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Abstract

We address in this paper the approximation of functions in an equilatenad/eidy
a linear combination of Laplace-Neumann eigenfunctions. The Lap\sarann basis
exhibits a number of advantages. Thus, the approximations conarlyefdst and their
speed of convergence can be much improved by using techniquiisifamFourier anal-
ysis and spectral methods, in particular the hyperbolic cross and poighsubtraction.
Moreover, expansion coefficients can be computed rapidly by a mixtuesymptotic
methods and Birkhoff-Hermite quadratures.

1 Introduction

In this paper we continue a systematic study of expansiomig@nfunctions of the Lapla-
cian subject to Neumann boundary conditions. Such expassiere explored in (Iserles &
Ngrsett 2008) for an interval, with generalizations inflse & Ngrsett 2006) to polyharmonic
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operators and in (Iserles & Ngrsett 2007) to multivariatsndms with tensor-product struc-

ture. Convergence acceleration schemes for these expans@e examined in (Huybrechs,
Iserles & Ngrsett 2007). The subject of the current papdrdaskpansion in Laplacian eigen-
functions on the equilateral triangle. This domain doeshaee tensor-product structure, yet
much of the advantageous properties enjoyed by Laplacexnblien expansions in the earlier
cases continue to hold. On the other hand, new hurdles fiaseequire further insight and

different analysis.

Laplace—Neumann expansions in one dimension closely idsartassical Fourier series,
hence we also refer to them amdified Fourier seriesOn the interval, the only difference
is a shift in the argument of the sine functions. Yet, unlikeifter series, Laplace—Neumann
expansions converge pointwise in all points of continuitglusive of the endpoints. The con-
vergence rate is typically quadratic in the interior, amedir in the endpoints (Olver 2009).
This can be improved to arbitrarily high order, for suffidigrsmooth functions, by the judi-
cious application of polynomial subtraction techniquesybtechs et al. 2007).

Another interesting property is that the coefficients of leap—Neumann expansions are
amenable to recent methods for the evaluation of highlylasamiy integrals (Iserles & Ngrsett
2005, Huybrechs & Vandewalle 2006, Olver 2006). We referrdmer to (Huybrechs &
Olver 2009) for a recent review. The cost of these methodgpisdlly independent of the
frequency and their accuracy rapidly improves with inciegérequency. As the coefficients
of Laplace-Neumman expansions are represented by inoghasiscillatory integrals, appli-
cation of the above mentioned methods enables their cotmutane by onethis means that
m coefficients can be computed in juS{m) operations. A careful asymptotic analysis of
the coefficients previously revealed that their evaluatian even be considerably more effi-
cient than that of general oscillatory integrals. This weeneplified for Filon-type quadrature
rules using derivatives (Iserles & Ngrsett 2005) in the jones papers. As such, the difficulty
in constructing modified Fourier series lies mostly in thenpatation of the first few coeffi-
cients, corresponding to non-oscillatory or slowly ostdry integrals. Though any classical
integration scheme may be used to compute the early coefficizvithout destroying the
O(m) property, it seems wasteful to igore information that isgaiised in the evaluation of
the later coefficients. In particular, methods for highlgitiatory integrals typically, and un-
avoidably, require derivatives of the integrand or thejpragimation at certain critical points.
For this reason, research in previous papers focused omtise 1of this information for the
evaluation of non-oscillatory integrals. This has led toasiant of the familiarBirkhoff—
Hermite quadraturgNikolov 1989) which, for lack of an established name, weehtarmed
exotic quadrature

Rapidly converging series may be obviously truncated ferpthirpose of finite-precisison
computations. This operation is straightforward in oneatigion. In more than one dimen-
sion, the significant coefficients of Laplace—Neumann egjoens exhibit the pattern of they-
perbolic cross This well-known pattern is seen in various other applaai including mul-
tivariate Fourier series (Temlyakov 1993). In general imattate approximation schemes,
using N degrees of freedom per dimensiondmlimensions leads t&/¢ coefficients in total.
This exponential growth is usually referred tothe curse of dimensionalitf’he number of
coefficients in the hyperbolic cross however grows at a &ingly slow rate with increasing
dimension: it is typically justO(N (log N)?~1), for a comparable accuracy. Exploiting the
hyperbolic cross may lead to tremendous computationahgavn applications.

Several competitive schemes exist for univariate appration, such as Chebyshev ex-



pansions or wavelets (see, e.g., (Boyd 2001) and (Daul®&b@?)), each with advantages
and disadvantages. In our opinon, a compelling advantagedffied Fourier series is their
natural generalization to triangular domains. This is ti@da of the current paper. We intend
to generalize the properties of Laplace—Neumann expasisi@mtioned above to expansions
on the equilateral triangle. Eigenfunctions of the Lagaciubject to Neumann (or Dirichlet,
for that matter) boundary conditions are known to be a lime@anbination of plane waves for
three types of triangles with special symmetry properties: equilateral triangle, the right
isosceles triangle and the triangle with angig®, /3 and= /6. Since any triangle can be
mapped affinely to any other triangle, it suffices for the s of approximation to study a
single ‘model triangle’. The equilateral triangle exhibihaximal symmetry and, for no other
reason, this is the one we study.

We commence our analysis §2 with a discussion of Laplace—Neumann eigenfunctions
and the associated modified Fourier series on the equildtézagle, introducing notation
and explicit formulee. At the heart of the theory lies the agtotic analysis of Laplace—
Neumann coefficients i§3. Based on the information in the asymptotic expansiors, th
structure of the hyperbolic cross and schemes for conveegacceleration are studied§a.
Next, we discuss the efficient computation of the coeffigeént5, with an emphasis on the
construction ofexotic cubaturemethods: cubature rules using derivatives for the trigngle
which may be interesting in their own right.

2 Laplace—Neumann eigenfunctions in a triangle

The eigenfunctions of the Laplacian on a dom@isubject to Neumann boundary conditions
on the boundarys? satisfy

—Au = u, x €,

ou

— =0 o90.

on ’ Te
They were constructed for the equilateral triangle alrelagly amé (1833) and presented in
different equivalent forms by many authors. We found thestuttion of Pager (1998) as
the most suitable for our ends. That reference presentditietprmulas for an equilateral
triangle T’ with vertices at(—%,o), (%,0) and(0,1). The eigenfunctions consist of the
odd functions (odd with respect to tlyeaxis),

T
COS N7
V3 Y

_ 2(_1)(771,-&-71,)/2 sin mr

Upm,n (@, y) = 2sin

(m 4+ 3n) cos %(m —n)

—2—1(7”_”)/251n£m—3ncos@m—i—n,
(-1) S —m)cos T (m -+ m)

m,n=1,2,..., m=nmod2, 0<m<n,
and the even functions

x
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Figure 2.1: Definition of the equilateral trianglé The faces are numberéd2, 3 counter-
clockwise, starting with the upper diagonal face. The wegtiareP;, = (—1, @), Py3 =

(=1 ¥y andPs; = (1,0).

