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Abstract

We consider expansions of smooth functions defined on compact intervals in eigenfunc-
tions of polyharmonic operators equipped with homogeneous Neumann boundary condi-
tions. Having determined asymptotic expressions for both the eigenvalues and eigenfunc-
tions of these operators, we demonstrate how these results can be used in the efficient
computation of expansions. Next, we consider the convergence. We establish the key ad-
vantage of such expansions over classical Fourier series, namely, both faster and higher-order
convergence, and provide a full asymptotic expansion for the error incurred by the truncated
expansion. Finally, we obtain conditions that completely determine the convergence rate.

1 Introduction

Modified Fourier expansions have recently been introduced as a minor adjustment of classical
Fourier series for the approximation of nonperiodic functions in bounded domains. Developed by
Iserles and Nørsett for functions defined in the compact intervals [15], such expansions converge
uniformly throughout the domain (including on the boundary), in contrast to Fourier series,
which suffer from the well-known Gibbs phenomenon [17]. In fact, when truncated after N
terms, the expansion of a (sufficiently smooth) function converges at a rate of O

(
N−2

)
inside

the domain and O
(
N−1

)
on the boundary [21].

Whilst offering more rapid convergence, such expansions also retain many of the benefits of
classical Fourier series. Indeed, in the unit interval [−1, 1] the modified Fourier basis is precisely

{cosnπx : n ∈ N} ∪
{

sin(n− 1
2 )πx : n ∈ N+

}
, (1.1)

and thus only differs from the Fourier basis by the shifted argument n− 1
2 appearing in the sine

function. It is known that (1.1) forms an orthogonal basis of L2(−1, 1) [15], hence any function
f ∈ L2(−1, 1) may be expressed in terms of its modified Fourier expansion

f(x) ∼ 1
2
f̂C0 +

∞∑
n=1

[
f̂Cn cosnπx+ f̂Sn sin(n− 1

2 )πx
]
, x ∈ [−1, 1],

where f̂Cn =
∫ 1

−1
f(x) cosnπxdx and f̂Sn =

∫ 1

−1
f(x) sin(n − 1

2 )πxdx are the modified Fourier
coefficients of f . As regards numerical computation of these coefficients, it has been found to be
advantageous to use combinations of highly oscillatory and nonstandard classical quadratures,
rather than using the Fast Fourier Transform (which, unsurprisingly, could be exploited in
this setting) [15, 16]. This approach allows for more efficient computation of coefficients, with
computation of the first N coefficients being possible in only O (N) operations, as opposed to
O (N logN) for FFT-based approaches.
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To date, modified Fourier expansions have found applications in a number of areas, including
the spectral disctetisation of boundary value problems [3, 5] and the computation of spectra of
oscillatory integral operators [9]. Benefits over more standard approaches (typically polynomial-
based methods) have been documented in [5] and [9].

In this paper, we consider a particular generalisation of the modified Fourier basis (1.1). The
aim of this generalisation is to obtain both faster rates and higher degrees of convergence (by
the latter, we mean convergence in higher-order norms), whilst retaining the principal benefits of
modified Fourier expansions. This topic was originally developed in [6]. The intent of this paper
is to provide both a comprehensive theory of such expansions, including resolving a number of
conjectures raised therein, and, using theoretical results proved, give a more detailed account of
the practical computation of such expansions. First, however, we recap the salient aspects of [6].

1.1 Expansions in polyharmonic eigenfunctions

Modified Fourier expansions can be identified with expansions in eigenfunctions of the Laplace
operator equipped with homogeneous Neumann boundary conditions. In the unit interval, (1.1)
is precisely the set of eigenfunctions satisfying

−φ′′(x) = µφ(x), x ∈ [−1, 1], φ′(±1) = 0. (1.2)

Interestingly, this observation facilitates the generalisation of modified Fourier expansions to
functions defined on certain higher-dimensional domains, including d-variate cubes [16] and
particular simplices [13]. As discussed in [15], Neumann boundary conditions are vital to the
success enjoyed by such expansions over classical Fourier series. Had Dirichlet boundary con-
ditions φ(±1) = 0 been employed, for example, leading to the basis

{
cos(n− 1

2 )πx : n ∈ N+

}
∪

{sinnπx : n ∈ N+}, slower convergence would be witnessed, as well as a Gibbs-type phenomenon
near the endpoints.

The interpretation of the modified Fourier basis in terms of eigenfunctions of the Laplace–
Neumann operators indicates how such an approach can be generalised. Seeking more rapidly
convergent expansions, we replace the Laplace–Neumann operator with a particular higher-order
differential operator equipped with suitably chosen boundary conditions. In [6], it was argued
that, amongst all operators of fixed, even order 2q, q ∈ N+, fastest convergence occurs when
a function f is expanded in eigenfunctions of the univariate polyharmonic operator subject to
homogeneous Neumann boundary conditions

(−1)qφ(2q)(x) = µφ(x), x ∈ [−1, 1], φ(r)(±1) = 0, r = q, . . . , 2q − 1. (1.3)

In this case, as was shown in [6], the uniform convergence rate is O (N−q). This figure improves
with increasing q, and exceeds the O

(
N−1

)
estimate for modified Fourier expansions, which, in

view of (1.2), naturally correspond to index q = 1.
A significant component of [6] was devoted to the construction of the expansion of a function

f in such polyharmonic–Neumann eigenfunctions. It was shown that the spectrum of (1.3)
consists only of real, nonnegative eigenvalues µn, n ∈ N, with corresponding eigenfunctions
φn that form an orthogonal basis of L2(−1, 1). For q ≥ 2, eigenvalues arise as solutions of a
particular transcendental equation and can be easily computed with Newton–Raphson iterations.
Moreover, corresponding eigenfunctions always occur in two cases, even and odd, and can be
written as sums of products of trigonometric and hyperbolic functions with coefficients that are
computed by solving a q × q algebraic eigenproblem.

Also addressed in [6] was the computation of the expansion coefficients f̂n =
∫ 1

−1
f(x)φn(x) dx.

Using essentially identical techniques to those employed in the modified Fourier case, it was
shown that the first N coefficients can be computed in O (N) operations using only pointwise
values of f and certain derivatives.

1.2 Key results and outline

The intent of this paper is to present a more comprehensive study of the eigenfunctions of (1.3)
and the corresponding expansion of a function f in such eigenfunctions. The first result we prove
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concern the precise nature of polyharmonic–Neumann eigenvalues and eigenfunctions. We show
that such quantities, whilst not being known explicitly for q ≥ 2, possess explicit asymptotic
representations (in n) that are accurate up to exponentially small remainders. Specifically,
having introduced the fundamental properties of polyharmonic–Neumann expansions in Section
2 (and recapped the principal results of [6]), we prove in Section 3 that, if µn = α2q

n is the nth

eigenvalue, then

αn =
1
4

(2n+ q − 1)π +O
(
e−nπγq

)
, n� 1, (1.4)

where γq = sin π
q . Moreover, if φn is the corresponding eigenfunction, we demonstrate that

φn(x) =
q−1∑
s=0

cs

[
e

1
4 (2n+q−1)πλs(x−1) + (−1)n+q+1e−

1
4 (2n+q−1)πλs(x+1)

]
+O

(
e−nπγq

)
, (1.5)

where λs = −ie
isπ
q and the values cs are independent of n and known explicitly. Results (1.4) and

(1.5) are naturally of theoretical interest. Moreover, the are necessary precursors to a detailed
study of the convergence of expansions in polyharmonic–Neumann eigenfunctions, a topic we
consider further in Sections 4–6. However, before doing so, we demonstrate how (1.4) and (1.5)
provide a simple and effective means to compute the majority of the eigenvalues and eigenfunc-
tions (a necessary first step in constructing the expansion of a function f in such eigenfunctions).
Indeed, whilst eigenvalues and eigenfunctions can always be computed by solving an algebraic
eigenproblem, we show that this is only necessary for the first handful of values n = 1, 2, . . ..
Whenever n is sufficiently large, no computations are required: the estimates (1.4) and (1.5) are
exact up to machine epsilon.

