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Abstract. The Fox—Li operator is a convolution operator over a finite in-
terval with a special highly oscillatory kernel. It plays an important role
in laser engineering. However, the mathematical analysis of its spectrum
is still rather incomplete. In the present paper we show how standard
Wiener—Hopf theory can be used to obtain insight into the behaviour of
the singular values of the Fox—Li operator. In addition, several approxi-
mations to the spectrum of the Fox—Li operator are discussed and results
on the singular values and eigenvalues of certain related operators are
derived.
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1. Introduction and main results

The Fox—Li operator is
1

Fud)@)i= [ gy, we (1),

-1
where w is a positive real number [12]. This is a bounded linear operator on
L?(—1,1), and its spectrum, o(F,), has important applications in laser and
maser engineering; see [16] and Section 60 of [25]. Unfortunately, little is rig-
orously known about o(F,). The operator F,, is obviously compact. Hence
o(F.,) consists of the origin and an at most countable number of eigenvalues
accumulating at most at the origin. Computation in Figure 1 seems to in-
dicate that they lie on a spiral, commencing near the point /7 /w e™/* and
rotating clockwise to the origin, except that, strenuous efforts notwithstand-
ing, the precise shape of this spiral is yet unknown.
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FIGURE 1. Fox-Li eigenvalues for w = 100 and w = 200.

Indeed, rigorous results on the spectrum of the Fox—Li operator are fairly
sparse. Henry Landau [21] studied the behaviour of the e-pseudospectrum
o-(F)={AeC: |(Fo - M) >1/¢}

as w — 00, Michael Berry and his collaborators have written a number of
papers on physical aspects of the spectrum and its applications in laser the-
ory [3], [4], [5], and, in a recent paper, three of us have analysed several
efficient numerical methods for the determination of o(F,) and, with greater
generality, of spectra of integral operators with high oscillation [11]. We also

recommend Section 60 of Trefethen and Embree’s book [25] for a nice intro-
duction into the matter.

The purpose of this paper is to explore the set s(F,) of the singular values

of F,, that is, the set of the positive square roots of the points in o(F,F}).
Here are our main results.

Theorem 1.1. We have s(F,,) C [0, /7/w) for every w > 0.

To describe the finer behaviour of s(F,) as w — oo, it is convenient to pass
to the scaled sets

ws?(F,) = {ws? 55 € s(Fu)}

Theorem 1.2. Asw — oo, the sets ws?(F,) converge to the line segment [0, 7]
in the Hausdorff metric, and, for each ¢ € (0,7/2),

lws?(F,) N (m —e,m)| = %w + o(w),

lws?(F,) N (e, 7 —¢€)| = o(w),
ws?(F) N (0,€)] = o,

where |E| denotes the number of points in E, with multiplicities counted.
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FIGURE 2. Fox-Li singular values for different values of w,
approximated as eigenvalues of a (2N +1) x (2N 4 1) matrix.

Unlike o(F,), the set s(F,) consists of points on the nonnegative real half-
line. The spiral goes away! However, Theorems 1.1 and 1.2 replace the spiral
by a different, arguably just as striking, feature: although s(F,) is all the
time contained in [0, \/7/w) and fills this segment more and more densely as
w — 00, about 4w /7 singular values cluster near the right endpoint, while the
overwhelming rest of them is concentrated near the left endpoint. Of course,
this phenomenon, illustrated for different values of w in Figure 2, is not too
much a surprise for those who are familiar with Toeplitz and Wiener—Hopf
operators with piecewise continuous symbols; see, for instance, Example 5.15
of [7]. Anyway, s(F,) provides us at least with a poor shadow of the spirals
shown in Figure 1.

Theorems 1.1 and 1.2 are not terribly new. As just said, people with a feel-
ing for Toeplitz and Wiener—-Hopf operators would expect these theorems
and nothing else. We nevertheless thought it could be worth stating them
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explicitly and citing the mathematics behind them. One piece of that mathe-
matics is the switch between convolution by the kernel k(wt) over (—1,1)
and convolution by the kernel w™'k(t) over (—w,w). At the first glance,
this might look like a triviality, but the classics, including Grenander and
Szeg6 [18], Widom [26], [27], [28] and Gohberg and Feldman [17], have demon-
strated that the right switch at the right time and the right place may
lead to remarkable insight; see also [31]. For example, in this way we may
pass from highly oscillatory kernels on (—1,1) to non-oscillating kernels on
(—w,w) =~ (0, 2w) and thus to truncated Wiener—Hopf operators. The spectral
theory of pure Wiener—Hopf operators, that is, of convolutions over (0, c0), is
simpler than that of truncated Wiener—Hopf operators. As we are the closer
to a pure Wiener—Hopf operator the larger w is, it follows that, perhaps
counter-intuitively and in a delicate sense, higher oscillations are simpler to
treat than lower oscillations.