27 2

— 2(—1)mFM)/2 cog ﬂ(m + 3n) cos %(m —n)

—2—1(m_”)/QCosﬂm—?mcosym—i—n7
(-1 rm = 3n)cos T m 4.1

mn=0,1,..., m=nmod2, 0<m<n.

The corresponding eigenvalues arém?/3 + n?).
We found it more convenient to work with the equilateral igie 7' with vertices at
(-1 ﬁ), (-3, —@) and(1,0) as shown in Figure 2.1. This triangle is centred at the origin

27 2
(0,0) and therefore has simple expressions for all six symmetfidise dihedral groupDs.

This simplies expressions considerably. With some minditexhal changes in notation, we
write the Laplace—Neumann eigenfunctions as
(2.1)

U, (2, y) = Im hy, n (2, y), m=1,2,..., n=0,1,...,
(2.2)

vm,n(xvy) :Rewm,n(may)v mvn:()v]-a"'v
with the complex-valued function,, ,, given by

Vi (T, Y) = Vmn (@, Y) + im0 (2, 9)
ex (_ 2mimy  mi(m + 2n)(2z + 1))

3v3 3
2rimy  wi(m + 2n)(2z + 1))
+exp | — +
’ ( 3v3 3
2mi(2m +3n)y  win(2z + 1)>
+ (=)™ ex ( —
(=1) p 373 3

2mi(2m + 3n)y  win(2z + 1)>
+ (=1)" T ex ( +
L O Ve 3



+ (_1)71 exp (_ 27r1(ﬂ;\j-§3n)y B 7Ti(m + 7;)(21- + 1))
n 2ri(m 4+ 3n)y  wi(m +n)(2z + 1)
+ (=1)"exp ( G . > '

The eigenfunctions of the Laplacian on the equilaterahgia are a sum of six plane waves.
The functionsu,,, ,, andv,, ,, correspond t@iy, ., +2, andv,, .12, as defined above, up to a
linear transformation between the triangleéand7". The eigenvalues are
16

Ao = 2—77r2(m2 + 3mn + 3n?). (2.3)
Figure 2.2 displays a selection of eigenfunctiens,, andv,, ,,. Note for future reference
their increasingly oscillatory character aggrows. It is evident that a great deal of further
structure is present: for example;, 4 exhibits symmetry with respect to rotations dy/3
radians, as is evident from the explicit (and mildly massdermula

4 A7z —
up,a(x,y) =1~ 4v/3sin 873” sin 7@ g V3y) g, e . V3y)

8w 4 (z + v/3y) 47(z — \/3y)
— 4 cos = cos 3 cos 3 .

We dwell no further on this issue.
A real-valued functiory(z,y) onT can be expanded in the series

chmn”’"”my +Zzsmn“m””), (2.4)

m=0n=0 m=1n=0

with real expansion coefficients

n — Re <f7 ’(/)m7n>a and Sm,n = Im <f7 wm,n>a

where
<fa wm,n> = fm,n = / f(m)d)m,n(m)dv (25)
T
The norms of the basis functions are
273, ifm=n=0,
[omnl| = %\/?7), if m =0andn > 0,
") 243, if m> 0andn =0,
2V3, otherwise,
and .
fumall = { 3V T =0
e 2V/3, otherwise

Before moving on to the asymptotics ﬁ,tl,n, let us introduce further notation and con-
ventions. We impose positive orientation®nThe equations for the faces are

PioPr3: x= _%7
Py3Ps: y= —é(l - ),
P3Py : y=§(1—w)a
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Figure 2.2: The functions; 3, us 7 (top) andvg 4, v1 3 (bottom). Note the trilateral symmetry
of vy 4 and the oscillatory character af ;.

the normal derivatives at each of the faces are given by

Nf] = Lol (1 —2) + B [y (, 2 (1 - 2)),
NQ[f] = _fm(_
N3[f] = L fola, — 31— 2)) — LB fy(z,~ L (1 - ),

)

[ NI
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and the tangential derivatives by

Ty[f] = =L folw, B(1 — @) + L £, (2, B (1 — 2)),



TQ[.f] = 7fy(7%7y)a
Ty(f] = 2 folw, =L (1 — ) + L f, (2, —B(1 — 2)).

3 Asymptotic expansions

Much information concerning the Laplace—Neumann expanefoa functionf is derived
from studying the asymptotic behaviour of the coefficief»:,s,l. The asymptotic expansion
of the coefficients (2.5) for large values of the parameterandn is the key both to their
efficient computation and to convergence accelerationeoéries (2.4).

The asymptotic expansion (ﬁnn is rather different from that of the univariate coef-
ficients in (Iserles & Ngrsett 2008) and their generalizatio higher-dimensional cubes
in (Iserles & Ngrsett 2007), due in part to the non tensodpob shape of the domain and
in part to the presence of two parametersandn that may be small or large. The differ-
ent asymptotic regimes reduce in our notational frameworjis$t two categories: large:
and smallm. Loosely speaking, large: represents oscillation in both directions:ofndy
regardless of the value af, whereas smalin represent possible oscillation in one direction
only, providedn is large. We refer to coefficients in the latter regime as &dgefficients’
and treat the former case first.

3.1 Largem asymptotics

Asymptotic expansions of univariate oscillatory integrafe readily obtained using integra-
tion by parts. Its counterpart in higher dimensions is thek& theorem. We recall from
(Iserles & Ngrsett 2007) the general expansion

> k
-2 (_;)m /M = f(w)zb(w)dS, A> 1 (3.1)

on
k=0

This expansion can be obtained by applying the Stokes thretwéce on the integral (2.5),
noting thaty(z) = — 1 Ay (x):

f¢=—f/f A dV——f/f /Vf )Vi()ds
-5/ f()ﬁ( Jas + 18T3J;(n S——/Af

Note that the first term in this expression vanishes due tdNgwemann boundary conditions,
and therefore

=5 [ P u@)as - Las0).

Iterating the procedure on the latter term ultimately ysg(8l.1).
Expansion (3.1) is our point of departure. We will obtain thiexpansion of the coeffi-
cient f,,, ,, for largem by expanding each term in (3.1) further. To that end, derfadaces



of the triangle byJ, K andL respectively and define the operators
Tunlsl = [ o(@)nn(@)as
Knld) = [ (@) n(@)ds
Lonld) = [ o(@omal@)is

such thatf, . 5L (2) Y (2)dS = Jun L]+ K [SL] + Lin o[ 2L]. Each of the operators
J, K andL can be expanded separately.

Lemma 1 We have

0o s+1
3vV3
"2 Z N
e 27T1m 27i(2m + 3n)

4 s

~ 2mi(m + 3n)

s+1

s+1
} "5 T3 [g] (Pra) — (1) T} [g) (Pao))

form > 1.

