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Abstract

We present ad (N log N) algorithm for the calculation of the firgY coefficients in
an expansion of an analytic function in Legendre polynomials. In esséme algorithm
consists of an integration of a suitably weighted function along an ellipsekantaish
can be accomplished with Fast Fourier Transform, followed by sorsegrocessing.

The mathematical underpinning of this algorithm is an old formula that egpee
expansion coefficientg,, as infinite linear combinations of derivatives. We evaluate
the latter with the Cauchy theorem, thereby expressing ¢achs a scaled integral of
f(2)om(2)/2z™ 1! along an appropriate contour, whese, is a slowly-converging hyper-
geometric function. Next, we transforg,, into another hypergeometric function which
converges rapidly. Once we replace the latter function by its truncatddregpansion
and choose an appropriate elliptic contour, we obtain an expressiomfgﬁglmwhich is
amenable to rapid computation.

1 Introduction

Expansion of functions in fast-converging series is of @ritmportance in approximation
theory and is, through the agency of spectral methods, faedgal in designing efficient
computational methods for partial differential equatiori®articularly effective are Fourier
expansions, since their firé{ terms can be computed (N log N) terms using the Fast
Fourier Transform (FFT). Moreover, because

1 ™
/ F@) (@)1 =223 dz= [ f(cosf)cos(mb)ds,  m €7,
—1 -
the computation of Chebyshev expansions can be reducedttofttiheir Fourier counterparts
and likewise accomplished i@(N log N') operations. However, a@ (N log N) algorithm
for the computation of theegendre expansion

f@) =" fmPm(x), (1.1)
m=0
where
X 1
fm = (m+ %)/ f(@)P,(2) de, m € Zy, 1.2)
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is not known. This is not for a want of trying. In particulainetidea of computing Cheby-
shev coefficients first, subsequently converting them imtgelndre coefficients, has been con-
sidered in (Alpert & Rokhlin 1991) and (Potts, Steidl & Taech998) and it results in an
O(N(log N)?) algorithm.

The challenge of computing (1.2) directly is compoundedHhwy fact that the integrand
oscillates rapidly for largen. The obvious recourse is thus to use a quadrature formula wit
large number of nodes: essentially, to compute the firsbefficients we nee®(N) quadra-
ture nodes. Although this can be effectively accomplish&l ®@lenshaw—Curtis quadrature
(Trefethen 2008), the outcome is & N'?) algorithm: no joy. An appealing alternative is
to use one of the modern methods for the computation of higbtyllatory integrals (Huy-
brechs & Olver 2009). Such methods produce exceedinglyiggepproximations using a
very small data set of function values and derivatives. dofately, these methods are based
upon asymptotic expansion of highly oscillatory integemisl they apply only to algebraically-
decaying coefficients, while Legendre coefficients (likatfrourier and Chebyshev brethren)
decay exponentially fast (or faster) for an analytic fumctf. Thus, we cannot expect salva-
tion from this quarter either.

Our approach proposes to abandon (1.2) altogether. Ouingtaoint is an explicit ex-
pression for:™ as a linear combination @f, k = 0, 1, ..., m, which was already familiar to
Adrien-Marie Legendre (1817). (Cf. also (Whittaker & Watst#02, p. 310) and (Rainville
1960, p. 181).) This leads to an explicit expressionfforwhich, albeit well known, is on the
face of it without much merit in numerical computation: Givhat

F)=) fa"
n=0

is analytic in an open domain C C such tha{—1, 1] € ©, itis true that

fo=@m+1)>"
n=0
where thePochhammer symbéh) ;. is defined aga)o = 1, (a)r = (a)k—1(a+k—1),k > 1
(Rainville 1960, p.182). Although (1.3) has been occaslgrapplied to direct (and fairly
laborious) evaluation of Legendre coefficients in theirleiipform for specific (and simple)
functions f (Brunner, Iserles & Ngrsett 2010), its apparent lack of appecomputation is
obvious: evaluating a sufficient number of derivatives bytdimlifferences to render (1.3)
useful is both expensive and exceedingly unstable. Obwatifortunately, wrong.
The first critical step is to compute derivatives by meansashjglex integration, rather
than by finite differences (Bornemann 2010). Thus,

£ = R IC)

- : n+1 ’
2mi N2

2m+2nn!(%)m+n ’ me Z-l—a (13)

where~ is a simple, closed Jordan curve circling the origirfirwith positive orientation.
Therefore, choosing the circte = {rel’ : 0 € [—x, 7]} with » > 1 and given sufficiently
largeN € Z, the sequencgf,, /n!}—;' can be computed with the Discrete Fourier Transform
(DFT)
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wherewy = exp 2 this can be done i® (N log N) operations. Unfortunately, even once
the derivatives are known, we ne€ N?) operations to compute

((N=m)/2]-1

fmm@m+1) )

n=0

(m + 20)! 20

, m=0,1,...,N =2
2m+2nn!(%)m+n

— another dead end. However, suppose that, instead of comgpidrivatives with FFT, we
apply the Cauchy theorem formally to (1.3). After some atgethis results in

;o 2m(m!)? 1 (2) [ mtl m+2.

