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Abstract

We present anO(N log N) algorithm for the calculation of the firstN coefficients in
an expansion of an analytic function in Legendre polynomials. In essence, the algorithm
consists of an integration of a suitably weighted function along an ellipse, a task which
can be accomplished with Fast Fourier Transform, followed by some post-processing.

The mathematical underpinning of this algorithm is an old formula that expresses
expansion coefficientŝfm as infinite linear combinations of derivatives. We evaluate
the latter with the Cauchy theorem, thereby expressing eachf̂m as a scaled integral of
f(z)ϕm(z)/zm+1 along an appropriate contour, whereϕm is a slowly-converging hyper-
geometric function. Next, we transformϕm into another hypergeometric function which
converges rapidly. Once we replace the latter function by its truncated Taylor expansion
and choose an appropriate elliptic contour, we obtain an expression for the f̂ms which is
amenable to rapid computation.

1 Introduction

Expansion of functions in fast-converging series is of central importance in approximation
theory and is, through the agency of spectral methods, fundamental in designing efficient
computational methods for partial differential equations. Particularly effective are Fourier
expansions, since their firstN terms can be computed inO(N logN) terms using the Fast
Fourier Transform (FFT). Moreover, because

∫ 1

−1

f(x)Tm(x)(1 − x2)−
1

2 dx =

∫ π

−π

f(cos θ) cos(mθ) dθ, m ∈ Z+,

the computation of Chebyshev expansions can be reduced to that of their Fourier counterparts
and likewise accomplished inO(N logN) operations. However, anO(N logN) algorithm
for the computation of theLegendre expansion

f(x) =

∞
∑

m=0

f̂mPm(x), (1.1)

where

f̂m = (m+ 1
2 )

∫ 1

−1

f(x)Pm(x) dx, m ∈ Z+, (1.2)
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is not known. This is not for a want of trying. In particular, the idea of computing Cheby-
shev coefficients first, subsequently converting them into Legendre coefficients, has been con-
sidered in (Alpert & Rokhlin 1991) and (Potts, Steidl & Tasche 1998) and it results in an
O

(

N(logN)2
)

algorithm.
The challenge of computing (1.2) directly is compounded by the fact that the integrand

oscillates rapidly for largem. The obvious recourse is thus to use a quadrature formula with
large number of nodes: essentially, to compute the firstN coefficients we needO(N) quadra-
ture nodes. Although this can be effectively accomplished with Clenshaw–Curtis quadrature
(Trefethen 2008), the outcome is anO

(

N2
)

algorithm: no joy. An appealing alternative is
to use one of the modern methods for the computation of highlyoscillatory integrals (Huy-
brechs & Olver 2009). Such methods produce exceedingly precise approximations using a
very small data set of function values and derivatives. Unfortunately, these methods are based
upon asymptotic expansion of highly oscillatory integralsand they apply only to algebraically-
decaying coefficients, while Legendre coefficients (like their Fourier and Chebyshev brethren)
decay exponentially fast (or faster) for an analytic function f . Thus, we cannot expect salva-
tion from this quarter either.

Our approach proposes to abandon (1.2) altogether. Our starting point is an explicit ex-
pression forxm as a linear combination ofPk, k = 0, 1, . . . ,m, which was already familiar to
Adrien-Marie Legendre (1817). (Cf. also (Whittaker & Watson1902, p. 310) and (Rainville
1960, p. 181).) This leads to an explicit expression forf̂m which, albeit well known, is on the
face of it without much merit in numerical computation: Given that

f(z) =

∞
∑

n=0

fnz
n

is analytic in an open domainΩ ⊆ C such that[−1, 1] ∈ Ω, it is true that

f̂m = (2m+ 1)

∞
∑

n=0

(m+ 2n)!fm+2n

2m+2nn!(3
2 )m+n

, m ∈ Z+, (1.3)

where thePochhammer symbol(a)k is defined as(a)0 = 1, (a)k = (a)k−1(a+k−1), k ≥ 1
(Rainville 1960, p.182). Although (1.3) has been occasionally applied to direct (and fairly
laborious) evaluation of Legendre coefficients in their explicit form for specific (and simple)
functionsf (Brunner, Iserles & Nørsett 2010), its apparent lack of appeal in computation is
obvious: evaluating a sufficient number of derivatives by finite differences to render (1.3)
useful is both expensive and exceedingly unstable. Obviousbut, fortunately, wrong.

The first critical step is to compute derivatives by means of complex integration, rather
than by finite differences (Bornemann 2010). Thus,

fn =
1

2πi

∫

γ

f(z)

zn+1
dz,

whereγ is a simple, closed Jordan curve circling the origin inΩ with positive orientation.
Therefore, choosing the circleγ = {reiθ : θ ∈ [−π, π]} with r > 1 and given sufficiently
largeN ∈ Z, the sequence{fn/n!}N−1

n=0 can be computed with the Discrete Fourier Transform
(DFT)

fn ≈ r−n

N

N−1
∑

k=0

f(rωk
N )ω−kn

N , n = 0, 1, . . . , N − 1,
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whereωN = exp 2πi
N : this can be done inO(N logN) operations. Unfortunately, even once

the derivatives are known, we needO
(

N2
)

operations to compute

f̂m ≈ (2m+ 1)

⌊(N−m)/2⌋−1
∑

n=0

(m+ 2n)!fm+2n

2m+2nn!(3
2 )m+n

, m = 0, 1, . . . , N − 2

– another dead end. However, suppose that, instead of computing derivatives with FFT, we
apply the Cauchy theorem formally to (1.3). After some algebra, this results in

f̂m =
2m(m!)2

(2m)!

