- CL ) SZ . /2 gtz eleT By — 3 w2x2 dz,
(3)n+1 1=0 2m 43 o n+3; 4

where we have used the second Kummer formula to convertiRhdunction toyF;. Thus,
we deduce (2.8) from

— w2x2 7r2( ) 2n+2
oF1 - = n+i
n -+ 5’ 4 rL+2er+2 2

and the explicit form ofy; ;. O
Note thatd, can be written as a Jacobi polynomial (Rainville 1960, p.)254
bs(x) =PV (1 —2),

although this plays no further role in our analysis.
The integral expressions (2.7) and (2.8) need to be furtlassaged to reveal their asymp-
totic behaviour fom — oo. To this end we need the following simple result.

Proposition 2 Let

2
In[f] = ! 3 /0 x"+%f(x)dx, n€Z+,

2nt3
wheref € C>[0,2]. Then

L) 2@+ @) 4+ 67 + )
T R (n+ 3

+0(n™*), n>1 (29)
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Proof Similarly to (Iserles & Ngrsett 2005), we integrate by parts

Lif) = f<> brosegp = L L ooy Lomrbore g,
n 2n+2 2n+% n + % 0 o
f(2> 1 1 /2 ! (n+3)logx
= — - e da.
n -+ % 2n+% n+ % 0 [l’f (l’) + f(x)]e €T
Two further integrations by part yield (2.9). O

Theorem 3 For any fixedv ands € N and forn — oo it is true that

. (—iw)rent a2 [ 1 142w 14 6iw — 4w? . }
n,n ™’ - + + O(n
25(n+ 4ymtr n—35  (n—3)? (n—1)3 ()
- —iw)nentaeiv Ptiw  252(s24+1)+2iw(2s%+1) —4w? B
An—s,n+s ~ _( l) N2 |:1_ 1 + 2 12 +O(’I’L 3):|
2:(n+3) n+s3 (n+3)
Proof Follows by easy algebra from Theorem 1, the asymptotic eséim
1 exr
Iw) ~ — (S
(Abramowitz & Stegun 1964, p.365) and the asymptotic exioan@.9). O

Theorem 3 quantifies something that we already know: gsows, the size of the coef-
ficients decays at spectral speed. However, it highlightsctvihich is crucial to the under-
standing of the finite-section method for highly oscillgtéredholm operatorghe behaviour
of the coefficients is determined by the competition betteege-(m+n) and largesw asymp-
totics. This is illustrated in Fig. 2.1, where we have plottedog; | A, .| for w = 100,
growingn and the cases. = n, m = n — 2 andm = 0 (in the latter case only even values of
n have been displayed, singg »,, 1 = 0). Evidently, the size of4,,, ,,| drops quite sedately
for a long while and then, having reached a threshold whegeian, n) asymptotics take
over, suddenIyAm »| drops literally like a stone. For exampleflgoo 200 = 6.30_¢5, While
\A2507250\ = 1.25_15. This process is faster when descending along diagonalsandwhat
slower along rows and columns df thus,|Ag o75| = 2.47_os and|Ag 25| = 8.59_15.

This phenomenon is consistent for different values @ind also for other oscillators, not
just Fox—Li. Its operative implication is as follows. Foetfinite section method to compute
eigenvalues of the infinite-dimensional operator well, westrtruncate the infinite matrid
by discarding sufficiently small entries. The entries bee@mall (very rapidly!) only once
large{m, n) asymptotics take over, and this imposes a fairly large Idveemd on the size
of truncated matrix4: for Fox—Li, the one instance where the large;n) asymptotics are
known, computational experience indicates that a gooccehafidimension ofd is ~ 2v/2w.
(This actually is slightly better, because for Fox—Li — awd éther symmetric oscillators
g(z,y) = g(y, ) — A,,,, = 0 whenm andn are of opposite parity and the mattikcan be
partitioned into two matrices of half the size.)

The lesson from our analysis of Legendre expansions apfi¢ide Fox—Li operator is
twofold. Firstly, the frequency imposes a lower bound on the size4fwhich is immune
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Figure 2.1:— log,o |Agm 2n| forn = 0,1, ..., 250 and (@ym = n; (b) m = n—2; (€)m = 0,
n even. In all cases = 100.

to the spectral decay in the size of the coefficients. Segpadén if theflmyns are available
explicitly, their computation is time-consuming. Of coeysn the general case the coeffi-
cients are not available in an explicit form and their apprate calculation is a formidable
challenge to which there are currently no easy answers.

2.4 Other oscillators

It is interesting to examine Legendre coefficiemi,sb,n in special cases when they can be
computed explicitly, since this provides us with usefuladetward the understanding of the
general problem. This is the case even if the spectrum isoitkpknown, as it is in the two
following examples.

We commence by considering

Flfl = [1 f(x) cosw(z — y) de. (2.10)

This does not fit into the pattern (1.1): we have real kerndlla#fl type K, (x, y) = cos w(x—
y). Yet, the logic underlying the finite section method is stdlid, as is formula (2.4). The
spectrum of (2.10) can be easily evaluated since the kernéfank 2 and just two eigenvalues
can differ from zero: they are

3in 2 . . .
A =1-— 51;1 w, with the eigenfunction f(y) = sinwy,
w
sin 2 . . .
Ao =1+ 51;1 w, with the eigenfunction f(y) = coswy,
w

while the invariant subspace of eigenfunctions correspantd the infinite-multiplicity zero
eigenvalue is spanned Bin o,y andcos 8,y, n € Z, wherea,,, 5, # w are solutions of
the transcendental equations

acot o = w cot w, Btan f = wtanw.
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Symmetry implies thatl,,, ,, = 0 for oddm + n, while

m+n+k+l 2(m+n+k+l)

AQm,Qn = Z Z 4m+n+k+l LRI

k—0 =0 ( )2m+k(7)2n+l
)m+n+r 2(m+n+r)

= ;}2 gmAn+tr— 1k.| k) ( )2771+k(3)2n+r—k
_ - (—w?)mtntr - r!
TE::O gmtntr=irl Z k' k) (%)Qm-‘rk(%)Qnﬁ-r—k’
Since
1 1 r! i
= ) == —1 =T )k,
(%)Zm—O—k (%)2m(2m+%)k (T*k)! ( ) ( )k
1 (=DR(=2n—r—
(%)271-&-7" k (%)2n+7> ’

we obtain, summing upF; ataz = 1 with a familiar formula (Rainville 1960, p.49),

. o) ( 2)m+n+r 2’/L 1.
A2n 2n — 2F |: 2 1:|
1,2n TZ% gm+n+tr—1 I(%) ( )2n+r 2m + %;
Zymtntr (3)2m(2m + 2n + 2r + 1)!

—E: o
4m+n+r 1y §)

X
2 ( )2ntr (%)2m+r(2m+2n+7a+1)!