We should also mention that the operator F,,F} is at least as important as
its coiner F,,. For instance, F,,F} is a crucial actor in random matrix theory.
There one is interested in the determinants det(I — AF,,F}) (note that F,,F%
is a trace class operator), and the study of these determinants has evolved
into results of remarkable depth; see, for example, [14], [15], [20].

The paper is organized as follows. In Section 2 we record some known results
on Wiener—Hopf operators, which are then employed in Section 3 to describe
the behaviour of the singular values and eigenvalues of fairly general convo-
lution operators with highly oscillatory kernels. Theorems 1.1 and 1.2 will
also be proved there. Section 4 contains some attempts on explaining where
the spiral in o(F,,) might come from and what its precise shape might be.

2. Wiener—Hopf operators
We denote by F : L2(R) — L?(R) the Fourier-Plancherel transform,

Fn©= [ T podstdr, ceR,

and frequently write f for Ff. Let a € L°(R). Then the multiplication
operator M(a) : f — af is bounded on the space L?(R). The convolution
operator C(a) : L?(R) — L%*(R) is defined as C(a)f = F~'M(a)Ff. The
Wiener—Hopf operator W(a) generated by a is the compression of C'(a) to
L?(0,00), that is, the operator

W(a) := P,C(a)|L*(0, 00),

where Py stands for the orthogonal projection of L?(R) onto L2(0,00). Fi-
nally, for 7 > 0, we denote by W, (a) the compression of W (a) to L2(0,7),

W, (a) := P,W(a) | L*(0,7),
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where P, : L2(0,00) — L2(0,7) is again the orthogonal projection. If a = k
for some k € L'(R) U L?(R), we have

cine = [ T ke -y fw)dy, ceR,

(W) f)(x) = / Tk -y i) dy, @€ (0,00,
W) = [ ke —9)f)dy, ze (0.7).

The relevant function a in the Fox-Li setting is

a(€) == me ™t M e R, (2.1)
For this function, C'(a) is the bounded operator given by
Can@=[ ¢ fudy, aer (22)
and letting
. Le2
4, (€) = /T jwel™ eI /) e e R, (2.3)
we get the bounded operator
Cla)pe) = [ & gy, ek, (24)
In contrast to this, the operator £, that is formally defined by
(L)@ = [ i ay, ser (25)

is not bounded on L?(R). However, the compression of the last operator to
L? over a finite interval is obviously compact.

It is well known that o(C(a)) is equal to R(a), the essential range of a. Note
also that C(a), W(a), Wr(a) are self-adjoint if a is real-valued.

Theorem 2.1. (Hartman and Wintner) If a € L (R) is real-valued, then
o(W(a)) equals convR(a), the convex hull of R(a).

The analogue of this theorem for Toeplitz matrices appeared first in [19]. A
full proof is also in Theorem 1.27 of [7] or Section 2.36 of [8]. The easiest way
to pass from Toeplitz matrices to Wiener—Hopf operators is to employ the
trick of Section 9.5(e) of [8].

Theorem 2.2. If a € L*™(R) is real-valued, then o(W;(a)) C o(W(a)) for
every T > 0, and c(W.(a)) converges to o(W(a)) in the Hausdorff metric as
T — 00.

This was established in [9]. Combining the last two theorems, we arrive at
the conclusion that if a € L (R) is real-valued, then o(W,(a)) C conv R(a)
for every 7 > 0 and (W, (a)) — conv R(a) in the Hausdorfl metric.

Theorem 2.3. If a € L*°(R) is real-valued and R(a) is not a singleton, then
an endpoint of the line segment conv R(a) cannot be an eigenvalue of W.(a).
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This is well known. The short proof is as follows. It suffices to show that if
a > 0 almost everywhere and a > 0 on a set of positive measure, then 0 is
not an eigenvalue of W, (a). Assume the contrary, that is, let W (a)f = 0 for
some f € L2(0,7) with || f|| = 1. Then

0 = (Wr(a)f, f) = (P-PLF~'M(a)Ff, [)

oo

— (M(a)Ff,Ff) = / a(©)|F () de.