1

2πi

∫

γ

f(z)

zm+1 2F1

[

m+1
2 , m+2

2 ;
m+ 3

2 ;

1

z2

]

dz, m ∈ Z+. (1.4)

The hypergeometric function2F1 is defined fora, b, c ∈ C, wherec is neither zero nor a
negative integer, by

2F1

[

a, b;
c;

z

]

=

∞
∑

k=0

(a)k(b)k

k!(c)k
zk (1.5)

(Rainville 1960, p. 45).
Our hope by this stage is to replace the hypergeometric function in (1.4) by its truncated

Taylor expansion, since then, having chosen a suitable contour γ, the expression (1.4) can
be approximated by DFT and computed with FFT inO(N logN) operations. Unfortunately,
even whenγ is chosen in the domain of analyticity of the hypergeometricfunction, the Taylor
expansion for largem converges excruciatingly slowly. We would need an enormousnumber
of terms, of vastly different orders of magnitude, and the computation is bound to be both
expensive and contaminated by unacceptable roundoff error. Another hope dashed!

Except that the magic of special functions theory allows us to replace the hypergeometric
function in (1.4) by a rapidly convergent expression, whichcan be approximated by truncated
Taylor series with a small number of terms. Moreover, we can choose an elliptic trajectoryγ
so that our new expression is in a form suitable for discretization with DFT and the outcome
is a high-accuracy approximation for the Legendre coefficients obtained with a single FFT,
hence inO(N logN) operations, followed byO(N) post-processing.

The outcome of this rather convoluted mathematical journeyis thus a surprisingly simple
numerical algorithm.

In Section 2 we derive the expression (1.4) by two different routes. We commence from
the formula (1.3): this has the virtue of simplicity and of reliance on known formulæ. How-
ever, we believe that an alternative, direct derivation of (1.4) is of interest, since it explains in
a much more profound mannerwhy this strange expression makes sense.

Section 3 is devoted to the derivation of our numerical algorithm. Thus, we subject (1.4)
to a transformation that converts the hypergeometric function into rapidly-convergent expres-
sion, choose a contourγ which is amenable to DFT and conclude with our algorithm for an
O(N logN) calculation of Legendre coefficients.

More specifically, for the benefit of readers who do not wish towade through mathematical
details, just to acquint themselves with the algorithm, we chooser ∈ (0, 1] so that the ellipse
1
2 (r−1e−iθ + reiθ), θ ∈ [−π, π], lies in the domain of analyticity of the functionf (or, for
r = 1, ‘collapses’ to[−1, 1]) and compute the FFT{κN,k}N−1

k=0 of the sequence

{(1 − r2ω2k
M )f( 1

2 (r−1ω−k
N + rωr

N )) : k = 0, 1, . . . , N − 1},
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whereωN = exp 2πi
N andN is a suitably large integer. Next, chooseM ∈ Z+ and, for all

m = 1, 2, . . . , N − 1 − 2M andm = 1, 2, . . . , N − 1 − 2M calculate

g̃0,0 = 1, g̃m,0 =
mr

m− 1
2

g̃m−1,0, g̃m,j =
(m+ j)(j − 1

2 )r2

j(m+ j + 1
2 )

g̃m,j−1.

Finally, approximate

f̃m ≈
M
∑

j=0

g̃m,jκN,m+2j , m = 0, 1, . . . , N − 1 − 2M.

In Section 4 we present few numerical examples, briefly debate implementation details
and discuss future directions.

It is a matter for intense satisfaction that two ideas due to mathematical giants of the
early Nineteenth Century – Carl Friedrich Gauss’s Fast Fourier Transform (Gauss 1866)1 and
Adrien-Marie Legendre’s expression of general powers ofx in the basis of ‘his’ polynomials
– combine to address an important computational challenge of the Twenty First Century.

2 An integral expression for Legendre coefficients

2.1 The functionsϕm

Substitution of the Cauchy formula into the expression (1.3) results in

f̂m = (2m+ 1)
∞
∑

n=0

(m+ 2n)!

2m+2nn!(3
2 )m+n

1

2πi

∫

γ

f(z)

zm+n+1
dz, m ∈ Z+.

However,

( 3
2 )m+n = (3

2 )m(m+ 3
2 )n, (m+ 2n)! = 22nm!(m+1

2 )n(m+2
2 )n.

Therefore

f̂m =
(2m+ 1)m!

2m( 3
2 )m

1

2πi

∫

γ

∞
∑

n=0

f(z)

zm+1

(m+1
2 )n(m+2

2 )n

n!(m+ 3
2 )n

1

z2n
dz

=
2m(m!)2

(2m)!

1

2πi

∫

γ

f(z)

zm+1 2F1

[

m+1
2 , m+2

2 ;
m+ 3

2 ;

1

z2

]

dz

=
cm
2πi

∫

γ

f(z)

zm+1
ϕm(z) dz, m ∈ Zm,

where

cm =
2m(m!)2

(2m)!
, ϕm(z) = 2F1

[

m+1
2 , m+2

2 ;
m+ 3

2 ;

1

z2

]

, m ∈ Z+.

1Gauss apparently discovered the FFT in 1805 but never bothered to publish it in his lifetime, a unique exemplar
of ‘perish and publish’.
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This proves (1.4) but note that we have left the exact nature of the contourγ deliberately
vague. Whileany closed curveγ surrounding the origin with winding number 1 inΩ will
do for the computation of an arbitrary derivative off by means of the Cauchy theorem, this
need not (and is not) the case with (1.4). Indeed, the simplicity of the proof of this formula is
deceptive because it rests upon the interchange of infinite summation and integration. This in
turn depends on the properties of the integrand and cannot betaken for granted.

Our first observation is that the analyticity of the hypergeometric function (1.5) is assured
only for |z| < 1. This might indicate thatγ must lie in the exterior of the closed unit disc, but
this is unnecessarily restrictive.

Proposition 1 The domain of analyticity of the functionϕm,m ∈ Z+, is C \ [−1, 1].

Proof Although the statement of this proposition would not surprise experts in special
functions, we believe that it is valuable to present its proof for the sake of completeness. We
commence from the integral representation

2F1

[

a, b;
c;

z

]

=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − zt)−a dt

whereb, c andc− b are neither zero nor a negative integer (Rainville 1960, p. 47). Therefore

ϕn(z) =

∫ 1

0

t
1

2
n(1 − t)

1

2
(m−1)

(

1 − t

z2

)− 1

2
(m+1)

dt,

which is integrable (and analytic) forz ∈ C \ [−1, 1]. It remains to show thatϕm cannot be
analytic anywhere on[−1, 1]. We commence by showing thatz = 1 (hence,ϕm being even,
alsoz = −1) results in divergence. To this end we use the classical formula

2F1

[

a, b;
c;

1

]

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

which is valid for alla, b, c ∈ C provided thatc is neither zero nor a negative integer and that
Re (c−a−b) > 0 (Rainville 1960, p. 49). Therefore, lettingc = a+b+ε, where0 < ε≪ 1,
we have

2F1

[

a, b;
a+ b+ ε;

1

]

=
Γ(a+ b)

Γ(a)Γ(b)
Γ(ε)[1 + O(ε)].