1
2 0 2
Fm = (2m)! 2mi [/, om0 3 22] dz, m € Ly (1.4)

The hypergeometric functiopF; is defined fora, b,c € C, wherec is neither zero nor a
negative integer, by

(1.5)
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(Rainville 1960, p. 45).

Our hope by this stage is to replace the hypergeometricifumat (1.4) by its truncated
Taylor expansion, since then, having chosen a suitableoaont the expression (1.4) can
be approximated by DFT and computed with FFTJON log N) operations. Unfortunately,
even wheny is chosen in the domain of analyticity of the hypergeométniction, the Taylor
expansion for large: converges excruciatingly slowly. We would need an enornmumnsber
of terms, of vastly different orders of magnitude, and thenpatation is bound to be both
expensive and contaminated by unacceptable roundoff &nmther hope dashed!

Except that the magic of special functions theory allowsougplace the hypergeometric
function in (1.4) by a rapidly convergent expression, whiah be approximated by truncated
Taylor series with a small number of terms. Moreover, we daose an elliptic trajectory
so that our new expression is in a form suitable for discaéittn with DFT and the outcome
is a high-accuracy approximation for the Legendre coefiisiobtained with a single FFT,
hence inO(N log V) operations, followed by)(N) post-processing.

The outcome of this rather convoluted mathematical jouisdiyus a surprisingly simple
numerical algorithm.

In Section 2 we derive the expression (1.4) by two differentes. \WWe commence from
the formula (1.3): this has the virtue of simplicity and odliaace on known formulee. How-
ever, we believe that an alternative, direct derivationlof) is of interest, since it explains in
a much more profound mannehythis strange expression makes sense.

Section 3 is devoted to the derivation of our numerical atgor. Thus, we subject (1.4)
to a transformation that converts the hypergeometric fanénto rapidly-convergent expres-
sion, choose a contoyrwhich is amenable to DFT and conclude with our algorithm for a
O(N log N) calculation of Legendre coefficients.

More specifically, for the benefit of readers who do not wistlvaole through mathematical
details, just to acquint themselves with the algorithm, Weaser € (0, 1] so that the ellipse
L(r~te7 4 rel?), § € [—, 7], lies in the domain of analyticity of the functiofi (or, for
r = 1, ‘collapses’ to[—1, 1]) and compute the FF{K)Nyk}QIZ_Ol of the sequence

{(1- 7‘2w12v’f)f(%(7'*1w1§k +rwy)) : k=0,1,...,N — 1},



wherewy = exp % and N is a suitably large integer. Next, choosé € Z, and, for all
m=12,....,N—1—-2Mandm =1,2,...,N — 1 — 2M calculate

mr_ i 7(m+j)(j—%)7“2§
~1,05 J= , Gi—1-
m m,) ](m+] + %) m,J

go,o = 1, Jm,0 =

1
2

Finally, approximate

M
fmzzgm,j"@N,m+2j7 m:O,l,...7N—1—2M.
j=0

In Section 4 we present few numerical examples, briefly gemplementation details
and discuss future directions.

It is a matter for intense satisfaction that two ideas due &hematical giants of the
early Nineteenth Century — Carl Friedrich Gauss'’s Fastigoiiransform (Gauss 1866and
Adrien-Marie Legendre’s expression of general powers of the basis of ‘his’ polynomials
— combine to address an important computational challehtieedwenty First Century.

2 An integral expression for Legendre coefficients

2.1 The functionsy,,

Substitution of the Cauchy formula into the expression)(fe8ults in

P - (m + 2n)! 1 (2)
m=02m+1 _ dz, €.
However,
(%)m+n = (%)m(m + %)nv (m+2n)! = 22nm!(m;_1)n(m;2)n
Therefore
i 2m+1)m! 1 / i f(2) () (22), 1 &
" 2m(3),, 2mi N i 2t nl(m o+ DN 2
= 42m(m!)2 1 f(z) ,F, %173%25 1 dz
(2m)! 27 J, zmHd m+3; 22
¢ f(z)
= 2777:1 , om1 Spm(z) dZ, m e Zma
where (m1)? s
2™ (m! mil mi2. ]
szw, (pm(Z)ZQFl[ m2+ %;2 22:|, mEZ+.

1Gauss apparently discovered the FFT in 1805 but never katherpublish it in his lifetime, a unique exemplar
of ‘perish and publish’.



This proves (1.4) but note that we have left the exact nattitbeocontoury deliberately
vague. Whileany closed curvey surrounding the origin with winding number 1 {& will
do for the computation of an arbitrary derivative oby means of the Cauchy theorem, this
need not (and is not) the case with (1.4). Indeed, the siitypb the proof of this formula is
deceptive because it rests upon the interchange of infinitergtion and integration. This in
turn depends on the properties of the integrand and canrtakba for granted.

Our first observation is that the analyticity of the hypemetric function (1.5) is assured
only for |z| < 1. This might indicate thay must lie in the exterior of the closed unit disc, but
this is unnecessarily restrictive.

Proposition 1 The domain of analyticity of the functign,,, m € Z,,isC\ [-1, 1].