Proof The starting point is the expansion, for> 1,

/\f 7r1(at+b)dt (32)
2
= 1 \/§a+b s 3 ﬂ"l( fa+b) s V3
=3 g [ - G
s=0

whereg is a smooth function. It can be verified using integration byt We parameterize
the faceJ by

P31P122t—>(i—£t‘f+ t) tE[—TB,TS].
Using this parametrisation, the integi&l ,,[g] can be written as the sum of six integrals of the

form (3.2), sincey,, ,, is a sum of six complex exponentials. ldentification of theapaeters
a andb and straightforward algebra lead to the result. O

To shed light on the structure of the expansion, let us defieealues

1
,}/[1] —e 371'1m 7[2] _ e37r1m, "Yy[n] _ ( 1)m
We further define
Kl 1 (—1)*+? 1

mstt " (2m + 3n)stl - (m + 3n)stl’

RES] =T Niga[f1(Piiv1) — TP N[ f](Priy1),



where the index = 4 is identified withi = 1, such that for examplés, = Ps;. These
definitions allow the following fully symmetric expansioorfthe boundary integrals.

Lemma 2 We have

of - 3V3 IRl
/a wm,LdS~22< 27“) ng’y R, (3.3)

form > 1.

Proof Following Lemma 1, the integralm,n[g%] has the expansion

s . 1.
% ~—2Z< 2m> W o BTN 1) (Pra) — (1) TN )P

for m > 1. With a similar reasoning as in the proof of Lemma 1 we find

. [s] l71'i7n s —lﬂ'im S
Homl an ”‘22 2m K 03" " Ty No[ f](Pay) — e 3™ T3 No[f](Pr2)],

s+1
m ~—2Z< 2m> R (=1 T Na[F)(Par) — €37 T No[ ) (Ps)]

Summing these expansions and substituting the definitibng]mnngs] leads to the result.
O

Note that(3v/3)/(27) ~ 0.826993 and its powers decay fairly gently. It is the decay of
m[;‘i]m asm, n, s grow that drives convergence of the asymptotic series.

We are ready to assemble results and establish the full detimpxpansion of the co-
efficients(f, ¥y, ) for largem. We note that this is not an expansion in the Poiac@nse
and therefore it is not necessarily unique. It does howeaey@ll necessary information for

subsequent developments.

Theorem 3 Let fmn = Cm,n +15m,» D€ given by (2.5). Itis true famn > 1 that

~ k 2s+1 (_1)161%7215;1 28] Ak
Cm, m,n NQSIH 3 ZZ W(Rl [A l_sf} (34)
k=0 s=0 m,n
2s5+2
[23-‘,—1]
[25] k—s ( l)k
2o zzz( B) "
k=0 s=0 m,n

« {COS ‘n'gn ( [125+1] [Ak—sf] + R[225+1] [Ak—Sf]) + (_1)77LR£25+1] [Ak_sf]}

and

2s+1
(_1)kl'€£%sll m [2s] k—s

=0 s=0
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R[QSW*Sﬂ) + ()R AR )
2s+2
m —1 k"ﬁgﬁil] s —s
5 Z < ) ()\2@_7”’1(73[12 AR ]
k=0 s=0 m,n
- RETIAR ).

Proof From (3.1) and Lemma 2 we have
— (D" & 33\ [s] &
Frm ~ =2 Z RN > T oni ZV [A%f
0o 2s+1 0o
3\/§ (_1)k—s+ [2s [ [2s] k—s
:_QZ<_W1> ZW ]ZVHR A
s=0 k=s m,n i=1
( 0o 3

2s5+2
o0 -1 k—s+1
-2y 3@) > e S iR ak—

k—s+1
k=s m,n i=1

ok 2s+1 3
. 3\/g (_1)k 25 il (28] A k—s
~a3 3 (B8] s e

=1

) k 2s+2 3
3V3 (—1)* 2s+1 i1 [254+1] f A k—s
_222 ( o > /\7131—;-5-1 H[m: ] %[n]Rz' [A f]

i=1

The result follows by taking the real and imaginary partshig expression. O

Note that we have aggregated terms to be of an equal order gifiitade form > 1,
bearing in mind that

1

NS
A 7n+n

m,n

~ O(m72k72), H[S] ~ O(misil),

where),, ,, has been defined in (2.3). It follows at once that truncatiregauter summation
in (3.4) or (3.5) afterl. terms yields an asymptotic approximation that carries eor ef size
O(m=2E=3) for m > 1.

The expressions can be further simplified by noting thatygkierg can be reduced to the

calculation of partial derivatives of at the vertices. Indeed one can verify tﬁ%ﬁf] [f] can,
for example, be written in terms of tangential derivatives a

T(TS+1 + 2T Ty + 21,75,y + TP f(Prisa)-

Likewise, we can write

4 4 4
A= g(Tl2 + Ty +T3) = g(T22 + T3+ T3) = g(T?,2 + T3Ty + T2).
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Together this leads to the explicit expression

S —s —Ss 1 S s s S —s
REIAN ] = ()7 (7T 4+ 21T, 4 25 + T3)(TF 4 T T 4 T3) 7 (Pr2)
and to similar explicit expressions for the other terms &f thrm.

3.2 Edge coefficients

The asymptotic expansion of the coefficientsifors- 1 depends only on partial derivatives of
f atthe vertices. This result was obtained in two steps: tbkeSttheorem pushes the integral
to the boundary, partial integration of the boundary terms pushes the integral further to
the vertices. In the case of edge coefficients, where 1 andn > 1, the first step remains
possible but the second requires alteration.

To be precise, we note that expansion (3.1) remains validusea,,,, ,, > 1if n > 1.
Let us state the counterpart of Lemma 1. To that end we defenfuticttion

\I/m(t) _eg\fmmt (36)
Lemma 4 We have
V3 s+1

2 . 2 \[
~ 3mm 1_ V3, V3 1) _ . 3V3
Ilaleze ‘/_\ég 9(4 2ho T a QZ 2mi(2m + 3n)

s+1
3V3 1
37T1mTS P _ _1 mTS P
* 2wi(m + 3n) [e 1 lo](Pr2) — (=1)"™TY[g](Ps1)],

forn > 1.

Proof Proceeding exactly as in the proof of Lemma 1, we obtain a dusixantegrals
of the form (3.2). Explicit computations show that only fafrthose can be expanded as

before. Two integrals are non-oscillatory and lead to the-oscillatory integral in the above
expansion. |

The result contains a non-oscillatory integral along thgeed. Similar results can be
obtained for the other edges. Let us define the values

~ (71)s+1 1
[s] — +
e (2m 4 3n)stl  (m+ 3n)stl’

i =/
i/

5/%11] _ Qe—gﬂ'iﬂl ~[2] ,~y7[73l} — 2e§7rim’

and the functionals
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Bfl[g = [

These functionals correspond to line integrals along thedd, K and L respectively. We
can now state the counterpart of Lemma 2.

Lemma5 We have

s=0

s+1 3
3\/§ ~[s 7 S
o ) Rl DRI 37
i=1

forn > 1.