Lettinga = m+1
2 , b = m+2

2 and allowingε→ 0 confirms thatϕm(1) = +∞.
It remains to prove thatϕm fails to be analytic forx ∈ (−1, 1) \ {0}. But in that case

ϕm(x) =

∞
∑

k=0

(m+1
2 )k(m+2

2 )k

k!(m+ 3
2 )k

1

x2k
≥

∞
∑

k=0

(m+1
2 )k(m+2

2 )k

k!(m+ 3
2 )k

= ϕm(1)

and the assertion follows. 2

We have just demonstrated that the analyticity of eachϕm fails exactly along the support
of the Legendre measure, whereϕm has a branch cut.

But what isϕm? It is easy to verify that

ϕ0(z) = 1
2z log

z + 1

z − 1
(2.1)
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but general form ofϕm for all m ∈ Z+ is not available. Fortunately, it is possible to establish
a relationship betweenϕm andϕ0 which identifies contoursγ which are allowed in (1.4) and,
incidentally, proves the above formula in an alternative manner.

2.2 A direct proof of (1.4)

Let

Km(z) =
cm

2m+ 1

ϕm(z)

zm+1
, m ∈ Z+.

Direct computation confirms that

K1(z) = P1(z)K0(z) − 1,

K2(z) = P2(z)K0(z) − 3
2z,

K3(z) = P3(z)K0(z) − 5
2z

2 + 2
3 ,

motivating the next lemma.

Lemma 2 For everym ∈ Z+ is it true that

Km(z) = Pm(z)K0(z) + qm(z), m ∈ Z+, (2.2)

whereqm is a polynomial.

Proof The assertion of the theorem will be proved separately for even and odd values of
m, commencing from an explicit representation of Legendre polynomials,

P2m(z) =

m
∑

k=0

(−1)m−k( 1
2 )m+k

(m− k)!(2k)!
X−2k,

P2m+1(z) =
m

∑

k=0

(−1)m−k( 1
2 )m+k+1

(m− k)!(2k + 1)!
X−2k−1,

whereX = (2z)−1 (Rainville 1960, p. 157). Thus,

K2m(z) − P2m(z)K0(z) =
24m+1(2m)!(3

2 )2m

(4m+ 1)!

∞
∑

k=0

(2m+ 2k)!

k!(3
2 )2m+k

X2k+2m+1

− 2

m
∑

j=0

(−1)m−j( 1
2 )m+j

(m− j)!(2j)!

∞
∑

k=0

(2k)!

k!(3
2 )k

X2k−2j+1

= 24m+1 (2m)!(3
2 )2m

(4m+ 1)!

∞
∑

k=m

(2k)!

(k −m)!(3
2 )m+k

X2k+1

− 2

m
∑

j=0

∞
∑

k=−j

(−1)m−j( 1
2 )m+j

(m− j)!(2j)!

(2k + 2j)!

(k + j)!(3
2 )k+j

X2k+1.

Since
24m(2m)!(3

2 )2m

(4m+ 1)!
= 1,
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we thus deduce that

K2m(z) − P2m(z)K0(z) = 2

∞
∑

k=m

(2k)!

(k −m)!(3
2 )m+k

X2k+1 (2.3)

− 2

∞
∑

k=−m





∞
∑

j=max{0,−k}

(−1)m−j( 1
2 )m+j(2k + 2j)!

(n− j)!(2j)!(k + j)!(3
2 )k+j



X2k+1.

Let k ≥ 0. Then the coefficient ofX2k+1 in the second sum is

αk = 2

m
∑

j=0

(−1)m−j( 1
2 )m+j(2k + 2j)!

(m− j)!(2j)!(k + j)!(3
2 )k+j

.

Moreover, for every0 ≤ j ≤ m, k ≥ 0

( 1
2 )m+j = (1

2 )m(m+ 1
2 )j , (2k + 2j)! = (2k)!22j(k + 1

2 )j(k + 1)j ,

1

(m− j)!
=

(−1)j(−m)j

m!
,

1

(2j)!
=

1

22j( 1
2 )jj!

,
1

( 3
2 )k+j

=
1

( 3
2 )k(k + 3

2 )j

and therefore

αk = 2(−1)m (2k)!(1
2 )m

m!k!(3
2 )k

3F2

[

−m,m+ 1
2 , k + 1

2 ;
1
2 , k + 3

2 ;
1

]

, k ≥ 0.

(We refer to (Rainville 1960) to the definition of generalized hypergeoemtric functions.) How-
ever, according to (Rainville 1960, p. 87) and provided thatneitherc nor 1 + a + b − c −m
are zero or a negative integer, it is true that

3F2

[

−m,a, b;
c, 1 + a+ b− c−m;

1

]

=
(c− a)m(c− b)m

(c)m(c− a− b)m
.

In our casea = m+ 1
2 , b = k + 1

2 , c = 1
2 and, since

(−m)m = (−1)mm!, (−k)m =
(−1)mk!

(k − n)!
,

1

(−m− k − 1
2 )m

=
(−1)m

(k + 3
2 )m

,

we deduce that

αk =
2(2k)!

(k − n)!(3
2 )k+m

, k ≥ 0.

This is a perfect match for the first sum in (2.3), we deduce that

K2m = P2m(z)K0(z) −
n−1
∑

k=1





m−1
∑

j=k

(−1)m−j( 1
2 )m+j(2j − 2k)!

(m− j)!(2j)!(j − k)!(3
2 )j−k



 z2(k−1)

and obtain the polynomialq2n explicitly.
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Likewise (and with fewer details)

K2m+1 − P2m+1(z)K0(z)

=
24m+3(2m+ 1)!(3

2 )2m+1

(4m+ 3)!