The Fourier transform of the compactly supported function f cannot vanish
on a set of positive measure. Consequently, since a > 0 on a set of positive
measure, we have
| a@li©r >,
which is a contradiction.
Theorem 2.4. (Szegd’s First Limit Theorem) Let a € L>(R) N LY(R) be a
real-valued function and let ¢ € C(R) be a function such that p(x)/x has
a finite limit as © — 0. Then (Wr(a)) is a trace class operator for every
7 >0, poa belongs to L*(R), and
. tro(Wr(a) 1 /°°

lim ———= = — d¢.

Jim = — [ ela(©)a
This theorem is proved in Section 8.6 of [18]. We remark that Theorem 2.4
can be significantly sharpened (to a higher order result) if some smoothness
of the function a is required; see [13] and [29] for the discrete case. As in the
Fox—Li case the function a has jumps, we will not pursue this point here.

Let R denote the one-point compactification of R and let a € C(R). Then
the spectrum of W (a) is the union of the range R(a) = a(R) U {a(c0)} and
all points in C\ R(a) whose winding number with respect to the continuous
and closed curve R(a) is nonzero (see, e.g., Theorem VIIL.3.6 of [17] or The-
orem 2.42 plus Section 9.5(e) of [8]). It may happen that o(W(a)) = R(a).
This is of course the case if the function a is real-valued. We also encounter
this situation if

— 00

o=k = [ T k(e dr

with a kernel k € L(R) which is even, k(t) = k(—t) for all t. In the last case,
a(€) traces out a curve from the origin to a(0) as £ moves from —oco to 0
and then a(§) goes back to the origin in the reverse direction along the same
curve when £ moves further from 0 to co. Thus, all points outside this curve
have winding number zero.

Theorem 2.5. Let a € C(R)NLY(R) and suppose R(a) has no interior points
and o(W(a)) = R(a). Then o(W,(a)) — R(a) in the Hausdorff metric as
T — 00. Furthermore, if ¢ : C — C is a continuous function such that p(z)/z
has a finite limit as z — 0, then @ o a is in L'(R) and

fi L) _ 1 / " pale)) de.

T—00 T 2 oo
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This theorem is the continuous analogue of results by Widom [30] and Tilli [24]
(see also Example 5.39 of [7]). Some comments are in order.

First of all note that if A is not in R(a), then W, (a) — Al = W.(a — \)
is invertible for all sufficiently large 7 and the norms of the inverses are
uniformly bounded (see, e.g., Theorem 9.40 of [8]). This in conjunction with
the compactness of R(a) implies that if € > 0 is given then o(W;(a)) is
contained in the e-neighbourhood of R(a) for all 7 > 79(¢). The second part
of the theorem implies that in fact every point of R(a) is a limit point of a
family {\;}r>0 with Ay € (W, (a)). Consequently, o(W;(a)) — R(a) in the
Hausdorff metric.

Secondly, let ¢ be as in the theorem. Then tr (W, (a)) may simply be in-
terpreted as 3~ ¢(A;) where {A;} is the (at most countable) family of eigen-
values of W (a), counted according to their algebraic multiplicity. To prove
the second part of the theorem, one can proceed as in [24]. We only remark
that our assumption ensures that ¢(z) = zh(z) with a continuous function
h : C — C, that, by Runge’s theorem, h can be approximated uniformly on
R(a) by rational functions r,, with prescribed poles in the bounded compo-
nents of C\ R(a), and that the second part of the theorem is easy to prove
for p(z) = zr,(2).

We finally turn to the continuous analogue of the Avram-Parter theorem,
which says that we may drop real-valuedness in Theorem 2.4 when passing
from eigenvalues to singular values or equivalently, when replacing W (a) by
|W-(a)| := (Wy(a)W,(a)*)'/?. Notice that the eigenvalues of |W, (a)| are just
the singular values of W, (a).

Theorem 2.6. (Avram and Parter) Let a € L>®°(R) N LY(R) and let ¢ be a
continuous function on [0,00) such that ¢(x)/x has a finite limit as © — 0.
Then o(|Wr(a)|) is a trace class operator for every T > 0, pola| is a function
in LY(R), and

i TV @D _ 1 / " o(la(©)]) de.

T—00 T 2 oo

The discrete version of this theorem is due to Avram [2] and Parter [22]. The
proofs given in Section 5.6 of [7] or in Section 4 of [6] for the Toeplitz case
can be easily adapted to the Wiener—Hopf case.