The structure of the asymptotic expansionfors> 1 is very similar to that forn > 1,

with the exception of the appearance of the non-oscillabayndary integraIsBl;] N;f. The
appearance of non-oscillatory integrals may not come agpaise, it was also observed
for edge coefficients in the case of modified Fourier expanssin ad-dimensional cube in
(Iserles & Ngrsett 2007). Here, the non-oscillatory ingdgjicorrespond to integrals along the
boundary involving the univariate functioh,, (¢).

Theorem 3 can be altered accordingly.

Theorem 6 Let f,,. = Cm.n + i5m . b€ given by (2.5). Itis true far > 1 that

= [25]

IS 3 o k 2541
(=1 ~[i] pli k (=1)*Rtnon
Crnm ™~ Z E ZRe AU BIN; AF £) + 2sin T = ZZ s
. k=0 s=0 m,n

% (R[12s] [Ak_sf] _ 73,[225] [Ak_sf]) _9 i Xk: ( \/g) 2542 (_Ukkgﬂfﬂ
)

3
(3.8)
k—s+1
k=0 s=0 2 A

s
x {cos Z2 (RETHAR ]+ RETIARf]) + (-1 RE AR 1]}

and

2s5+1
k (=1)" mann
smmwz /\M ZI LGN, AR f +2ZZ oo

mn =1 k=0 s=0
3

2542 (—1)’%%87?1] il ak
+ 2sin T Z Z )\kfs+,1 (RS [AFT2f]

k=0 s=0
- Ry [M-an.

x {cos m (R [AR= f] + R?Sl (AR 1) + (—1)7”73?5] A @9)
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Figure 4.1: Plot of the basE3 logarithm of the size of the coefficients, ,, (left) ands,, ,,
(right) for the functionf(z,y) = e¢™*~¥) in the (m,n) plane. Rows correspond to fixed,
columns to fixedh.

4 Hyperbolic cross

Figure 4.1 displays the size of the coefficients,, for the smooth functiof (z,y) = e™@~v),
The figure clearly exhibits thayperbolic crosphenomenon: since the coefficients decay
both with increasingn and increasing, the level curves in the figure have hyperbolic shape.
Coefficients are largest near the edges, correspondingdth snor smalln, and they decay
most rapidly in the region where both andn grow large. A small perturbation in the
smoothness of the level curves is observed on every third coefficients are smaller when
m = 0 (mod3).

In this section we examine the structure of the hyperbobisgiand we explore the accel-
eration of convergence by the application of polynomialtsadiion.

4.1 The leading order term

The structure of this hyperbolic cross can be fully expldifrem the asymptotic expansions
that were derived in the previous section. Looking just atldading order term in (3.4) and
(3.5), we have

3v/3sin = /@L?l],n
s A

27 HL}L],”

— prrHeos BRI + RY ) + ()" Ry}

~ 729sin %’ 1
3275 m(m+ 3n)(m+3n)
_2187V3  m® 4 3mn + 3n?
12874 m2(m + 3n)2(m + 3n)?

Cm,n

RV = RYA) (4.1)

(T1 + To) f(Pr2) — (T2 + T3) f(P2,3)]

[cos T (T + 4Ty Ty + T3) f (P 2)
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+ cos T(TS + AToTs + T5) f(Pays) + (—1)™(T5 + 4T5Ty + T7) f(Ps1)],
and

729 1
"~ 3273 m(m + 2n)(m + 3n)
+cos T (T + T3) f(Po,3) + (—1)"™(T5 + 1) f(P3,1)]
2187v3sin T m? + 3mn + 3n?
12874 m2(m + 2n)2(m + 3n)?
— (T3 + ATy T5 + T3) f (Pa,3)).

[cos (T + T2) f(P12) (4.2)

Sm,n

(T + 4T Ty + T3) f(Pr2)

Therefore, form > 1

m™4), m=0 (mod 3);

S ~ O(m™3).

Cmnw{(’)gm_?’), m#0 (mod 3),

This explains the ripple every third row in Figure 4.1. Theffisientsc,, ,, decay faster when
m = 0(mod3) because the first term in the asymptotic expansion vaniskas.feature is
not present in the,,, ,, coefficients.

In the direction of increasing (from left to right in Figure 4.1) the coefficients decay as
O(n=2). In general, the shape of the hyperbolic cross is deternbgete factor

1
m(m + 2n)(m + 3n)

(4.3)

which appears in the leading order term of both,, ands, ,,.

4.2 Polynomial subtraction at vertices

The situation changes significantly when first derivativesd(hence also tangential deriva-
tives) of f vanish at the vertices. Then we find from the asymptotic esijanform > 1
that

Cn ™~ (’)(m_4),

N O(m=*), m # 0(mod3),
Sm,n O(m=3), m=0(mod3),

(for s,, , and them = 0 (mod3) case we need the next term in the expansion but it is equally
straightforward to derive). The situation is now reversée: coefficients,, ,, decay faster if
m = 0 (mod3). The coefficientg,, ,, behave a®(m~*) for all m.

In either case, both sets of coefficients ,, ands,, ,, decay faster when derivatives of
f at the vertices vanish. We can exploit this behaviour by tangng a polynomiap that
interpolates first derivatives gf at the vertices and expanding the functipr= f — p. By
constructionf yields more rapid decay of its coefficients far 1 than the original function
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10 20 30 40 50 10 20 30 40 50

Figure 4.2: Plot of the basE3 logarithm of the size of the coefficients, ,, (left) ands,, ,,
(right) for the functione™®=¥) — p(x, y) in the (m, n) plane.

f. This technique was detailed for thledimensional cube in (Huybrechs et al. 2007) but is
equally applicable to the triangle. To be precise, considaslynomialp such that

(Ty + 1) f(Pr2),
(Ty + T5) f (Pas), (4.4)
(T3 + 1) f(P31)-

(Ty + To)p(Pr2)
(T2 + T3)p(P23)
(T3 + T1)p(P31)

These conditions are obtained from the expressions (4d.Y4&) and they guarantee that
the leading order terms of the coefficientsfofanish. We find a suitable polynomial of the
form p(z,y) = az?y + bxy + cy*z, where the coefficients, b andc are determined from
the conditions (4.4). The expansion coefficientsfaf, y) = e™=~¥) — p(z,y) are plotted
in Figure 4.2. Note the accelerated decay of the coefficifemtgrcreasingm (from top to
bottom).

We may wish to accelerate decay of the coefficients furthecdmcelling, sayS > 2
terms in the expansion. This is achieved in full generalityte interpolation conditions

REp =RV, s=o01,...,8-1,
REp =REA),  s=o01,...,8-1, (4.5)
REp =REA),  s=o01,...,8-1,

as is evident from Theorem 3. The result for= 2 is shown in Figure 4.3. We denoted by
q(x,y) the polynomial that satisfies conditions (4.5) f 2.