∞
∑

k=0

(2m+ 2k + 1)!

k!(3
2 )2m+k+1

X2(k+m+1)

− 2

m
∑

j=0

(−1)m−j( 1
2 )m+j+1

(m− j)!(2j + 1)!

∞
∑

k=0

(2k)!

k!(3
2 )k

X2(k−j)

= 2
∞
∑

k=m+1

(2k − 1)!

(k −m− 1)!(3
2 )m+k

X2k

− 2

∞
∑

k=−m





m
∑

j=max{0,−k}

(−1)m−j( 1
2 )m+j+1(2k + 2j)!

(m− j)!(2j + 1)!(k + j)!(3
2 )k+j



X2k.

Fork ≥ 0 the coefficient ofX2k in the first sum is

2
m

∑

j=0

(−1)m−j( 1
2 )m+j+1(2k + 2j)!

(m− j)!(2j + 1)!(k + j)!(3
2 )k+j

= 2
(−1)m( 1

2 )m+1(2k)!

m!k!(3
2 )k

m
∑

j=0

(−m)j(m+ 3
2 )j(k + 1

2 )j

j!(3
2 )j(k + 3

2 )j

= 2
(−1)m( 1

2 )m+1(2k)!

m!k!(3
2 )k

3F2

[

−m,m+ 3
2 , k + 1

2 ;
3
2 , k + 3

2 ;
1

]

= 2
(−1)m( 1

2 )m+1(2k)!

m!k!(3
2 )k

× (−m)m(−k + 1)m

( 3
2 )m(−m− k − 1

2 )m

=
2(2k − 1)!

(k −m− 1)!(3
2 )k+m

,

perfectly matching the coefficient ofX2k+1 in the second sum. We deduce that alsoK2m+1−
P2m+1(z)K0(z) is a polynomial. The proof of (2.2) is thus complete. 2

Theorem 3 Letγ be an arbitrary closed curve inΩ\ [−1, 1], circling the origin with winding
number 1. Then

f̂m =
cm
2πi

∫

γ

f(z)

zm+1
ϕm(z) dz, m ∈ Z+. (2.4)

Proof Because of (2.2), substituting the explicit form ofK0 (cf. (2.1)) into the integral,
we have

cm
2πi

∫

γ

f(z)

zm+1
ϕm(z) dz = −2m+ 1

2πi

∫

γ

f(z)Km(z) dz

= −2m+ 1

2πi

∫

γ

f(z)[Pm(z)K0(z) + qn(z)] dz

=
m+ 1

2

2πi

∫

γ

f(z)Pm(x) log
z + 1

z − 1
dz,
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because
∫

γ
f(z)qn(z) dz = 0 for analyticf and polynomialqn. However, for any functiong

analytic inΩ
1

2πi

∫

γ

g(z) log
z + 1

z − 1
dz =

∫ 1

−1

g(x) dx

(Trefethen 2008), thus we deduce that

cm
2πi

∫

γ

f(z)

zm+1
ϕm(z) dz = (m+ 1

2 )

∫ 1

−1

f(x)Pm(x) dx = f̂m,

as asserted in (2.4). 2

The method of proof of the theorem indicates thatKm is, up to rescaling, nothing else but
Pm log z+1

z−1 , plus a polynomial which makes no difference to the integral. This might lead us
to consider the computation of

f̂m =
m+ 1

2

2πi

∫

γ

f(z)Pm(z) log
z + 1

z − 1
dz, m ∈ Z+, (2.5)

in place of (2.4). An added attraction of (2.5) is that, replacing (m + 1
2 )Pm therein by other

orthogonal polynomials, this approach might lead to a more general methodology, applicable
to other orthogonal polynomial systems. Unfortunately, this idea does not lead anywhere.

Fig. 2.1 displays the functionsP20(z) log z+1
z−1 andϕ20(z) on the circle|z| = 2. The first

function oscillates rapidly – this is not surprising since the Argument Principle implies that
Pm windsm times along the circle|z| = r > 1. This indicates that the calculation of the
integral for large values ofm is likely to be problematic. The second function, however, does
not appear to be oscillatory at all, and this makes it much more amenable for quadrature.

Most importantly, while it is not clear at all how to compute
∫

γ
f(z)Pm(z) log z+1

z−1 dz
rapidly with the FFT, we demonstrate in the next section that, subject to further work, this can
be accomplished for (2.4).

2.3 An interpretation in terms of Legendre functions of the second kind

Both formula (2.4) and the representation (2.2) can be interpreted in terms ofLegendre func-
tions of the second kindQν (Abramowitz & Stegun 1964, p. 332). Such functions are solutions
of Legendre’s equations valid in the plane cut along the realaxis from+1 to −∞ (Whittaker
& Watson 1902, p. 316). In particular, for integer parameters theNeumann representation
holds,

Qm(z) = 1
2

∫ 1

−1

Pm(x)

z − x
dx, m ∈ Z+

(Whittaker & Watson 1902, p. 320). Legendre coefficients can be expressed explicitly in
terms of integrals with Legendre functions of the second kind,

f̂m =
2m+ 1

2πi

∫

γ

f(z)Qm(z) dz, m ∈ Z+ (2.6)

(Whittaker & Watson 1902, p. 322). Since both (2.4) and (2.6) are valid for all analyticf , it
follows that

Qm(z) =
cm

2m+ 1

ϕm(z)

zm+1
, m ∈ Z+ (2.7)
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Figure 2.1: The plots ofP20(2eiθ) log 2eiθ+1
2eiθ−1

(on the left) andϕ20(2eiθ), θ ∈ [−π, π] in the
complex plane (upper row) and their real (solid line) and imaginary (dashed line) parts.

is nothing else but our functionKm! Note that this expression of Legendre functions of the
second kind in hypergeometric form appears to be new.2 Moreover,

Qm(z) = 1
2Pm(z) log

1 + z

1 − z
+

⌊(m−1)/2⌋
∑

k=0

2k − 4k − 1

(2k + 1)(m− k)
Pm−2k−1(z)

(Abramowitz & Stegun 1964, p. 334), which confirms (2.2).

