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Abstract

We address in this paper the approximation of functions in an equilateral triangle by
a linear combination of Laplace–Neumann eigenfunctions. The Laplace–Neumann basis
exhibits a number of advantages. Thus, the approximations converge fairly fast and their
speed of convergence can be much improved by using techniques familiar in Fourier anal-
ysis and spectral methods, in particular the hyperbolic cross and polynomial subtraction.
Moreover, expansion coefficients can be computed rapidly by a mixtureof asymptotic
methods and Birkhoff–Hermite quadratures.

1 Introduction

In this paper we continue a systematic study of expansions ineigenfunctions of the Lapla-
cian subject to Neumann boundary conditions. Such expansions were explored in (Iserles &
Nørsett 2008) for an interval, with generalizations in (Iserles & Nørsett 2006) to polyharmonic
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operators and in (Iserles & Nørsett 2007) to multivariate domains with tensor-product struc-
ture. Convergence acceleration schemes for these expansions were examined in (Huybrechs,
Iserles & Nørsett 2007). The subject of the current paper is the expansion in Laplacian eigen-
functions on the equilateral triangle. This domain does nothave tensor-product structure, yet
much of the advantageous properties enjoyed by Laplace–Neumann expansions in the earlier
cases continue to hold. On the other hand, new hurdles arise that require further insight and
different analysis.

Laplace–Neumann expansions in one dimension closely resemble classical Fourier series,
hence we also refer to them asmodified Fourier series.On the interval, the only difference
is a shift in the argument of the sine functions. Yet, unlike Fourier series, Laplace–Neumann
expansions converge pointwise in all points of continuity,inclusive of the endpoints. The con-
vergence rate is typically quadratic in the interior, and linear in the endpoints (Olver 2009).
This can be improved to arbitrarily high order, for sufficiently smooth functions, by the judi-
cious application of polynomial subtraction techniques (Huybrechs et al. 2007).

Another interesting property is that the coefficients of Laplace–Neumann expansions are
amenable to recent methods for the evaluation of highly oscillatory integrals (Iserles & Nørsett
2005, Huybrechs & Vandewalle 2006, Olver 2006). We refer thereader to (Huybrechs &
Olver 2009) for a recent review. The cost of these methods is typically independent of the
frequency and their accuracy rapidly improves with increasing frequency. As the coefficients
of Laplace-Neumman expansions are represented by increasingly oscillatory integrals, appli-
cation of the above mentioned methods enables their computation one by one: this means that
m coefficients can be computed in justO(m) operations. A careful asymptotic analysis of
the coefficients previously revealed that their evaluationcan even be considerably more effi-
cient than that of general oscillatory integrals. This was exemplified for Filon-type quadrature
rules using derivatives (Iserles & Nørsett 2005) in the previous papers. As such, the difficulty
in constructing modified Fourier series lies mostly in the computation of the first few coeffi-
cients, corresponding to non-oscillatory or slowly oscillatory integrals. Though any classical
integration scheme may be used to compute the early coefficients, without destroying the
O(m) property, it seems wasteful to igore information that is being used in the evaluation of
the later coefficients. In particular, methods for highly oscillatory integrals typically, and un-
avoidably, require derivatives of the integrand or their approximation at certain critical points.
For this reason, research in previous papers focused on the reuse of this information for the
evaluation of non-oscillatory integrals. This has led to a variant of the familiarBirkhoff–
Hermite quadrature(Nikolov 1989) which, for lack of an established name, we have termed
exotic quadrature.

Rapidly converging series may be obviously truncated for the purpose of finite-precisison
computations. This operation is straightforward in one dimension. In more than one dimen-
sion, the significant coefficients of Laplace–Neumann expansions exhibit the pattern of thehy-
perbolic cross. This well-known pattern is seen in various other applications, including mul-
tivariate Fourier series (Temlyakov 1993). In general multivariate approximation schemes,
usingN degrees of freedom per dimension ind dimensions leads toNd coefficients in total.
This exponential growth is usually referred to asthe curse of dimensionality.The number of
coefficients in the hyperbolic cross however grows at a surprisingly slow rate with increasing
dimension: it is typically justO(N(logN)d−1), for a comparable accuracy. Exploiting the
hyperbolic cross may lead to tremendous computational savings in applications.

Several competitive schemes exist for univariate approximation, such as Chebyshev ex-
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pansions or wavelets (see, e.g., (Boyd 2001) and (Daubechies 1992)), each with advantages
and disadvantages. In our opinon, a compelling advantage ofmodified Fourier series is their
natural generalization to triangular domains. This is the topic of the current paper. We intend
to generalize the properties of Laplace–Neumann expansions mentioned above to expansions
on the equilateral triangle. Eigenfunctions of the Laplacian subject to Neumann (or Dirichlet,
for that matter) boundary conditions are known to be a linearcombination of plane waves for
three types of triangles with special symmetry properties:the equilateral triangle, the right
isosceles triangle and the triangle with anglesπ/2, π/3 andπ/6. Since any triangle can be
mapped affinely to any other triangle, it suffices for the purpose of approximation to study a
single ‘model triangle’. The equilateral triangle exhibits maximal symmetry and, for no other
reason, this is the one we study.

We commence our analysis in§2 with a discussion of Laplace–Neumann eigenfunctions
and the associated modified Fourier series on the equilateral triangle, introducing notation
and explicit formulæ. At the heart of the theory lies the asymptotic analysis of Laplace–
Neumann coefficients in§3. Based on the information in the asymptotic expansions, the
structure of the hyperbolic cross and schemes for convergence acceleration are studied in§4.
Next, we discuss the efficient computation of the coefficients in §5, with an emphasis on the
construction ofexotic cubaturemethods: cubature rules using derivatives for the triangle,
which may be interesting in their own right.

2 Laplace–Neumann eigenfunctions in a triangle

The eigenfunctions of the Laplacian on a domainΩ subject to Neumann boundary conditions
on the boundary∂Ω satisfy

−∆u = λu, x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω.

They were constructed for the equilateral triangle alreadyby Lamé (1833) and presented in
different equivalent forms by many authors. We found the construction of Pŕager (1998) as
the most suitable for our ends. That reference presented explicit formulas for an equilateral
triangle T̃ with vertices at(− 1√

3
, 0), ( 1√

3
, 0) and(0, 1). The eigenfunctions consist of the

odd functions (odd with respect to they-axis),

ũm,n(x, y) = 2 sin
mπx√

3
cosnπy

− 2(−1)(m+n)/2 sin
πx

2
√

3
(m+ 3n) cos

πy

2
(m− n)

− 2(−1)(m−n)/2 sin
πx

2
√

3
(m− 3n) cos

πy

2
(m+ n),

m, n = 1, 2, . . . , m ≡ n mod2, 0 < m ≤ n,

and the even functions

ṽm,n(x, y) = 2 cos
mπx√

3
cosnπy
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P12

P23

P31

N1
N2

N3

Figure 2.1: Definition of the equilateral triangleT . The faces are numbered1, 2, 3 counter-
clockwise, starting with the upper diagonal face. The vertices areP12 = (− 1

2 ,
√

3
2 ), P23 =

(− 1
2 ,−

√
3

2 ) andP31 = (1, 0).

− 2(−1)(m+n)/2 cos
πx

2
√

3
(m+ 3n) cos

πy

2
(m− n)

− 2(−1)(m−n)/2 cos
πx

2
√

3
(m− 3n) cos

πy

2
(m+ n),

m, n = 0, 1, . . . , m ≡ n mod 2, 0 ≤ m ≤ n.

The corresponding eigenvalues areπ2(m2/3 + n2).
We found it more convenient to work with the equilateral triangle T with vertices at

(− 1
2 ,

√
3

2 ), (− 1
2 ,−

√
3

2 ) and(1, 0) as shown in Figure 2.1. This triangle is centred at the origin
(0, 0) and therefore has simple expressions for all six symmetriesof thedihedral groupD3.
This simplies expressions considerably. With some minor additional changes in notation, we
write the Laplace–Neumann eigenfunctions as

um,n(x, y) = Imψm,n(x, y), m = 1, 2, . . . , n = 0, 1, . . . , (2.1)

vm,n(x, y) = Reψm,n(x, y), m, n = 0, 1, . . . , (2.2)

with the complex-valued functionψm,n given by

ψm,n(x, y) = vm,n(x, y) + ium,n(x, y)

= exp

(

−2πimy

3
√

3
− πi(m+ 2n)(2x+ 1)

3

)

+ exp

(

−2πimy

3
√

3
+
πi(m+ 2n)(2x+ 1)

3

)

+ (−1)n+m exp

(

2πi(2m+ 3n)y

3
√

3
− πin(2x+ 1)

3

)

+ (−1)n+m exp

(

2πi(2m+ 3n)y

3
√

3
+
πin(2x+ 1)

3

)
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+ (−1)n exp

(

−2πi(m+ 3n)y

3
√

3
− πi(m+ n)(2x+ 1)

3

)

+ (−1)n exp

(

−2πi(m+ 3n)y

3
√

3
+
πi(m+ n)(2x+ 1)

3

)

.