3. Highly oscillatory convolution-type problems

An extremely fortunate peculiarity of the Fox-Li operator F,, is that F,F}
is also unitarily equivalent to a convolution operator over (—1,1). Here is the
precise result.

Lemma 3.1. Let V' be the unitary operator

ViLA(—1,1) — L3(=1,1), (Vf)(z):=e “" f(x).
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Then
L sin(2w(z — )
vEFEV @ = [ R gy we (1),
( (@) = [ = ) (-1.1)
Proof. Straightforward computation. O

Lemma 3.1 puts us into the following general context. Let a be a function in
L*°(R) N LY(R). Then a € L*(R) and hence there is a function k € L?(R)
such that a = k. Since k € LY(R), we also know that k is continuous and
k(£o0) = 0. For w > 0, we set

ky(t) := k(wt)

and consider the compression of the convolution operator C(k,) to L?(—1,1):
1

(Crrmy (b)) (@) 1= / kol —9)f@) dy, @€ (—1,1),

-1

Lemma 3.1 just says that F,F} is unitarily equivalent to C(,l)l)(l%w) with

k(t) = sin£2t),
in which case
a© =) = [ o= o (6) (3.1)

where x(q4,5) denotes the characteristic function of (a, 3).

Lemma 3.2. Let U be the unitary operator
2 2t —
U:L3(~1,1) — L(0,7), (Uf)(t):= \/;f( = T).

A 2 A
Uc(fl,l)(k'w)U* = ; Wf(k2w/7)'

Then

Proof. Taking into account that U* is given by

U L2(0,7) — L2(~1,1), (U*g)(x) = \/gg (”;T> ,

this can again be verified by direct computation. 0

Theorem 3.3. Let a € L*=(R) N LY(R) be real-valued. Then the spectrum of
wC(_y 1)( w) s contained in convR(k) for every w > 0 and converges to

conv R(k) in the Hausdorff metric as w — oo. Moreover, if p € C(R) and
o(x)/x has a finite limit as x — 0, then

- trp(wC( 1,1 (ko)) _ i/oo H(h(©)) dE.

w—00 2w 2w — 00
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Proof. Using Lemma 3.2 with 7 = 2w, we observe that the spectrum of the
operator wC(_y,1)(k,) coincides with the spectrum of Wy, (k). All assertions
are therefore immediate consequences of Theorems 2.1, 2.2 and 2.4. O

Proofs of Theorems 1.1 and 1.2. From Lemmas 3.1 and 3.2 and from (3.1)

we infer that the operator wF,F} = wC(_1)(k,) is unitarily equivalent to
the operator

2 ~
w o= W (k) = Wau(mx(-2.2)).

Theorem 3.3 now implies that ws?(F,,) is a subset of conv R(mx(_2,2)) = [0, 7]
for all w > 0 and converges to [0, 7] in the Hausdorff metric as w — co. The
point 7 cannot belong to ws?(F,), since otherwise it would be an eigenvalue
of Way,(TX(~2,2)), contradicting Theorem 2.3. This proves Theorem 1.1 and
the first part of Theorem 1.2.

To prove the second part of Theorem 1.2, let 0 < a < § < 7 and choose two
functions ¢, € C(R) such that p(x) = ¢(z) = 0 for —oco < z < /2 and
©(x) < X(a,p)(x) <Y(z) for all 2 € [0,7]. Put

Nea,p) = lws*(Fo) 0 (@, ).
Clearly,

Na,8) = tr X(a,8)(Waw (TX (-2,2)))-

Since ¢ < X(a,5) < ¥, we deduce from Theorem 2.4 that

Na tr(Wa, _

lim sup —(2 A) lim Y (Wau (mX(-22))

w—00 w W0 2w

1 oo
— %/7 Y(Tx(—2,2)()) d§
1 /2

= o [ vmae= 2y

2r ),

and, analogously,

Nap) - 2
lim inf ——= > — .
R 27 e
In the case where (o, ) = (7 — ¢, m), we may choose ¢ and ¢ so that ¢(7) =
(m) = 1, which gives
N
lim ——em _ g
w—oo 2w T
and thus N;_ ) = 4w/m + o(w). For (a,8) = (e,m — ¢), we may take
p(m) = ¢(m) = 0, resulting in
N(s,ﬂ—s) _

lim —<"=%) —,
w—00 w

which proves that N, »_.) = o(w).