2Cf. the page /HypergeometricFunctions/LegendreQGeneral/26/01/01/ on the
http://functions.wolfram.com website for seven assorted – yet different – expressions ofQν in
hypergeometric form, all lacking relevance for our purpose.
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3 A hypergeometric transformation and a numerical
algorithm

3.1 The integral formula and FFT

The formula (2.4) canin principlebe approximated by DFT, lending itself to calculation with
FFT. Thus, let

ϕm(z) =

∞
∑

j=0

hm,j

z2j
, where hm,j =

(m+1
2 )j(

m+2
2 )j

j!(m+ 3
2 )j

, j,m ∈ Z+.

By virtue of the analyticity off andϕm, (2.4) is equivalent to

f̂m =
cm
2πi

∞
∑

j=0

hm,j

∫

γ

f(z)

zm+2j+1
dz, m ∈ Z+,

and this can be approximated by truncating the infinite series,

f̂m =
cm
2πi

M
∑

j=0

hm,j

∫

γ

f(z)

zm+2j+1
dz, m ∈ Z+,

for sufficiently largeM ∈ N. (Note that this procedure is nothing else but truncating the
expansion (1.3) and evaluating derivatives by Cauchy integrals.) This can be approximated
by DFT, considering a circular countour|z| = r−1, wherer ∈ (0, 1). The outcome is

f̂m ≈ cmr
m

M
∑

j=0

hm,jr
2j 1

N

N−1
∑

k=0

f(r−1ωk
N )ω

k(m+2j)
N , (3.1)

whereωN = exp 2πi
N andN ∈ N is a sufficiently large composite integer. Let

σN,m =
1

N

N−1
∑

k=0

f(r−1ωk
N )ωkm

N , m = 0, 1, . . . , N − 1.

Then (3.1) yields

f̂m ≈ cmr
m

M
∑

j=0

hm,jr
2jσN,m+2j , m = 0, 1, . . . , N − 1 − 2M.

The overall cost of this procedure isO(N log) + O(MN) and everything hinges upon our
choice ofM . As long as the Taylor expansion ofϕm decays rapidly, we may choose smallM
– ideally eitherM = O(1) or, at most,M = O(logN). This, unfortunately, is not the case.

Fig. 3.1 displays the order of magnitude (in decimal digits)of r−2jhm,j for three different
values ofm. Thus, form = 10, to attain accuracy of 20 decimal digits, we requireM = 61.
This increases toM = 120 for m = 100 and toM = 295 for m = 400. Worse, since the
r−2jhm,j tend first to increase, before asymptotic decrease sets in, we need about 43 decimal
digits to calculatêf400 to 20 significant digits. This is a clear nonstarter!

11



Figure 3.1:− log10(r
−2jhm,j) for r = 3

2 and different values ofm.

3.2 A hypergeometric transformation

With many mathematical constructs the underlying problem is scarcity of information. In-
sofar as hypergeometric functions are concerned, the problem is arguably of an information
glut. The Wolfram Research websitehttp://functions.wolfram.com has 111951
different formulæ for the2F1 functions: 111950 of those are not very helpful to the task in
hand. Fortunately, the one designated

HypergeometricFunctions/Hypergeometric2F1/16/01/01/0004/
therein, can be used to transform the integrand into considerably more tractable form.

Thus, leta, b, c ∈ C be given, wherec is neither zero nor negative integer, and suppose
thatζ ∈ C, Re ζ < 1. Then

2F1

[

a, a+ 1
2 ;

c;
2ζ − ζ2

]

= (1 − 1
2ζ)

−2a
2F1

[

2a, 2a− c+ 1;
c;

ζ

2 − ζ

]

. (3.2)

We seta = m+1
2 , c = m+ 3

2 , whereby (3.2) yields

2F1

[

m+1
2 , m+2

2 ;
m+ 3

2 ;
2ζ − ζ2

]

=
1

(1 − 1
2ζ)

n+1 2F1

[

m+ 1, 1
2 ;

m+ 3
2 ;

ζ

2 − ζ

]

.

Note that

2F1

[

m+ 1, 1
2 ;

m+ 3
2 ;

z

]

=

∞
∑

j=0

gm,jz
j , where gm,j =

(m+ 1)j(
1
2 )j

j!(m+ 3
2 )j

∈ (0, 1).

Therefore the hypergeometric function on the right converges rapidly for small|ζ/(2 − ζ)|.
Let r ∈ (0, 1). We choose a negatively-orientedBernstein ellipse,namely the contour

{z = 1
2 (r−1e−iθ + reiθ) : θ ∈ [−π, π]}.

Requiring2ζ − ζ2 = z−2 results in

ζ =
2reiθ

r−1e−iθ + reiθ
,

ζ

2 − ζ
= r2e2iθ,

1

1 − 1
2ζ

= reiθ(r−1e−iθ + reiθ),

12



therefore, by serendipitous cancellation,

1

zm+1
ϕm(z) = 2m+1rm+1ei(m+1)θ

2F1

[

m+ 1, 1
2 ;

m+ 3
2 ;

r2e2iθ

]

.

Since
dz = − 1

2 ir−1e−iθ(1 − r2e2iθ) dθ,

we deduce from (2.4) that

f̂m =
c̃mr

m

2π

∫ π

−π

(1− r2e2iθ)f( 1
2 (r−1e−iθ + reiθ))2F1

[

m+ 1, 1
2 ;

m+ 3
2 ;

r2e2iθ

]

eimθ dθ, (3.3)

where

c̃m = 2mcm =
22m(m!)2

(2m)!
, m ∈ Z+.

3.3 A Fast Legendre Transform

We proceed as in Subsection 3.1, truncating the Taylor expansion of an2F1 function, except
that our starting point is the formula (3.3). Thus, letN be a suitably large composite integer
and

κN,m =
1

N

N−1
∑

k=0

(1 − r2ω2k
N )f( 1

2 (r−1ω−k
N + rωk

N ))ωmk
N , m = 0, 1, . . . , N − 1 (3.4)

be the DFT of the sequence

{(1 − r2ω2k
N )f( 1

2 (r−1ω−k
N + rωk

N )) : k = 0, . . . , N − 1}.