The eigenfunctions of the Laplacian on the equilateral triangle are a sum of six plane waves.
The functionsum,n andvm,n correspond tõum,m+2n andṽm,m+2n as defined above, up to a
linear transformation between the trianglesT̃ andT . The eigenvalues are

λm,n =
16

27
π2(m2 + 3mn+ 3n2). (2.3)

Figure 2.2 displays a selection of eigenfunctionsum,n andvm,n. Note for future reference
their increasingly oscillatory character asn grows. It is evident that a great deal of further
structure is present: for example,u0,4 exhibits symmetry with respect to rotations by2π/3
radians, as is evident from the explicit (and mildly massaged) formula

u0,4(x, y) = 1 − 4
√

3 sin
8πx

3
sin

4π(x+
√

3y)

3
sin

4π(x−
√

3y)

3

− 4 cos
8πx

3
cos

4π(x+
√

3y)

3
cos

4π(x−
√

3y)

3
.

We dwell no further on this issue.
A real-valued functionf(x, y) onT can be expanded in the series

f(x, y) =

∞
∑

m=0

∞
∑

n=0

cm,n
vm,n(x, y)

‖vm,n‖
+

∞
∑

m=1

∞
∑

n=0

sm,n
um,n(x, y)

‖um,n‖
, (2.4)

with real expansion coefficients

cm,n = Re 〈f, ψm,n〉, and sm,n = Im 〈f, ψm,n〉,
where

〈f, ψm,n〉 = f̂m,n =

∫

T

f(x)ψm,n(x)dV. (2.5)

The norms of the basis functions are

‖vm,n‖ =















27
√

3, if m = n = 0,
9
2

√
3, if m = 0 andn > 0,

9
2

√
3, if m > 0 andn = 0,

9
4

√
3, otherwise,

and

‖um,n‖ =

{

9
2

√
3, if n = 0,

9
4

√
3, otherwise.

Before moving on to the asymptotics of̂fm,n, let us introduce further notation and con-
ventions. We impose positive orientation onT . The equations for the faces are

P12P23 : x ≡ − 1
2 ,

P23P31 : y = −
√

3
3 (1 − x),

P31P12 : y =
√

3
3 (1 − x),
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Figure 2.2: The functionsu1,3, u3,7 (top) andv0,4, v1,3 (bottom). Note the trilateral symmetry
of v0,4 and the oscillatory character ofu3,7.

the normal derivatives at each of the faces are given by

N1[f ] = 1
2fx(x,

√
3

3 (1 − x)) +
√

3
2 fy(x,

√
3

3 (1 − x)),

N2[f ] = −fx(− 1
2 , y),

N3[f ] = 1
2fx(x,−

√
3

3 (1 − x)) −
√

3
2 fy(x,−

√
3

3 (1 − x)),

and the tangential derivatives by

T1[f ] = −
√

3
2 fx(x,

√
3

3 (1 − x)) + 1
2fy(x,

√
3

3 (1 − x)),
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T2[f ] = −fy(− 1
2 , y),

T3[f ] =
√

3
2 fx(x,−

√
3

3 (1 − x)) + 1
2fy(x,−

√
3

3 (1 − x)).

3 Asymptotic expansions

Much information concerning the Laplace–Neumann expansion of a functionf is derived
from studying the asymptotic behaviour of the coefficientsf̂m,n. The asymptotic expansion
of the coefficients (2.5) for large values of the parametersm andn is the key both to their
efficient computation and to convergence acceleration of the series (2.4).

The asymptotic expansion of̂fm,n is rather different from that of the univariate coef-
ficients in (Iserles & Nørsett 2008) and their generalization to higher-dimensional cubes
in (Iserles & Nørsett 2007), due in part to the non tensor-product shape of the domain and
in part to the presence of two parametersm andn that may be small or large. The differ-
ent asymptotic regimes reduce in our notational framework to just two categories: largem
and smallm. Loosely speaking, largem represents oscillation in both directions ofx andy
regardless of the value ofn, whereas smallm represent possible oscillation in one direction
only, providedn is large. We refer to coefficients in the latter regime as ‘edge coefficients’
and treat the former case first.

3.1 Largem asymptotics

Asymptotic expansions of univariate oscillatory integrals are readily obtained using integra-
tion by parts. Its counterpart in higher dimensions is the Stokes theorem. We recall from
(Iserles & Nørsett 2007) the general expansion

〈f, ψ〉 ∼ −
∞
∑

k=0

1

(−λ)k+1

∫

∂T

∂∆kf(x)

∂n
ψ(x)dS, λ≫ 1. (3.1)

This expansion can be obtained by applying the Stokes theorem twice on the integral (2.5),
noting thatψ(x) = − 1

λ∆ψ(x):

〈f, ψ〉 = − 1

λ

∫

T

f(x)∆ψ(x)dV = − 1

λ

∫

∂T

f(x)
∂ψ(x)

∂n
dS +

1

λ

∫

∂T

∇f(x)∇ψ(x)dS

= − 1

λ

∫

∂T

f(x)
∂ψ(x)

∂n
dS +

1

λ

∫

∂T

∂f(x)

∂n
ψ(x)dS − 1

λ

∫

T

∆f(x)ψ(x)dV

Note that the first term in this expression vanishes due to theNeumann boundary conditions,
and therefore

〈f, ψ〉 =
1

λ

∫

∂T

∂f(x)

∂n
ψ(x)dS − 1

λ
〈∆f, ψ〉.

Iterating the procedure on the latter term ultimately yields (3.1).
Expansion (3.1) is our point of departure. We will obtain thefull expansion of the coeffi-

cient f̂m,n for largem by expanding each term in (3.1) further. To that end, denote the faces
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of the triangle byJ ,K andL respectively and define the operators

Jm,n[g] =

∫

J

g(x)ψm,n(x)dS,

Km,n[g] =

∫

K

g(x)ψm,n(x)dS,

Lm,n[g] =

∫

L

g(x)ψm,n(x)dS,

such that
∫

∂T
∂f
∂n (x)ψm,n(x)dS = Jm,n[ ∂f

∂n ]+Km,n[ ∂f
∂n ]+Lm,n[ ∂f

∂n ]. Each of the operators
J ,K andL can be expanded separately.

Lemma 1 We have

Jm,n[g] ∼ −2

∞
∑

s=0







(

− 3
√

3

2πim

)s+1

+

[

3
√

3

2πi(2m+ 3n)

]s+1

+

[

− 3
√

3

2πi(m+ 3n)

]s+1






[e−
1
3πimT s

1 [g](P12) − (−1)mT s
1 [g](P31)],

for m≫ 1.

Proof The starting point is the expansion, fora≫ 1,

∫

√
3

2

−

√
3

2

G(t)eπi(at+b)dt (3.2)

∼ −
∞
∑

s=0

1

(−iπa)s+1

[

eπi(

√
3

2 a+b)G(s)(
√

3
2 ) − eπi(−

√
3

2 a+b)G(s)(−
√

3
2 )

]

,

whereg is a smooth function. It can be verified using integration by parts. We parameterize
the faceJ by

P31P12 : t→
(

1
4 −

√
3

2 t,
√

3
4 + 1

2 t
)

, t ∈ [−
√

3
2 ,

√
3

2 ].

Using this parametrisation, the integralJm,n[g] can be written as the sum of six integrals of the
form (3.2), sinceψm,n is a sum of six complex exponentials. Identification of the parameters
a andb and straightforward algebra lead to the result. 2

To shed light on the structure of the expansion, let us define the values

γ[1]
m = e−

1
3πim, γ[2]

m = e
1
3πim, γ[3]

m = (−1)m.