B 4(—w )m+n( Yman(m + n)! m+n+1,m+n+ g’ e
Bam (B)an@m+2n+ 1)1 > 2 [2m+ 2,20+ 3, 2m + 20+ 2 :

Likewise,

4( w )7n+n+1( )m+n+1(m+n—|—1)
(%)2m+1(*)2n+1(2m+2n+3)
XQFS{m+n+27m+n+2 2}

A2m+1,2n+1 - -

o2m+ 2,20+ 2. 2m+2n+4;

and we deduce that for alh andn of the same parity

mr mA4n (3 m+n E
1A e (D)mgn (3)! [ mgn g min 3, L2
" DnDalm+n+ Dl 22 mt Gont gomtnt 2

(2.11)
The explicit representation (2.11) is quite interestinggio unrelated reason. Adopting an
altogether different approach, we can exprdss,, is a completely different manner. Thus,
let m andn be of the same parity. Then

Amn / / P, (z) P, (y)(coswz coswy + sinwz sin wy)dzdy
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1 1
/ P (x) coswxdx/ P, (z) coswxdzx

—1 —1

1 1
—l—/ P, (x) sinwxdx/ P, (z) sinwzdz
-1 1

B f_ll P,,(7) coswzdx f_ll P, (x) coswzdz, m,n even
f_ll P,,(x) sinwzdz f_ll P, (z)sinwzdx, m,n odd
Since
1 o0 2\n+k 2\n 2
(—w?) (—w?) —; w
Py, (x) coswrdx = = oF1 "oy — —
[1 kz:o 22n+2k71k!(%)2n+k 22”*1(%)271 2n + 55 4
1
(212
0" (Z) sy
1 o0 n+k, 2n+2k+1 n, 2n+1 2
. (—1)n+Fy (-1)"w — w
Popi1(2) sinwadr = = oFil, - —
/4 w1 (@) kZ:O AMHREN(D ) o kg 4(3) s n+3; 4
1
(272
0" (Z) sz

we deduce that

~ mtm 2T

Agmon = (1) UJ2m+%(w)J2n+%(w)7

7n+n+12£
w

Comparing this with (2.11) results in a duplication formfdaspherical Bessel functions.

A2m+1,2n+1 =(-1) J2m+g(W)J2n+g(w)-

Theorem 4 For everym,n € Z, of the same parity and all € C it is true that

22m+n+1 (%)

m+n);

mgn ( B e e L .
T(2)m(3)n(m +n+ 1)! m+3n+3m+n+2;

(2.12)

2

I3 (2) 1 (2) =

We have not found (2.12) in any of the usual texts on Bessetiums and believe that it
might be new — a familiar situation in mathematics, when yeiLosit to prove one thing and
discover something different altogether. Note furthet tdoemputer experimentation indicates
that the duplication formula (2.12) is probably true forralln € N, regardless of parity. This
being marginal to the theme of this paper, we did not conghdsiconjecture further.

Our last example in this section is the problem (1.1) with keenel g(x,y) = xv,
whose eigenfunctions have been identified in (Cochran & 8lih@74) with angular pro-
late spheroidal functions. Agaiﬁmm = 0 for m andn of opposite parity. Otherwise, we
commence by using (2.2) to argue that for every C

&0 )\n+2k ™

1 2
gnkz/ MNP, (y)dy = = F{ ’ }
(A) ) ) L g 2e=Tk1(3),, 277,71(%)”0 "n+2g




16 H. Brunner, A. Iserles & S.P. Ngrsett

2 3

wherel,, is a modified Bessel function. It follows by easy algebra anwlell-known Taylor
expansion of modified Bessel functions that

k=0,1,... -1
d%gzm(iwy) _ 0’( )kzkl(%) O " ,
dy?2F y=0 — s k> m,
! (k- )'(%)k+m
. 0, m=0,1,...,m—1,
A g g1 (lwy) _ (—1)RRI(3) b+
dy?k y=0 | 2i @ : k>m
(k —m)!(5)k+mt1

and all other derivatives gf,, vanish. Therefore, using (2.3) again and assuming witromst |
of generality thain < n,

: 1 = (D )L
Am,n:/PngmiWydy: 2
2m,2 o (iwy) kZ:O 4= k41— ) () kg (3)an sk

n+tgntl wT

n—m+1,m+n+%,2n+%; 4

e
4n_1(n m)'(%)mﬂl(%)%

Similar calculation can be performed fermHgnH and in general, for alin < n, m +n
even, we have

_ LJ(%)

m,n — on— 1(

2F3[

1) (iw)”
)"gm (%)n

We will return to these examples in Section 4.

ntl 1 n . 2
oF3 g—QmJ g QAL%J +31’ “ |
my by 3y 3 Ty

Njw
|

3 Expansion in trigonometric functions

A familiar alternative to expansions in orthogonal polynalsare Fourier expansions. In the
current section we paint on a broader canvass, allowing ig@neral expansions in trigono-
metric functions. The reason is twofold. Firstly, Fourigpansions implicitly assume pe-
riodic boundary conditions and, in their absence, resuthénGibbs effect. Secondly, they
converge much too slow and represent poor choice on thig scowell.

Leta = {am }mez, andb = {b,, },,en be two sequences of nonnegative, monotonically
increasing numbers. We seek to expréss L[—1, 1] in the form

Z f COS A X + Z f sin by, x. (3.1)

m=0

Density of this expansion ib[—1, 1] is associated with the extension of the classM#htz
Theorem(Borwein & Ercelyi 1995, p.187) to the unit circle and is immediately Jaisin all
cases of interest to this paper.
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Expansion (3.1), in tandem with the finite section methodiires orthogonality, thereby
imposing further conditions on the coefficientsand b. It is trivial to prove that this is

tantamount to
sin(by, +b,)  sin(by, —bn) 0

sin(a,, + an) n sin(a, —an,)

am+an A, — Gp

for all m # n. We obtain the matrix entries
11
Aopmon = / / cos(ama) cos(any) K, (z,y) de de, m,n € Zy,

—1J41
11

on—1 = / / cos(ama) sin(b,y) K (x, y) dz dz, me€Zy, neN,
—1J-1
11

/ / sin(by, ) cos(any) Ky, (x,y) de dz, meN, neZy,

11
= / / sin(by,x) sin(bny) Ky (z, y) de de, m,n € N.

3.1 Large<{m,n) asymptotics
Similarly to Section 2, we need to work out the large;n) asymptotics of the4,, ,,s. The
starting point to our analysis are the asymptotic expaission

1 o Nk
/ f(z) cos(ax) da ~ sinaz 512’331 [f(%)(l) + f(%)(—l)] (3.2)
1 i

=0

E

+ i 22522 [FERFD() = D (1)),
k=0

! . — (D% an) (2k)
/ f(ac)sm(ba:)dzwfcosbzb%_H [FCR (1) — FR) (=1)] (3.3)

+ sinbz E);BS [f(2k+1)(1) + f(2k+1)(_1)]’
k=0

which can be easily obtained from the asymptotic expansioﬁ_lp f(x)e"* dx (cf. for ex-
ample (Iserles & Ngrsett 2005)), taking real and imaginamygrespectively.