Convergence of the polyharmonic–Neumann expansion is considered in Section 4. We prove
uniform convergence of this expansion for f ∈ H1(−1, 1) (the first classical Sobolev space), and
determine the corresponding rate of convergence in Section 5. For smooth f , we derive an
asymptotic expansion for the error incurred by its expansion (when truncated after N terms),
valid for any point x ∈ [−1, 1]. In particular, we show that the rate of convergence is O (N−q)
uniformly and O

(
N−q−1

)
in (−1, 1). These results generalise those proved in [21] for the mod-

ified Fourier (q = 1) case. Finally, in Section 6 we discuss the particular factors that determine
the convergence rate. Proofs in this paper are largely self-contained: we only assume some basic
spectral theory of self-adjoint differential operators.

1.3 Background

The expansion of a function in eigenfunctions of an arbitrary differential operator has been ex-
tensively studied. More commonly referred to as a Birkhoff expansion [7, 8, 10, 20], much is
known in the general case about both convergence and the asymptotic nature of the eigenvalues
and eigenfunctions. However, as mentioned in [6], this theory inadequately describes the case
of polyharmonic–Neumann expansions. In particular, estimates similar to (1.4) and (1.5) are
known to hold for a broad variety of differential operators and boundary conditions, but only
with O

(
n−1

)
remainder terms. To the best of our knowledge, the exponentially-small terms

appearing in (1.4) and (1.5) do not currently exist in literature. In addition, though much is
known regarding convergence of Birkhoff expansions, in particular as regards the phenomenon of
equiconvergence [19] (see also [24]), most studies consider only convergence in (−1, 1) or assume
that the approximated function obeys the same boundary conditions as those prescribed to the
linear operator. For polyharmonic–Neumann expansions, such results are of limited use. Nev-
ertheless, the particular nature of the polyharmonic–Neumann operator and its eigenfunctions
permits us to compile a far more thorough and accurate theory of the corresponding expansions.

2 Polyharmonic eigenfunction bases

The univariate polyharmonic operator L = (−1)q d2q

dx2q , when equipped with homogeneous Neu-
mann boundary conditions, is semi-positive definite. By standard spectral theory, its spectrum
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consists of a countable number of nonnegative eigenvalues [18], which we denote µn, n ∈ N. For
convenience, we define αn by µn = α2q

n .
Since L[φ] = 0 if and only if φ ∈ Pq−1 is a polynomial of degree less than q, µ = 0 is a q-fold

eigenvalue. The corresponding orthonormal eigenfunctions are φ0,n, n = 0, . . . , q − 1, where
φ0,n = (n+ 1

2 )
1
2Pn and Pn is the nth Legendre polynomial. All other eigenvalues µn are positive,

and by standard spectral theory, simple and the collection {µn} has no finite limit point. The
corresponding eigenfunctions φn, n ∈ N, in combination with φ0,n, n = 0, . . . , q − 1, form a
dense, orthogonal subset of L2(−1, 1).

An explicit form for the polyharmonic–Neumann eigenfunctions was derived in [6]. In the
next section we recap this construction.

2.1 Explicit form of polyharmonic–Neumann eigenfunctions

Let φ be a polyharmonic–Neumann eigenfunction with eigenvalue µ = α2q. We first note that

φ(x) =
2q−1∑
r=0

creλrαx, (2.1)

where the values λr ∈ C satisfy λ2q
r = (−1)q, r = 0, . . . , 2q − 1 and the parameters cr ∈ C are

determined by the boundary conditions. Simplification of this expression requires separately
addressing the two cases corresponding to even and odd q. With q even, the eigenfunction φ
takes one of two possible forms φe, φo corresponding to even or odd functions respectively. These
are

φe(x) =

q
2∑

r=0

cer cos
(
αex sin

πr

q

)
cosh

(
αex cos

πr

q

)

+

q
2−1∑
r=1

der sin
(
αex sin

πr

q

)
sinh

(
αex cos

πr

q

)
, (2.2)

φo(x) =

q
2−1∑
r=0

cor cos
(
αox sin

πr

q

)
sinh

(
αox cos

πr

q

)

+

q
2∑

r=1

dor sin
(
αox sin

πr

q

)
cosh

(
αox cos

πr

q

)
, (2.3)

respectively. The parameters cer, d
e
r, α

e and cor, d
o
r, α

o are specified by enforcing the boundary
conditions, which results in an algebraic q × q eigenproblem. The case of q odd is treated in a
virtually identical manner [6].

It transpires that eigenfunctions always occur in even and odd cases, regardless of q. Hence,
we will occasionally use the notation φen, φe0,n and φon, φo0,n to distinguish the such cases. More
frequently, however, we will write φ0,n, φn and ignore this fact. As with classical Fourier series,
splitting into even and odd cases is most convenient for computations (where real numbers are
desirable), whereas for analysis, it is simpler not to make this distinction.

The biharmonic (q = 2) case warrants further attention. It presents the first significant exten-
sion beyond the modified Fourier case, and highlights several features of general polyharmonic–
Neumann expansions. In this setting, the eigenfunctions are given by

φen(x) =
1√
2

(
cosαenx
cosαen

+
coshαenx
coshαen

)
, φon(x) =

1√
2

(
sinαonx
sinαon

+
sinhαonx
sinhαon

)
, (2.4)

and the values αen, αon, n ∈ N are precisely the roots of the nonlinear equations tanhαe+tanαe =
0 and tanhαo−tanαo = 0 respectively. These values lie in intervals of exponentially small width.
In fact, for all n ∈ N,

αen ∈
(

(n− 1
4 )π, (n− 1

4 )π + ce−2(n− 1
4 )π
)
, αon ∈

(
(n+ 1

4 )π − ce−2(n+ 1
4 )π, (n+ 1

4 )π
)
, (2.5)
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Figure 1: Error in approximating f by fN for q = 1 (squares), q = 2 (circles), q = 3 (crosses) and
q = 4 (diamonds). Left: scaled error Nq‖f − fN‖L∞(−1,1) for N = 1, . . . , 100. Right: scaled error
Nq+1‖f − fN‖L∞(− 1

2 , 1
2 ).

where c = cos 1+sin 1
sin 1 . Upon redefining αen = α2n−1 and αon = α2n, it is readily seen that this

establishes the conjecture (1.4) for q = 2. Simple arguments, based on (2.4) and (2.5), also
verifies (1.5) in this setting. We defer a proof of (1.4) and (1.5) in the general case to Section 3.

2.2 Expansions in polyharmonic–Neumann eigenfunctions

We may express any function f ∈ L2(−1, 1) in terms of its expansion in polyharmonic–Neumann
eigenfunctions,

f(x) ∼
q−1∑
n=0

f̂0,nφ0,n(x) +
∞∑
n=1

f̂nφn(x), (2.6)

where f̂0,n =
∫ 1

−1
f(x)φ0,n(x) dx and f̂n =

∫ 1

−1
f(x)φn(x) dx are the coefficients of f in the

polyharmonic–Neumann basis. Standard spectral theory verifies convergence of the right hand
side of (2.6) to f in the L2 sense. Moreover, the following Parseval-type characterisation holds,

‖f‖2 =
q−1∑
n=0

|f̂0,n|2 +
∞∑
n=1

|f̂n|2, ∀f ∈ L2(−1, 1), (2.7)

where ‖g‖2 =
∫ 1

−1
|g(x)|2 dx is the standard norm on L2(−1, 1). In practice, the expansion (2.6)

is truncated after N ∈ N+ terms, leading to the approximation

fN (x) =
q−1∑
n=0

f̂0,nφ0,n(x) +
N∑
n=1

f̂nφn(x). (2.8)

Note that fN is precisely the orthogonal projection of f onto the space spanned by the first N+q
eigenfunctions. In particular, fN → f in the L2 norm. However, it turns out that, for sufficiently
smooth f , fN → f uniformly on [−1, 1] at a rate of O (N−q). Moreover, whilst f(±1)−fN (±1) =
O (N−q), the error f(x) − fN (x) = O

(
N−q−1

)
uniformly in compact subsets of (−1, 1). In

other words, faster convergence occurs away from the endpoints. Figure 1 demonstrates this
observation for f(x) = e2x and q = 1, 2, 3, 4. We devote Sections 4 and 5 to the study of
convergence of the approximation fN , including a proof of these statements.