We further define

κ[s]
m,n =

1

ms+1
+

(−1)s+1

(2m+ 3n)s+1
+

1

(m+ 3n)s+1
,

R[s]
i [f ] = T s

i+1Ni+1[f ](Pi,i+1) − T s
i Ni[f ](Pi,i+1),
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where the indexi = 4 is identified withi = 1, such that for exampleP34 ≡ P31. These
definitions allow the following fully symmetric expansion for the boundary integrals.

Lemma 2 We have

∫

∂T

∂f

∂n
ψm,ndS ∼ 2

∞
∑

s=0

(

−3
√

3

2πi

)s+1

κ[s]
m,n

3
∑

i=1

γ[i]
mR[s]

i [f ], (3.3)

for m≫ 1.

Proof Following Lemma 1, the integralJm,n[ ∂f
∂n ] has the expansion

Jm,n[
∂f

∂n
] ∼ −2

∞
∑

s=0

(

−3
√

3

2πi

)s+1

κ[s]
m,n[e−

1
3πimT s

1N1[f ](P12) − (−1)mT s
1N1[f ](P31)],

for m≫ 1. With a similar reasoning as in the proof of Lemma 1 we find

Km,n[
∂f

∂n
] ∼ −2

∞
∑

s=0

(

−3
√

3

2πi

)s+1

κ[s]
m,n[e

1
3πimT s

2N2[f ](P23) − e−
1
3πimT s

2N2[f ](P12)],

Lm,n[
∂f

∂n
] ∼ −2

∞
∑

s=0

(

−3
√

3

2πi

)s+1

κ[s]
m,n[(−1)mT s

3N3[f ](P31) − e
1
3πimT s

3N3[f ](P23)].

Summing these expansions and substituting the definitions of γ[i]
m andR[s]

i leads to the result.
2

Note that(3
√

3)/(2π) ≈ 0.826993 and its powers decay fairly gently. It is the decay of
κ

[s]
m,n asm,n, s grow that drives convergence of the asymptotic series.

We are ready to assemble results and establish the full asymptotic expansion of the co-
efficients〈f, ψm,n〉 for largem. We note that this is not an expansion in the Poincaré sense
and therefore it is not necessarily unique. It does however carry all necessary information for
subsequent developments.

Theorem 3 Let f̂m,n = cm,n + ism,n be given by (2.5). It is true form≫ 1 that

cm,n ∼ 2 sin πm
3

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+1
(−1)kκ

[2s]
m,n

λk−s+1
m,n

(R[2s]
1 [∆k−sf ] (3.4)

−R[2s]
2 [∆k−sf ]) − 2

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+2
(−1)kκ

[2s+1]
m,n

λk−s+1
m,n

×
{

cos πm
3 (R[2s+1]

1 [∆k−sf ] + R[2s+1]
2 [∆k−sf ]) + (−1)mR[2s+1]

3 [∆k−sf ]
}

and

sm,n ∼ 2

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+1
(−1)kκ

[2s]
m,n

λk−s+1
m,n

{cos πm
3 (R[2s]

1 [∆k−sf ] (3.5)
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+ R[2s]
2 [∆k−sf ]) + (−1)mR[2s]

3 [∆k−sf ]}

+ 2 sin πm
3

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+2
(−1)kκ

[2s+1]
m,n

λk−s+1
m,n

(R[2s+1]
1 [∆k−sf ]

−R[2s+1]
2 [∆k−sf ]).

Proof From (3.1) and Lemma 2 we have

f̂m,n ∼ −2

∞
∑

k=0

(−1)k+1

λk+1
m,n

∞
∑

s=0

(

−3
√

3

2πi

)s+1

κ[s]
m,n

3
∑

i=1

γ[i]
mR[s]

i [∆kf ]

= −2
∞
∑

s=0

(

−3
√

3

2πi

)2s+1 ∞
∑

k=s

(−1)k−s+1

λk−s+1
m,n

κ[2s]
m,n

3
∑

i=1

γ[i]
mR[2s]

i [∆k−sf ]

−2

∞
∑

s=0

(

−3
√

3

2πi

)2s+2 ∞
∑

k=s

(−1)k−s+1

λk−s+1
m,n

κ[2s+1]
m,n

3
∑

i=1

γ[i]
mR[2s+1]

i [∆k−sf ]

= 2i

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+1
(−1)k

λk−s+1
m,n

κ[2s]
m,n

3
∑

i=1

γ[i]
mR[2s]

i [∆k−sf ]

−2

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+2
(−1)k

λk−s+1
m,n

κ[2s+1]
m,n

3
∑

i=1

γ[i]
mR[2s+1]

i [∆k−sf ].

The result follows by taking the real and imaginary parts of this expression. 2

Note that we have aggregated terms to be of an equal order of magnitude form ≫ 1,
bearing in mind that

1

λk+1
m,n

∼ O(m−2k−2), κ[s]
m,n ∼ O(m−s−1),

whereλm,n has been defined in (2.3). It follows at once that truncating the outer summation
in (3.4) or (3.5) afterL terms yields an asymptotic approximation that carries an error of size
O(m−2L−3) for m≫ 1.

The expressions can be further simplified by noting that everything can be reduced to the
calculation of partial derivatives off at the vertices. Indeed one can verify thatR[s]

i [f ] can,
for example, be written in terms of tangential derivatives as

R[s]
i [f ] =

1√
3
(T s+1

i + 2T s
i Ti+1 + 2TiT

s
i+1 + T s+1

i+1 )f(Pi,i+1).

Likewise, we can write

∆ =
4

3
(T 2

1 + T1T2 + T 2
2 ) =

4

3
(T 2

2 + T2T3 + T 2
3 ) =

4

3
(T 2

3 + T3T1 + T 2
1 ).
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Together this leads to the explicit expression

R[2s]
1 [∆k−sf ] = (4

3 )k−s 1√
3
(T s+1

1 +2T s
1T2 +2T1T

s
2 +T s+1

2 )(T 2
1 +T1T2 +T 2

2 )k−sf(P1,2)

and to similar explicit expressions for the other terms of this form.

3.2 Edge coefficients

The asymptotic expansion of the coefficients form≫ 1 depends only on partial derivatives of
f at the vertices. This result was obtained in two steps: the Stokes theorem pushes the integral
to the boundary, partial integration of the boundary terms next pushes the integral further to
the vertices. In the case of edge coefficients, wherem ∼ 1 andn ≫ 1, the first step remains
possible but the second requires alteration.

To be precise, we note that expansion (3.1) remains valid becauseλm,n ≫ 1 if n ≫ 1.
Let us state the counterpart of Lemma 1. To that end we define the function

Ψm(t) := e
2
9

√
3iπmt. (3.6)

Lemma 4 We have

Jm,n[g] ∼ 2e−
2
3πim

∫

√
3

2

−

√
3

2

g( 1
4 −

√
3

2 t,
√

3
4 + 1

2 t)Ψm(t)dt− 2

∞
∑

s=0







[

3
√

3

2πi(2m+ 3n)

]s+1

+

[

− 3
√

3

2πi(m+ 3n)

]s+1






[e−
1
3πimT s

1 [g](P12) − (−1)mT s
1 [g](P31)],

for n≫ 1.

Proof Proceeding exactly as in the proof of Lemma 1, we obtain a sum of six integrals
of the form (3.2). Explicit computations show that only fourof those can be expanded as
before. Two integrals are non-oscillatory and lead to the non-oscillatory integral in the above
expansion. 2

The result contains a non-oscillatory integral along the edge J . Similar results can be
obtained for the other edges. Let us define the values

γ̃[1]
m = 2e−

2
3πim, γ̃[2]

m = 2, γ̃[3]
m = 2e

2
3πim,

κ̃[s]
m,n =

(−1)s+1

(2m+ 3n)s+1
+

1

(m+ 3n)s+1
,

and the functionals

B[1]
m [g] =

∫

√
3

2

−

√
3

2

g( 1
4 −

√
3

2 t,
√

3
4 + 1

2 t)Ψm(t)dt,

B[2]
m [g] =

∫

√
3

2

−

√
3

2

g(− 1
2 ,−t)Ψm(t)dt,
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B[3]
m [g] =

∫

√
3

2

−

√
3

2

g( 1
4 +

√
3

2 t,−
√

3
4 + 1

2 t)Ψm(t)dt.