Lettinge; € {—1,1}, ¢ = 2,3, 4, we denote

+ eSKuJ (Iv y)
r=1,y=—1

+ 62Kw($a y)
1 r=—1,y=1

le,e3,ea] _ Akl
S s Y= 87"83/ |:Kw(xay)

k.l
rT=y=

+ e K, (z,y) ] .
r=y=—1
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Note in passing that in the important case of Abel-type Kerig, (z, y) = p(xz — y) we have

~1) [2p% D (0) + pE+D(2) 4 plE+D(-2)),
P4 (2) — 0 (-2),

Using (3.2) twice,

oo

. S
A2m,2n ~ SIN Gy Z Elele / [82kKw(17 y) =+ aikKw(_lv y)} cos(any) dy
k=0 4m —1

o~ (-DF
+ cosan, Z T [
k=0 m

1
KL (1,y) — 02 Ky (=1, )] cos(any) dy

—1
o0 k41 gll,1,1] oo k+1 o[-1,1,-1]
o~ . (_1) S2k,2l + si Z <_1) S2k,2l+1
S11) gy, S11 Gy —a%’f""la%l""l S111 Ay, COS Ay, a%f+1a%l+2
k,1=0 k,1=0
oo (_1\k+lgll,—1,—1] oo (_1\k+lgl-1,-1,1]
" . Z (-1 52k+1,2l i (-1 52k+1,2l+1
COS Qyp, S111 Ay, 2k+2a2l+1 COS G4y, COS Ay, 2k+2a2l+2
k,1=0 m n k,1=0 m n
Likewise,
—1,1,-1 1,1,1
0o (_1)k+ls[ ] 0o (_1)k+l5[ ]
A — b Z 22 inb 2k,21+1
2m,2n+1 SN Ay, COS Oy, a2k+1b2l+1 S1N Ay, S1N Oy, E —a2k+1b2l+2
k,1=0 m n k,1=0 m n
oo [ 1\k+lcl-1,-1,1] oo [ 1\k+l oll,—1,-1]
o " Z( 1) 52k+1,21 1 cos - Z( 1) 52k+172l+1.
COS Uy, COS by, eI e COS @y, Sin ay, JETSSIETES ;
k,l:O m n k,l:O m n
0 (_1\k+lgll,—1,-1] oo [ 1\k+lol-1,-1,1]
A o $b . Z ( 1) SZk,Ql _ s b 3 ( 1) SZk,Ql—i—l
2mHl,2n cos b, sin a,, PSRN €08 by, cos a,, E 212042
k,1=0 m n k,1=0 m "
oo [ 1\k+lgll:1,1] oo (_1yk+lgl-11,-1]
Lsinb. si Z( 1) Sok+1,2 L sinb . (1) S2k+1,21+1.
sin by, sin a,, —b2k+2 2Tl sin by, cos a,, E [2RF2 202 ;
k,1=0 m  an k=0 m  On
o (_1\k+lgl-1,-1.1] oo [ 1\k+lcll,—-1,-1]
Aames s ~ cosbcosty S CUSG S DS
2mL,2n+l ~ COS Oy COS Oy b%]f+1b%l+1 COS Oy, SIN Oy b%y’f+1b%l+2
k,1=0 k,1=0
0o [ 1\k+l ol—1,1,-1] oo ([ 1\k+loll,1,1]
~sinb b (1) Sak41,21 4 sinb. sinb Z( 1) Sak41,2141
SIN Oy, COS Opy b2k+2b2l+1 SI Oy, 811 Oy b2k:+2b2l+2
k,1=0 moon k,1=0 mooon
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Table 1. Absolute values of somg,, ,,s for the Fox-Li kemnelk,, (z,y) = cw(=9)? and
w = 100.

n 100 200 400 1000
Aoy on 3.80_02 | 5.80_06 | 1.59_¢7 | 3.39_09
Agpoanya || 347 02 | 5.71_06 | 1.58_o7 | 3.38_q9
AQn,2n+4 2.73_02 5.61_og 1.57_07 3.37_09
A0,2n 5.50704 1.20,05 2~34706 3.57707
Agon || 549 04 | 1.18 g5 | 2.31_g6 | 3.52_¢7

Were we to make the simplest possible choice, the Fouriearesipna = {7mm} ez, ,
b = {mn},en, matrix elements would have behaved asymptotically as

m-+n m—+n—+1
4 o GO A =D gl=L-1.1]
2m,2n 7T4m2n2 1,1 ) 2m,2n+1 ’/TSTTLTL? 1,0 )
-1 m—+n+1 -1 m—+n
Aopmgi2n ~ %S([) 117 1’1]7 Aopmt1,2n41 ~ 2)7 ([)01 b,
: m2mn ’ memn

Note in particular the disappointingly slow rate of asyntigtdecay 0fA2,,+1,2n+1-

It makes sense to choos@andb so that the rate of decay of all the coefficients is as rapid
as possible. It is easy to see that this goal is attained fdkale C>([—1,1]?) if and only
if sina,, = 0, cosb, = 0, for € Z,, n € N. This results irmodified Fourier expansions
(Iserles & Ngrsett 2008), with,, = mm, b, = m(n — 3). We note that this choice indeed
results in an orthogonal system. Another advantage of neatFourier expansions is that,
unlike classical Fourier expansions, they converge umifpfor analytic functions, regardless
of periodicity (Iserles & Ngrsett 2008).

We therefore restrict ourselves in the sequel to the modtadier base. The largen, n)
asymptotics are

Agman ~ (=1 nmen kz: lZ 7T2(1c+14£2)71ﬂ,ﬁ)L21:lr2nzz+2 551112’111’ (3:4)
0 1=0
Agm,2n+1 ~ (—1)m+n+1 i i Wz(k+z+2)7§122’;z; _ ,)2z+2 SEH% 20+ (3.5)
k=0 1=0
Aomg1,2n ~ m+n+1 ; lz: m2(RH+2) (i 1_)l+;2k+2 2042 ngi-i ;ll+1’ (3.6)
01=0
Apm+1.z01 ~ (1) ZZ m2(k152) (i (_ 1;222( — Dz S&i’llgur (3.7)
k=0 1=0

Note that (3.4)—(3.7) could have been alternatively olet@difrom the multivariate modified
Fourier asymptotics in a cube, described in (Huybrechs &0417).