4.3 Accelerated decay of edge coefficients

In order to accelerate the decay of edge coefficients, where 1 andn > 1, it is not
sufficient to interpolate derivatives at the vertices. Careg to the case of large, more
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Figure 4.3: Plot of the basE3 logarithm of the size of the coefficients, ,, (left) ands,, ,,
(right) for the functione™*=%) — ¢(z, y) in the (m,n) plane.

boundary data has entered the asymptotic expansions asdleriTheorem 6, in the form of
the non-oscillatory integraIB,[fl] N, f. Interpolation of these integrals will accelerate the geca
of these coefficients too. As the integrals dependdmwever, one would have to interpolate
these values for a range of valuesof fromm = 0 up to a value that is sufficiently large so
that largem asymptotics kicks in.

Alternatively, it is conceptually and computationally eado interpolate normal deriva-
tives NV, f along the entire boundary. This is sufficient to render trst farm of the expansion
zero regardless of the valuef, as all boundary integraIB,[,Z] N; f are automatically interpo-
lated as well. The construction of smooth functions intéafiog boundary values is a topic
investigated in the context of Computer Aided GeometriciregFarin 1997). Herewith we
present a smooth interpolation to first-order normal dérigadata. However, before doing so
it is instructive to start with the easier case of the inté&afion of Dirichlet boundary data.

We identify with (x, y) € T six points ondT’,

— in other words, the line segmeip , pc, | is parallel to the first facep 4,,pc,] to the
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second andip 4, p,] to the third. All of them pass througlr, y). Specifically,
l’y) ( 7%(17‘2))7
%(1 +a - \/§y) #(1 —z+v3y)),

ry) = (x, —%(1 o).

Along each line segment we form a linear interpolatiorf to

x4+ 3y 2z +1
qa(z,y) = mf(PBl (z,y)) + mf(pcl (z,v)),
aa o) = 5 1 ) + L e (a0,
- 2¢ + 1 1—2— \fy
qc(z,y) = mf(lug(%y)) 242 \/§y f(pBg(I7y))'

Each of these functions agrees witlon two edges and is linear inandy along the third
edge. The sum of all three functions therefore equals twieealue off along the edges plus
a linear function inr andy. It is sufficient to halve the sum and remove the linear fuomgti
and to that end we let

q(x,y) = Slga(z,y) + qs(z,y) + go(z,y)] — §(2x + 1) f(1,0) (4.6)
—s(l—w+ VB[, — 51 -2 = V3 (=3, - %),

Simple algebra affirms that= f along the boundary d&f, therefore (4.6) interpolates Dirich-
let boundary conditions. The apparent singularity of, foaraple,qg along the liner = 1
is removable since along that line we also ha\@ 4,(1,y)) = f(pc,(1,y)). A similar
observation holds for the other two functions. Thus therpakant is a smooth function.

The case of normal derivatives is slightly more involved. WM& employ cubic interpo-
lation along the line segments,

1 (1—z+V3y)?(2z +1)
O [&H0 -2+ 3y + (20 +1)]
fé Aot VI (e, (o),
L(1—z+V3y)+ (2m—|—1)}
(1) = é Aot VA=V 1), )
L2t vEy) + 51— VEy)|
71 (1—2+V3y)(1l —z—V3y)?

L1+ V) + (-2~ vy

alz,y) = - 5 Vaf1(Pp, (2,9))

s

s

s

N3[=ﬂ(pC2 (:E,y)),

Sl
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QC(x7y) ==

(1—z—V3y)(2z+1)?
L(l-z-V3y)+ (2m+1)}
1 (1—2—+3y)*(2z +1)

6[%(1—:5 V3y) + 520 +1)]

é [ 2N1[f](pA3(I7y))

5 Vo[ f1(Pp, (%, 1)),

The functiong 4 interpolates the normal derivative @gfalong edgeg and3, i.e., Na3[qa] =
No[f] andN3[Ga] = Ns[f], and has vanishing Dirichlet values along these edgesduices
to a cubic polynomial along the first edge. The other fun&ign and - enjoy similar
properties: they interpolate the normaloélong two edges and reduce to cubic polynomials
along the remaining edge.

However, the singularity of the functiajy along the straight lin@ + z + /3y = 0, which
is parallel to the first edge and passes throifgh is now removable only at the vertd;
itself. An interpolant with singularities near the triaagé certainly less than desirable. The
situation can be remedied by enforcing additional condgionf. In particular, further anal-
ysis of the singularities af4 shows that they are removable whhf (P23) = N3 f(Pa3) =
ToNs f(Pa3) + T3 N5 f(Pa3) = 0. Taking into account the other functiogis andgc as well,
all singularities are removable everywhere if

Ny f(P12) = Nof(Pe3) = N3f(Ps1)

No f(P12) = N3f(Pa3) = Nif(Ps1)

Ty N1 f(Pr2) +ToNa f(Pr2) = 0, (4.7)
ToNo f(Pa3) + T3N3 f(Pe3) = 0,

T3N3 f(P31) +T1N1f(Ps1) = 0.

0,
0

?

We may perform polynomial subtraction at the vertices onoearto ensure that the conditions
(4.7) hold. For example, we apply the interpolation procedo f = f — p rather thanf,
wherep(x,y) is a polynomial withd degrees of freedom of the form

p(m, y) = almzy + a2x3y + a3m2y2 + a4m5 + a5x4y + a6x3y2 + a7x2y3 + agxy4 + agys.

The coefficients can be determined such thadthenditions (4.7) hold fof.
Finally, adding the functiong4, ¢g andjc results in a function that interpolates twice
the normal derivatives of along the edges plus an additional cubic term. We let

_ 1. - -
q(z,y) = 5[%(%, y) +qs(x,y) + Go(z,y)] (4.8)
\/3
T (—y® + 8zy® + 82y® + 2y*) T\ Ny f(Ps1)
1
— ( 122y + 4v/3y? — 20V/323 + 2422y + 28v/3xy? + 24y°® + 15132

—122%y — 2v32%y% + 602y + 7\/§y4) TyNof(Pis)

—% (12xy+4fy — 2032 — 2422y + 28v/3zy® — 24y + 15V/32%

11223y — 2v/32%% — 602y® + 7\/§y4) TyNaf(Ps1).
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Figure 4.4: Plot of the basE3 logarithm of the size of the coefficients, ,, (left) ands,, ,,
(right) for the functionf (z,y) — p(z,y) — G(z,y) = e™@=¥) —p(x, y) — §(z,y) in the (m, n)
plane, where interpolatesf at the vertices so that conditions (4.7) hold, @ndterpolates
the normal derivative of = f — p along the boundary.

Straightforward, but exceedingly tedious, algebraic cotations confirm thatv; [¢] = N;[f],

j = 1,2,3, and thatj(z, y) is a smooth function everywhere inandy, assuming that the
conditions (4.7) hold. Recall that these conditions caragibe enforced by using polyno-
mial subtraction at the vertices.

The results for the functiofi(z,y) = e™(*~¥) are shown in Figure 4.4. This figure should
be compared to Figures 4.2 and 4.3. Note that the decay natfall m and increasing
n, Vvisible in the first few rows of the figures, is drasticallydroved. The decay rate for
increasingn is also improved compared to polynomial subtraction at #réices only.