These functionals correspond to line integrals along the facesJ , K andL respectively. We
can now state the counterpart of Lemma 2.

Lemma 5 We have

∫

∂T

∂f

∂n
ψm,ndS ∼

3
∑

i=1

γ̃[i]
mB

[i]
mNif + 2

∞
∑

s=0

(

−3
√

3

2πi

)s+1

κ̃[s]
m,n

3
∑

i=1

γ[i]
mR[s]

i [f ], (3.7)

for n≫ 1.

The structure of the asymptotic expansion forn ≫ 1 is very similar to that form ≫ 1,
with the exception of the appearance of the non-oscillatoryboundary integralsB[i]

mNif . The
appearance of non-oscillatory integrals may not come as a surprise, it was also observed
for edge coefficients in the case of modified Fourier expansions in ad-dimensional cube in
(Iserles & Nørsett 2007). Here, the non-oscillatory integrals correspond to integrals along the
boundary involving the univariate functionΨm(t).

Theorem 3 can be altered accordingly.

Theorem 6 Let f̂m,n = cm,n + ism,n be given by (2.5). It is true forn≫ 1 that

cm,n ∼
∞
∑

k=0

(−1)k

λk+1
m,n

3
∑

i=1

Re (γ̃[i]
mB

[i]
mNi∆

kf) + 2 sin πm
3

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+1
(−1)kκ̃

[2s]
m,n

λk−s+1
m,n

× (R[2s]
1 [∆k−sf ] −R[2s]

2 [∆k−sf ]) − 2

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+2
(−1)kκ̃

[2s+1]
m,n

λk−s+1
m,n

(3.8)

×
{

cos πm
3 (R[2s+1]

1 [∆k−sf ] + R[2s+1]
2 [∆k−sf ]) + (−1)mR[2s+1]

3 [∆k−sf ]
}

and

sm,n ∼
∞
∑

k=0

(−1)k

λk+1
m,n

3
∑

i=1

Im (γ̃[i]
mB

[i]
mNi∆

kf) + 2

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+1
(−1)kκ

[2s]
m,n

λk−s+1
m,n

×
{

cos πm
3 (R[2s]

1 [∆k−sf ] + R[2s]
2 [∆k−sf ]) + (−1)mR[2s]

3 [∆k−sf ]
}

(3.9)

+ 2 sin πm
3

∞
∑

k=0

k
∑

s=0

(

3
√

3

2π

)2s+2
(−1)kκ

[2s+1]
m,n

λk−s+1
m,n

(R[2s+1]
1 [∆k−sf ]

−R[2s+1]
2 [∆k−sf ]).
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Figure 4.1: Plot of the base-10 logarithm of the size of the coefficientscm,n (left) andsm,n

(right) for the functionf(x, y) = eπ(x−y) in the(m,n) plane. Rows correspond to fixedm,
columns to fixedn.

4 Hyperbolic cross

Figure 4.1 displays the size of the coefficientscm,n for the smooth functionf(x, y) = eπ(x−y).
The figure clearly exhibits thehyperbolic crossphenomenon: since the coefficients decay
both with increasingm and increasingn, the level curves in the figure have hyperbolic shape.
Coefficients are largest near the edges, corresponding to small m or smalln, and they decay
most rapidly in the region where bothm andn grow large. A small perturbation in the
smoothness of the level curves is observed on every third row: coefficients are smaller when
m ≡ 0 (mod3).

In this section we examine the structure of the hyperbolic cross and we explore the accel-
eration of convergence by the application of polynomial subtraction.

4.1 The leading order term

The structure of this hyperbolic cross can be fully explained from the asymptotic expansions
that were derived in the previous section. Looking just at the leading order term in (3.4) and
(3.5), we have

cm,n ∼ 3
√

3 sin πm
3

π

κ
[0]
m,n

λm,n
(R[0]

1 [f ] −R[0]
2 [f ]) (4.1)

− 27

2π2

κ
[1]
m,n

λm,n
{cos πm

3 (R[1]
1 [f ] + R[1]

2 [f ]) + (−1)mR[1]
3 [f ]}

=
729 sin πm

3

32π3

1

m(m+ 3
2n)(m+ 3n)

[(T1 + T2)f(P1,2) − (T2 + T3)f(P2,3)]

− 2187
√

3

128π4

m2 + 3mn+ 3n2

m2(m+ 3
2n)2(m+ 3n)2

[cos πm
3 (T 2

1 + 4T1T2 + T 2
2 )f(P1,2)
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+ cos πm
3 (T 2

2 + 4T2T3 + T 2
3 )f(P2,3) + (−1)m(T 2

3 + 4T3T1 + T 2
1 )f(P3,1)],

and

sm,n ∼ 729

32π3

1

m(m+ 3
2n)(m+ 3n)

[cos πm
3 (T1 + T2)f(P1,2) (4.2)

+cos πm
3 (T2 + T3)f(P2,3) + (−1)m(T3 + T1)f(P3,1)]

+
2187

√
3 sin πm

3

128π4

m2 + 3mn+ 3n2

m2(m+ 3
2n)2(m+ 3n)2

[(T 2
1 + 4T1T2 + T 2

2 )f(P1,2)

− (T 2
2 + 4T2T3 + T 2

3 )f(P2,3)].

Therefore, form≫ 1

cm,n ∼
{

O(m−3), m 6= 0 (mod 3),
O(m−4), m = 0 (mod 3);

sm,n ∼ O(m−3).

This explains the ripple every third row in Figure 4.1. The coefficientscm,n decay faster when
m = 0 (mod3) because the first term in the asymptotic expansion vanishes.This feature is
not present in thesm,n coefficients.

In the direction of increasingn (from left to right in Figure 4.1) the coefficients decay as
O(n−2). In general, the shape of the hyperbolic cross is determinedby the factor

1

m(m+ 3
2n)(m+ 3n)

(4.3)

which appears in the leading order term of bothcm,n andsm,n.

4.2 Polynomial subtraction at vertices

The situation changes significantly when first derivatives (and hence also tangential deriva-
tives) of f vanish at the vertices. Then we find from the asymptotic expansion form ≫ 1
that

cm,n ∼ O(m−4),

sm,n ∼
{

O(m−4), m 6= 0 (mod3),
O(m−5), m = 0 (mod3),

(for sm,n and them = 0 (mod3) case we need the next term in the expansion but it is equally
straightforward to derive). The situation is now reversed:the coefficientssm,n decay faster if
m = 0 (mod3). The coefficientscm,n behave asO(m−4) for all m.

In either case, both sets of coefficientscm,n andsm,n decay faster when derivatives of
f at the vertices vanish. We can exploit this behaviour by constructing a polynomialp that
interpolates first derivatives off at the vertices and expanding the functionf̃ = f − p. By
construction,̃f yields more rapid decay of its coefficients form≫ 1 than the original function
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Figure 4.2: Plot of the base-10 logarithm of the size of the coefficientscm,n (left) andsm,n

(right) for the functioneπ(x−y) − p(x, y) in the(m,n) plane.

f . This technique was detailed for thed-dimensional cube in (Huybrechs et al. 2007) but is
equally applicable to the triangle. To be precise, considera polynomialp such that

(T1 + T2)p(P12) = (T1 + T2)f(P12),

(T2 + T3)p(P23) = (T2 + T3)f(P23), (4.4)

(T3 + T1)p(P31) = (T3 + T1)f(P31).

These conditions are obtained from the expressions (4.1) and (4.2) and they guarantee that
the leading order terms of the coefficients off̃ vanish. We find a suitable polynomial of the
form p(x, y) = ax2y + bxy + cy2x, where the coefficientsa, b andc are determined from
the conditions (4.4). The expansion coefficients off̃(x, y) = eπ(x−y) − p(x, y) are plotted
in Figure 4.2. Note the accelerated decay of the coefficientsfor increasingm (from top to
bottom).

We may wish to accelerate decay of the coefficients further bycancelling, say,S ≥ 2
terms in the expansion. This is achieved in full generality by the interpolation conditions

R[s]
1 [p] = R[s]

1 [f ], s = 0, 1, . . . , S − 1,

R[s]
2 [p] = R[s]

2 [f ], s = 0, 1, . . . , S − 1, (4.5)

R[s]
3 [p] = R[s]

3 [f ], s = 0, 1, . . . , S − 1,

as is evident from Theorem 3. The result forS = 2 is shown in Figure 4.3. We denoted by
q(x, y) the polynomial that satisfies conditions (4.5) forS = 2.