In Fig. 3.1 we display absolute values of different matrixriess A,,, ,, for w = 100. As
clear from (3.4)—(3.7), the coefficients decay I'@eén*‘l) when descending along diagonals,
but only like O(n~2) when descending along columns (or moving rightwards alomgsy
of A, and this is fully reflected in the figure and in Table 1. Thiedent rate of decay has
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W, 0.010 1
0164 * 1%
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Figure 3.1: On the left, absolute values 4t,, >, (boxes, the straight decreasing line),
Agp on+2 (discs, the line with a single maximum) ant,, »,,+4 (points, the line with two
maxima) and on the right absolute values Af »,, (boxes) andAg 2,41 (discs), all for

K, (z,y) = ¢“(@=v)” andw = 100.
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Figure 3.2:—log, | A2.m,2x | for the Fox—Li kernel, growing and (a)m = n; (b) m = n—2;
(c)m = 0, n even. In all cases = 100.

important implications, which we discuss in Section 4, ® design of effective finite section
method based upon modified Fourier expansions.

Note further from Fig. 3.1 and even more from Fig. 3.2 (whibbwd be compared with
Fig. 2.1) that asymptotic largé=, n) behaviour commences fairly rapidly, once it takes over
from largeeww asymptotics. Once it happens, modified Fourier expansionerges much
slower than an expansion in Legendre polynomials: soonkter spectral convergence will
beat a polynomial one. Having said so, generating the dat&ifp 3.2 was substantially
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faster than the corresponding task in Fig. 2.1, althouglidimeer requires considerably more
coefficients. In both instances we have used exact formulaelwfor modified Fourier, will
be introduced in the next subsection). However, an impbadwantage of modified Fourier
becomes apparent once exact expressiond for, are not available. In the case of Legendre
expansions we must resort to numerical integration, of & albsady substantial for small
m andn (because of high oscillation induced by and escalating rapidly whem andn
grow. Modified Fourier expansions, however, can be caledlaheaply for largen andn
using the asymptotic expansions (3.4)—(3.7) or their gdization to Filon-type methods in
(Huybrechs et al. 2007).

Before we consider in detail the Fox—Li oscillator, we noteefly that it is possible to
speed up the rate of decay of the, ,, by using polyharmonic bases in place of modified
Fourier (Iserles & Ngrsett 2006). In other words, we expaigerdunctions in the eigen-
functions of the polyharmonic operat&" in the squaré—1, 1]2, with Neumann boundary
conditions: modified Fourier expansion corresponds te 1. In that case it is possible to
show that4,, , ~ O((mn)~""!). Note that such polyharmonic orthogonal systems can
be represented explicitly as linear combinations of exptiaks and trigonometric functions
(Iserles & Ngrsett 2006).

3.2 The Fox-Li operator
Similarly to Section 2, we analyse in great detail the cAsdx,y) = ¢w(@=9* the Fox—

Li kernel. By virtue of symmetry we havéls,, on+1 = Aomt1,2, = 0, but an explicit
calculation ofAs,, 2, and Asy, 41,2041 IS NOt straightforward.

Lemmab Let
1 1
0(a,b) :/ / eiaz+by)—2?(z—y)? dz dy,
—-1J-1

wherea,b € C,a+b# 0andz € C\ {0} is a parameter. Then

(NI

T

0(a,b) = H(atD)

[F(a,b) + F(b,a)], (3.8)

where

2 . ) ]
F(a,b) = cos(a + b) exp (4;122) {erf (;Z + 2z> + erf (;Z - 22) — 2erf <;C;)}
isi a’ la ia
+isin(a + b) exp <4z2) [erf <2Z + 22’) —erf <22’ — 22)} .

Proof Since

1 1 1 1
% — 1/ / xei(az+by)—z2(z—y)2 dz dy, @ — 1/ / yei(am+by)—z2(r—y)2 dx dy7
da —1J-1 ob —1J-1
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we deduce, integrating by parts, that

9 0 Loel de—"(=y)*
—1J-1
1

x
= —iaf(a,b) + / feilatbn) =2 (1-0)?
-1

— l(atby) ==t (1% gy
Likewise, changing the order of integration,

90 00 Lot de=="(==v)*
—9 2 (22 27 _ Ailax+by) 2~
z (8@ 8b) 1/_1 /_1 e Gy dy dx

1
_ ibG(a, b) _ / [ei(ax+b)fz2(m7y)2 _ _ei(amfb)722(1+z)2] dz.

1
We subtract the two last displayed equations from each ottrereby
i(a+b)0(a,b)

1
/ [e'(a+lns)—z2(1—t)2 - ei(—a+bt)—z2(1+t)2 + ei(at+b)—z2(l—t)2 - ei(at—b)—z2(1+t)2] dt
-1

This is an elementary integral, which we evaluate explicteriving (3.8) after elementary
algebra.

O
Corollary 1 For anym # n itis true that
F(mm,nm) + F(nm,mn)  F(mn,—nn) + F(—nm, mr)
A2m,2n = T 1 1 ’ (39)
dirz z(m + n) dir2 z(m —n)

F((m— Y (n—1 F((n— Y, (m— 1

A2m+1,2n+1 = ((m 2)7T (n N i)ﬂ—)—’_ ((n 2)7T (m Q)W) (310)
dirzz(m+n—1)
L Fllm = 3)m —(m — 3)m) + F(—(n—

)T, (m — 3)7)
4im2 z(m —n) ’

wherez = (—iw)?.
Proof Follows at once from (3.8), because

Agm,2n = $[0(mm, nm) + 0(—ma, nw) + 0(mm, —nw) + 0(—mm, —nm)],
_ 1
Aomi12n11 = —5[0((

m— 3, (n— 3)m) —0(—(m — )7, (n
—0((m ~ §)m, ~(n — )m) + 6(~(

- 3)m)
1

m— L)m, —(n— Lym)].

Since the error function is even, we haW¢a, b) + F(b, a) = 0 and the calculation simplifies.

O
Note that

F(rm, mn) = (=1)™" exp (i:j) [erf<2<iml +2(—iw) )

—iw)z

Nl=
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n erf<2(7TZj§ — 2(—1w)§> - 2erf(2(l_7r:3)é>} ;
F(n(m=3),m(n—3)) = (-=1)""" e ( ) {erfcgz;)%) +2(_M)%>

somewhat simplifying the calculations.
It remains to derive the diagonal elemerts ,, .

Lemma 6 Itis true that
0(a,—a) = Wj exp (—f;) [erf <; + 2z> —erf (22 — 22’)} et CO;@(Z) -1
+ Ziiga exp <_4a;> [erf (;Z + 22) + erf <22 — 22) — 2erf (;Z)} .
Proof Changing variables and exchanging order of integration,

INS , , 1 pl-y 2.2 2 . 2
/ / ela(mfy)fz (z—y) dz dy — / / elat=="1" 44 dy _ / (2 _ |t|)elat7zt dt,
—1J-1 “1J-1—y —2

an elementary integral. O

It is now trivial to express the diagonal coefficients in tbef

Ao 2n = 2[0(7n, mn) + 0(7n, —mn))]
310((n = 3)m, —(n = 3)m) — 0((n — 3)7, (n — 3)7)],

both with (—iw)%. Explicit expressions are long, although easy to derivd,thry add little
to our comprehension.