5 The computation of coefficients

An outstanding issue is the computation of modified Foumefficients, as given by the inte-
grals (2.5). For large: and/orn, these integrals become exceedingly oscillatory. Fotaipa
and perhaps surprisingly, the evaluation of such integsats fairly cheap operation. The
existence of the asymptotic expansions constructé® mready indicates that the computa-
tional cost of evaluating such integrals should be fixed wittreasing oscillation. Several
numerical methods have been designed for univariate asmyl integrals that exhibit pre-
cisely this property (Huybrechs & Olver 2009). Like for agywtic expansions, accuracy
rapidly improves with increasing oscillation. These melhoan in principle be all extended
to the current setting, though in previous papers we résttiour attention to the Filon-type
methods of (Iserles & Ngrsett 2005). They take the form ofassital cubature rule using
derivatives. In the context of modified Fourier on the edaiial triangle, the derivatives to
use in Filon-type cubature are exactly those that appeaeiasymptotic expansions ¢3.
With efficient methods for oscillatory integrals availabie is the evaluation of non-
oscillatory integrals that presents the next computatibnedle. Many numerical integration
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schemes for a triangular domain have been described intdratlire, we refer the reader
to (Lyness & Cools 1993) for a survey. It is wasteful howeweh&ve separate schemes, each
with their own set of cubature points, for non-oscillatongdascillatory regimes. For the sake
of efficiency, our aim is to reuse information as much as fssind, hence, to match the in-
tegration schemes. Since derivatives are required in fjlpa methods for highly oscillatory
integrals, we will reuse that information in the computatmf non-oscillatory integrals. A
first step in this direction led texotic quadraturen (Iserles & Ngrsett 2008). In this paper
we extend the concept of exotic quadrature to the equilatésagle and we construct new
cubature rules using derivatives for the equilateral gian

5.1 Filon-type cubature

The idea underlying most cubature schemes is to interptilatentegrand at cubature points
and to integrate that interpolant exactly (Davis & Rabirtawi984). In Filon-type cubature,
in addition to this, one interpolates all data on which thstfiew terms of the asymptotic
expansion of the integral depend. Thus, with expressiods éhd (4.2) in mind, consider a
polynomialp that satisfies

(Th + T2)p(Pr2) = (T1 + T2) f(Pr2),
(T3 +T1)p(P31) = (T3 + T1) f(Ps1),

in addition to . .
%kp(wk)zagkf(wk% k:].,...,V,

for a set of cubature points;, and corresponding partial derivatives of orger We define
the Filon-type cubature ru@g’f’"] [f] by

1= | @)y (5.2)
It follows from the asymptotic expansions that

(s lmn) — QE ™[] = O(m™). (5.3)

Thus, the accuracy of Filon-type quadrature improves witlidasingn, but the computa-
tional cost remains fixed. Note that theomentsn the right hand side of (5.2) may be com-
puted from their asymptotic expansions, because the asyimpkpansion for polynomiaf
has only finitely many terms.

Expressions (5.1) correspond exactly to the interpolat@rditions (4.4) for convergence
acceleration that appeared 4. Higher order convergence of Filon-type cubature can be
obtained by satisfying the more general conditions (4.5 difference compared to conver-
gence acceleration is the freedom we have introduced toddsgamal cubature points. This
freedom can be used to improve accuracy. However, this iecuto the solvability of the
underlying interpolation problem, which cannot be takemgi@nted.

In particular, the construction of Filon-type cubaturelsgued by two issues. Firstly, the
use of non-consecutive derivatives leads Birihoff-Hermite interpolation probleifi.orenz,
Jetter & Riemenschneider 1983). The interpolation prob#enot necessarily solvable by any
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polynomial with a number of degrees of freedom that matchesnumber of interpolation
conditions, even in one dimension. Secondly, a multivaiierpolating polynomial need not
exist for a particular configuration of points, even disregag the use of derivatives. Both
issues were dealt with for multivariate domains with teqs@duct structure in (Iserles &
Ngrsett 2007). The techniques§@.2 of that paper (i.e., reinterpreting Filon-type cubatas

a correction to the truncated asymptotic expansion) aralloppplicable, at least in principle,
to the case of the equilateral triangle. In the current papereave these issues outstanding
and focus on a description of new exotic cubature rules usiegame kind of information.

5.2 EXxotic cubature
5.2.1 General considerations

The construction of cubature rules for multivariate doraam very different from that of
quadrature rules in one dimension. For an overview of reletechniques, we refer the
reader to (Cools 1997). Cubature rules on triangular dosnare surveyed in (Lyness &
Cools 1993). Several cubature rules of Gauss-type werénelotan (Lyness & Jespersen
1975), many others can be found in the encyclopedic list [KC2@03).

A cubature rule on a two-dimensional regiQn

QU =D wif(x;,y;), (5.4)
j=1

is said to have degreeif it is exact for the (d + 1)(d + 2) polynomials of total degree less
thand, i.e.,

Q[xiy-"]z/wiyjdxdy, 0<i,j<d, i+j<d. (5.5)
Q

A classical problem is to construct a rule of degdethat requires the fewest function eval-
uations. Rules of specific interest are those with all weigidsitive and with all cubature
points inside the domain of integration. Unlike in the onehsional case, it is unknown in
general what the minimal number of cubature points is fovergdegreel, though for any
two-dimensional region the valug( 4 + 1)(4 + 2) is a lower bound (Stroud 1971).

Cubature rules may be computed by solving the nonlinearfségebraic equations (5.5),
with the weights and cubature points as degrees of freeddm dimensionality of this non-
linear system may be reduced by exploiting the symmetri¢isenintegration domain.

5.2.2 Symmetries of the triangle

Recall that the triangl@’ is kept invariant under the action of the dihedral gréyp composed
of six elements: identity, rotation® and R~ by %w and —%w radians respectively, and
reflectionsQ); ;+1, ¢ = 1,2, 3, with respect to axes of symmetry passing through the \etic
P; ;41 respectively. For the record, the exact symmetries are

R(z,y) = (—z + Ly, Bz — 1y,
- ?ya §$ - %y)7

)

3
—_
—
&
< .
S—
|
—
|
Nl= = N
&

QlQ(xvy) = (_
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Qgg(l',y) = (—%(E + §y7 §$ + %y)a
Qs1(z,y) = (z,—y).

A cubature rule with the same symmetries can be written as

Zay Zf i(25,95))

whereS; = I, So = R, S3 = Ril, Sy = ng, Sy = Qgg, Se = Q31 are all the dihedral
symmetries. Each poirftr, y) leads to:(x, y) function evaluations, whereis 6 divided by
the dimension of the isotropy group @t, y): thus,:(0,0) = 1, «(z,y) = 3 for (z,y) on the
three axes of reflectional symmetry aria, y) = 6 otherwise.