As mentioned, the purpose of polyharmonic–Neumann expansions is to obtain faster conver-
gence. The aforementioned convergence rates demonstrate the benefit gained by increasing q.
Figure 1 also highlights this improvement. For example, with q = 1 and N = 50, the uniform
error in approximating f(x) = e2x is roughly 6.0× 10−2, whereas when q is increased to 4, this
value is 1.1× 10−6; approximately 5× 105 times smaller.

This improvement in convergence of the expansion (2.8) with increasing q is a direct conse-
quence of the Neumann boundary conditions. In the next section, we briefly explain why this is
the case.
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2.3 Neumann boundary conditions

A simple argument to this end was given in [6]. If f̂n =
∫ 1

−1
f(x)φn(x) dx is the coefficient of a

smooth function f with respect to polyharmonic eigenfunction φn (for the moment we do not
specify boundary conditions), then, upon replacing φn by (−1)qα−2q

n φ
(2q)
n and integrating by

parts 2q times, we obtain the expression

f̂n =
(−1)q

α2q
n

[
2q−1∑
r=0

(−1)rf (r)(x)φ(2q−r−1)
n (x)

∣∣∣∣1
x=−1

+
∫ 1

−1

f (2q)(x)φn(x) dx

]
.

It is known in a rather general context that the parameter αn = O (n) for large n and the
derivative φ

(r)
n = O (nr) [20]. Substituting these results into the above expression, a simple

argument now demonstrates that, amongst all possible boundary conditions, the fastest possible
decay of the coefficient f̂n is O

(
n−q−1

)
. Moreover, such decay occurs when Neumann boundary

conditions are prescribed (in which case, the first q terms of the above sum vanish). Upon the
assumption of uniform convergence of fN to f , this translates into a uniform convergence rate
of O (N−q) (see Section 5).

The necessity of such boundary conditions is highlighted upon consideration of the Dirichlet
boundary conditions

φ(r)(±1) = 0, r = 0, . . . , q − 1. (2.9)

These give the slowest possible coefficient decay: f̂n = O
(
n−1

)
. In addition, the expansion of

a function f in polyharmonic–Dirichlet eigenfunctions does not converge uniformly on [−1, 1],
and suffers from a Gibbs-type phenomenon near the endpoints x = ±1 (a fact we will confirm
in Section 4).

It is possible that other boundary conditions yield the same coefficient decay (but no better).
For example, when q = 1 the Robin boundary conditions φ′(±1) + aφ(±1) = 0, a ∈ R, also
give f̂n = O

(
n−2

)
. However, we make the choice of Neumann boundary conditions for their

simplicity, thereby making the construction of the approximation fN easier.

3 Asymptotics for polyharmonic–Neumann eigenvalues and
eigenfunctions

This section is devoted to establishing the estimates (1.4) and (1.5). As stated, similar estimates,
but with only O

(
n−1

)
remainder terms, form a central component in the study of general

Birkhoff expansions [10, 20]. To the best of our knowledge, estimates for the polyharmonic–
Neumann case with exponentially small remainders do not currently exist in literature. As we
later discuss, this is doubtless due to that fact that such estimates are only valid under rather
specific conditions.

3.1 Polyharmonic–Neumann eigenvalues

Consider an eigenfunction φ with eigenvalue µ = α2q 6= 0. By definition (−1)qφ(2q) = α2qφ and
φ(q+r)(±1) = 0, r = 0, . . . , q−1. Suppose now that we write φ as in (2.1). Then, an application of
the boundary conditions yields the following system of equations for the coefficients c0, . . . , c2q−1:

2q−1∑
s=0

cs(αλs)r+qeαλs =
2q−1∑
s=0

cs(αλs)r+qe−αλs = 0, r = 0, ..., q − 1.
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As a result, the values α are precisely the roots of the equation g(α) = 0, where

g(α) = det



eαλ0 eαλ1 · · · eαλ2q−1

λ0eαλ0 λ1eαλ1 · · · λ2q−1eαλ2q−1

...
...

. . .
...

λq−1
0 eαλ0 λq−1

1 eαλ1 · · · λq−1
2q−1eαλ2q−1

e−αλ0 e−αλ1 · · · e−αλ2q−1

λ0e−αλ0 λ1e−αλ1 · · · λ2q−1e−αλ2q−1

...
...

. . .
...

λq−1
0 e−αλ0 λq−1

1 e−αλ1 · · · λq−1
2q−1e−αλ2q−1


. (3.1)

Using Cramer’s rule, we obtain

g(α) =
∑
σ∈S2q

sgn(σ)eα
Pq−1
r=0 [λσ(r)−λσ(q+r)]

q−1∏
r=0

[
λσ(r)λσ(q+r)

]r
, (3.2)

where S2q is the set of permutations of the indices {0, . . . , 2q − 1} and sgn(σ) takes value +1 if
σ is an even permutation and −1 otherwise.

Our interest lies with the asymptotic behaviour α → ∞ (since the eigenvalues µn are non-
negative and possess no finite limit point, there must be solutions of g(α) = 0 in this regime).
Hence, we scrutinise the sum

∑q−1
r=0[λσ(r)−λσ(q+r)]. To do so, we introduce the following order-

ing on the values λ0, . . . , λ2q−1. We define λ0 = −i and λr = λ0λ
r, where λ = e

iπ
q . Notice that

λq = i, and λq+r = −λr. Moreover, Reλr ≥ 0 for r = 0, . . . , q, and Reλr < 0 otherwise.

Lemma 1. The quantity Re
∑q−1
r=0[λσ(r) − λσ(q+r)] takes maximal value 2 cot π

2q = 2θq. This is
attained precisely when σ ∈ T2q = Uq ∪ Vq, where

Uq = {σ ∈ S2q : {σ(r) : r = 0, . . . , q − 1} = {0, . . . , q − 1}} ,
Vq = {σ ∈ S2q : {σ(r) : r = 0, . . . , q − 1} = {1, . . . , q}} .

Moreover,
∑q−1
r=0[λσ(r)−λσ(q+r)] = 2(θq− i) for σ ∈ Uq and

∑q−1
r=0[λσ(r)−λσ(q+r)] = 2(θq+i) for

σ ∈ Vq. Conversely, if σ /∈ T2q then Re
∑q−1
r=0[λσ(r) − λσ(q+r)] ≤ 2(θq − γq), where γq = sin π

q .

Proof. A simple argument verifies that the maximal value is attained only for σ ∈ T2q. Further-
more

q−1∑
r=0

λr = λ0

q−1∑
r=0

λr =
2i

e
iπ
q − 1

= θq − i,

and
∑q
r=1 λr = 2i+

∑q−1
r=0 λr = θq+i. For the final part, we merely note that |Reλr| ≥ Reλ1 = γq

for r 6= 0, q.

This lemma allows us to immediately provide an estimate for the function g:

Lemma 2. The function g(α) defined by (3.1) satisfies

g(α) = e2θqα detV0 detV1

[
e−2iα + (−1)qe2iα

]
+O

(
e2(θq−γq)α

)
, α→∞,

where V0, V1 ∈ Cq×q are independent of α and have (r, s)th entries λrs and λrq+s respectively,
r, s = 0, . . . , q − 1.