Proof Although the statement of this proposition would not swpréxperts in special
functions, we believe that it is valuable to present its pfobthe sake of completeness. We
commence from the integral representation

aab; _ F(C) ! b—1 _ 4\c—b—1 — )¢
z} _7%)%_1))/0 =11 — 1)1 — ) dt

whereb, c andc — b are neither zero nor a negative integer (Rainville 19607p. #herefore

L, . ¢ D
%(z):/ t37(1 —t)=(m=1 (1_) dt,

0

which is integrable (and analytic) fare C\ [—1, 1]. It remains to show thap,,, cannot be
analytic anywhere op-1, 1]. We commence by showing that= 1 (hence,, being even,
alsoz = —1) results in divergence. To this end we use the classicaldtarm

which is valid for alla, b, ¢ € C provided that is neither zero nor a negative integer and that
Re (¢—a—>b) > 0 (Rainville 1960, p. 49). Therefore, letting= a4+ b+¢, where) < ¢ < 1,
we have

L(e)[1 4+ O(e)].

2F1{ a,b; } _ T(a+b)

a+b+e | T(a)D(b)

Lettinga = 1, b = ™2 and allowings — 0 confirms thatp,,, (1) = +oo.
It remains to prove thap,, fails to be analytic forr € (—1,1) \ {0}. Butin that case
- (PR 1 - (e (P
m - ., . a2~ > ., a. - m 1

and the assertion follows. O

We have just demonstrated that the analyticity of eaghfails exactly along the support
of the Legendre measure, whesg, has a branch cut.
But what isy,,,? It is easy to verify that

z+1
wo(z) = %zlog g

2.1)



but general form of,,, for all m € Z is not available. Fortunately, it is possible to establish
a relationship betweep,,, andy, which identifies contours which are allowed in (1.4) and,
incidentally, proves the above formula in an alternativenea.

2.2 Adirect proof of (1.4)

Let ()
_ Cm Pml(2
K (z) = o1 i m e Ly

Direct computation confirms that

’Cl(Z = Pl(Z)IC()(Z) — 1,

Ka(z) = Pa(2)Ko(z) — %z,

’Cg(z) = Pg(z)Ko(z) — %252 + %,
motivating the next lemma.
Lemma 2 For everym € Z is it true that

Km(2) = Pm(2)Ko(2) + am(2),  m €Ly, (2.2)

whereg,, is a polynomial.

Proof The assertion of the theorem will be proved separately fenend odd values of
m, commencing from an explicit representation of Legendigrmmials,

(=D () ok
m —
P)2 2 X 2k
’HL (2 )| )
k=0 ’
m m 1
P 5 m+k+1 < 9op—1
2m+1 )
1(2k
k=0 +1)!

whereX = (2z)~! (Rainville 1960, p. 157). Thus,

’CZm(z) _P2m( )’CO( )

T
! Z %)m-i—kX

3 2k + 27)! X2+l
(m — 7)1(2)! (k+J)( Jk+j .

A/—\

Since



we thus deduce that

Kom(2) — Pop (2 _2§: 3 X2kt (2.3)
—m §)m+k
Ly i i (D" (Dmag (k20! | i
i (= DMK+ D)
Let k£ > 0. Then the coefficient ok 2**1 in the second sum is
m l mai(2k 4+ 27)!
Qp = QZ 2 +j( + j) .
DUCEIE I
Moreover, forevery) < j <m, k >0
(%)m-&-j = (%)7n(m+%)ja (2k+2.7)' ( k)'22](k+ ) (k+1)Ja
1L (=1)(—m); 1 I 1
(m — j)! ml @) 2%(3);5" (Drrs Bk +3);
and therefore
@) o [ —mym+ Lk + L
— _1\m ) ) ) > (.

(We refer to (Rainville 1960) to the definition of generatizgypergeoemtric functions.) How-

ever, according to (Rainville 1960, p. 87) and provided ti@thercnorl +a+b—c—m
are zero or a negative integer, it is true that

F —m,a, b; 1 = (c—a)m(c—"0b)m
P2 e l4+a4+b—c—m; ’

()m(c—a—b)p

Inour caser =m + 3, b=k + %, c = 3 and, since

—(=1)"m _ _ (_1)mk' 1 (_1)m
(_m)m = ( ]_) L ( k)m = (k — 71)' ’ (_m — k- %)m (k + )m
we deduce that '
o 22

(k= )M 3)k+m -
This is a perfect match for the first sum in (2.3), we deduce tha

B . i _n—l m—1 (_1)mij(%)m+g(2]—2k)'
ICQm —P2m( )’CO( ) kzz:l ; (m—j)!(?]) (j —k) (3)] i

and obtain the polynomiak,, explicitly.

2(k—1)




Likewise (and with fewer details)

Kom+1 — Pam+1(2)Ko(2)
28 2m + DS )am
(4m + 3)!