Finally, by Theorem 2.3, the operator Wa, (mX(—2,2)) is injective. Conse-
quently, so also is wF,F, which implies that wF,F}, has dense and thus
infinite-dimensional range. It follows that ws?(F,) N (0,7) is an infinite set.
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As this set has only 4w /7 + o(w) points in [, 7), we arrive at the conclusion
that infinitely many points must lie in (0, ¢). O

Let us return to the general context of Theorem 3.3. Fix two real numbers
a < 3 and suppose that 0 ¢ [, ]. Including (4, ) between two continuous
functions ¢ and 1 as in the preceding proof, one obtains that if the measure
of the set {€: k(&) = a} U{€ : k(€) = B} is zero then
wC_ N (a, .
Tim. LACEE ”;w ) 0Bl _ % mes {£: k() € (0, B)},  (3.2)
mes FE denoting the (Lebesgue) measure of E.

Example 3.4. Let k(t) = e~*", in which case

a(€) = k() = Ve ¢/
Theorems 3.3 and 2.3 along with (3.2) imply that then all eigenvalues of
wC(,171)(kw) are contained in [0, /), that they fill [0, /7] densely as w — oo,
and that the number of eigenvalues of C(_lyl)(fcw) in (a/w,B/w) is

%mes (£ra<yme €4 < B +ow).
To have another example, take k(t) = (1 — cost)/t2. Then

a(§) = k(&) = (1 — [&])+-
Hence, the eigenvalues of wC(,l)l)(lAfw) fill the segment [0, 7] densely and
if 0 < a < B < 7, the number of eigenvalues of C(_; 1)(k.) belonging to
(a/w,B/w) is
2(8 — )

%mes{é:a<7r(1—\§|)+<6}—|—0(w):Tw+o(w). O

The kernel k occurring in Theorem 3.3 satisfies k(t) = k(—t) for all ¢ and
is not necessarily in L!(R). The following result addresses eigenvalues for
kernels in L!(R) for which k(t) = k(—t). Notice that neither the former nor

the latter assumptions are in force for the Fox-Li kernel k(t) = eit”

Theorem 3.5. Let k € LY(R) and suppose k(t) = k(—t) for all t and R(k) has
no interior points. Then L(JO'(C(_Ll)(/Aﬂw)) converges to R(k) in the Hausdorff
metric as w — oo and if ¢ : C — C is a continuous function such that o(z)/z
has a finite limit as z — 0, then ¢ o a is in L*(R) and

tim D eld) = 3 | et s

the sum over the A; in U(C(,l)l)(kw)).

Proof. Lemma 3.2 with 7 = 2w shows that wC'(_ i) (l%w) is unitarily equivalent
to Wau (k). As k(€) = k(=€) for all &, it follows that (W (k)) = R(k). The
assertion is therefore an immediate consequence of Theorem 2.5. O

Herewith a result on the singular values for arbitrary kernels in L!(R).
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Theorem 3.6. Let k € L'(R). Then ws(C’(_lyl)(l%w)) C R(|k|) for every w > 0

and ws(C(,Ll)(lAew)) converges to R(|k|) in the Hausdorff metric as w — oo.
Moreover, if ¢ is a continuous function on [0,00) such that ¢(z)/x has a
finite limit as x — 0 then p ok is in L*(R) and

fim oo S plwsy) = 5= [ elli©D e (5.3)

the sum over the s; in S(C(,l)l)(l;'w)).
Proof. Once more by Lemma 3.2 with 7 = 2w,
WPUC 1 1) (ko) C( 11y (ko) U™ = Wa (k) Was (k)"
whence w|C(_; 1)( )| = [Wae (k)|. First of all, this shows that
ws(C-1,1)(kw)) € [0, W (k)[I] € [0, max [k[] = R(|k]), (3.4)

and secondly, using Theorem 2.6 we obtain (3 3). Finally, (3.3) and (3.4)
together imply the convergence of ws(C(_; 1)(kw)) to R(k) in the Hausdorff
metric. g

Example 3.7. Let k(t) = eit2u(t) where 4 is in L'(R) and pu(t) = u(—t) for
all t. In that case the preceding two theorems are applicable and describe the
eigenvalues and singular values of the operator

1
(Fapf)(@) = / e’ LV — ) fy) dy, x € (~1,1),

-1
which is just C(_11)(k, ). Take, for instance, p.(t) = e~ with a fixed
e > 0, that is, consider

1

(Foe (@) = (Fopu f) (@) =/ o f(y)dy, @ e (~1,1).