A2n+1,2n+1 -

3.3 Other oscillators

The modified Fourier coefficients for the rank-2 kerd€l,(z,y) = cosw(z — y) can be
evaluated with great ease,

4 A(-D)me? sin® w
2m,2n — (m2m? — w?)(72n2 — w?)’
4(=1)m*tny? cos? w
[w2(m — 17 — w2 — D — )

A2m+1,2n+1 = m,n Z+7

while A,, ,, = 0 for oddm + n. Like in Subsection 2.4, the matrik is of rank 2. Moreover,
once we letAp = (A2m,2n)m,nEZ+: AO = (A2m+1,2n+1)m,n62+1 we obtain two rank-1
matrices and in each case the nonzero eigenvalue is the ssoparfes of diagonal elements.
Consistently with our intention from Subsection 2.4 to use simple example as a proving
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Figure 3.3: The number of significant digits in approximgtone of the two nonzero eigen-
values forK, (z,y) = cosw(xz — y), w = 100, with an N x N matrix: squares denote
modified Fourier and discs the Legendre expansion.

ground of the finite section method, we display in Fig. 3.3taenber of significant digits
once the eigenvalue+ (2w)~! sin 2w is approximated bEfx:l AEn’m for modified Fourier
and Legendre expansions and= 100.

As expected, eventually Legendre must win and, once it hascome the influence of
w-induced oscillations, it does so with style. However, twiservations demonstrate that
modified Fourier expansion is not necessarily uniformheridr. Firstly, the initial error, in
the regime dominated by large-asymptotics, is significantly smaller with modified Fourier
we will see in Subsection 3.4 that this corresponds to a memegl pattern. Secondly, even if
modified Fourier expansions converge significantly slowercan attain fairly good accuracy
with small N. This is important because the cost of generating the ttedcaatrix. A is
typically much cheaper with modified Fourier expansions, asdwill will see in Section 4,
the size of the effective matrix that we need consider careteaed.

Like earlier in Subsection 2.3, we next consider the kekglz, i) = ¢“*¥. The integral

1 1
0(a,b) = / / eilaztbytwry) qp dy
—1J-1
can be computed, e.g. using symbolic software, in terms pdeantial integrals:

6ab) = é [Eil ((a“’)(b“’)> + Ei, (Mib‘”)) — Ei, (W(b*“’)>

1w

1w
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77T
0 50 100 150 200 250

Figure 3.4:—log( |A2p 2, | fOr the kernelK, (z, y) = e“?¥ andw = 100: squares stand for
modified Fourier and discs for Legendre expansions.

2 iab
CE ((a—w.)(b—w))} N fexp (—la), lal, |b] < w,
W 0, otherwise,

whereEj; is the exponential integral (Abramowitz & Stegun 1964, p/R2Sincef(a, b) =

0(—a, —b), we deduce that

_ 1
A2m,2n )
1

2

Aomt1,2n4+1 =
—again,A,, , = 0 whenm + n is odd.
In Fig. 3.4 we display the number of significant digitsAn,, 2, using modified Fourier
and Legendre expansions. Evidently, up to about 30 both expansions produce largish
coefficients and then larger, n) asymptotics win, Legendre coefficients decay very rapidly

and modified Fourier coefficients much more sedately.

3.4 Largew asymptotics

Let us assume for simplicity an Abel kernel of the forlf, (z,y) = e“9==¥) where
g € C*[-2,2]. We further assume thatis an even functiong’(0) = 0, ¢”(0) # 0 and
that otherwisey’ # 0 — this definitely represents loss of generality but the Foxegerator
survives. Our present concern is estimate the size of thiicdeats whenm andn are suf-
ficiently small and theu-generated oscillation prevails. To this end we need tosiiyate
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integrals of the form
1 1
I[f]:/ / flx,y)e @) dz dy. (3.11)
—-1J-1

Note that in our casé¢(z,y) = ¢..(x)d,(y), but it is more convenient by this stage to work
in a more general setting.

(3.11) is a bivariate highly oscillatory integral, of a kindnsidered in (Wong 2001) and
elsewhere. Within the framework of asymptotic analysis iéxceptional, because the entire
line x = y consists of stationary point§ g(z, z) = 0.

Lettingt = a — y, we trivially obtain

0 2
1] = / B ()eo® di + / R ()e 9™ dt,

where

1 1—t
hH@)=/¥4f@+ywﬁw7 mﬂur:/ f(t+y,y)dy,

-1

Therefore the problem reduces to two univariate integials, kind that can be readily ex-
panded fotw > 1 using the theory in (Iserles & Ngrsett 2005),

o0 /
/2 hH_] (t)eiwg(t) dt ~ — Z : 1 hLﬁ(Q) - hg] (O) eiwg(Z) o hﬁ] (0) eiu}g(O)
0 =t (—iw)m q'(2) g"(0)
2 o 4 [+]
0 7;) (_lw)m
/0 R (£)ela(®) gt i 1 Wi (=2) = Bl (0) iwg(~2) _ hwl(o)eiwg(o)
2 A (—iw)mt g'(-2) g"(0)
- = bl (0)
+ / elws(® dt e
P mz::o (—iw)m
where
] L ] d hil(t) — hll(0)
hl)y =nH @), w2 me N

St g'(t)
Let us now consider in greater detail the caée) = =2 of the Fox—Li operator, since it
is indicative of a more general pattern of behaviour. Insafathe modified Fourier basis is
concerned, commencing from the cosine terms, we have fat athdn

msin(mmt) — nsin(mnt)

m#£n: RlEl(t) = (=1t

)

w(m? —n?2)

i t

m=mn: Rl = (1 + 1t) cos(mnt) + %sm(wn ),
™

1 sin(mnt)

AH() = (1 — 3¢t) cos(mnt) — 1

™n
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We examine first the off-diagonal case# n. Easy induction confirms that

VK 2(k+r+1) _ ) 2(k+r+1)
— o m—+n+r ( 1) (k + 1)7’ m n 2(k+r)12k+1
hL }(t)—(*l) Z (2k + 2r)! m2 — n? et » T €Ly,
k=0
thereforehl ™ (0) = A7(0) = 0 and
W= (0) = (—1)mtntrHL (e (r+ 1! m2r+2) — p2r2)
" (2r +2)! m2 — n? ’
R (0) = (—1)m 20D (r+1)! m2r+2) — p20r+2)
(2r + 2)! m?2 —n?
Moreover,
h[ | (_1)m+n+rﬂ.2r oo (_l)k 2(k+r+1) _n2(k+r+1) et
() = t
r ( ) 47»(%)T 4’%"(7"—1— %) m2 —n?2
(‘Umwﬁzrt 2rH) T |7 (rmt)? 2(rfl) T | (mnt)?
— ™ F ) . . ™ F b .
e R G C s N T R C S S

(_1)m+n+rﬂ.r+1
Coorta(m2 — n2)trs
(_1)m+n+1ﬂ.r+1

= 27— (m2 — n2) [

[mr+%Jr_% (mmt) — nH%JT_% (Trnt)]
+2jr71 (ﬂ-mt> - nT+2jT71(7Tnt)]7

wherej,, is thenth spherical Bessel functiofdbramowitz & Stegun 1964, p. 437). Since

i J2 2Jz 215 + 2j)!

js(z) = sin(z . 1= 2)!