Z (2m + 2I€ + ].) X2(k+m+1)
k=0 k'(3)2m+k+1

m

o CD™ (G mset o= (2K)!
2; (m = )25+ D! = k(3

_y Z (2k —1)! 2%

e mm = D)

s [ § Ui ) ]X

x2(k—=j)

e B A e YRS IR TEy T

For k > 0 the coefficient ofX 2" in the first sum is

- )™ (3 ) mri1 (2K + 25)!
ZJZ 2+ Dk + 3Dy

_ = %) +1 o~ (=m)(m+ 3);(k + 3);
R g) Jz::o )k + 5,

(=1)™(3)m+1(2k)! —m,m+ 3, k+ 3
=2 m!k@k st {S,m g !
_ 2( ) (%)erl(Qk) % (—m)m(—k + 1)m - (2]‘3 - 1)

mlk!(3) (Dm(=m—k=5)m  (k=m =1 3)ktm’

perfectly matching the coefficient f2*** in the second sum. We deduce that &&Q, ;1 —
Pom+1(2)Ko(z) is a polynomial. The proof of (2.2) is thus complete. O

Theorem 3 Let~y be an arbitrary closed curve ift\ [-1, 1], circling the origin with winding
number 1. Then

3 m—+1
21 ), 2

SDm(Z) dZ, m e Z+. (24)

Proof Because of (2.2), substituting the explicit form/&f (cf. (2.1)) into the integral,
we have

=y Z{'Ei)l om(2)dz = —277;:; ! Lf(z)Km(z) dz
- f”;; 1 / FEIPom(2)K0(2) + a (2)]
z+1
= 5 / f(z P dz,



becausef f(2)gn(2) dz = 0 for analytic f and polynomialz,,. However, for any functiory

analytic mQ
z+1 !
o vg(z) log — T dz = [1 g(z)dx
(Trefethen 2008), thus we deduce that
f(2) /
27Ti —YZm+1 ( )dZ— m+ f dx_f’ma
as asserted in (2.4). O

The method of proof of the theorem indicates tkigt is, up to rescaling, nothing else but
P, log 21 plus a polynomial which makes no difference to the integFais might lead us

z—1"

to consider the computation of

. m+ 3

fm: 2 /f(z) m( )log S
ol

1 dz, m € Zy, (2.5)

2mi

in place of (2.4). An added attraction of (2.5) is that, repig (m + 3)P,, therein by other
orthogonal polynomials, this approach might lead to a mereegal methodology, applicable
to other orthogonal polynomial systems. Unfortunatelig ittea does not lead anywhere.

Fig. 2.1 displays the functiori, () log 2} andys(z) on the circle|z| = 2. The first
function oscillates rapidly — this is not surpnsmg sinbe Argument Principle implies that
P,, windsm times along the circléz| = » > 1. This indicates that the calculation of the
integral for large values of: is likely to be problematic. The second function, howeveesl
not appear to be oscillatory at all, and this makes it muckemmenable for quadrature.

Most importantly, while it is not clear at all how to compufef P, (z)log £ dz
rapidly with the FFT, we demonstrate in the next section, Mject to further work, th|s can
be accomplished for (2.4).

2.3 Aninterpretation in terms of Legendre functions of the seond kind

Both formula (2.4) and the representation (2.2) can bepnéged in terms oEegendre func-
tions of the second kin@,, (Abramowitz & Stegun 1964, p. 332). Such functions are sohst
of Legendre’s equations valid in the plane cut along theage from+1 to —oo (Whittaker
& Watson 1902, p. 316). In particular, for integer paramethe Neumann representation
holds, .
P, (z)

QM@=%/¥;{;da mez.
(Whittaker & Watson 1902, p. 320). Legendre coefficients carekpressed explicitly in
terms of integrals with Legendre functions of the second kin

A 2 1
mt /f JQu(z)dz,  mezy (2.6)
271

(Whittaker & Watson 1902, p. 322). Since both (2.4) and (2ré)wvalid for all analyticf, it
follows that

_ Cm Spm(z)
Qm(z) = o1 i m € Zy (2.7)

9
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Figure 2.1: The plots 0Py (2¢!?) log gizﬂ (on the left) andpsg(2e?), 6 € [—, 7] in the

complex plane (upper row) and their real (solid line) andginary (dashed line) parts.

is nothing else but our functiok,,,! Note that this expression of Legendre functions of the
second kind in hypergeometric form appears to be ReMoreover,

[(m—1)/2]
2k — 4k — 1
————— P ok
g1t kzzo Ok 1)

(Abramowitz & Stegun 1964, p. 334), which confirms (2.2).

2Cf. the page /HypergeonetricFunctions/LegendreQGeneral/26/01/01/ on the
http://functions. wol fram com website for seven assorted — yet different — expression§)ofin
hypergeometric form, all lacking relevance for our purpose.

10



3 A hypergeometric transformation and a numerical
algorithm

3.1 The integral formula and FFT

The formula (2.4) cam principle be approximated by DFT, lending itself to calculation with
FFT. Thus, let

oo hm . m+1 m+t2Y .
om(z) =Y 2L where ;= (f]#7 jomeZ,.