The symmetries of the equilateral triangle were first exptbthis way in (Lyness & Jes-
persen 1975). Thé(d + 1)(d + 2) conditions (5.5) reduce to just

1
—(d® +6d + 12
|yl +od+12)
nontrivial equations. The gain is approximately a facto.of

5.2.3 Cubature rules

Mildly generalizing the above expressions in order to usevdtves, we are interested in
cubature rules of the form

QU= a;p™(c;), (5.6)
j=1
with
6
plml () = % g N™T™2 f(S;c). (5.7)

We impose the rule that derivatives may be used only at theegsrand, more generally, also
along the axes of reflectional symmetry. With this restictiwe adopt the convention that
N andT denote the normal and tangential derivatives associatddtiré edge opposite the
vertexe, or with the edge orthogonal to the axes of reflectional sytryren whichc lies.
Note that the factor/3 in (5.7) serves to simplify the expressions for the coeffitie,,.

Table 1: Order and number of function evaluations of the turearules using derivatives.

rule | order function evaluationg rule | order function evaluations
Q1 5 7 Qs 9 34

Q> 6 16 Q~ 11 57

Qs 7 19 Qs | 12 64

Q. 7 22 Qo | 12 61

Qs 8 28
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(a) Q1, orders (b) Q2, order6 (c) Qs, order7

(d) Q4, order7 (e) Qs, order8 (f) Qe, order9

(9) Q7, order11 (h) Qs, order12 (i) Qo, order12

Figure 5.1: lllustration of the location of the cubaturersi

It is unknown in general what is the minimal number of poiniststhat the conditions
(5.5) hold up to a certain degree. The cubature rules in tagepcorrespond only to lo-
cal minima. They were found by iteratively solving small dadal optimization problems.
Starting from a given cubature rule, cubature points wemgoked by varying other cubature
points in a small neighbourhood of their location, reséricto certain lines to further simplify
the computations. It is likely that this fairgd hocand manual approach can be considerably
improved. Yet, cubature rules using derivatives were fouymtb order1 2.

Cubature rules of orders betwegrand 12 are depicted graphically in Figure 5.1. The
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cubature points are indicated by dots. Derivatives of iasirey order are indicated by cir-
cles with increasing radius. These rules all have the fori®)(5The precise values of the
parameters:;, m; andc; are tabulated in Appendix A. We note that the first cubatute ru
Q1 is known (Abramowitz & Stegun 1965, p.893). Table 1 sumneaithe order and the
total number of function evaluations of the cubature rukgsicted in Figure 5.1. In this table,
evaluations of derivatives are counted as function evialost

5.3 Copy rules

Convergence in numerical integration is not obtained Ugll increasing the order of the
rules, but by subdividing the integration region. The eafeital triangle can be divided into
four smaller equilateral triangles, termdd B, C'andD in Figure 5.2. A cubature rule on the
larger triangle can, when appropriately rescaled, be usegoh of these triangles separately.
This leads to so-called copy rules.

I:)12

N»

B —

P23

Figure 5.2: Subdivision of the equilateral triangle intafemaller equilateral triangles.

The scaling of a cubature rule to a smaller domain usuallyireg only multiplying the
weights with a factor proportional to the size of that doméaiowever, when using (direc-
tional) derivatives, rescaling cubature rules is slightlgre involved. To be precise, each
function evaluation in the exotic cubature rules consad@bove takes the form

wN;" T f(e), (5.8)

for some value ofv and withi = 1,2 or 3. Consider the unique affine mappinfs, Pg,
P¢ and Pp that map the equilateral triangle to each of the smallengiiess, such thaP,,
Pp and P preserve the normal directions of the three edgesindirrors these directions
with respect to the vertical axis. Then it is straightfordvém demonstrate that the function
evaluation (5.8) results in the function evaluation

1 1 mi+ma
- = N™T" f(Pac), (5.9)
4\2 vt

when the cubature rule is rescaled to triangleSimilar expressions hold for trianglésand

C'. The factorl/4 is due to the smaller size of triange The additional powers of /2 are
due to the derivatives taken.
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The case of triangl® is different, becaus&p mapsN; to —N3, N, to — N, and N3 to
—Nj. In this case, the above function evaluation becomes

1 1 mi+mse
1(-5) s, (5.10)
with j = 3,2,1 fori = 1,2, 3 respectively. Note that both evaluations (5.9) and (5.Hgh
the same general form as (5.8).

5.4 Numerical results

First, we illustrate the use of exotic cubature for the extiin of the integral off (x,y) =
Jo(2? + 2y — cos(x + y)) over the equilateral triangle, wherg(z) is the Bessel function
of the first kind and orde®. Results are shown in Table 2 for the cubature rules cortetiuc
in this paper. The table illustrates the effect of incregshe number of levels in copy rules.
Levell = 0 corresponds to the cubature rule itself. Lelvet 1 means that the triangle is
subdivided into four smaller triangles. Levek 2 means that each of the smaller triangles is
again subdivided, and so on.

Table 2: Absolute error in the approximation of Jy (2% 4+ xy — cos(z+y) )dzdy by cubature
rules using derivatives. Copy rules are constructeid-e0), 1,2 or 3 levels deep.

rule| 1=0 =1 =2 =3 |lrule| 1=0 =1 =2 =3
Q1 | 35_01 1.6_05 2.8_07 44 09 || Q¢ | 4.9_05 4.9 05 3.3_11 2.6_14
Qs | 1.7_03 T79_07 4.8_10 4.2_15 || Q7 | 5.8_06 1.9_g9 4.0_135 82_17
Qs | 5.4_04 47 07 5A4_19 1215 || Qs | 7107 6.2_11 2.7_16 1.2_9
Qs | 3203 29_06 80_10 1111 || Qo | 3.8_07 2.0_11 4716 2.7_9
Qs | 1704 1.6_¢7 1.0_190 9.0_14

Next, we illustrate the convergence rate of the modified ieowweries for the same func-
tion f(z,y). In this experiment we truncated the series (2.4pat N andn = N, whereN
is a constant. Pointwise convergence is illustrated in %ig for increasingV at three points
in the triangle: a point in the interior, a point on one of tllges and a vertex. The figure
shows the modified Fourier series pf= f — p — G, with p and§ constructed so that the
normal derivatives vanish along the boundary of the trianglhe convergence at the interior
point isO(N~%), which is consistent with the size of the leading order teftie asymptotic
expansion after polynomial subtraction. Pointwise cogeace along the boundary is slower:
it is O(N~3) for both points on the boundary. This is expected and is amid modified
Fourier series on the interval and on multivariate domaiitls tensor-product structure.