—1
‘We have

k(¢) = /_OO oli—a)t? gict gy ’/aii exp <—4(:2_ 1)> ) (3.5)

which may also be written in the form

Thus, R(k) is a spiral commencing at /7(c +1)/(1 + £2) (which is about
Vet if ¢ > 0 is small) and rotating clockwise into the origin. Theo-
rem 3.5 tells that when w — oo, then the set of the eigenvalues of VwF, .
converges in the Hausdorff metric to this spiral. The spiral has the parametric
representation

m(e+1i) 1) —(i+e)p

1+€2 0= <oo,
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and the number of eigenvalues of the scaled operator y/wF, . that lie near
the beginning arc of the spiral given by 0 < ¢ < x is

Vw &

Tmes €€R0§m<x +0(\/C_d)
On the other hand, Theorem 3.6 says that the singular values of /wF, .
densely fill the segment [0, max |k|] = [0, 71/2(1 +2)~1/4] and that the num-
ber of singular values in (a/v/w, 3//w) is

gmes{ﬁeﬂ%:a< < ))<ﬂ}+0(\/‘;)-

VT

V1+e? 4(1+¢€2

Figure 3 demonstrates how, for growing w, the spectrum lies increasingly near
to the spiral k. O

=50 o =100

FIGURE 3. Spectra of F,, . from Example 3.7 for ¢ = 1/4
and different values of w, as well as the spiral k.
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Example 3.8. Fix € > 0 and consider the operator

1

(Moo f)(z) = / elrvlemelaul f(y) dy, € (~1,1).

—1

This is some kind of regularization of the compression of operator (2.5) to
L?(~1,1). Clearly, My, . = C(_11)(k.,) with k(t) = e(=)I!l. We have

vey— [ soltlgigt qp — _ 2E—1)
k(f)—/ﬂOG tetdt—gu_(@_i)z’

and Theorems 3.5 and 3.6 imply that wo(M,, ) and ws(M,, ) converge in
the Hausdorff metric to R(k) and R(|k|), respectively, as w — co. It is readily
seen that R(|k|) = [0, me] where

- e 1432 for 0<e<1,
Tl 20 +)7Y2 for 1<e< .

To determine the range of I%, consider the Mobius transform

o 2(e—i)
V(z):= z+ (e —1)%

The set v(R) is a circle passing through v(co) = 0 and (1 — %) = 1/e +1,
while v(1 — &2 +iR) is the straight line through v(c0) = 0, y(1 —¢?) = 1 /e +i
and y(—(e —i)?) = co. As R and 1 — 2 +iR intersect at a right angle, so also
must 7(R) and (1 — €% + iR). Consequently, the line segment [0, 1/¢ + i] is
a diameter of the circle v(R), which shows that

SLEe-nE) e

The range R(k) is v([0,00]), and a moment’s thought reveals that this is
the arc of y(R) that is described in the clock-wise direction from ~(0) =
2/(e — 1) to y(c0) = 0. Figure 4 illustrates how the eigenvalues approximate
the circle (3.6) and that their distribution mimics the values of k at equally
spaced points. Notice that the convergence is very slow for small € > 0.

’y(R):{ZGC:

As in Example 3.8, the limit passage ¢ — 0 does not yield anything for
M,, == M, 0, the compression of operator (2.5) to L?(—1,1). However, the
case ¢ = 0 was treated in [10] on the basis of pure asymptotic expansions,
and that paper virtually completely explains the asymptotic behaviour of the
eigenvalues of M,,,. We refer in this connection also to [11]. On the other hand,
apart from the scaling, the lower right picture of Figure 4 nicely resembles
the numerical data for the operator M, shown in papers [11, Figure 1.2]
and [10, Figure 2]. O
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FIGURE 4. Spectra of M, . from Example 3.8 for different
values of € and w (left), as well as the values of the Fourier

transform k(€) for € = j/100 with j = 0,1,...,5000 (right).

4. Attempts on the Fox—Li spectrum itself

Inasmuch as the singular values of F,, or the eigenvalues of the operator F,, .
of Example 3.7 are interesting, the real prize is the spectrum of the Fox—Li
operator F,,.