227
Jj=0
By virtue of the analyticity off andy,,,, (2.4) is equivalent to
Z ) dz, meZ
27r1 zm+2i+1 +

and this can be approximated by truncating the infinite serie

cm fz)
fm = Z m,j zm+2J+1 dz, m € Zy,

for sufficiently largeM < N. (Note that this procedure is nothing else but truncatirgy th
expansion (1.3) and evaluating derivatives by Cauchy mateg This can be approximated
by DFT, considering a circular countops| = r~*, wherer € (0, 1). The outcome is

N—
fm ~ CmT Z hm jT N 71 k k(TI’H-QJ), (31)
7=0 k=0

wherewy = exp 57 2mi and N € Nis a sufficiently large composite integer. Let

1 N—-1
— flrtok ) whkm, m=0,1,...,N —1.
N k=0
Then (3.1) yields
M
fm%Cmeth7le230'N7m+2.j, m=0,1,..., N—1—-2M.
j=0

The overall cost of this procedure (N log) + O(M N) and everything hinges upon our
choice of M. As long as the Taylor expansion ©f,, decays rapidly, we may choose smll
—ideally eitherM = O(1) or, at mostM = O(log N). This, unfortunately, is not the case.
Fig. 3.1 displays the order of magnitude (in decimal digifs) =2 h,,, ; for three different
values ofm. Thus, form = 10, to attain accuracy of 20 decimal digits, we requife= 61.
This increases td/ = 120 for m = 100 and toM = 295 for m = 400. Worse, since the
r~%h,, ; tend first to increase, before asymptotic decrease seteinged about 43 decimal

digits to calculatqﬂoo to 20 significant digits. This is a clear nonstarter!

11



m=10 m=100 m=400

Figure 3.1:—log,(r~%h,, ;) for r = 3 and different values ofa.

3.2 A hypergeometric transformation

With many mathematical constructs the underlying problemcarcity of information. In-
sofar as hypergeometric functions are concerned, the garold arguably of an information
glut. The Wolfram Research websit¢t p: // functi ons. wol fram comhas 111951
different formulae for theF; functions: 111950 of those are not very helpful to the task in
hand. Fortunately, the one designated

Hyper geonetri cFuncti ons/ Hyper geonet ri c2F1/ 16/ 01/ 01/ 0004/
therein, can be used to transform the integrand into coraditiemore tractable form.

Thus, leta, b, c € C be given, where is neither zero nor negative integer, and suppose
that¢ € C,Re( < 1. Then

a,a+ —9a 2a,2a —c+1; ¢
2F1[ met 2(—4“2] —(1-1¢07 2F1[ ; 2—(} (3.2)
We seta = 5L, ¢ = m + 2, whereby (3.2) yields

+1 m-+2

QFl[ 2 52 79— (2

m+1, 5
F
m+ 3; 21{m+

_ 1
S (=g
Note that

m—l—l,l; > ) (m+1); ;
2F1|: m + %’2 Z:| = ;gmdzj, where Im,j = 7J

Therefore the hypergeometric function on the right conesmgpidly for smal|¢/(2 — ().
Letr € (0,1). We choose a negatively-orientBernstein ellipsenamely the contour
{z=30""e " +re") : 0 € [-m, 7]}

Requiring2¢ — ¢ = 22 results in

2rel? ) . ) )
C _ 7’28219 _ relé(r—le—lé + T619)7

¢ = r—le—10 4 eif’ 2-¢ ' 1-1i¢

12



therefore, by serendipitous cancellation,

1 m m i(m m—+ ]-7 l; i
ngm(z) — om+l, +1e ( +1)92F1 |: "4 %;2 7’262 6:| )
Since ' _
dz = —2ir~te (1 — r?e¥?) do,
we deduce from (2.4) that
N - m ™ . ) ) l. . X
fm _ Cn;;: /_ﬂ—(l _ 7"26219)]0(%(7“_16_19 + TelO))zFl [ :;i %a;gv T26219:| elm@ d@, (33)
where 2 ()2
24 (m!
~ __om _
C, = 2 cm_i(Qm)! , meZs;.

3.3 A Fast Legendre Transform

We proceed as in Subsection 3.1, truncating the Taylor estparf anyF'; function, except
that our starting point is the formula (3.3). Thus, Métbe a suitably large composite integer
and

N-1
1
RNm = Z (1- r2w12\;“)f(%(r*1w;,k + rwk ) Wik, m=0,1,....N—1 (3.4)
k=0
be the DFT of the sequence
{1 =% FG 0wy +rwk)) s k=0, N =1},

We approximate (3.3), replacing the hypergeometric fuimchiy its truncated Taylor expan-
sion and the integral by DFT, whence

. M
~ o] ™ .
A ; ng T +2]% (1 T26219)f(%(7’716710 + Tel@))el(erZJ)G 46
j=0 o
M 1 Nl
N em Y gmgt™ I D (1= W) T R+ ke
=0 k=0
M
= Gmi(r)ENme2;,  m=0,1,...,N—1-2M, (3.5)

where

) 22m(m!)2(m 1) (l) - S/
B ~ m+25 __ 227 2y .
PR N r , m ) 0,..., M.
gm,]( ) ngm,j 2m)ljl(m + %)] !

13



Note that thej,, ;s can be obtained by recursionG{ M N) operations,
mr

Jo,o = 1, Jm,0 = Jm—1,0s

1
T2
U m=1,2... N-1-2M.
. (m+5)(j — 5)r* . e
Gmaja Ly Jmamb JT RS
2

Since (3.4) can be accomplished with FFTOMN log N) operations, while both (3.5) and
the computation of thg, ;s bear the price tag @ () N) flops, the basic requirement is that
M is small —ideallyM = O(1), but even withM = O(log N) we still have arO(N log N)
algorithm.