4.3 Accelerated decay of edge coefficients

In order to accelerate the decay of edge coefficients, wherem ∼ 1 andn ≫ 1, it is not
sufficient to interpolate derivatives at the vertices. Compared to the case of largem, more
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Figure 4.3: Plot of the base-10 logarithm of the size of the coefficientscm,n (left) andsm,n

(right) for the functioneπ(x−y) − q(x, y) in the(m,n) plane.

boundary data has entered the asymptotic expansions as derived in Theorem 6, in the form of
the non-oscillatory integralsB[i]

mNif . Interpolation of these integrals will accelerate the decay
of these coefficients too. As the integrals depend onm however, one would have to interpolate
these values for a range of values ofm, fromm = 0 up to a value that is sufficiently large so
that large-m asymptotics kicks in.

Alternatively, it is conceptually and computationally easier to interpolate normal deriva-
tivesNif along the entire boundary. This is sufficient to render the first term of the expansion
zero regardless of the value ofm, as all boundary integralsB[i]

mNif are automatically interpo-
lated as well. The construction of smooth functions interpolating boundary values is a topic
investigated in the context of Computer Aided Geometric Design (Farin 1997). Herewith we
present a smooth interpolation to first-order normal derivative data. However, before doing so
it is instructive to start with the easier case of the interpolation of Dirichlet boundary data.

We identify with(x, y) ∈ T six points on∂T ,

s

s

s

"
"

"
"

"
"

"
"

"
"

b
b

b
b

b
b

b
b

b
b

"
"

"
"

""b
b

b
b

b
b

b

c (x, y)

(− 1

2
,−

√
3

2
)

(− 1

2
,
√

3

2
)

(1, 0)

p
A2

p
A3

p
B1

p
B3

p
C2

p
C1

– in other words, the line segment[pB1
,pC1

] is parallel to the first face,[pA2
,pC2

] to the
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second and[pA3
,pB3

] to the third. All of them pass through(x, y). Specifically,

pA2
(x, y) = (x, 1√

3
(1 − x)),

pA3
(x, y) = (1

2 (1 + x−
√

3y), 1
2
√

3
(1 − x+

√
3y)),

pB1
(x, y) = (− 1

2 ,
1√
3
( 1
2 + x+

√
3y)),

pB3
(x, y) = (− 1

2 ,
1√
3
(− 1

2 − x+
√

3y)),

pC1
(x, y) = (1

2 (1 + x+
√

3y), 1
2
√

3
(−1 + x+

√
3y)),

pC2
(x, y) = (x,− 1√

3
(1 − x)).

Along each line segment we form a linear interpolation tof ,

qA(x, y) =
1 − x+

√
3y

2 + x+
√

3y
f(pB1

(x, y)) +
2x+ 1

2 + x+
√

3y
f(pC1

(x, y)),

qB(x, y) =
1 − x+

√
3y

2(1 − x)
f(pA2

(x, y)) +
1 − x−

√
3y

2(1 − x)
f(pC2

(x, y)),

qC(x, y) =
2x+ 1

2 + x−
√

3y
f(pA3

(x, y)) +
1 − x−

√
3y

2 + x−
√

3y
f(pB3

(x, y)).

Each of these functions agrees withf on two edges and is linear inx andy along the third
edge. The sum of all three functions therefore equals twice the value off along the edges plus
a linear function inx andy. It is sufficient to halve the sum and remove the linear function,
and to that end we let

q(x, y) = 1
2 [qA(x, y) + qB(x, y) + qC(x, y)] − 1

6 (2x+ 1)f(1, 0) (4.6)

− 1
6 (1 − x+

√
3y)f(− 1

2 ,
√

3
2 ) − 1

6 (1 − x−
√

3y)f(− 1
2 ,−

√
3

2 ).

Simple algebra affirms thatq = f along the boundary ofT , therefore (4.6) interpolates Dirich-
let boundary conditions. The apparent singularity of, for example,qB along the linex = 1
is removable since along that line we also havef(pA2

(1, y)) = f(pC2
(1, y)). A similar

observation holds for the other two functions. Thus the interpolant is a smooth function.
The case of normal derivatives is slightly more involved. Wenow employ cubic interpo-

lation along the line segments,

q̃A(x, y) = −1

6

(1 − x+
√

3y)2(2x+ 1)
[

1√
3
(1 − x+

√
3y) + 1√

3
(2x+ 1)

]2N2[f ](pB1
(x, y))

−1

6

(1 − x+
√

3y)(2x+ 1)2
[

1√
3
(1 − x+

√
3y) + 1√

3
(2x+ 1)

]2N3[f ](pC1
(x, y)),

q̃B(x, y) = −1

6

(1 − x+
√

3y)2(1 − x−
√

3y)
[

1√
3
(1 − x+

√
3y) + 1√

3
(1 − x−

√
3y)
]2N1[f ](pA2

(x, y))

−1

6

(1 − x+
√

3y)(1 − x−
√

3y)2
[

1√
3
(1 − x+

√
3y) + 1√

3
(1 − x−

√
3y)
]2N3[f ](pC2

(x, y)),



18

q̃C(x, y) = −1

6

(1 − x−
√

3y)(2x+ 1)2
[

1√
3
(1 − x−

√
3y) + 1√

3
(2x+ 1)

]2N1[f ](pA3
(x, y))

−1

6

(1 − x−
√

3y)2(2x+ 1)
[

1√
3
(1 − x−

√
3y) + 1√

3
(2x+ 1)

]2N2[f ](pB3
(x, y)),

The functionq̃A interpolates the normal derivative off along edges2 and3, i.e.,N2[q̃A] =
N2[f ] andN3[q̃A] = N3[f ], and has vanishing Dirichlet values along these edges. It reduces
to a cubic polynomial along the first edge. The other functions q̃B and q̃C enjoy similar
properties: they interpolate the normal off along two edges and reduce to cubic polynomials
along the remaining edge.

However, the singularity of the functioñqA along the straight line2+x+
√

3y = 0, which
is parallel to the first edge and passes throughP23, is now removable only at the vertexP23

itself. An interpolant with singularities near the triangle is certainly less than desirable. The
situation can be remedied by enforcing additional conditions onf . In particular, further anal-
ysis of the singularities of̃qA shows that they are removable whenN2f(P23) = N3f(P23) =
T2N2f(P23) + T3N3f(P23) = 0. Taking into account the other functionsq̃B andq̃C as well,
all singularities are removable everywhere if

N1f(P12) = N2f(P23) = N3f(P31) = 0,

N2f(P12) = N3f(P23) = N1f(P31) = 0,

T1N1f(P12) + T2N2f(P12) = 0, (4.7)

T2N2f(P23) + T3N3f(P23) = 0,

T3N3f(P31) + T1N1f(P31) = 0.

We may perform polynomial subtraction at the vertices once more to ensure that the conditions
(4.7) hold. For example, we apply the interpolation procedure to f̃ = f − p rather thanf ,
wherep(x, y) is a polynomial with9 degrees of freedom of the form

p(x, y) = a1x
2y + a2x

3y + a3x
2y2 + a4x

5 + a5x
4y + a6x

3y2 + a7x
2y3 + a8xy

4 + a9y
5.

The coefficients can be determined such that the9 conditions (4.7) hold for̃f .
Finally, adding the functions̃qA, q̃B and q̃C results in a function that interpolates twice

the normal derivatives off along the edges plus an additional cubic term. We let

q̃(x, y) =
1

2
[q̃A(x, y) + q̃B(x, y) + q̃C(x, y)] (4.8)

−
√

3

45

(

−y2 + 8xy2 + 8x2y2 + 2y4
)

T1N1f(P31)

− 1

360

(

−12xy + 4
√

3y2 − 20
√

3x3 + 24x2y + 28
√

3xy2 + 24y3 + 15
√

3x4

−12x3y − 2
√

3x2y2 + 60xy3 + 7
√

3y4
)

T2N2f(P12)

− 1

360

(

12xy + 4
√

3y2 − 20
√

3x3 − 24x2y + 28
√

3xy2 − 24y3 + 15
√

3x4

+12x3y − 2
√

3x2y2 − 60xy3 + 7
√

3y4
)

T3N3f(P31).
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Figure 4.4: Plot of the base-10 logarithm of the size of the coefficientscm,n (left) andsm,n

(right) for the functionf(x, y)−p(x, y)− q̃(x, y) = eπ(x−y)−p(x, y)− q̃(x, y) in the(m,n)
plane, wherep interpolatesf at the vertices so that conditions (4.7) hold, andq̃ interpolates
the normal derivative of̃f = f − p along the boundary.