(—1)72-202,-21-2(5 4 1 4 2j)!

eos(z = %) @ T Dls 2 — 1!

7=0
(cf. http://functions.wolfram.com/03.21.03.0036)0We obtain

Lrl

. co(r + 2§ —1)! 1
jr—1(—2mm) ZO (r — 25 — 1)! (drm) %1

and similar expression fqr._; (2rm). We observe that both values grow lik&M?") as
r > 1, whereM = max{m,n}.

This provides explicitly the values & at 0 and—2 and, similarly, ofhl™ at 0 and+2.
Substitution into the asymptotic expansion yields

]

. . /
Aom,on ~ Z ) [5 F12)etiw — Lpl-l(—2)etiw — pl-] (0)] . (3.12)
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It follows at once from our analysis that the asymptotic exgian (3.12) converges when
1 . . . . . .
m,n < wz. Thus, in this regime we can use it as an effective means twledé the entries
of A.
In the remaining case» = n we have

)2k 2k 2% 4 2k+1
(mn)“"t —|—Z 2k:—|—1 (n) (AR

= (2R
oo k oo
ey - N D a2k N CDFRHD)  opopia
hH(t) kZ:O @ (mn)?Ft kZ:O @E 1] (mn)2Fe2ht1,
Therefore (restricting our attention td~! but noting that identical analysis appliesid’)
=1(4) = ) - ) 2(k+r) 42k
& go 2k + I
r i k+1 T+1( n)2(k+r)t2k+l
= 2k: +2r +1)!

and we deduce that

2r
=100y — , (mn) gy r D) 2
WO = (U ) = () Gy
To |dent|fyh[ (—2) we compute, after much algebra,
T 2r 2
ey - (ED7(2m) L; ~ (mt)
e (0) e P T
(=) (2m)%"(r + 1)t r+2; (mnt)?
+ T 1F2 3. 7 4 |*
22r+1(§)r+1 r+1,r+3; 4

We obtain two Bessel-like functions. (It is possible to esEnt the second function as a
linear combination of two spherical Bessel functions, Iig fidds little to the narrative of
this paper.)

Similar analysis extends to the odd coefficieAts, 1 2,+1, whence

(_ 1>m+n

" lm— 52— (n- 37

[(m — 3)sinm(m — 1)t — (n— 3)sinm(n — )],

except that the formulae become (even more) complicated.

Asymptotic expansions and algorithms based upon themK#&an-type quadrature) are
often used as a very effective means to compute highly aswmill integrals (Iserles & Ngrsett
2005). This is the moment to emphasize that this is not the tathe computation of the
An.n. The overwhelming reason is that, while largexsymptotics are valid when is sub-
stantially small thann andn» and we can use larger, n) asymptotics whemn andn are
very large in comparison to, neither formula is of much use in tirgermediate asymptotics
regime. Thus, in Subsection 3.6 we recommend using FFT feffemient computation of the
A nS.
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3.5 Largesn asymptotics

For completeness we are also interested in estimating 2ee$H,,, , whenn is large (that
is, O(w) or larger), whilem is relatively small. In other word$), < m < M (whereM has
been defined above), whilf + 1 <n < M + 1 + N for some (large)V.

Letting

1
Um(y):/ cosmmaz K, (z,y) dx,

-1

and employing the asymptotic expansion (3.2), we have

1
Aomon = / om(y) cos Ty dy

—1

NEIDY émﬁ;[oﬁ“”(l) o () (3.13)
k=0

In the case of aAbel kernel, (z, y) = K,,(z—y) we can easily demonstrate, integrating
by parts, that

1
oY) = ~[Ku(l — y) — (~1)" K, (1 +y)] — 7m / sinmmak, (e~ ) de
m(y) =K,1—y)+ (—1)"KL(1+y) — (7m)*om(y).

In particular, if K, (y) = €9 theno’ (y) scales likem, o (y) like max{w, m?} and
it is easy to prove that, in generadﬁ,’f) scales likemax{w*~1 m*}. Given that within our
regimen > m,w, it thus follows from (3.13) that the asymptotic expansi®ronvergent at a
geometric speed.

ag

3.6 Computation of the modified Fourier matrix

Given suitably larges € N, we wish to computed,,, ,, for m,n = 0,1,...,s — 1 and the
modified Fourier basis. The simplest approach is also pigltlaé most effective for a general
kernel K,, namely to compute

1 1
Ao on = / / cos(mma) cos(mny) K, (z,y) dz dy,

—1J-1
1 1

Aopmt1.on = / / sin(mw(m — %).’L’) cos(mny) K, (z,y) dx dy,
—1J-1
1 1

Ao ont1 = / / cos(mma) sin(m(n — é)y)Kw(x, y) dz dy,
—1J-1

1,1
Aot ont1 = / / sin(w(m — %)Ji) sin(7(n — %)y)Kw(x, y) dz dy
“1J-1

for m,n = 0,1,...,|s/2] — 1 using bivariate Fast Fourier Transform (FFT). Of course,
must be large enough, at lea8(w), so that oscillation due t@ is not a problem, and it
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helps FFT if it is a highly composite integer. The computagicexpense consists thus of two
components. Firstly, we need to computg at 2s% points to implement the requisite fast
cosine and sine transforms, secondly we in@.(rs2 log s) flops in the computation of the
transforms.

Matters are considerably simpler for the Abel kerfgl(z,y) = ¢“9(==¥) which we
have already encountered in Subsection 3.4, and like thibjec to the additional conditions
thatg is even (hencels,,+1,2, = Aom 2,41 = 0 and need not be computed)(0) = 0 is
the only stationary point of in [—1, 1] andg”(0) # 0. We have proved there that

0 2
Agmoon = / hle N ()e e d + / hletl(g)el«o ) at, (3.14)
-2 0
0 2
A2mt12n+1 = / hls(#)elws ) dat + / hls (et ® dt, (3.15)
-2 0
where
<] t
(14 &t) cos(mnt) + %M, m=n,
h%”;] () = msin(mrmt) nﬂs?n(wnt)
m-+n B )
3] t
(1 — 4t) cos(mnt) — %M, m=n,
hial(t) = . o
(—1ymtn1 msin(rmt) — nsin(mwnt) 7 m £

m(m? —n?)