The main approximation step consists of replacing infirétées with its truncated Taylor
series. Let|f||~ be the maximum off| on the ellipse. The discarded tail can be bounded
with ease,

Gm,j =

T

00
] . . . . .
TM,m — 5’m, Z gm7j,rm+2]§/ (1 _ 7‘26210)']0(%(7“7167210 +Te16))e1(m+2j)0 d6

j=M+1 -
= 1+ 72
S em(@A ) leo D2 ghmyr™ < B g [ llaor™ M,
J=M+1

becausdy,, ;| < 1. Itis trivial to prove with the Stirling formula (Abramowit& Stegun
1964, p. 257) that

(7m)? <&, <2m?, m=12....
Therefore
1472
1—r2
The functionzz7* reaches its maximum far > 0 atzmax = (—2logr) !, where it equals
e~2(—2logr)~2. Therefore we obtain the uniform bound

_1 2 3 1472
|TM,m| Smax{Le 2 <_logr) }1T2||fooT2M+2-

| Ttm| < max{1,2m?} [flloor™ M2y =0,1,...,N —2M — 1.

It follows that, in order to restrict the magnitude of thd taiiformly below given tolerance
0 > 0, itis enough to choose

1
log max {l,e_é (—loz_r) 2} + log 15 + log || f||oc — logd

—logr

M > ~1. (3.6

1
2

The bound (3.6) depends just on the tolerafice 0, the size of| f| on the ellipse and
the parameter < (0,1): clearly, our lower bound o/ becomes large the neareiis to
1. It is however independent d¥ and we deduce tha/ = O(1): our algorithm is truly
O(NlogN).

Itis important to emphasize (a point which we reiterate @rtkext section) that the bound
(3.6) typically vastly overestimates the least value\bfrequired to produce the coefficients
to given accuracy. Its sole role is in establishing the cbtt@algorithm and it should not be
used as a practical means for choosig
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3.4 Betwixt Legendre and Chebyshev

An obvious question is what happens once we altow 1 in (3.3). The outcome,

fm — @ (1 _ e?i@)f(cos 9)2F1 |:m + 17 24 210:| im0 de (37)
2’/T —r + 5,
) (1 — %9 f(cos 0)th, (e%9)e™0 df,  where ,,(2) = oF; [m + 1’ 2 z} ,
2w - + 57

can be used to design an alternative to algorithm (3.5), bsit iie need to consider the
convergence of the integral in (3.7). It follows from (2.t

1+ 2
1—2z

Yo(z) = %zfl log

Moreover,p,, (z) = ™%, (e21%). Buti,,(z) = (2m + 1)c;} 2™ 1K, () and we deduce
from (2.2) that the integrand of (3.7) has logarithmic silagw atf = +x. Such singularity
is too weak to disrupt existence and boundedness of theraitéy7) for analytic/ and all
m e Z+.

We next replace),, by its Taylor expansion and interchange integration andnsation,
whence

fn = %m > gy " F(cosB)(1 — &H0)eim 290 gg
s
jzo o

% ngu fm+23 fm+25+2), m €Ly,

where

1 [ :
fm = - f(cos0)e™? do, m e ZLy.

Note however thaf (cos 6) is an even function, thereforg” _ f(cos 6) sinm6 d¢ = 0 and

s

1
fm =— f(cosB) cosmddé, m e Zy,
™

—T

is themth Chebyshev coefficienf f,
f(l’) - %fOTO(I) + Z .fvanL(x)
m=1

Let
N—

ONm = g (cos 22k ) cos 2zkm m=0,...,N—1,
k=

be the Discrete Cosine Transform dlscretizatior{ﬁﬁ}z;é. Analogously to (3.5), we de-
duce the approximation

fm ~ %ém ng,j(l)(JN,m+2j _JN,m+2j+2)v j :0717'~~7N_2M_37 (38)

15



where the functiong,, ; have been already defined in Subsection 3.3.

The algorithm (3.8), being restricted e 1, 1], enjoys an important advantage over (3.5)
when the functiory has singularities near the interval.

The calculation of (3.8) requirg8(N log N) + O(M N) operations. However, the anal-
ysis of Subsection 3.3 which led to tli® N log N) cost of the algorithm (3.5) is no longer
valid in the present setting. Instead, recalling that

00
wm(z) = ng,jzja where |gm7j| < 1,
7=0

and, like in Subsection 3.3, denoting the tail'By ,,,, we observe that

Cm

T oo
T]u,m = % f(COS 0)(1 _ e?lﬁ)elmO Z gm,jemja do

j=M+1

_ ﬁ S g | FlcosB)lcos((m + 20)6) — cos((m + 2 +2)0)

Jj=M+1 -
0o
1- . .
= 3Cm E 9m,j [gTrL-i-Qj - f7n+2j+2]7
j=M+1

where we have used the parity pfcos 6). Therefore

(oo}

|TM,nL| S %67n Z (|f7n+2j| + |fm+2j+2|)- (39)
j=M+1

Recall thatf is analytic in an open sét such tha{—1, 1] C Q. Therefore there exist > 0
anda > 0 (whose size depends solely on the eccentircity of the laBesistein ellipse that
can be fitted intd2) such that .| < de=°*, k € Z, . We thus deduce from (3.9) that

12 1Y o)
|Thr,m| < §Cmd1 — o2 , m,M e€Z,.