Staying within Wiener—Hopf operators. We know from (2.4) that F,, equals
C(-1,1)(ay) with a, given by (2.3). To get a large truncated Wiener-Hopf
operator, we employ Lemma 3.2 with 7 = 2,/w and see that F,, is unitarily
equivalent to

1 . .
7 Wy z(a) with a(€) = /ael™/ e i€7/4,

(Note that this and also (2.1) formally result from (3.5) with ¢ = 0.) However,
because a is neither in C(R) nor in L*(R), Theorem 2.5 is not applicable.
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The convolution operator generated by a has the kernel ¢(t) := ¢i’. In Ex-
ample 3.7 we saved matters by passing from £(t) to £(t)e~=*" for £ > 0, but
this operation changed the operator and thus also its spectral characteristics
dramatically. Another strategy is to consider

.2

() = X(Caymavm (D) e (4.1)
which a function in L!(R) N L?(R) such that

L) = ¥ (Viot) = x(_2.2) (t)e™!

and which allows us to write

2

/\w]
=G
Now Lemma 3.2 with 7 = 2,/w yields
* 1 plw
UF,U* = NG Wy /(01 (4.2)
with
. e,
gy = / el el dt. (4.3)
2vw
Consequently,
V@ o(Fo) = oWy (041)). (4.4)

But what is the spectrum on the right of (4.4)? Note that both the truncation
interval and the generating function of the Wiener—Hopf operator depend on
the parameter w

Fix w and consider the Wiener—Hopf operator W (1), From (4.3) we see
that /1! is an analytic and even function. Consequently, R(/!) has no in-
terior points and o (W (¢l]) = R({“]). Theorem 2.5 therefore implies that
the eigenvalues of W, (/*]) are asymptotically distributed (in a well-defined
sense) along the curve R(/“) as 7 — oo.

The problem is that in our case 7 = 2y/w is not independent of w. So let
us, flying in the face of mathematical rigour, keep the dependence of the
generating function on w but assume that if w is very large then convolution
over (0,2+/w) may be replaced by convolution over (0, c0). This amounts to
the replacement

o (Wa5(l4) = o (W (E)) = R(E) (4.5)

and thus to saying that o(F,) ~ (1/y@)R(/“): cf. Figure 5. However, we
emphasize once again that we cannot muster any rigorous argument that
would justify the replacement (4.5).

Turning to Toeplitz matrices. The following approach seems to be equally
unsuccessful theoretically but provides at least a better chance for tackling
the problem numerically. Namely, we fix w and discretize F, at 2N + 1
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FIGURE 5. The spirals (1//@)R(/“) for w = 100 and w = 200.

equidistant points, whereby F,f = Af is approximated by the algebraic
eigenvalue problem
BINTfINT — \[INT £INT,

where
1

BN = (vj[‘lj]k)gkz—N with vLN] = Neiw"2/N2.

Thus, Toeplitz matrices enter the scene.! Given a function v in L' over the
unit circle T with Fourier coefficients

1 27

Up v(ee ™ ds, nez,

let T'(v) and T (v) denote the infinite Toeplitz matrix (v;—x)55%—o and the
(2N +1) x (2N + 1) Toeplitz matrix (v;_x)},—_n, respectively. Note that
T(v) induces a bounded operator on ¢2(Z, ) if and only if v € L*(T). We
may now write

B = Ty (v (4.6)
where
2N 12 .
[N](Li0y . [N] inf _ — iwn®/N* inf
vl(e'?) = Z v e = Z e e’ (4.7)
n=—2N n=—2N

Clearly, (4.6) is just the discrete analogue of (4.2) while (4.7) corresponds
to (4.1). This time we don’t have a perfect counterpart of (4.4), that is,

1Better quality of approximation follows once we half each B[iN]\], s & procedure that cor-
responds to discretizing the integral with the compound trapezoidal rule. However, once
we do so, the Toeplitz structure is lost.
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the equality o(F,) = o(Tn(vN)). However, since F,, is compact, standard
approximation arguments reveal that

o(Tn (vN)) — o(F,,) in the Hausdorff metric as N — oo. (4.8)

This might be a reasonable basis for approximating o(F,,) numerically. (Note
that Figure 1 was produced in just this manner, by computing the eigenval-
ues of T (vIN]) for really large N. This brute force approach to eigenvalue
approximation, which is justified by the compactness of the Fox—Li operator,
can be much improved by using the methodology of [11].) But as both the
order and the generating function of the Toeplitz matrices Ty (U[N ]) vary with
N, a theoretical prediction of the limit of o(Tx (vN)) is difficult.