Straightforward, but exceedingly tedious, algebraic computations confirm thatNj [q̃] = Nj [f ],
j = 1, 2, 3, and thatq̃(x, y) is a smooth function everywhere inx andy, assuming that the
conditions (4.7) hold. Recall that these conditions can always be enforced by using polyno-
mial subtraction at the vertices.

The results for the functionf(x, y) = eπ(x−y) are shown in Figure 4.4. This figure should
be compared to Figures 4.2 and 4.3. Note that the decay rate for smallm and increasing
n, visible in the first few rows of the figures, is drastically improved. The decay rate for
increasingm is also improved compared to polynomial subtraction at the vertices only.

5 The computation of coefficients

An outstanding issue is the computation of modified Fourier coefficients, as given by the inte-
grals (2.5). For largem and/orn, these integrals become exceedingly oscillatory. Fortunately,
and perhaps surprisingly, the evaluation of such integralsis a fairly cheap operation. The
existence of the asymptotic expansions constructed in§3 already indicates that the computa-
tional cost of evaluating such integrals should be fixed withincreasing oscillation. Several
numerical methods have been designed for univariate oscillatory integrals that exhibit pre-
cisely this property (Huybrechs & Olver 2009). Like for asymptotic expansions, accuracy
rapidly improves with increasing oscillation. These methods can in principle be all extended
to the current setting, though in previous papers we restricted our attention to the Filon-type
methods of (Iserles & Nørsett 2005). They take the form of a classical cubature rule using
derivatives. In the context of modified Fourier on the equilateral triangle, the derivatives to
use in Filon-type cubature are exactly those that appear in the asymptotic expansions of§3.

With efficient methods for oscillatory integrals available, it is the evaluation of non-
oscillatory integrals that presents the next computational hurdle. Many numerical integration
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schemes for a triangular domain have been described in the literature, we refer the reader
to (Lyness & Cools 1993) for a survey. It is wasteful however to have separate schemes, each
with their own set of cubature points, for non-oscillatory and oscillatory regimes. For the sake
of efficiency, our aim is to reuse information as much as possible and, hence, to match the in-
tegration schemes. Since derivatives are required in Filon-type methods for highly oscillatory
integrals, we will reuse that information in the computation of non-oscillatory integrals. A
first step in this direction led toexotic quadraturein (Iserles & Nørsett 2008). In this paper
we extend the concept of exotic quadrature to the equilateral triangle and we construct new
cubature rules using derivatives for the equilateral triangle.

5.1 Filon-type cubature

The idea underlying most cubature schemes is to interpolatethe integrand at cubature points
and to integrate that interpolant exactly (Davis & Rabinowitz 1984). In Filon-type cubature,
in addition to this, one interpolates all data on which the first few terms of the asymptotic
expansion of the integral depend. Thus, with expressions (4.1) and (4.2) in mind, consider a
polynomialp that satisfies

(T1 + T2)p(P12) = (T1 + T2)f(P12),

(T2 + T3)p(P23) = (T2 + T3)f(P23), (5.1)

(T3 + T1)p(P31) = (T3 + T1)f(P31),

in addition to
∂
j

k
x p(xk) = ∂

j
k

x f(xk), k = 1, . . . , ν,

for a set of cubature pointsxk and corresponding partial derivatives of orderjk. We define
the Filon-type cubature ruleQ[m,n]

F [f ] by

Q
[m,n]
F [f ] =

∫

T

p(x)ψm,n(x)dV. (5.2)

It follows from the asymptotic expansions that

〈f, ψm,n〉 −Q
[m,n]
F [f ] = O(m−4). (5.3)

Thus, the accuracy of Filon-type quadrature improves with increasingm, but the computa-
tional cost remains fixed. Note that themomentsin the right hand side of (5.2) may be com-
puted from their asymptotic expansions, because the asymptotic expansion for polynomialf
has only finitely many terms.

Expressions (5.1) correspond exactly to the interpolationconditions (4.4) for convergence
acceleration that appeared in§4. Higher order convergence of Filon-type cubature can be
obtained by satisfying the more general conditions (4.5). The difference compared to conver-
gence acceleration is the freedom we have introduced to use additional cubature points. This
freedom can be used to improve accuracy. However, this is subject to the solvability of the
underlying interpolation problem, which cannot be taken for granted.

In particular, the construction of Filon-type cubature is plagued by two issues. Firstly, the
use of non-consecutive derivatives leads to aBirkhoff–Hermite interpolation problem(Lorenz,
Jetter & Riemenschneider 1983). The interpolation problemis not necessarily solvable by any
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polynomial with a number of degrees of freedom that matches the number of interpolation
conditions, even in one dimension. Secondly, a multivariate interpolating polynomial need not
exist for a particular configuration of points, even disregarding the use of derivatives. Both
issues were dealt with for multivariate domains with tensor-product structure in (Iserles &
Nørsett 2007). The techniques of§4.2 of that paper (i.e., reinterpreting Filon-type cubature as
a correction to the truncated asymptotic expansion) are equally applicable, at least in principle,
to the case of the equilateral triangle. In the current paper, we leave these issues outstanding
and focus on a description of new exotic cubature rules usingthe same kind of information.

5.2 Exotic cubature

5.2.1 General considerations

The construction of cubature rules for multivariate domains is very different from that of
quadrature rules in one dimension. For an overview of relevant techniques, we refer the
reader to (Cools 1997). Cubature rules on triangular domains are surveyed in (Lyness &
Cools 1993). Several cubature rules of Gauss-type were obtained in (Lyness & Jespersen
1975), many others can be found in the encyclopedic list (Cools 2003).

A cubature rule on a two-dimensional regionΩ,

Q[f ] :=
n
∑

j=1

wjf(xj , yj), (5.4)

is said to have degreed if it is exact for the1
2 (d+ 1)(d+ 2) polynomials of total degree less

thand, i.e.,

Q[xiyj ] =

∫

Ω

xiyj dxdy, 0 ≤ i, j ≤ d, i+ j ≤ d. (5.5)

A classical problem is to construct a rule of degreed that requires the fewest function eval-
uations. Rules of specific interest are those with all weights positive and with all cubature
points inside the domain of integration. Unlike in the one-dimensional case, it is unknown in
general what the minimal number of cubature points is for a given degreed, though for any
two-dimensional region the value12 (d

2 + 1)(d
2 + 2) is a lower bound (Stroud 1971).

Cubature rules may be computed by solving the nonlinear set of algebraic equations (5.5),
with the weights and cubature points as degrees of freedom. The dimensionality of this non-
linear system may be reduced by exploiting the symmetries ofthe integration domain.

5.2.2 Symmetries of the triangle

Recall that the triangleT is kept invariant under the action of the dihedral groupD3, composed
of six elements: identity, rotationsR andR−1 by 2

3π and− 2
3π radians respectively, and

reflectionsQi,i+1, i = 1, 2, 3, with respect to axes of symmetry passing through the vertices
Pi,i+1 respectively. For the record, the exact symmetries are

R(x, y) = (− 1
2x+

√
3

2 y,−
√

3
2 x− 1

2y),

R−1(x, y) = (− 1
2x−

√
3

2 y,
√

3
2 x− 1

2y),

Q12(x, y) = (− 1
2x−

√
3

2 y,−
√

3
2 x+ 1

2y),
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Q23(x, y) = (− 1
2x+

√
3

2 y,
√

3
2 x+ 1

2y),

Q31(x, y) = (x,−y).

A cubature rule with the same symmetries can be written as

Q[f ] =
n
∑

j=1

aj

6
∑

i=1

f(Si(xj , yj)),

whereS1 = I, S2 = R, S3 = R−1, S4 = Q12, S5 = Q23, S6 = Q31 are all the dihedral
symmetries. Each point(x, y) leads toı(x, y) function evaluations, whereı is 6 divided by
the dimension of the isotropy group at(x, y): thus,ı(0, 0) = 1, ı(x, y) = 3 for (x, y) on the
three axes of reflectional symmetry andı(x, y) = 6 otherwise.