1—|—%t coswn—%t—i— , m=n,
U Ll A |
o <_1)7n+n (m B 5) sm(7r(m B §)t — (n B 5) Sln(ﬂ(n - §)t) m 7’é n
lon— 37— (17 ’ ’
1

(1~ by cos(m(n — hyp) - ST 20 men.

Blsit] (t) = ) 7T(21” -1) L .
) (L1t (m — 3)sin(m(m — 35)t) — (n — 35)sin(r(n — 3)t) m £,

lom = 37— (= 17 |

Therefore, changing variables in a completely transpamntner, both (3.14) and (3.15)
reduce to the calculation of integrals of the form

2 2
/ eI sin(mnt) dt,/ ews® (g — t) cos(mnt) dt,
0 0
2 2
/ 9® sin(rm(n — 1)) dt,/ @I (1 — L1t) cos(m(n — 3)t) dt,
0 0

and this can be accomplished withivariateFFTs. Thus, the cost reduces2ecalculations
of g andO(slog s) flops to evaluate the discrete sine and cosine transforms.
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4 The hyperbolic cross

The modified Fourier basis comes into its own as a mean to ctengpectra of highly os-
cillatory Fourier operators once we take into account theciic rate of decay of the co-
efficients 4,, ,, for largem andn. This is demonstrated in Fig. 4.1, where we display the
values of| Ay, 2| (0N the left) and A2y, 412,41 (0N the right) for the Fox-Li equation,
m,n < 800 andw = 100. The meaning of the differently-shaded regions is as falow
The white area on bottom right corresponds to terms whicHesm®thanl0~7 in modulus,
the adjoining light-shaded area correspondd(o” < |A,,,| < 107°, the next one to
107% < |A,n.n| < 1075 and so on. Finally, the thin diagonal sliver at top left cstsbf all
(m,n) such thatA,, ,| > 1072

Figure 4.1: The hyperbolic cross associated with modifiagrieo expansions for the Fox—Li
equation, withv = 100.

The pattern discernable in Fig. 4.1 is the familigmperbolic crosspriginally introduced
by Babenko (1960) in the context of multivariate Fourier axgions. As we already know
from Subsection 3.1, using a modified Fourier basis results i

Ay~ O((mn)7?2), m,n > 1.

This implies that the coefficients decay at a different rdtema different directions in the
matrix: fastest along diagonals and considerably slonangatows and columns. (Cf. also
Fig. 3.1.) This is precisely the phenomenon visible in Fig. #ormally, letd = (Ax 1)k ez,
be the matrix whose eigenvalues we seek. It follows ghatartitions into

A Aip }

4.1
Az1 Az (4.1)

|

where A, ; is anr x r matrix, with sufficiently larger (in practicer = O(w)), while the
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elements of the infinite matrid, » are adequately smadil.
Let us replace the ‘small’ matrixd, » by zero,

T A1,1 -/41,2

A- [ o e

The main idea is to replace the computations¢f4) by that of o(A): as it turns out, the
latter is a considerably simpler problem. We do not condigee the question of the distance
between the two sets, while remarking that computationag¢egnce is that it is very small in-
deed, provided thatis large enough. Intuitively speaking, provided thatx; j>,+1 A x|

is small, so should be the Hausdorff distadae o (.A) — o (A)], but the veracity of this state-
ment depends on the structure of the pseudoeigenvaluégTriefethen & Embree 2005).

Theorem 7 The matrixA is of rank2r. Moreover, letG = A; A, 1 and letG, and G, be
anyr x r matrices such tha@;G> = G. Then the nonzero eigenvalues.4fcoincide with
those of the2r) x (2r) matrix

| A Gi
B_{QQ O}.

Proof Let) € o(A) and assume that # 0. Further, suppose that

V1
v =
V2

be a corresponding nonzero eigenvector, where C". Therefore,

Ar1v1 + Aj gv = Aoy, Az1v1 = Ava.
We substituters = A~ A5 10, into the first equation and multiply by = 0. The outcome is
(A172A271 + /\Al,l - )\21)’01 =0. (4.2)

We therefore deduce that nonzero eigenvalued odincide with the solutions of (4.2), hence
with the quadratic eigenvalue problemvith the pencil(G, 4, 1, —I). Since the underlying
matrices are- x r, the quadratic eigenvalue problem Hassolutions and we deduce that
rankA = 2r.

To prove the second part of the theorem, wedet o(B), 1 # 0, with a nonzero eigen-
vector

_ (23} T
u-[uZ], uy,us € C".
Therefore
Ar1ur + Girue = pug, Gouy = puy.

in the important case wheH,,,, = 0 for m +n = 1 mod 2, we can split4 into two infinite matrices,
A€ = (Agmgn)mnez+ andA° = (A2m+1’2n+1)mynez+, say: the Fox—Li equation is an important example.
In that case botbd¢ and.4° can be subjected to partition (4.1) and an identical argursgplies.

°The pseudospectrum of for the Fox—Li operator has been already considered in (2ari®77/78).
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As before, we substitute, = 1~ 'Gou, into the first equation. The outcome is
(G1G2 + pAL1 — P Duy = (G + pArg — p?lu =0

and we obtairexactlythe same quadratic eigenvalue problem (4.2) as beforeegbhceven

the eigenvectors are the same!) Itis trivial to prove thia #ngument works in reverse, i.e.

that every solution of the quadratic eigenvalue problertdgian eigenvalue/eigenvector pair

for B, simply repeating the argument in reverse. This complétegtoof of the theorem.
O

The significance of the last theorem to the computation céraiglues of the Fredholm
problem (1.1) is clear: it suffices to choose suitably largerm the matrix4, ;, approximate
the matrixG by suitably truncating the matriced, » and.A,; (i.e., calculating4,, ,, for
0 <m,n < s—1,min{m,n} < r—1for sufficiently larges) and compute ther eigenvalues
of B. Recall that, the operator (1.1) being compact, the eigeagaof.4 accumulate at the
origin. In effect, what we are doing here is to set all the sigdues, except for the fir&t, to
zero. Given that these eigenvalues are likely to be tinyl wederneath the machine epsilon
of any practical computer, this procedure incurs very serabr.

There are several obvious choicestafandG, such thatg = G;G,. The most obvious
isG1 = G, Go = I. Another is lettingG,G> be the QR factorization of. An intriguing
possibility in the symmetric casg = G, is to takeG, G, as the Cholesky factorization 6f
wherebyG, = G, . This has the advantage of replacing a complex symmetriii@finatrix
by a complex symmetric finite one. A word of warning, howeveinceg is complex, the
existence of Cholesky factorization is not guaranteed.