Recall from Subsection 3.3 th@tm)%ém < 2m?,m € Z. Therefore

1

(20€) 2

o 1
Cme” " < max{l,2m2e”*"} Smax{l, }, m € Zy,

where we have used the fact that(2c) > 0 is the global maximum ofze=**. We thus
deduce that for every/, m € Z. the magnitude of the tail can be uniformly bounded by
de=2M whered > 0 depends only upon the functigh We thus can, given toleranée> 0,
chooseM € Z. so that all the computed coefficients carry at most efrtinereby deducing
that the cost of the method is inde€d N log N).

The calculation of Chebyshev coefficients forms a centdal irotwo existing algorithms
for the computation of Legendre coefficients (Alpert & Rak991, Potts et al. 1998). Yet,
both the mathematical premise of these methods and theitiggare different from (3.8).
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4 Numerical examples and conclusions

4.1 Numerical examples

In Fig. 4.1 we display the number of significant decimal digiince Legendre coefficients of
the entire functiory (z) = e® are computed with the algorithm from Subsection 3.3. We have
usedN = 512 in all computations and the calculations have been cartetbd0 significant
decimal digits® Further numerical evidence for this function is exhibitedable 1.

t 't
4 2
40 7 o* 40 1
-
.
'w"
. .
v"' . 'vv.".
30 ;.,,.v 30 i "
o ""',v,v
ey’ o
e ** . [TL
- o, aeeg®
8% + . L] .
200 5+ . 2047, ¢ o+ .
w¥ + . LA .
M + . © +
+ . +
+ +
+ +
+ +
10 4 10 4 .
. .
0 T T T T 1 0 T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50
= 3 r=1
n 40
407
30
30 1
P T
P PSS 0 g
!uttwrru'i"""v""' : 209 4.,
20 w“e:nngo :ow*fﬂ,-,vﬁﬂvﬁﬁﬁ,“"",-P’,,t'i;@;é,h’i’s‘;;;
LI S
+ . +
v’ ” .
04 g4 .0
.
0 T T T T 1 0 T T T T 1
0 10 20 30 40 50 0 10 20 30 40 50

Figure 4.1: The number of significant digits recovered in pating f,,,, m = 0, ..., 50, for
f(x) = e* with N = 512 and different values of € (0,1): heree corresponds tad/ = 2, +
toM =4,0toM =6,0to M =8 andx to M = 10.

3Except that, in order to calculate sufficiently reliablesreice values of,,, by ordinary quadrature in MPLE,
we have been forced to use up to 200 significant digits.

17



Table 1: Absolute errors in computinfg, for f(x) =e®andm = 0, 10.

m=0 M=2 M=4 M=6 M=8 M=10 M=12
r=1 32105 2.50_11 4.73_17 1.00_19 1.00_39 1.00_19
=1 321 06 2.50_11 4.72_17 2.00_19 2.00_15 2.00_19
r=2 32106 2.50_11 4.74_17 1.70_19 1.70_39 1.70_19
r=1 32106 250_11 4.74_17 1.39_5 1.20_90 1.19_5
r=323
@odigts) | S2-0s 20— ATdir L7650 L7620 L7620
r=3
v = 2%6) 32106 2.50_11 4.70_17 4.00_19 4.00_19  4.00_19
m = 10 M=2 M=4 M=6 M=8 M=10 M=12
=1 1.16_15 3.68_25 8.23_25 8.23_05 8.23_55 8.23 o5
r=1 1.16_15 1.28_95 1.28_5 12855 1285 1.28 9
=3 11615 8.62_2; 8.77_21 880_21 8.79_51 8.79_9;
r=1 1.33_15  2.05_19 22719 4.01_19 4.18_19 3.89_19
r=3
(30 dig%ts) 1.16_15 4.58_25 2.83_59 28455 28459 2.84_9
3
r—3
o = 2%6) 1.16_15 11759 1.20_59 11959 1.19_59 1.19_9

Several observations are evident from both Fig 4.1 and Table

1.

For small values ofn we need relatively large value @ff in (3.5) to ensure that the
error is suitably smalt. Moreover, larger values of € (0, 1] appear to produce better
performance in this regime.

. The picture changes completely for lange when very good results can be obtained

with small values ofAf — in fact, increasingy/ brings no benefit. Moreover, for €
(0,1) accuracy goes on increasing geometrically with faster forsmall». In all
likelihood, this is caused by the terg, ;(r) in (3.5), which scales like™ 2.

. The choice = 1, whereby the Bernstein ellipse ‘collapses’[tel, 1], seems to pro-

duce small uniform error and is competitive witke (0, 1).