Note that both V0 and V1 can be expressed in terms of products of diagonal and Vandermonde
matrices. Thus, the constant detV0 detV1 can be exactly specified [11]. However, since these
exact values are of little relevance to the present discussion, we shall not pursue this further.
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Proof of Lemma 2. Applying the result of Lemma 1 to (3.2) gives

g(α) =e2(θq−i)α
∑
σ∈Uq

sgn(σ)
q−1∏
r=0

(
λσ(r)λσ(q+r)

)r
+ e2(θq+i)α

∑
σ∈Vq

sgn(σ)
q−1∏
r=0

(
λσ(r)λσ(q+r)

)r +O
(

e2(θq−γq)α
)
, α→∞. (3.3)

If σ ∈ Uq, we may write

σ(r) =
{
σ′(r) r = 0, . . . , q − 1
q + σ′′(r − q) r = q, . . . , 2q − 1,

where σ′, σ′′ ∈ Sq. In particular, sgn(σ) = sgn(σ′)sgn(σ′′). Hence

∑
σ∈Uq

sgn(σ)
q−1∏
r=0

(
λσ(r)λσ(q+r)

)r =
∑

σ′,σ′′∈Sq

sgn(σ′)sgn(σ′′)
q−1∏
r=0

(
λσ′(r)λq+σ′′(r)

)r
and this is precisely detV0 detV1. Similar arguments can be applied to σ ∈ Vq. Noting that
λ2q = λ0, we write

σ(r) =
{

1 + σ′(r) r = 0, . . . , q − 1
q + 1 + σ′′(r − q) r = q, . . . , 2q − 1.

In this case sgn(σ) = −sgn(σ′)sgn(σ′′), hence

∑
σ∈Vq

sgn(σ)
q−1∏
r=0

(
λσ(r)λσ(q+r)

)r = −detV2 detV3,

where V2, V3 ∈ Cq×q have (r, s)th entries λr1+s and λrq+1+s respectively. Observe that V2 = DV0,
V3 = DV1, where D ∈ Cq×q is the diagonal matrix with rth entry λr. Hence

detV2 detV3 = (detD)2 detV0 detV1 = λq(q−1) detV0 detV1 = e−iπ(q−1) detV0 detV1,

Substituting this expression into (3.3) now completes the proof.

We are now able to establish the key result of this section: namely, equation (1.4). We have

Theorem 1. Suppose that µn = α2q
n , n ∈ N+, is the nth eigenvalue of the polyharmonic–

Neumann operator. Then αn = 1
4 (2n+ q − 1)π +O (e−nπγq ) as n→∞.

Proof. For an eigenvalue µ = α2q we have g(α) = 0. Hence, e4iα = eiπ(q−1) +O
(
e−2γqα

)
.

The proof of this theorem is similar to that given for general Birkhoff expansions [20]. How-
ever, the greatly simplified nature of the linear operator and boundary conditions allows for a
more straightforward argument, and in turn, facilitates the greatly improved estimate (1.4).

As mentioned, this result is a vital step towards the effective computation of the values αn.
In Section 3.3 we consider such task. Before doing so, however, we turn our attention to the
asymptotic behaviour of the polyharmonic eigenfunctions φn.

8



3.2 Polyharmonic–Neumann eigenfunctions

We wish to establish (1.5). To commence, we note that the eigenfunction φ corresponding to
eigenvalue µ = α2q 6= 0 can be written as

φ(x) = det



eαλ0x eαλ1x · · · eαλ2q−1x

λq0eαλ0 λq1eαλ1 · · · λq2q−1eαλ2q−1

λq+1
0 eαλ0 λq+1

1 eαλ1 · · · λq+1
2q−1eαλ2q−1

...
...

. . .
...

λ2q−1
0 eαλ0 λ2q−1

1 eαλ1 · · · λ2q−1
2q−1eαλ2q−1

λq0e−αλ0 λq1e−αλ1 · · · λq2q−1e−αλ2q−1

λq+1
0 e−αλ0 λq+1

1 e−αλ1 · · · λq+1
2q−1e−αλ2q−1

...
...

. . .
...

λ2q−2
0 e−αλ0 λ2q−2

1 e−αλ1 · · · λ2q−2
2q−1e−αλ2q−1


=

2q−1∑
s=0

eαλsx(−1)s detA[s],

where A[s] is the corresponding minor

A[s] =



λq0eαλ0 · · · λqs−1eαλs−1 λqs+1eαλs+1 · · · λq2q−1eαλ2q−1

...
. . .

...
...

. . .
...

λ2q−1
0 eαλ0 · · · λ2q−1

s−1 eαλs−1 λ2q−1
s+1 eαλs+1 · · · λ2q−1

2q−1eαλ2q−1

λq0e−αλ0 · · · λqs−1e−αλs−1 λqs+1e−αλs+1 · · · λq2q−1e−αλ2q−1

...
. . .

...
...

. . .
...

λ2q−2
0 e−αλ0 · · · λ2q−2

s−1 e−αλs−1 λ2q−2
s+1 e−αλs+1 · · · λ2q−2

2q−1e−αλ2q−1


.

Using Cramer’s rule once more, we deduce that

detA[s] =
∑

σ∈S2q,s

sgn(σ)eα[Pq−1
r=0 λσ(r)−

Pq−2
r=0 λσ(q+r)]

q−1∏
r=0

λq+rσ(r)

q−2∏
r=0

λq+rσ(q+r), (3.4)

where S2q,s is the set of bijections from {0, . . . , 2q− 2} to {0, . . . , s− 1, s+ 1, . . . , 2q− 1}. As in
the previous section, we wish to analyse detA[s] as α→∞. We have

Lemma 3. Suppose that s = 0, . . . , q. Then

detA[s] = e(2θq−λs)α detB detV [s] +O
(

e[2(θq−γq)−Reλs]α
)
, α→∞,

where B ∈ Cq×q has (r, s)th entry λq+rq+1+s and

V [s] =


λq0 · · · λqs−1 λqs+1 · · · λqq
λq+1

0 · · · λq+1
s−1 λq+1

s+1 · · · λq+1
q

...
. . .

...
...

. . .
...

λ2q−1
0 · · · λ2q−1

s−1 λ2q−1
s+1 · · · λ2q−1

q

 . (3.5)

Note that the matrices V [s] are independent of α (as is B). Moreover, each V [s] corresponds
to a particular minor of the matrix V ∈ C(q+1)×(q+1) with (r, s)th entry λq+rs . Though not
important in our present considerations, this observation will be used later.

Proof of lemma 3. Consider the quantity Re
[∑q−1

r=0 λσ(r) −
∑q−2
r=0 λσ(q+r)

]
. Arguing as in Lemma

1, we find that this is maximised precisely when σ ∈ Tq,s, where

Tq,s = {σ ∈ S2q,s : {σ(r) : r = 0, . . . , q − 1} = {0, . . . , s− 1, s+ 1, . . . , q}} ,
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in which case
∑q−1
r=0 λσ(r) −

∑q−2
r=0 λσ(q+r) = 2θq − λs. For σ /∈ Tq,s, we have

Re

[
q−1∑
r=0

λσ(r) −
q−2∑
r=0

λσ(q+r)

]
≤ 2(θq − γq)− Reλs.

Substituting this into (3.4), we obtain

detA[s] = e(2θq−λs)α
∑
σ∈Tq,s

sgn(σ)
q−1∏
r=0

λq+rσ(r)

q−2∏
r=0

λq+rσ(q+r) +O
(

e[2(θq−γq)−Reλs]α
)
.

In an identical manner to Lemma 1, we deduce that this sum is precisely detB detV [s].

This lemma suggests that it is prudent to renormalise the eigenfunction φ by dividing by
e2θqα detB. This gives the expression

φ(x) =
q−1∑
s=0

[
(−1)s detV [s]eλsα(x−1) − bse−λsα(x+1)

]
+O

(
e−2γqα

)
, α→∞, (3.6)

where the constants b0, . . . , bq−1 are to be determined. We have

Lemma 4. The constants bs, s = 0, . . . , q − 1 appearing in (3.6) satisfy

bs = (−1)s detV [s]iq−1e2iα +O
(
e−2γqα

)
, α→∞, s = 0, . . . , q − 1.