The symmetries of the equilateral triangle were first exploited this way in (Lyness & Jes-
persen 1975). The12 (d+ 1)(d+ 2) conditions (5.5) reduce to just

⌊

1

12
(d2 + 6d+ 12)

⌋

nontrivial equations. The gain is approximately a factor of6.

5.2.3 Cubature rules

Mildly generalizing the above expressions in order to use derivatives, we are interested in
cubature rules of the form

Q[f ] =
n
∑

j=1

ajρ
[mj ](cj), (5.6)

with

ρ[m](c) =

√
3

6

6
∑

i=1

Nm1Tm2f(Sic). (5.7)

We impose the rule that derivatives may be used only at the vertices and, more generally, also
along the axes of reflectional symmetry. With this restriction, we adopt the convention that
N andT denote the normal and tangential derivatives associated with the edge opposite the
vertexc, or with the edge orthogonal to the axes of reflectional symmetry on whichc lies.
Note that the factor

√
3 in (5.7) serves to simplify the expressions for the coefficientsaj .

Table 1: Order and number of function evaluations of the cubature rules using derivatives.

rule order function evaluations rule order function evaluations
Q1 5 7 Q6 9 34
Q2 6 16 Q7 11 57
Q3 7 19 Q8 12 64
Q4 7 22 Q9 12 61
Q5 8 28
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(a) Q1, order5 (b) Q2, order6 (c) Q3, order7

(d) Q4, order7 (e) Q5, order8 (f) Q6, order9

(g) Q7, order11 (h) Q8, order12 (i) Q9, order12

Figure 5.1: Illustration of the location of the cubature points.

It is unknown in general what is the minimal number of points such that the conditions
(5.5) hold up to a certain degree. The cubature rules in this paper correspond only to lo-
cal minima. They were found by iteratively solving small andlocal optimization problems.
Starting from a given cubature rule, cubature points were removed by varying other cubature
points in a small neighbourhood of their location, restricted to certain lines to further simplify
the computations. It is likely that this fairlyad hocand manual approach can be considerably
improved. Yet, cubature rules using derivatives were foundup to order12.

Cubature rules of orders between5 and12 are depicted graphically in Figure 5.1. The
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cubature points are indicated by dots. Derivatives of increasing order are indicated by cir-
cles with increasing radius. These rules all have the form (5.6). The precise values of the
parametersaj , mj andcj are tabulated in Appendix A. We note that the first cubature rule
Q1 is known (Abramowitz & Stegun 1965, p.893). Table 1 summarizes the order and the
total number of function evaluations of the cubature rules depicted in Figure 5.1. In this table,
evaluations of derivatives are counted as function evaluations.

5.3 Copy rules

Convergence in numerical integration is not obtained usually by increasing the order of the
rules, but by subdividing the integration region. The equilateral triangle can be divided into
four smaller equilateral triangles, termedA,B,C andD in Figure 5.2. A cubature rule on the
larger triangle can, when appropriately rescaled, be used on each of these triangles separately.
This leads to so-called copy rules.

P12

P23

P31

N1
N2

N3

C

D

A

B

Figure 5.2: Subdivision of the equilateral triangle into four smaller equilateral triangles.

The scaling of a cubature rule to a smaller domain usually requires only multiplying the
weights with a factor proportional to the size of that domain. However, when using (direc-
tional) derivatives, rescaling cubature rules is slightlymore involved. To be precise, each
function evaluation in the exotic cubature rules constructed above takes the form

wNm1

i Tm2

i f(c), (5.8)

for some value ofw and withi = 1,2 or 3. Consider the unique affine mappingsPA, PB,
PC andPD that map the equilateral triangle to each of the smaller triangles, such thatPA,
PB andPC preserve the normal directions of the three edges andPD mirrors these directions
with respect to the vertical axis. Then it is straightforward to demonstrate that the function
evaluation (5.8) results in the function evaluation

1

4

(

1

2

)m1+m2

Nm1

i Tm2

i f(PAc), (5.9)

when the cubature rule is rescaled to triangleA. Similar expressions hold for trianglesB and
C. The factor1/4 is due to the smaller size of triangleA. The additional powers of1/2 are
due to the derivatives taken.
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The case of triangleD is different, becausePD mapsN1 to −N3, N2 to −N2 andN3 to
−N1. In this case, the above function evaluation becomes

1

4

(

−1

2

)m1+m2

Nm1

j Tm2

j f(PDc), (5.10)

with j = 3, 2, 1 for i = 1, 2, 3 respectively. Note that both evaluations (5.9) and (5.10) have
the same general form as (5.8).

5.4 Numerical results

First, we illustrate the use of exotic cubature for the evaluation of the integral off(x, y) =
J0(x

2 + xy − cos(x + y)) over the equilateral triangle, whereJ0(z) is the Bessel function
of the first kind and order0. Results are shown in Table 2 for the cubature rules constructed
in this paper. The table illustrates the effect of increasing the number of levels in copy rules.
Level l = 0 corresponds to the cubature rule itself. Levell = 1 means that the triangle is
subdivided into four smaller triangles. Levell = 2 means that each of the smaller triangles is
again subdivided, and so on.

Table 2: Absolute error in the approximation of
∫

T
J0(x

2+xy−cos(x+y))dxdy by cubature
rules using derivatives. Copy rules are constructed ofl = 0, 1, 2 or 3 levels deep.

rule l = 0 l = 1 l = 2 l = 3 rule l = 0 l = 1 l = 2 l = 3
Q1 3.5−04 1.6−05 2.8−07 4.4−09 Q6 4.9−05 4.9−08 3.3−11 2.6−14

Q2 1.7−03 7.9−07 4.8−10 4.2−12 Q7 5.8−06 1.9−09 4.0−13 8.2−17

Q3 5.4−04 4.7−07 5.4−10 1.2−12 Q8 7.1−07 6.2−11 2.7−16 1.2−20

Q4 3.2−03 2.9−06 8.0−10 1.1−11 Q9 3.8−07 2.0−11 4.7−16 2.7−20

Q5 1.7−04 1.6−07 1.0−10 9.0−14

Next, we illustrate the convergence rate of the modified Fourier series for the same func-
tion f(x, y). In this experiment we truncated the series (2.4) atm = N andn = N , whereN
is a constant. Pointwise convergence is illustrated in Fig.5.3 for increasingN at three points
in the triangle: a point in the interior, a point on one of the edges and a vertex. The figure
shows the modified Fourier series off̃ = f − p − q̃, with p and q̃ constructed so that the
normal derivatives vanish along the boundary of the triangle. The convergence at the interior
point isO(N−4), which is consistent with the size of the leading order term of the asymptotic
expansion after polynomial subtraction. Pointwise convergence along the boundary is slower:
it is O(N−3) for both points on the boundary. This is expected and is similar to modified
Fourier series on the interval and on multivariate domains with tensor-product structure.

Finally, we illustrate the accuracy of the asymptotic expansions constructed in this paper
for the functionf(x, y). Let us denote byA[m,n]

s the expansion (3.4) forcm,n truncated

after s terms in the outer summation (i.e.,k = 0, . . . , s − 1), and similarly byE [m,n]
s the

truncated expansion for the edge coefficients based on (3.8). The results are shown in Table
3. It is clearly visible in this table that the accuracy of theexpansions rapidly improves with
increasingm and/orn. It is to be expected that Filon-type cubature rules would result in
similar improvements, but with significantly smaller values of the errors.
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0 20 40 60 80 100
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−2

10
−1

10
0

N

(a) Absolute error at( 1

2
, 0), scaled byN4

0 20 40 60 80 100
10

−2

10
−1

10
0

N

(b) Absolute error at vertex(1, 0) (top curve) and at
(− 1

2
, 0) (bottom curve), scaled byN3

Figure 5.3: Pointwise convergence of the modified Fourier series ofJ0(x
2 +xy−cos(x+y))

with polynomial subtraction. The doubly-infinite series (2.4) is truncated atm = N and
n = N . Convergence is shown for increasingN in three points: a point in the interior (left
panel) and two points along the edges (right panel).