Finally, we illustrate the accuracy of the asymptotic exgi@ans constructed in this paper
for the function f(x,y). Let us denote byd™ " the expansion (3.4) fot,, ,, truncated

after s terms in the outer summation (i.e:, = 0,...,s — 1), and similarly by™"™ the
truncated expansion for the edge coefficients based on (Bt results are shown in Table
3. Itis clearly visible in this table that the accuracy of theansions rapidly improves with
increasingm and/orn. It is to be expected that Filon-type cubature rules wouglitein
similar improvements, but with significantly smaller vadusf the errors.
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(a) Absolute error a@,o),scaled byN4 (b) Absolute error at vertex1,0) (top curve) and at
(—4,0) (bottom curve), scaled b3

Figure 5.3: Pointwise convergence of the modified Fourigesef.Jy (2% + zy — cos(z +1v))
with polynomial subtraction. The doubly-infinite series4Ris truncated atn = N and
n = N. Convergence is shown for increasingin three points: a point in the interior (left
panel) and two points along the edges (right panel).

The modified Fourier series edge coefficients in this exam@ee computed by using
copy rules with a large number of levels. This of course dasdead to anO(N?) scheme
to compute theV? coefficients. These brute-force computations were peddrin order to
compare with results obtained by using the asymptotic esipan The cost of evaluating the
asymptotic expansion remains fixed for each coefficiengnaigss of the value of: andn.

Table 3: Absolute error of the asymptotic expansions fomtteelified Fourier series coeffi-
cients off(z,y) = Jo(z? + zy — cos(z + y)).

[WL, TL] A[lm ,n] A[2m ,n] Agm ,n] [WL, TL] gyn ,n] EZ[m ,n] 55[;7" ,n]

[5, 0] 87 01 42 04 22 04 || [0,5] | 2605 8.1_05 5.1_0s
[10,0] | 2.3_05 3.9_0s 6.4_07 | [0,10] | 1.6_05 1.3_07 2.6_1¢
[10,10] | 1.1_0s 1.5_07 3.0_gs || [0,20] | 1.0_0s 2.0_gg 1.4_15
[100,100] | 8.6_15 1.0_14 2.7_17 || [0,50] | 2.6_0s 8.0_12 1.7_15

6 Conclusions

The main result of this paper is the asymptotic expansiomwefficients in Laplace—Neumann
series (or modified Fourier series) on the equilateral glanThis expansion conveys the in-
formation necessary to accelerate the convergence of suigs sto efficiently compute the
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coefficients and to predict and explain the shape of the Iloghiercross in this setting. First

steps were already taken in these directions using the itrads of polynomial subtraction,

Filon-type cubature and exotic cubature. Taken togethesetlsteps have not currently led
in this paper to a complete, fast and competitive implentemtaf a Laplace—Neumann ap-
proximation scheme. In particular, such a scheme wouldlentonstructive approach for

high-order convergence acceleration and fully matcheegmation schemes for slowly and
highly oscillatory integrals. Yet, based on the knowledfithe asymptotic expansion and on
the foundations laid in this paper, these missing elemejsar to be within reach and they
are the subject of further research.
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Appendix A

The values of the parameterg, m; andc; of the general expression (5.6) of a cubature rule
are shown in the table below for the cubature rules depicideigure 5.1. The values are
given either in exact analytic form or rounded®significant digits.



29

’ Rule‘ a [m1, ma) c
Q 3 = . 0,0] o
@\/ﬁ-‘r % [0,0] (=15 0
ﬁ\/ﬁ+% [0,0] (/15 0
4131
Qs 1%’?;5“6)1 [0,0] (0,4 0)
= 0w
105&00 [170} (17 0)
ﬁ [2’0} (17 0)
44%00 ’ ’
3960 [O, 2} (1,0)
1
Qs 1 25635252 5 [z,z} (o; 0>0
4139002958932 [0’ Oj ( (15 (’)) )
E@ [170} (17 0)
% [2’0} (17 0)
87808 ’ ’
@ [0,2] (1,0)
15630 [3,0} (17 0)
Q4 ;‘6‘73 [0,0] (0,0)
— 1
® o o
E [0’ 2} (07 0)
44§0 ’ ’
o o o
89960 ’ ’
@ [3,0] (1,0)
3960 [1,2] (1,0)
Qs %405 E 3 ((o,l 0)0 |
ﬁ [070} (12;))
1050 ’ ’




30

1

g 1,0} (=3,0)
I R
226@] [270} (1’0)
@ [072} (170)
@ [370} (170)
89600 ’ ’
39600 [1,2] (1,0)
Qo 43(1)14%?%1 0,0] (o,1 0)
Ery " o
o oy
15769600 [1’ ) (13 (’))
s [27 0] (07 0)
ity [270} (_; 0
31339200 [0’ ) (,j .
7834800 [2’ ; (13 ;)
3713;3:2))00 [07 2] (17 0)
7884800 [3’ ; (1’ )
778%1?00 [1’ 2] (17 0)
1971200 ’ ’
@ 623734363011665783105666560698361629010 [0.0] 0,0)
T 0 40
0.97561306156254919362 [0,0] (218256 _ 126 _\/48759268679,0)
0.15803712903842878813 [0,0] (228256 4 126 __./48759268679,0)
0.061271453266247245719 [0,0] (1,0)
402711
a0 0
o oo S
A oo s
I o O
94530040605 ’ 2




8319078131695973767147039560511

31

1,0 1.0
1928985969075244955012101075201200 V) (1,0)
730031 15081086824353 o0 wo
311081707624833223953380 ; :
T TRTA024R7 0 o
H6162505605063010 ; :
sk it 1.2 1
5356544152960 [1,2] (1,0)
8690571
THaamaon 0,0 0.0
“ R, 0.0 ©0
— = _1
1825083634375 [0,0] (—3,0)
L 0,0 1
. o
s 1
e . o
e, &0
_ 399141898759031 )
T - -
e ———— _ 11
TR - e
P ——— _ 11
AR i R
T ———— 5 1
- e
B ye— 11
127703575 [0,0] (3.5V3)
il 1 1
LR e =20
T 207620000 1,0 10
1o aeb b3 o (5.0
Bt 1 2
AR . o
T ANRRAROANNNNN 1,0 1,0
1086452400000 [1,0] (1,0)
1066688341 ) )
050880 . -
TEANE2ROO00 0,2 1,0
R . -
- 1
6034045000 [3,0] (1,0)
araamannn 1,2 1
378378000 (1,2] (1,0)
16035143725210437
@ ~ 31243371390926356480 [0,0] (0,0)
3950803273641114501493 0.0 Cio
6168424871724534168750 ; (2,0
0.94606756593949053915 [0, 0] (—zssoss )
50422096864 )
211843372125 [0,0] (3:0)
724750010853899859104 0.0 oo
19256701191020490071875 ; 7
0.068019898691773271037 [0, 0] (1,0)
931447197646848
e 0,0 1 1.3
312930128556045 [0,0] (—3 %V3)




32

1503775424512

5028288890625
285311670611

665725132800
134217728

T 127702575
103949931131

~ 136102093627500
122010152256

129870948081875
0.0097348092854897992901

561653255177898184373029

949434177302358293669760000
33780569353

420499038960000
156887373995423

10863883238592384000
319547

55621566000

— =
o O

—
(=]