. There are three possible sources of error in our algoritfanreplacing integrals by

DFT, (b) truncating theF; function, and (c) finite accuracy of floating-point arithimet
The first source of error is quantified By, the second by and the last by the number
of significant digits (or the “machine epsilon”). In Table E\wave displayed the error
forr = % also when 30 decimal digits have been used. A comparisonthatlhird
row (which corresponds to the sam&vith just 20 significant digits) is instructive. For

m = 0 the outcome is fairly similar: increasing computer accyrdaes not improve

4Yet, these values arauchsmaller than those in inequality (3.6)!
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the algorithm while increasing/ definitely does! However, the picture changes for
m = 10. For M = 2 the results are identical, but takig > 4 increased computer
accuracy definitely improves performance far= 10. On the other hand, once we
replaceN = 512 with N = 256, another result reported in the table, the errors do not
change significantly.

The conclusion we draw is that the number of pointsused in DFT need not to be
unduly large unless the functighitself changes rapidly. What matters is the sizé\dffor
smallm, while for largem we are restricted by computer accuracy. Moreover, althcuaggl
r € (0,1) produces superior error for large, uniform error is smaller for large € (0, 1].

An obvious tweak to the algorithm (3.5) is to allow to depend upom. Thus, for small
m we use largeM but allow M to be smaller for largen. Specifically, revisiting the error
analysis in Subsection 3.3 while keepifyg intact results in amn-dependent choice aff,
namely

. 2 .
log G, + log 2 +1og || f||oc — log 8

M,, > 1— im, me L. (4.2)

2

N[

—logr

However, checking again the performance of the algorithenc@nclude that the upper bound
(4.1) is so pessimistic as to be practically useless. Tiusur case, letting = 10~ and

r o= % results inM, = 79 and M,y = 77, while an error consistent with toleranées
obtained in actual computation already with = 7 for m = 0 and M = 3 for m = 10.
(Note that the purpose of the bound (3.6) was to argue thatigieeithm (3.5) isO(N log N),
rather than to offer a realistic choice bf.)

Our next example is the rational functigitz) = (1 + z)/(4 + 2?), with poles at-2i.
Thus, we need > 7,;, = v/5 — 2 ~ 0.2361 to keep the ellipse within domain of analyticity
of f.

The conclusions from Fig 4.2 and Table 2 are fully consisteittt the experience that
we have already acquired in this section, except for theigtedale observation that choosing
r= i, dangerously neat,,;,, leads to significant degradation in performance — in paleic
the improvement in accuracy stalls fdof = 8 . This does not represent significant hardship
because a conclusion from our both examples is that it is gbategy to take larger values
of r € (0,1].

4.2 Brief conclusions

In this paper we have presented a fast (thatdé)V log V)) algorithm for the calculation
of the coefficients of an expansion in Legendre polynomigidthough the mathematical
rationale for the algorithm might appear to be fairly comietl and perhaps counter-intuitive,
the algorithm itself is exceedingly simple, requiring jassingle FFT, followed by a®(N)
post-processing.

Preliminary numerical results reported above are not aredrio represent comprehensive
experimentation with the algorithm, just an initial indiicen that it works, does so in a stable
manner and that there are no hidden perils associated wilfhiy also allow us to sketch,
albeit in a tentative fashion, ideas for the implementatibthe algorithm with uniform pre-
cision. Thus, we recommend taking large (0, 1], perhaps: = 1 (a choice which is more
robust in the presence of singularitiesfofhear the critical interval—-1, 1]) and vary the size
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Figure 4.2: The same as Fig. 4.1, exceptfar) = (1 + z)/(4 + z?).

of M for differentms: for smallm we take largeM but allow the latter to decrease, even
down toM = 0, for largems. A good working strategy for the choice of reasonalldor
eachm is a matter for future research.

A natural question is whether our approach generalisesher arthogonal polynomial
systems. This is a subject of ongoing research.
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Table 2: Absolute errors in computinfg, for f(z) = (1 + z)/(4 + 22) andm = 0, 10.

m=0 M=2 M=4 M=6 M=8 M=10 M=12

r=1 559 06 1.10_0s 251_y; 1.03_13 41414 41244

=1 5.59_06 1.10_¢s 2.50_11 6.13_14 1.57_15 4.80_19

r=32 559 g6 1.10_0s 2.50_1; 6.13_14 1.57_15 4.70_19

r=1 559 g6 1.10_gs 2.50_1; 6.13_14 1.57_15 4.60_19
r=323

@odigts) | 99906 11005 250-11 61314 157-ys 413
r=3

(V=5 | 559-06 11005 250_11 631us L5T-ys 410

m =10 M=2 M=4 M=6 M=8 M=10 M=12

=1 3.29_1; T7.50_14 1.87_16 6.10_19 12619 1.25_19

r=1 3.29_11 7.50_14 1.87_15 4.86_19 1295 9.20_o4

=3 3.29_1; T.50_14 1.86_-16 4.85_19 6.36_22 1.33_9

r=1 3.29_1; T.50_14 1.87_16 5.30_19 6.63_59 6.31_5
r=3

@odigts) | 329-1 7301 1.86-16 486-19 1.30-21 3572
r=3

(V= obg) | 329-u 701 186y 4.86-19 3.08-21 241z

ford).
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