Two questions remain. Firstly, is similar behaviour, namtblat enough entries aoft
become rapidly small, in a manner that can be exploited iotjma computation, extends to
Legendre expansions. Fig. 4.2, where we display the sizerofst in a250 x 250 matrix,
demonstrates that this is not so. The white shading in themetight corner corresponds to
| A n| < 10720 and subsequent bands of colour to increase in modulus bya fafc 03

A reasonable choice offor a modified Fourier basis with = 100 is 125 and the size &
is (2r) x (2r). On the face of it, whether we use modified Fourier expansiohggendre ex-
pansions, we end up with a matrix of similar size. This, haweslisregards the computation
of the matrix in question! According to Section 3, for gendwrnels the cost of computing
A for modified Fourier isO(s?log s) operations, to which we need to ad(r*s) opera-
tions to comput& = A; 2.Az 1. In the case of an Abel kernel the cost of computigs just
O(slog s) originating in FFT and) (N ) to form IV terms. Since we need to form just+2rs
nonzero terms ofl ands >> r, this means that in that case the total cosD{gr + log s)s).
Additional savings, which we disregard here, occur in th@glex-symmetric case.

For Legendre expansion, however, there is no good way of atngptheA,,, ,,s. Evenin
special cases (e.g. the Fox—Li kernel) when we can représent,, ,,s explicitly as general-
ized hypergeometric functions, their computation is Yeéskpensive. Thus, while the ultimate
sizeof matrices is similar, theostof forming their entries is greatly smaller for the modified
Fourier expansion.

The second question is whether the state of affairs denatedtin Fig. 4.1 remains valid
for other kernels. Clearly, this is so as longfas is sufficiently smooth, so that the asymptotic
estimateA,, ,, = O((mn)~?2) holds. It breaks down for kernels with derivative discontin
ities.
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w=100

Figure 4.2: The size of the elements 4f, ,, in the Legendre expansion for the Fox—Li
operator withwo = 100.

Figure 4.3: The size of the elemems,,, o, and Ag,, 41 9,41 for K, (z,y) = ¢“*~¥ and
w = 100 using modified Fourier basis amd,n = 0,1, ..., 800.
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As an example of such breakdown, we consider in Fig. 4.3 theek&’, (z, ) = e'“1*~ vl
Itis easy to evaluate the coefficients in a modified Fouripaasion explicitly. Thus4,, , =
0 for m + n = 1 mod 2 and (assuming that is not an integer multiple of)

2iw[w? —iw(l — @) — 12m?
) m = n?
(w2 — 72m2)2
A2m,2n = 9 9%
2(_1)m+nw (1 —e lw)
; m # n;
(w? — m2m?)(w? — 7w2n?)
2iw[w? — iw(l + e**) — 12 (m — 3)?]
T\ o792 5 m=n,
) o —w2(m — 17
2m+1,2n+1 = 2(71)m+nw2(1 +62iw) ;A
, m # n.
[ — m2(m — DRI — 72— 17

2

In Fig. 4.3 we display the size of the ‘even’ and ‘odd’ coe#itis A,, ,, for the modified
Fourier basis. Evidently, the entries exhibit a hyperbotiass, except for diagonal elements,
which decay likeO(n~?), a consequence of derivative discontinuityAf),. Note that the
spectrum in this case has been derived (as an asymptotinggpanw ') in (Brunner et al.
2008), hence we do not require the finite section method $oetindl.

5 Conclusions

Spectral problems for highly oscillatory Fredholm kernate important, not least because
of their relevance to laser dynamics, and they are excelydamgllenging from mathemat-
ical and numerical points of view. In this paper we continlne project on which we have
embarked in (Brunner et al. 2008), to shed light on such prabl Specifically, we have con-
sidered the method of finite section, a natural approachrtbtie evaluation of the spectrum.

The obvious choice of basis in finite section method is Legepdlynomials, because
of their very rapid convergence. However, the onset of tagd convergence is only after
oscillations due to the kernel have been resolved, henceutemme is a matrix which is
not small. Worse, there are simply no good methods to evalwaitrix coefficients, double
integrals involving Legendre polynomials, efficiently.

An alternative to Legendre polynomials is to use a modifiedrieo basis. On the face
of it, the convergence rate is considerably S|0V@f(mn)’2) compared to spectral. Yet,
implemented by exploiting the hyperbolic cross structtiney result in matrices not much
greater than those originating in the Legendre basis, bose/leoefficients can be calculated
very rapidly with FFT.

Is modified Fourier expansion more efficient than Legendré® ih large measure de-
pends on the values af: the higher the oscillation, the greater the likelihood ajdified
Fourier prevailing. However, a resolution of this questialis for fine-tuning of a wide range
of parameters and implementation options, as well as a dezditof numerical experimenta-
tion for different kernels and values of beyond the scope of the current paper.

Numerous challenges remain in the understanding of higsgillatory Fredholm spectral
problems. The most fascinating to our mind is the mathemlsgicucture of the Fox—Li spec-
trum. We have plotted the spectrum for= 100 (as obtained with the finite section method,
using modified Fourier basis with= 127 ands = 800) in Fig. 5.1. Similar information is
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Figure 5.1: The eigenvalues of the Fox—Li operatordor 100. The diamonds correspond
to ‘even’ eigenvalues (that is, following from expansiorcwsines) and stars to ‘odd’ eigen-

values.
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Figure 5.2: The same as Fig. 5.1, exceptfor 200 (on the left) andv = 500.
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presented in Fig. 5.2 fav = 200 andw = 500. Evidently, the eigenvalues lie on a spiral.
What is this spiral? How does it vary with’?

Of course, even understanding of the structure of the Fospé&ctrum is but a first step on
a longer journey into the unknown: understanding the speaftgeneral Fredholm problems
with high oscillation. The work of this paper, as well as (Bner et al. 2008), need be seen
as first and hesitant steps toward this goal.

We have plotted the eigenfunctions corresponding to sogeenealues in Fig. 5.3, and
again it is striking how much structure can be observed. Gidar small values of: (that is,
for eigenvalues near the outer arm of the spiral) the eigenions are perturbed trigonometric
functions, while for large: they are (perturbed?) wave packets. Note that changinghles
x — x/\/w,y — y/v/w, A — \//w results in the spectral problem

N .
/ F@CV de = Af(y), Vo <y <V
V&

Now, were we to replace the interval of integration by the liea, i.e. consider the problem
[ f@ee ar=apw). —so<y<oc,

we would have recovered a spectrum of a 8dimger operator which, indeed, possesses the
above features: ‘low’ eigenfunctions resemble trigonaidtinctions, ‘high’ eigenfunctions
are wave packetsYet, what is the discrepancy between the two problems? Canfeethe

first from the second?

n=1 n=2 n=1 n=2
15 1 15

Figure 5.3: Real and imaginary parts of the eigenfuncti@meesponding to the first, second,
twentieth and fortieth ‘even’ and ‘odd’ eigenvalues, regpely, forw = 100.

Much remains to be done to understand highly oscillatorglkoém problems. We hope
that this paper contributes in some measure toward this goal

3We are grateful to Olof Runborg for this observation.
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