Proof. Consider the boundary condition φ(q+r)(−1) = 0, r = 0, . . . , q − 1. Substituting (3.6)
gives

0 = α−q−rφ(q+r)(−1) =
q−1∑
s=0

[
(−1)s detV [s]λq+rs e−2λsα − (−1)q+rλq+rs bs

]
+O

(
e−2γqα

)
.

Suppose that D̃ ∈ Rq×q is the diagonal matrix with rth entry (−1)q+r. Then, written in matrix
form, the above expression is

D̃V [q]{br}q−1
r=0 = V [q]{(−1)r detV [r]e−2λrα}q−1

r=0 +O
(
e−2γqα

)
=
(

detV [0]e−2λ0α
)
V [q]{1, 0, . . . , 0}> +O

(
e−2γqα

)
= detV [0]e2iα{λq+r0 }q−1

r=0 +O
(
e−2γqα

)
.

The matrix D̃ is self-inverse. Moreover, D̃{λq+r0 }q−1
r=0 = {(−1)q+rλq+r0 }q−1

r=0 = {λq+rq }q−1
r=0. Hence

V [q]{br}q−1
r=0 = detV [0]e2iα{λq+rq }q−1

r=0 +O
(
e−2γqα

)
,

and, using a standard relation, br = detV [0]e2iα det Ṽ [r]

detV [q] +O
(
e−2γqα

)
, where

Ṽ [r] =


λq0 · · · λqr−1 λqq λqr+1 · · · λqq−1

λq+1
0 · · · λq+1

r−1 λq+1
q λq+1

r+1 · · · λq+1
q−1

...
. . .

...
...

. . .
...

λ2q−1
0 · · · λ2q−1

r−1 λ2q−1
q λ2q−1

r+1 · · · λ2q−1
q−1

 .

This matrix is obtained from the matrix V [r] by interchanging precisely q − r − 1 columns.
Hence det Ṽ [r] = (−1)q+r+1 detV [r]. Moreover, it is trivial to show that V [0] = DV [q], where
D ∈ Cq×q is the diagonal matrix with rth entry λq+r. Substituting these observations into
the expression for br, we deduce that br = e2iα(−1)q+r+1 detD detV [r] + O

(
e−2γqα

)
. Since

detD = λq
2+ 1

2 q(q−1) = (−1)qiq−1, we obtain the result.
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Using this lemma, we obtain the expression

φ(x) =
q−1∑
s=0

(−1)s detV [s]
[
eλsα(x−1) + iq−1e2iαe−λsα(x+1)

]
+O

(
e−2γqα

)
, α→∞, (3.7)

for the eigenfunction φ. Equation (1.5) now follows after an application of Theorem 1:

Theorem 2. Suppose that µn = α2q
n , n ∈ N+, is the nth eigenvalue of the polyharmonic–

Neumann operator with corresponding eigenfunction φn. Then

φn(x) =
q−1∑
s=0

cs

[
e

1
4 (2n+q−1)πλs(x−1) + (−1)n+q+1e−

1
4 (2n+q−1)πλs(x+1)

]
+O

(
e−nπγq

)
,

uniformly in x ∈ [−1, 1], where cs = (−1)s detV [s] and the matrix V [s] is given by (3.5).

This theorem establishes (1.5). A simple consequence of this result concerns the asymptotic
behaviour of polyharmonic–Neumann eigenfunctions in the interior (−1, 1). As the following
corollary indicates, such eigenfunctions are exponentially close to regular oscillators away from
the endpoints x = ±1:

Corollary 1. Suppose that φn is as in Theorem 2. Then

φn(x) = c(−1)
n+q−1

2 cos 1
4 (2n+ q − 1)πx+O

(
e−

1
2nπγq(1−|x|)

)
, n+ q odd,

φn(x) = −c(−1)
n+q

2 sin 1
4 (2n+ q − 1)πx+O

(
e−

1
2nπγq(1−|x|)

)
, n+ q even,

uniformly for x in compact subsets of (−1, 1), where c = 2e−
q−1
4 πi detV [0].

Proof. Since Reλs ≥ γq for s = 1, . . . , q − 1, an application of Theorem 2 gives

φn(x) = detV [0]
[
e−

1
4 (2n+q−1)πi(x−1) + (−1)n+q+1e

1
4 (2n+q−1)πi(x+1)

]
+O

(
e−

1
2nπγq(1−|x|)

)
.

= detV [0]e
1
4 (2n+q−1)πi

[
e−

1
4 (2n+q−1)πix + (−1)n+q+1e

1
4 (2n+q−1)πix

]
+O

(
e−

1
2nπγq(1−|x|)

)
.

The result now follows from considering the two cases separately and rearranging.

In Figure 2 we exhibit this result for q = 3. Note the very rapid onset of the asymptotic
behaviour away from the endpoints.

A central component of the study of general Birkhoff expansions is the phenomenon of
equiconvergence [19, 24]: inside the domain eigenfunctions approach regular oscillators in the
limit n → ∞ (though, in general, only at a rate of O

(
n−1

)
). For this reason, pointwise con-

vergence of Birkhoff expansions may be studied using standard tools of Fourier analysis. This
classical approach, however, is unsuitable for the study of polyharmonic–Neumann expansions.
As we prove in Section 5, such expansions converge much more rapidly than classical Fourier se-
ries. Moreover, our interest also lies with uniform convergence throughout [−1, 1], which cannot
be easily established through such means.

To connect these results to the explicit example of biharmonic eigenfunctions (see Section
2.1), we note that Theorem 2, when applied with q = 2, gives

φn(x) = (1− i)eiαn
[
e−iαnx + (−1)n+1eiαnx

]
− 2ie−αn

[
eαnx + (−1)n+1e−αnx

]
+O

(
e−nπ

)
.

Suppose, for example, that n = 2m− 1 (the case n = 2m is identical). Then αn = (m− 1
4 )π +

O (e−nπ), and we obtain

φ2m−1(x) = 2
√

2(−1)m+1i cos(m− 1
4 )πx− 2i

cosh(m− 1
4 )πx

cosh(m− 1
4 )π

+O
(
e−2mπ

)
= −2i

[
cos(m− 1

4 )πx
cos(m− 1

4 )π
+

cosh(m− 1
4 )πx

cosh(m− 1
4 )π

]
+O

(
e−2mπ

)
.
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Figure 2: Top row: the triharmonic eigenfunctions φn (thicker line) and approximations cos 1
2
(n+ 1)πx

(thinner line) for n = 6, 14, 20 (left to right). Bottom row: the error log10 |φn(x)− cos 1
2
(n+ 1)πx|.

Upon comparison of this formula with (2.4), we confirm Theorem 2 in this case (up to renor-
malisation by a factor of −2i).

Returning to the general case, one consequence of exponentially decaying remainder terms of
Theorems 1 and 2 is that we can perform an extremely detailed study of polyharmonic–Neumann
expansions. In particular, as we detail in Section 5, we are able to provide an asymptotic
expansion for the error f(x)− fN (x) in inverse powers of N at any point x ∈ [−1, 1]. Moreover,
the constants appearing in such an expansion are known explicitly explicitly. To do so, it is first
useful to provide an expression for the term detV [0] appearing in Corollary 1. We have

Lemma 5. The quantity detV [0] is given explicitly by

detV [0] = e
1
4 iπ(−q2+5q−2)

∏
0≤r<s<q

(λs − λr) .