We approximate (3.3), replacing the hypergeometric function by its truncated Taylor expan-
sion and the integral by DFT, whence

f̂m ≈ c̃m
2π

M
∑

j=0

gm,jr
m+2j 1

2π

∫ π

−π

(1 − r2e2iθ)f( 1
2 (r−1e−iθ + reiθ))ei(m+2j)θ dθ

≈ c̃m

M
∑

j=0

gm,jr
m+2j 1

N

N−1
∑

k=0

(1 − r2ω2k
N )f( 1

2 (r−1ω−k
N + rωk

N ))ω
(m+2j)k
N

=
M
∑

j=0

g̃m,j(r)κN,m+2j , m = 0, 1, . . . , N − 1 − 2M, (3.5)

where

g̃m,j(r) = c̃mgm,jr
m+2j =

22m(m!)2(m+ 1)j(
1
2 )j

(2m)!j!(m+ 3
2 )j

rm+2j , m ∈ Z+, j = 0, . . . ,M.

13



Note that thẽgm,js can be obtained by recursion inO(MN) operations,

g̃0,0 = 1, g̃m,0 =
mr

m− 1
2

g̃m−1,0,

g̃m,j =
(m+ j)(j − 1

2 )r2

j(m+ j + 1
2 )

g̃m,j−1, j = 1, 2, . . . ,M,



















m = 1, 2, . . . , N−1−2M.

Since (3.4) can be accomplished with FFT inO(N logN) operations, while both (3.5) and
the computation of thẽgg,js bear the price tag ofO(MN) flops, the basic requirement is that
M is small – ideally,M = O(1), but even withM = O(logN) we still have anO(N logN)
algorithm.

The main approximation step consists of replacing infinite series with its truncated Taylor
series. Let‖f‖∞ be the maximum of|f | on the ellipse. The discarded tail can be bounded
with ease,

TM,m :=

∣

∣

∣

∣

∣

∣

c̃m

∞
∑

j=M+1

gm,jr
m+2j 1

2π

∫ π

−π

(1 − r2e2iθ)f( 1
2 (r−1e−2iθ + reiθ))ei(m+2j)θ dθ

∣

∣

∣

∣

∣

∣

≤ c̃m(1 + r2)‖f‖∞
∞
∑

j=M+1

|g|m,jr
m+2j ≤ c̃m

1 + r2

1 − r2
‖f‖∞rm+2M+2,

because|gm,j | ≤ 1. It is trivial to prove with the Stirling formula (Abramowitz & Stegun
1964, p. 257) that

(πm)
1

2 ≤ c̃m ≤ 2m
1

2 , m = 1, 2, . . . .

Therefore

|TM,m| ≤ max{1, 2m 1

2 }1 + r2

1 − r2
‖f‖∞rm+2M+2, m = 0, 1, . . . , N − 2M − 1.

The functionx
1

2 rx reaches its maximum forx > 0 atxmax = (−2 log r)−1, where it equals
e−

1

2 (−2 log r)−
1

2 . Therefore we obtain the uniform bound

|TM,m| ≤ max

{

1, e−
1

2

(

− 2

log r

)
1

2

}

1 + r2

1 − r2
‖f‖∞r2M+2.

It follows that, in order to restrict the magnitude of the tail uniformly below given tolerance
δ > 0, it is enough to choose

M ≥ 1
2

log max

{

1, e−
1

2

(

− 2
log r

)
1

2

}

+ log 1+r2

1−r2 + log ‖f‖∞ − log δ

− log r
− 1. (3.6)

The bound (3.6) depends just on the toleranceδ > 0, the size of|f | on the ellipse and
the parameterr ∈ (0, 1): clearly, our lower bound onM becomes large the nearerr is to
1. It is however independent ofN and we deduce thatM = O(1): our algorithm is truly
O(N logN).

It is important to emphasize (a point which we reiterate in the next section) that the bound
(3.6) typically vastly overestimates the least value ofM required to produce the coefficients
to given accuracy. Its sole role is in establishing the cost of the algorithm and it should not be
used as a practical means for choosingM .
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3.4 Betwixt Legendre and Chebyshev

An obvious question is what happens once we allowr = 1 in (3.3). The outcome,

f̂m =
c̃m
2π

∫ π

−π

(1 − e2iθ)f(cos θ)2F1

[

m+ 1, 1
2 ;

m+ 3
2 ;

e2iθ

]

eimθ dθ (3.7)

=
c̃m
2π

∫ π

−π

(1 − e2iθ)f(cos θ)ψm(e2iθ)eimθ dθ, where ψm(z) = 2F1

[

m+ 1, 1
2 ;

m+ 3
2 ;

z

]

,

can be used to design an alternative to algorithm (3.5), but first we need to consider the
convergence of the integral in (3.7). It follows from (2.1) that

ψ0(z) = 1
2z

−1 log
1 + z

1 − z
.

Moreover,ϕm(z) = eimθψm(e2iθ). Butψm(z) = (2m + 1)c−1
m zm+1Km(z) and we deduce

from (2.2) that the integrand of (3.7) has logarithmic singularity at θ = ±π. Such singularity
is too weak to disrupt existence and boundedness of the integral (3.7) for analyticf and all
m ∈ Z+.

We next replaceψm by its Taylor expansion and interchange integration and summation,
whence

f̂m =
c̃m
2π

∞
∑

j=0

gm,j

∫ π

−π

f(cos θ)(1 − e2iθ)ei(m+2j)θ dθ

= 1
2 c̃m

∞
∑

j=0

gm,j(f̌m+2j − f̌m+2j+2), m ∈ Z+,

where

f̌m =
1

π

∫ π

−π

f(cos θ)eimθ dθ, m ∈ Z+.

Note however thatf(cos θ) is an even function, therefore
∫ π

−π
f(cos θ) sinmθ dθ = 0 and

f̌m =
1

π

∫ π

−π

f(cos θ) cosmθ dθ, m ∈ Z+,

is themth Chebyshev coefficientof f ,

f(x) = 1
2 f̌0T0(x) +

∞
∑

m=1

f̌mTm(x).