The function v[N!(e?) is again an analytic and even function of § € [, 7]
and hence (T (vV1)) = vIN(T), that is, we may have recourse to the discrete
version of Theorem 2.5. The analogue of (4.5) is the replacement

o(Ty (W) = o(T(0!N)) = v!™(T) (4.9)

and thus the approximation o(F,) ~ vN(T), but as in the case of Wiener—
Hopf operators, we do not know any rigorous justification for (4.9).

FIGURE 6. The spirals v!V/(T) for N = 500, w = 100 and
w = 200.

Figure 6 displays the spirals v!/N!(T) for two different values of w. Note the
uncanny similarity of Figures 5 and 6. This is striking enough to call for an
explanation. Commencing from (4.7) with 8 = \/w §/N, we approximate

2N 2
) 1 ) . . .
o) = 5 DD N VEeN / o7 VI 4y + O(1/N)
n=—2N -2

_ L/zﬁ eit2eigtdt+0(1/]\/'): 1 E[W](§)+O(1/N)
Vw oy v |

w
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and this explains the similarity of Figures 5 and 6. Insofar as the Fox-Li
spectrum is concerned, comparison with Figure 1 shows that these two figures
are equally wrong and that, consequently, the replacements (4.5) and (4.9)
indeed lead us astray.

Incidentally, the integral in (4.3) can be computed explicitly: after some ele-
mentary algebra we have

ﬂﬂg)zﬁéiéi erf (2(—iw)? + L(—1)2¢) +erf (2(—iw)? — §(—i)z¢)|.
2(—iw)?

The asymptotic estimate erfz = 1 —e~* /(7% 2) + O(z3), which is valid for
|arg z| < %77 [1, p. 298], easily shows that

. —lig? . g [ —2iwde 2wde
. e e e e
wq@zOﬂ -2 — +O(w™?)
w w2 \dw?z —§  Adwz +¢&

=

[N

for 4,/w > |¢] and

l(e) ~

1 1
ie4iw ef2iw§§ eZiw§§
1
w?2

_ -2
§—4w% €+4wé>+0(§ )

for |¢] > 4+/w. This explains the two regimes observed in the spiral in Fig-
ures 5 and 6: an extended rotation with roughly equal amplitude as long as
€| < 4w?, followed by attenuation.

In Figure 7 we display the real part and the absolute value, respectively, of
the spiral (1/v/@)R({“]) for w = 100 and & > 0. Note that the maximum of
the absolute value is attained at 41/w = 40 and it neatly separates the two
regimes which we have just described.

“

FIGURE 7. The real part arad the absolute value, respec-
tively, of the spiral (1/v/w)R (1) from Figure 4 for w = 100.

0.2

0.1

0

]
I
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Is theta-three the power broker behind the scene? Another interesting ob-
servation, so far without any obvious implications for the spectrum of the
Fox-Li operator, is the close connection of the function vV with the Jacobi

theta function 5. Recalling the definition of v[V], we have
1 aN ,
[N]( 21y k . _ Jiw/N
v (e?Y) = — |1+ 2 E gy cos(2ak)| with gy =e .

k=1
Compare this with the standard definition (for which, see, e.g., p. 314 of [23]):

Os(a,q) :=1+2 Z qkz cos(2ak).
k=1

FIGURE 8. Attenuated theta spirals, superimposed on the
spectra, for w = 100 and w = 200.

The snag is that absolute convergence of the series requires |q| < 1, while
lgn| = 1. What makes v[V] stay nice when N — oo is the normalizing factor
1/N. Yet, there appears to be a connection between the theta function and
o(F.), and this is confirmed by our numerical experimentation. Thus, we
consider sequences q = {gn . }3%_; such that |gn .| < 1 for all N and

. 4dN,w . 4dN,w
lim = lim —F— =1,
N—oo qN N —o0 e“"’/N

and examine the quotient
93 (OZ, qN,w)
N

(It is enough, by symmetry, to restrict o to [0,7/2].) Everything now de-
pends on the specific choice of the sequence q: in our experience, we need

for N>»1, ——-<a<

s
B .

|
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to attenuate |gn| by exactly the right amount to obtain a good fit with the
Fox—Li spiral. After a large number of trials, we have used

Wwl/2

21/2 N2’
and this results in Figure 8, where we have superimposed the theta function
curve on the eigenvalues of F,, for w = 100 and w = 200. Although the match
is far from perfect, in particular in the intermediate regime along the spiral,
and we can provide neither rigorous proof nor intuitive explanation, there is
enough in the figure to indicate that, at the very last, we might be on the
right track in seeking the explicit form for the spectral spiral of o(F,).

dN,w = 1
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