Proof. The matrix V [0] has (r, s)th entry λq+rs+1. We note that λq+rs+1 = (λ0λ
s+1)q+r = λq+r1 λrsλqs,

and therefore V [0] = D[0]WD[1], where W is the Vandermonde matrix with (r, s)th entry λrs

and D[0] and D[1] are diagonal matrices with rth entries λq+r1 and λqr = (−1)r respectively. In

particular, detD[0] = λ
1
2 q(3q−1)
1 = e−

1
4 iπ(3q−1)(q−2) and detD[1] = e

1
2 iπq(q−1). After simplifica-

tion, this gives detD[0] detD[1] = e
1
4 iπ(−q2+5q−2). The result now follows after applying known

results for the determinant of a Vandermonde matrix [11] to W .

As discussed in [6], much is known regarding the zeros of polyharmonic–Neumann eigenfunc-
tions. For example, the nth eigenfunction possesses precisely n + q simple zeros in (−1, 1) and
zeros of consecutive eigenfunctions interlace [22]. As a direct result of Theorem 2, we are able
to precisely determine the distribution of such zeros in the limit n → ∞. Unsurprisingly, given
that φn is exponentially close to a regular oscillator in (−1, 1), this distribution is uniform:

Corollary 2. The zeros of φn are asymptotically uniformly distributed as n→∞.

Proof. Suppose that I = [a, b] ⊆ (−1, 1) is a closed interval. Let Zn(I) be the number of zeros
of φn in I. It follows from Theorem 2 that Zn(I) = 1

2 (b− a)n+O (1) as n→∞. Since φn has
precisely n+ q simple zeros in [−1, 1] , the proportion of zeros in I is 1

2 |I|+O
(
n−1

)
for large n

(note that |I| = 2 for I = [−1, 1], which explains the factor of 1
2 ).

It remains to show that the same result holds for intervals I containing at least one of the
endpoints x = ±1. For this, we first note that φn is either even or odd. Hence, it suffices to
consider I = [a, 1] ⊆ (−1, 1]. If a > 0, then

Z(I) =
1
2
Z ([−1,−a] ∪ [a, 1]) =

1
2
{Z([−1, 1])− Z([−a, a])} =

1
2

(1− a)n+O (1) ,
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as required. If a < 0, then Z(I) = Z([−1, 1])− Z([−a, 1]), and the result follows.

Though this result is of interest, it is included only as a simple example of usefulness of
Theorem 2 and will not be needed in subsequent analysis. Conversely, the remainder of this
section is devoted to establishing several further estimates for polyharmonic–Neumann eigen-
functions that are required in Section 4–6, where we study the convergence of expansions in such
eigenfunctions.

The first of these results concerns the growth of derivatives of the eigenfunctions φn. Intu-
itively, it feels correct that ‖φ(r)‖∞ = O (αr) for large α. This is indeed the case:

Lemma 6. Suppose that φ is a polyharmonic–Neumann eigenfunction with corresponding eigen-
value µ = α2q 6= 0. Then ‖φ(r)‖∞ = O (αr) for large α and any r ∈ N. Moreover,

φ(1) = drα
r +O

(
e−2γqα

)
, φ(−1) = (−1)riq−1e2iαφ(1) +O

(
e−2γqα

)
, α→∞,

where dr = c0(−i)q−r−1 +
∑q−1
s=0 csλ

r
s.

Proof. Consider equation (3.7). This expression is uniform in x ∈ [−1, 1], therefore

φ(r)(x) = αr
q−1∑
s=0

csλ
r
s

[
eλsα(x−1) + (−1)riq−1e2iαe−λsα(x+1)

]
+O

(
e−2γqα

)
.

Since Reλs ≥ 0, the functions eλsα(x−1) and e−λsα(x+1) are bounded by 1 on [−1, 1]. Hence, the
first result now follows immediately. For the second, substituting x = 1 (for example) into the
above expression gives

φ(r)(1) = αr

[
c0λ

r
0(−1)riq−1e4iα +

q−1∑
s=0

csλ
r
s

]
+O

(
e−2γqα

)
.

Since e4iα = (−1)q−1 +O
(
e−2γqα

)
(see Theorem 1), the result now follows.

To form the polyharmonic–Neumann expansion of a function f , it is necessary to normalise
the eigenfunctions φ. For this, it is useful to have an asymptotic estimate for ‖φ‖. We have

Lemma 7. Suppose that φ is a polyharmonic–Neumann eigenfunction with corresponding eigen-
value µ = α2q 6= 0. Then

‖φ‖ = c+O
(
e−γqα

)
, α→∞, (3.8)

where c = 2
1
2 q(q−1)+1

∏
0≤r<s<q sin π(r−s)

2q .

Proof. Suppose that we write b = iq−1e2iα, so that

φ(x) =
q−1∑
s=0

cs

[
eαλs(x−1) + be−λsα(x+1)

]
+O

(
e−2γqα

)
.

Hence

‖φ‖2 =
q−1∑
r,s=0

cr c̄s

∫ 1

−1

[
eαλr(x−1) + be−λrα(x+1)

] [
eαλ̄s(x−1) + b̄e−λ̄sα(x+1)

]
dx+O

(
e−2γqα

)
.

Consider the constant b. Since e2iα = (−1)q−1e−2iα + O
(
e−2γqα

)
, we deduce that b is real in

the limit α → ∞. Specifically, b = b̄ + O
(
e−2γqα

)
. Expanding the previous expression and

simplifying now gives

‖φ‖2 = 2
q−1∑
r,s=0

cr c̄se−α(λr+λ̄s)

[∫ 1

−1

coshα(λr + λ̄s)xdx+ b

∫ 1

−1

coshα(λr − λ̄s)xdx
]
+O

(
e−2γqα

)
.
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Note that
∫ 1

−1
cosh zxdx = 2

z sinh z for z 6= 0 and 2 otherwise. Moreover, for r, s = 0, . . . , q − 1,
λr + λ̄s = 0 if and only if r = s = 0, and λr − λ̄s = 0 only when r + s = q. Hence

‖φ‖2 = 4|c0|2 +
q−1∑
r,s=0

(r,s)6=(0,0)

4cr c̄s
α(λr + λ̄s)

e−α(λr+λ̄s) sinhα(λr + λ̄s)

+
q−1∑
r,s=0
r+s6=q

4bcr c̄s
α(λr − λ̄s)

e−α(λr+λ̄s) sinhα(λr − λ̄s) + 4b
q−1∑
r=1

cr c̄q−re−2λrα +O
(
e−2γqα

)
. (3.9)

The final sum is O
(
e−2γqα

)
and hence can be discarded. For the second sum, we notice that

2e−α(λr+λ̄s) sinhα(λr + λ̄s) = 1 +O
(
e−2γqα

)
for (r, s) 6= (0, 0). Therefore

q−1∑
r,s=0

(r,s)6=(0,0)

4cr c̄s
α(λr + λ̄s)

e−α(λr+λ̄s) sinhα(λr + λ̄s) =
2
α

q−1∑
r,s=0

(r,s)6=(0,0)

cr c̄s
λr + λ̄s

+O
(
e−2γqα

)
.

Now consider the third sum in (3.9). Since 2e−α(λr+λ̄s) sinhα(λr − λ̄s) = e−2αλ̄s − e−2αλr , and

e−2αλ̄s − e−2αλr =


−e2iα r = 0, s = 1, . . . , q − 1
e−2iα s = 0, r = 1, . . . , q − 1

e−2iα − e2iα r = s = 0
0 otherwise

up to a term of order e−2γqα, it follows that

2b
q−1∑
r,s=0
r+s 6=q

cr c̄s
α(λr − λ̄s)

e−α(λr+λ̄s) sinhα(λr − λ̄s)

= b
c0c̄0

λ0 − λ̄0

(
e−2iα − e2iα

)
− b

q−1∑
s=1

c0c̄s
α(λ0 − λ̄s)

e2iα + b

q−1∑
r=1

cr c̄0
α(λr − λ̄0)

e−2iα +O
(
e−2αγq

)
= −b

q−1∑
s=0

c0c̄s
α(λ0 − λ̄s)

e2iα + b

q−1∑
r=0

cr c̄0
α(λr − λ̄0)

e−2iα +O
(
e−2αγq

)
.