Let

σN,m =
2

N

N−1
∑

k=0

f(cos 2πk
N ) cos 2πkm

N , m = 0, . . . , N − 1,

be the Discrete Cosine Transform discretization of{f̌m}N−1
m=0. Analogously to (3.5), we de-

duce the approximation

f̂m ≈ 1
2 c̃m

M
∑

j=0

g̃m,j(1)(σN,m+2j − σN,m+2j+2), j = 0, 1, . . . , N − 2M − 3, (3.8)
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where the functions̃gm,j have been already defined in Subsection 3.3.
The algorithm (3.8), being restricted to[−1, 1], enjoys an important advantage over (3.5)

when the functionf has singularities near the interval.
The calculation of (3.8) requiresO(N logN) + O(MN) operations. However, the anal-

ysis of Subsection 3.3 which led to theO(N logN) cost of the algorithm (3.5) is no longer
valid in the present setting. Instead, recalling that

ψm(z) =
∞
∑

j=0

gm,jz
j , where |gm,j | ≤ 1,

and, like in Subsection 3.3, denoting the tail byTM,m, we observe that

TM,m =
c̃m
2π

∫ π

−π

f(cos θ)(1 − e2iθ)eimθ
∞
∑

j=M+1

gm,je
2ijθ dθ

=
c̃m
2π

∞
∑

j=M+1

gm,j

∫ π

−π

f(cos θ)[cos((m+ 2j)θ) − cos((m+ 2j + 2)θ)]

= 1
2 c̃m

∞
∑

j=M+1

gm,j [ǧm+2j − f̌m+2j+2],

where we have used the parity off(cos θ). Therefore

|TM,m| ≤ 1
2 c̃m

∞
∑

j=M+1

(|f̌m+2j | + |f̌m+2j+2|). (3.9)

Recall thatf is analytic in an open setΩ such that[−1, 1] ⊂ Ω. Therefore there existd > 0
andα > 0 (whose size depends solely on the eccentircity of the largest Bernstein ellipse that
can be fitted intoΩ) such that|f̌k| ≤ de−αk, k ∈ Z+. We thus deduce from (3.9) that

|TM,m| ≤ 1
2 c̃md

1 + e2α

1 − e2α
e−α(m+2M+2), m,M ∈ Z+.

Recall from Subsection 3.3 that(πm)
1

2 c̃m ≤ 2m
1

2 ,m ∈ Z. Therefore

c̃me−αm ≤ max{1, 2m 1

2 e−αm} ≤ max

{

1,
1

(2αe)
1

2

}

, m ∈ Z+,

where we have used the fact that1/(2α) > 0 is the global maximum ofx
1

2 e−αx. We thus
deduce that for everyM,m ∈ Z+ the magnitude of the tail can be uniformly bounded by
d̃e−2αM , whered̃ ≥ 0 depends only upon the functionf . We thus can, given toleranceδ > 0,
chooseM ∈ Z+ so that all the computed coefficients carry at most errorδ, thereby deducing
that the cost of the method is indeedO(N logN).

The calculation of Chebyshev coefficients forms a central role in two existing algorithms
for the computation of Legendre coefficients (Alpert & Rokhlin 1991, Potts et al. 1998). Yet,
both the mathematical premise of these methods and their practice are different from (3.8).
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4 Numerical examples and conclusions

4.1 Numerical examples

In Fig. 4.1 we display the number of significant decimal digits, once Legendre coefficients of
the entire functionf(x) = ex are computed with the algorithm from Subsection 3.3. We have
usedN = 512 in all computations and the calculations have been carried out to 20 significant
decimal digits.3 Further numerical evidence for this function is exhibited in Table 1.

Figure 4.1: The number of significant digits recovered in computing f̂m, m = 0, . . . , 50, for
f(x) = ex with N = 512 and different values ofr ∈ (0, 1): here• corresponds toM = 2, +

toM = 4, ♦ toM = 6, 2 toM = 8 and∗ toM = 10.

3Except that, in order to calculate sufficiently reliable reference values of̂fm by ordinary quadrature in MAPLE,
we have been forced to use up to 200 significant digits.
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Table 1: Absolute errors in computinĝfm for f(x) = ex andm = 0, 10.

m = 0 M = 2 M = 4 M = 6 M = 8 M = 10 M = 12

r = 1
4 3.21−06 2.50−11 4.73−17 1.00−19 1.00−19 1.00−19

r = 1
2 3.21−06 2.50−11 4.72−17 2.00−19 2.00−16 2.00−19

r = 3
4 3.21−06 2.50−11 4.74−17 1.70−19 1.70−19 1.70−19

r = 1 3.21−06 2.50−11 4.74−17 1.39−20 1.20−20 1.19−20

r = 3
4

(30 digits)
3.21−06 2.50−11 4.74−17 1.76−20 1.76−20 1.76−20

r = 3
4

(N = 256)
3.21−06 2.50−11 4.70−17 4.00−19 4.00−19 4.00−19

m = 10 M = 2 M = 4 M = 6 M = 8 M = 10 M = 12

r = 1
4 1.16−18 3.68−25 8.23−25 8.23−25 8.23−25 8.23−25

r = 1
2 1.16−18 1.28−22 1.28−22 1.28−22 1.28−22 1.28−22

r = 3
4 1.16−18 8.62−21 8.77−21 8.80−21 8.79−21 8.79−21

r = 1 1.33−18 2.05−19 2.27−19 4.01−19 4.18−19 3.89−19

r = 3
4

(30 digits)
1.16−18 4.58−25 2.83−29 2.84−25 2.84−29 2.84−29

r = 3
4

(N = 256)
1.16−18 1.17−20 1.20−20 1.19−20 1.19−20 1.19−20

Several observations are evident from both Fig 4.1 and Table1.

1. For small values ofm we need relatively large value ofM in (3.5) to ensure that the
error is suitably small.4 Moreover, larger values ofr ∈ (0, 1] appear to produce better
performance in this regime.