The modified Fourier series edge coefficients in this examplewere computed by using
copy rules with a large number of levels. This of course does not lead to anO(N2) scheme
to compute theN2 coefficients. These brute-force computations were performed in order to
compare with results obtained by using the asymptotic expansion. The cost of evaluating the
asymptotic expansion remains fixed for each coefficient, regardless of the value ofm andn.

Table 3: Absolute error of the asymptotic expansions for themodified Fourier series coeffi-
cients off(x, y) = J0(x

2 + xy − cos(x+ y)).

[m,n] A[m,n]
1 A[m,n]

2 A[m,n]
3 [m,n] E [m,n]

1 E [m,n]
2 E [m,n]

3

[5, 0] 8.7−04 4.2−04 2.2−04 [0, 5] 2.6−04 8.1−06 5.1−08

[10, 0] 2.3−05 3.9−06 6.4−07 [0, 10] 1.6−05 1.3−07 2.6−10

[10, 10] 1.1−06 1.5−07 3.0−08 [0, 20] 1.0−06 2.0−09 1.4−12

[100, 100] 8.6−12 1.0−14 2.7−17 [0, 50] 2.6−08 8.0−12 1.7−15

6 Conclusions

The main result of this paper is the asymptotic expansion of coefficients in Laplace–Neumann
series (or modified Fourier series) on the equilateral triangle. This expansion conveys the in-
formation necessary to accelerate the convergence of such series, to efficiently compute the



27

coefficients and to predict and explain the shape of the hyperbolic cross in this setting. First
steps were already taken in these directions using the techniques of polynomial subtraction,
Filon-type cubature and exotic cubature. Taken together these steps have not currently led
in this paper to a complete, fast and competitive implementation of a Laplace–Neumann ap-
proximation scheme. In particular, such a scheme would entail a constructive approach for
high-order convergence acceleration and fully matched integration schemes for slowly and
highly oscillatory integrals. Yet, based on the knowledge of the asymptotic expansion and on
the foundations laid in this paper, these missing elements appear to be within reach and they
are the subject of further research.
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Appendix A

The values of the parametersaj , mj andcj of the general expression (5.6) of a cubature rule
are shown in the table below for the cubature rules depicted in Figure 5.1. The values are
given either in exact analytic form or rounded to20 significant digits.
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Rule a [m1, m2] c

Q1

27

160
[0, 0] (0, 0)

3

1600

√

15 +
93

320
[0, 0] ( 1−

√
15

7
, 0)

−3

1600

√

15 +
93

320
[0, 0] ( 1+

√
15

7
, 0)

Q2

4131

35840
[0, 0] (0, 0)

1771561

4480000
[0, 0] (− 4

11
, 0)

2393

10000
[0, 0] (1, 0)

57

1000
[1, 0] (1, 0)

207

44800
[2, 0] (1, 0)

3

8960
[0, 2] (1, 0)

Q3

1359

5960
[0, 0] (0, 0)

1265625

4302592
[0, 0] (− 2

5
, 0)

190983

672280
[0, 0] (1, 0)

993

12005
[1, 0] (1, 0)

927

87808
[2, 0] (1, 0)

3

8960
[0, 2] (1, 0)

9

15680
[3, 0] (1, 0)

Q4

243

560
[0, 0] (0, 0)

177

560
[0, 0] (1, 0)

57

560
[1, 0] (1, 0)

81

4480
[0, 2] (0, 0)

27

1792
[2, 0] (1, 0)

39

8960
[0, 2] (1, 0)

9

8960
[3, 0] (1, 0)

9

8960
[1, 2] (1, 0)

Q5

243

700
[0, 0] (0, 0)

16

105
[0, 0] (− 1

2
, 0)

263

1050
[0, 0] (1, 0)
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−
1

175
[1, 0] (− 1

2
, 0)

15

224
[1, 0] (1, 0)

243

22400
[2, 0] (0, 0)

69

8960
[2, 0] (1, 0)

33

44800
[0, 2] (1, 0)

33

89600
[3, 0] (1, 0)

9

89600
[1, 2] (1, 0)

Q6

243

1100
[0, 0] (0, 0)

43046721

126156800
[0, 0] (− 1

3
, 0)

4740339

25231360
[0, 0] (1, 0)

177147

15769600
[1, 0] (− 1

3
, 0)

1363359

31539200
[1, 0] (1, 0)

1539

246400
[2, 0] (0, 0)

59049

31539200
[2, 0] (− 1

3
, 0)

59049

7884800
[0, 2] (− 1

3
, 0)

134109

31539200
[2, 0] (1, 0)

3783

7884800
[0, 2] (1, 0)

1359

7884800
[3, 0] (1, 0)

117

1971200
[1, 2] (1, 0)

Q7

2746016730666686691

63333165815650931200
[0, 0] (0, 0)

360913652807451955600554632

110830269468507014262011175
[0, 0] (− 1

2
, 0)

0.97561306156254919362 [0, 0] ( 1348256

86840771
−

126

86840771

√

48759268679, 0)

0.15803712903842878813 [0, 0] ( 1348256

86840771
+ 126

86840771

√

48759268679, 0)

0.061271453266247245719 [0, 0] (1, 0)

−
953563354027110957056

207657428187128344425
[0, 0] (− 1

2
, 1

16

√

3)

164775397319770112

112113933801494625
[0, 0] (− 1

2
, 1

8

√

3)

285311670611

665725132800
[0, 0] ( 5

11
, 1

11

√

3)

−
134217728

127702575
[0, 0] ( 1

4
, 1

8

√

3)

−
163386232

94530040605
[1, 0] (− 1

2
, 0)
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8319078131695973767147039560511

1228985969075244255012191075221200
[1, 0] (1, 0)

73003115981986824353

311081707624833223958880
[2, 0] (1, 0)

−
71752743292487

446462598605063040
[0, 2] (1, 0)

−
104380623

5356544152960
[1, 2] (1, 0)

Q8

8690571

17937920
[0, 0] (0, 0)

229199798584

1825082634375
[0, 0] (− 1

2
, 0)

5280989184

3709330625
[0, 0] (− 1

4
, 0)

103545432999

313913600000
[0, 0] ( 1

3
, 0)

−
1052102782197

4581399961600
[0, 0] ( 2

3
, 0)

−
399141898759031

490377888000000
[0, 0] (1, 0)

13019119616

718326984375
[0, 0] (− 1

2
, 1

8

√

3)

55181312

1609052445
[0, 0] (− 1

2
, 1

4

√

3)

285311670611

665725132800
[0, 0] ( 5

11
, 1

11

√

3)

−
134217728

127702575
[0, 0] ( 1

4
, 1

8

√

3)

−
10104148

1931304375
[1, 0] (− 1

2
, 0)

−
150752097

407680000
[1, 0] ( 1

3
, 0)

−
127816697763

386741555200
[1, 0] ( 2

3
, 0)

−
566856277877

4086482400000
[1, 0] (1, 0)

−
1066688341

121080960000
[2, 0] (1, 0)

2746573

45405360000
[0, 2] (1, 0)

−
1279519

6054048000
[3, 0] (1, 0)

1601

378378000
[1, 2] (1, 0)

Q9 −
16035143725210437

31243371390926356480
[0, 0] (0, 0)

3230803273641114501493

6168424871724534168750
[0, 0] (− 1

2
, 0)

0.94606756593949053915 [0, 0] (− 2188564

6966959
, 0)

50422996864

211843372125
[0, 0] ( 1

4
, 0)

724750010853899359104

19256701191020490071875
[0, 0] ( 3

4
, 0)

0.068019898691773271037 [0, 0] (1, 0)

−
231447197646848

312930128556045
[0, 0] (− 1

2
, 1

16

√

3)
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1503775424512

5028288890625
[0, 0] (− 1

2
, 1

8

√

3)

285311670611

665725132800
[0, 0] ( 5

11
, 1

11

√

3)

−
134217728

127702575
[0, 0] ( 1

4
, 1

8

√

3)

−
103949931131

136102093627500
[1, 0] (− 1

2
, 0)

122010152256

129870948081875
[1, 0] ( 3

4
, 0)

0.0097348092854897992901 [1, 0] (1, 0)

561653255177898184373029

949434177302358293669760000
[2, 0] (1, 0)

33780569353

420499038960000
[0, 2] (1, 0)

156887373995423

10863883238592384000
[3, 0] (1, 0)

319547

55621566000
[1, 2] (1, 0)