Recall from the proof of Lemma 4 that detV [0] = detD detV [q] and detD = (−1)qiq−1. Hence
c0 = detV [0] = (−1)qiq−1 detV [q] = iq−1cq, and therefore

bc0e2iα = i2(q−1)e4iαcq = cq +O
(
e−2γqα

)
,

since e4iα = eiπ(q−1) +O (e−γqα) (see Theorem 1). Since b is real in the limit α→∞, we also find
that bc̄0e−2iα = c̄q + O

(
e−2γqα

)
. Substituting these observations into the previous expression,

we obtain

4b
q−1∑
r,s=0
r+s6=q

cr c̄s
α(λr − λ̄s)

e−α(λr+λ̄s) sinhα(λr − λ̄s) =
2
α

q−1∑
s=0

cq c̄s
λq + λ̄s

+
2
α

q−1∑
r=0

cr c̄q
λr + λ̄q

+O
(
e−2γqα

)
,

for the third term of (3.9). Combining this with the expression for the second term, now gives

‖φ‖2 = 4|c0|2 +
2
α

q∑
r,s=0

(r,s)6=(0,0),(q,q)

cr c̄s
λr + λ̄s

+O
(
e−2γqα

)
.
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To establish (3.8), we first need to show that the sum vanishes. To prove this result, it suffices
to show that

t∑
r=0

cr c̄t−r
λr + λ̄t−r

= 0, t = 1, . . . , q,
q∑

r=t−q

cr c̄t−r
λr + λ̄t−r

= 0, t = q + 1, . . . , 2q − 1.

Moreover, since λr + λ̄t−r = −iλr(1− λ−t), these conditions reduce to

t∑
r=0

cr c̄t−rλ
−r = 0, t = 1, . . . , q,

q∑
r=t−q

cr c̄t−rλ
−r = 0, t = q + 1, . . . , 2q − 1. (3.10)

Suppose that we define the matrix V ∈ C(q+1)×(q+1) with (r, s)th entry λq+rs , r, s = 0, . . . , q. It
is readily seen that (−1)q+r detV [r] = detV (V −1)r,q. Hence

{cr}qr=0 = (−1)q(detV )V −1{0, . . . , 0, 1}>.

Consider the matrix V . Since λq+rs = λq+r0 λrsλqs, we may write V = D[0]WD[1], where W is
the Vandermonde matrix with (r, s)th entry λrs, and D[0] and D[1] are the diagonal matrices
with rth entries λq+r0 and λqr = (−1)r respectively. Simple arguments now give that

(−1)q

detV
{(−1)rcr}qr=0 = W−1{0, . . . , 0, 1}>.

Set er = (−1)q+r

detV cr. To prove (3.10), it suffices to show the result with the values cr replaced by
er. Note that W{er}qr=0 = {0, . . . , 0, 1}>, and this is equivalent to the polynomial interpolation
conditions p(λr) = δr,q, r = 0, . . . , q, where p ∈ Pq is the polynomial

∑q
r=0 erx

r. Trivially, p can
written in terms of the qth Lagrange polynomial:

p(x) =
q−1∏
r=0

x− λr

λq − λr
.

Now consider the polynomial

q(x) = p(x)p(λ−1x) =
q∑

r,s=0

ēserλ
−rxr+s =

2q∑
t=0

γtx
2t,

where γt =
∑t
r=0 er ēt−rλ

−r for t = 0, . . . , q and γt =
∑q
r=t−q er ēt−rλ

−r for t = q+1, . . . , 2q−1.
Therefore, it suffices to show that the polynomial q(x) involves only 1 and x2q and no other
powers of x. We have

p(x)p(λ−1x) =
1

|detV |2
q−1∏
r=0

(x− λ̄r)(xλ−1 − λr) = − 1
|detV |2

q−1∏
r=0

(x− λ2q−r)(x− λr+1).

The product may be written as
∏2q
r=1(x − λr). Since λ is a 2qth root of unity, this reduces to

x2q − 1. Hence q(x) = −|detV |−2(x2q − 1), as required.
We conclude that ‖φ‖2 = 4|c0|2 + O

(
e−2γqα

)
. To complete the proof, we recall Lemma 5.

Since c0 = detV [0] and

|detV [0]|2 =
∏

0≤r<s<q

|λr − λs|2 =
∏

0≤r<s<q

2
[
1− cos π(r−s)

q

]
= 2q(q−1)

∏
0≤r<s<q

sin2 π(r−s)
2q ,

we obtain the result.

Much like Theorems 1 and 2, this result is of both theoretical interest and practical use, since
it can be use to construct polyharmonic–Neumann expansions, as we next consider.
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n 1 2 3 4 5 10 15 20 25 30

q = 2 en 2.43 4.00 5.16 6.99 8.44 15.5 22.5 29.5 36.4 43.3
an 3 3 2 2 2 1 0 0 0 0

q = 3 en — 3.62 — 6.20 — 13.6 — 25.7 — 37.7
an 0 3 0 2 0 1 0 0 0 0

q = 4 en 2.35 4.63 4.42 5.44 6.97 11.6 16.8 21.5 26.5 31.4
an 4 3 3 2 2 1 1 0 0 0

Table 1: Numerical computation of αn for q = 2, 3, 4. The value en = − log10

`
|αn − 1

4
(2n+ q − 1)|/αn

´
measures the number of significant digits (a dash indicates where αn = 1

4
(2n + q − 1) exactly) and an

is the number of Newton–Raphson iterations required to obtain machine epsilon.

n 1 2 3 4 5 10 15 20
q = 2 (7.6, 2) (4.2, 4) (1.9, 5) (8.8, 7) (3.9, 8) (6.3, 15) (9.6, 22) (1.5, 28)
q = 3 (1.5, 2) (2.9, 3) (6.5, 5) (1.5, 5) (2.8, 7) (1.3, 12) (4.3, 19) (2.2, 24)
q = 4 (1.0, 2) (5.0, 3) (9.3, 4) (7.2, 5) (3.9, 6) (1.9, 10) (9.9, 16) (4.4, 20)

Table 2: Uniform error in approximating φn using Theorem 2 for q = 2, 3, 4. Here (c, n) = c× 10−n for
c ∈ R and n ∈ N.

The estimates proved in this section, namely the exponential asymptotics for polyharmonic
eigenvalues and eigenfunctions, improve known results in the literature of Birkhoff expansions.
We speculate that the principal reason for their omission is due to the fact that such estimates
are only valid under very specific conditions. In fact, there is evidence to suggest that only the
polyharmonic operator with particularly simple boundary conditions will admit such estimates.
A proof of such result requires further study, most likely along similar lines to [20], and is beyond
the scope of this paper.

As we now address, such exponential asymptotics are of great use in the computation of
the expansion fN . In [6], the polyharmonic operator was chosen, out of all possible 2qth order
operators, for its simplicity. The previous comments indicate another reason for this choice.

3.3 Computation of polyharmonic–Neumann expansions

In [6] it was shown how to construct the eigenfunctions φn in a systematic manner (see also
Section 2.1). Once the values αn have been computed, the coefficients of such functions are
found by solving a q× q algebraic eigenproblem. Computation of the values αn involves solving
a transcendental equation, which can be performed with standard iterative techniques, e.g.
Newton–Raphson.