2. The picture changes completely for largem, when very good results can be obtained
with small values ofM – in fact, increasingM brings no benefit. Moreover, forr ∈
(0, 1) accuracy goes on increasing geometrically withm, faster forsmall r. In all
likelihood, this is caused by the term̃gm,j(r) in (3.5), which scales likerm+2j .

3. The choicer = 1, whereby the Bernstein ellipse ‘collapses’ to[−1, 1], seems to pro-
duce small uniform error and is competitive withr ∈ (0, 1).

4. There are three possible sources of error in our algorithm: (a) replacing integrals by
DFT, (b) truncating the2F1 function, and (c) finite accuracy of floating-point arithmetic.
The first source of error is quantified byN , the second byM and the last by the number
of significant digits (or the “machine epsilon”). In Table 1 we have displayed the error
for r = 3

4 also when 30 decimal digits have been used. A comparison withthe third
row (which corresponds to the samer with just 20 significant digits) is instructive. For
m = 0 the outcome is fairly similar: increasing computer accuracy does not improve

4Yet, these values aremuchsmaller than those in inequality (3.6)!
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the algorithm while increasingM definitely does! However, the picture changes for
m = 10. ForM = 2 the results are identical, but takingM ≥ 4 increased computer
accuracy definitely improves performance form = 10. On the other hand, once we
replaceN = 512 with N = 256, another result reported in the table, the errors do not
change significantly.

The conclusion we draw is that the number of pointsN used in DFT need not to be
unduly large unless the functionf itself changes rapidly. What matters is the size ofM for
smallm, while for largem we are restricted by computer accuracy. Moreover, althoughsmall
r ∈ (0, 1) produces superior error for largem, uniform error is smaller for larger ∈ (0, 1].

An obvious tweak to the algorithm (3.5) is to allowM to depend uponm. Thus, for small
m we use largerM but allowM to be smaller for largem. Specifically, revisiting the error
analysis in Subsection 3.3 while keepingc̃m intact results in anm-dependent choice ofM ,
namely

Mm ≥ 1
2

log c̃m + log 1+r2

1−r2 + log ‖f‖∞ − log δ

− log r
− 1 − 1

2m, m ∈ Z+. (4.1)

However, checking again the performance of the algorithm, we conclude that the upper bound
(4.1) is so pessimistic as to be practically useless. Thus, in our case, lettingδ = 10−19 and
r = 3

4 results inM0 = 79 andM10 = 77, while an error consistent with toleranceδ is
obtained in actual computation already withM = 7 for m = 0 andM = 3 for m = 10.
(Note that the purpose of the bound (3.6) was to argue that thealgorithm (3.5) isO(N logN),
rather than to offer a realistic choice ofM .)

Our next example is the rational functionf(x) = (1 + x)/(4 + x2), with poles at±2i.
Thus, we needr > rmin =

√
5− 2 ≈ 0.2361 to keep the ellipse within domain of analyticity

of f .
The conclusions from Fig 4.2 and Table 2 are fully consistentwith the experience that

we have already acquired in this section, except for the predictable observation that choosing
r = 1

4 , dangerously nearrmin, leads to significant degradation in performance – in particular,
the improvement in accuracy stalls forM = 8 . This does not represent significant hardship
because a conclusion from our both examples is that it is goodstrategy to take larger values
of r ∈ (0, 1].

4.2 Brief conclusions

In this paper we have presented a fast (that is,O(N logN)) algorithm for the calculation
of the coefficients of an expansion in Legendre polynomials.Although the mathematical
rationale for the algorithm might appear to be fairly convoluted and perhaps counter-intuitive,
the algorithm itself is exceedingly simple, requiring justa single FFT, followed by anO(N)
post-processing.

Preliminary numerical results reported above are not intended to represent comprehensive
experimentation with the algorithm, just an initial indication that it works, does so in a stable
manner and that there are no hidden perils associated with it. They also allow us to sketch,
albeit in a tentative fashion, ideas for the implementationof the algorithm with uniform pre-
cision. Thus, we recommend taking larger ∈ (0, 1], perhapsr = 1 (a choice which is more
robust in the presence of singularities off near the critical interval[−1, 1]) and vary the size
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Figure 4.2: The same as Fig. 4.1, except forf(x) = (1 + x)/(4 + x2).

of M for differentms: for smallm we take largerM but allow the latter to decrease, even
down toM = 0, for largems. A good working strategy for the choice of reasonableM for
eachm is a matter for future research.

A natural question is whether our approach generalises to other orthogonal polynomial
systems. This is a subject of ongoing research.
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Table 2: Absolute errors in computinĝfm for f(x) = (1 + x)/(4 + x2) andm = 0, 10.

m = 0 M = 2 M = 4 M = 6 M = 8 M = 10 M = 12

r = 1
4 5.59−06 1.10−08 2.51−11 1.03−13 4.14−14 4.12−14

r = 1
2 5.59−06 1.10−08 2.50−11 6.13−14 1.57−16 4.80−19

r = 3
4 5.59−06 1.10−08 2.50−11 6.13−14 1.57−16 4.70−19

r = 1 5.59−06 1.10−08 2.50−11 6.13−14 1.57−16 4.60−19

r = 3
4

(30 digits)
5.59−06 1.10−08 2.50−11 6.13−14 1.57−16 4.13−19

r = 3
4

(N = 256)
5.59−06 1.10−08 2.50−11 6.31−14 1.57−16 4.10−19

m = 10 M = 2 M = 4 M = 6 M = 8 M = 10 M = 12

r = 1
4 3.29−11 7.50−14 1.87−16 6.10−19 1.26−19 1.25−19

r = 1
2 3.29−11 7.50−14 1.87−16 4.86−19 1.29−21 9.20−24

r = 3
4 3.29−11 7.50−14 1.86−16 4.85−19 6.36−22 1.33−21

r = 1 3.29−11 7.50−14 1.87−16 5.30−19 6.63−20 6.31−20

r = 3
4

(30 digits)
3.29−11 7.50−14 1.86−16 4.86−19 1.30−21 3.57−24

r = 3
4

(N = 256)
3.29−11 7.50−14 1.86−16 4.86−19 3.08−21 2.41−21

ford).
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