However, the exponential asymptotics of this section mean that such procedure is only nec-
essary for small values of the parameter n. Once n is sufficiently large, we may use the approx-
imations given in Theorems 1 and 2 instead (note that Theorem 2 gives an expression involving
complex parameters. It is a simple, but tedious, exercise to translate this result into a real form,
thereby giving an expression better suited to computations). To highlight this, in Tables 1 and 2
we consider the error in approximating αn and φn by their asymptotic estimates. As is evident,
such estimates are accurate to within machine epsilon whenever n > 15, meaning that only the
first 15 eigenvalues and eigenfunctions require numerical computation. Moreover, for the values
αn only at most four Newton–Raphson iterations are required for convergence, a fact which is
easily explained from the exponential asymptotics. We remark in passing that had the estimates
in Theorems 1 and 2 only been accurate up to O

(
n−1

)
(as is the case for the majority of Birkhoff

expansions), then computation of both αn and φn would have been significantly harder.
The other main task in constructing the expansion fN involves computing the coefficients

f̂n. We shall not dwell on this issue, since it has been dealt with more thoroughly in [6], aside
from mentioning that the basic approach is to replace the function f by a certain interpolating
polynomial p and approximate the coefficient f̂n by p̂n. This is a so-called Filon-type method
(see also [14]). High asymptotic accuracy is guaranteed by interpolating certain derivatives of
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f at the endpoints x = ±1, whilst high classical order (in the sense of numerical quadrature) is
obtained by interpolating the function f at a number of nodes in [−1, 1].

4 Convergence of polyharmonic–Neumann expansions

In the final three sections of this paper we consider the convergence of expansions in polyharmonic–
Neumann eigenfunctions. To this end, we address the following three questions:

1. In what sense (i.e. norm) does fN converge to f?
2. What is the rate of convergence in terms of N?
3. What factors determine both the degree and rate of convergence?

In particular, we wish to determine conditions under which fN → f uniformly on [−1, 1], thereby
confirming the advantage of polyharmonic–Neumann expansions over both Fourier series and
expansions in polyharmonic–Dirichlet eigenfunctions, for example. Moreover, we also seek to
fully confirm the advantage of increasing the parameter q: namely, both a faster rate and higher
degree of convergence of the expansion fN .

Since polyharmonic–Neumann eigenfunctions form an orthogonal basis of L2(−1, 1), the ap-
proximation fN converges to f in the L2 norm (as mentioned in Section 2.2). Our main focus
of this section is the question of convergence in higher-order Sobolev norms Hr, r ∈ N. In turn,
this study allows uniform convergence to by verified, using standard imbedding theorems.

As mentioned in Section 1, much is known about the convergence of general Birkhoff expan-
sions, especially as regards the phenomenon of equiconvergence. However, these results typically
insufficiently describe the case of polyharmonic–Neumann expansions. In the forthcoming sec-
tions we present a largely self-contained convergence analysis of such expansions.

4.1 Duality under differentiation

In [3], it was shown that modified Fourier expansions (polyharmonic–Neumann expansions with
q = 1) form an orthogonal basis for not just L2(−1, 1), but also the space H1(−1, 1). In particular,
fN converges to f ∈ H1(−1, 1) in the H1 norm. This proof was generalised in [6]: polyharmonic–
Neumann expansions form an orthogonal basis Hq(−1, 1), provided this space is equipped with
the inner product

(f, g)q =
∫ 1

−1

[
f(x)g(x) + f (q)(x)g(q)(x)

]
dx, f, g ∈ Hq(−1, 1). (4.1)

Central to this proof is the following lemma:

Lemma 8. If we apply the operator dq

dxq to the set of polyharmonic–Neumann eigenfunctions
φn, we obtain, up to scalar multiples, the set of polyharmonic eigenfunctions that satisfy the
Dirichlet boundary conditions (2.9). Such eigenfunctions are dense and orthogonal in L2(−1, 1).
Moreover, for f ∈ Hq(−1, 1), (fN )(q) is precisely the truncated expansion of f (q) in such eigen-
functions.

Proof. Though this proof is found in [6], it is useful to repeat it here, since similar techniques
will be used later.

It is clear that q-fold differentiation yields the set of polyharmonic–Dirichlet eigenfunctions
(note that the polyharmonic–Dirichlet operator has no zero eigenvalue). Density and orthogo-
nality now follow directly from standard spectral theory [18]. For the second result, we first note
that, for f ∈ Hr(−1, 1), r = 0, . . . , q,∫ 1

−1

f(x)φ(x) dx =
(−1)q+r

α2q

∫ 1

−1

f (r)(x)φ(2q−r)(x) dx, (4.2)

where φ is a polyharmonic–Neumann eigenfunction with corresponding eigenvalue µ = α2q. This
follows from the equality φ(2q) = (−1)qα2qφ and repeated integration by parts. Now, suppose
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that φ(q) = cψ, where ψ is the corresponding normalised polyharmonic–Dirichlet eigenfunction
and c is a constant. Using (4.2) with r = q gives

c2 = c2
∫ 1

−1

ψ(x)ψ(x) dx =
∫ 1

−1

φ(q)(x)φ(q)(x) dx = α2q.

Moreover, we have∫ 1

−1

f(x)φ(x) dx =
1
α2q

∫ 1

−1

f (q)(x)φ(q)(x) dx =
1
c

∫ 1

−1

f (q)(x)ψ(x) dx,

so that (f, φ)φ(q)(x) = (f (q), ψ)ψ(x), where (·, ·) is the standard Euclidean inner product. The
result now follows.

This so-called duality under differentiation of polyharmonic–Neumann and polyharmonic–
Dirichlet expansions immediately provides the main result:

Theorem 3. The set of polyharmonic–Neumann eigenfunctions forms an orthogonal basis for
the space Hq(−1, 1) equipped with the inner product (4.1). In particular, fN converges to f in
the Hq norm and we have the Parseval-type characterisation

|||f |||2q =
q−1∑
n=0

|f̂0,n|2 +
∞∑
n=1

(1 + µn)|f̂n|2, ∀f ∈ Hq(−1, 1), (4.3)

where |||f ||| =
√

(f, f)q is the norm induced from (4.1).

This theorem indicates that polyharmonic–Neumann expansions contrast strongly with, for
example, Fourier series, which only converge in the L2 sense (as we later consider, the same is
true for polyharmonic–Dirichlet expansions). This higher degree of convergence translates into
a faster convergence rate, as we demonstrate in Section 5.

Theorem 3 also provokes the following question: for which values of r 6= 0, q does fN converge
to f ∈ Hr(−1, 1) in the Hr norm? As we will show in Section 4.3, this holds for all r = 1, . . . , q−1.
To do so, much as in Lemma 8, we first need to describe the rth derivative f (r)

N in terms of an
expansion in certain polyharmonic eigenfunctions.

4.2 Biorthogonal pairs of polyharmonic–Neumann eigenfunctions

For r = 1, . . . , q − 1, the derivative f
(r)
N can no longer be expressed as an orthogonal series.

Instead, it can be written in terms of a certain biorthogonal pair of polyharmonic eigenfunctions.
Let us first recall some theory of Birkhoff expansions (see [20], for example). Suppose that

the polyharmonic operator L = (−1)q d2q

dx2q is equipped with boundary conditions Brφ = 0,
r = 1, . . . , 2q. The adjoint boundary conditions B∗r [φ] = 0, r = 1, . . . , 2q, are defined so that∫ 1

−1

Lφ(x)ψ̄(x) dx =
∫ 1

−1

φ(x)Lψ(x) dx,

for all 2q-times continuously differentiable, comlex valued functions φ, ψ satisfying Brφ = 0 and
B∗rψ = 0. We say that the operator L, when equipped with boundary conditions Br (which we
write as {L,Br}), is self-adjoint provided Br = B∗r (up to reordering).

Under some assumptions on the Br, the spectrum of {L,Br} is countable with real eigenval-
ues {µn} and eigenfunctions {φn} [20]. Moreover, the spectrum of {L,B∗r} consists of precisely
the values µn, with corresponding eigenfunctions {ψn} that satisfy (φn, ψm) = δn,m (after ap-
propriate renormalisation). For this reason, we refer to the pair {φn, ψn} as a biorthogonal pair
of polyharmonic eigenfunctions. Such biorthogonality signals that a function f may be expanded
in the formal series

f(x) ∼
∞∑
n=1

(f, ψn)φn(x).
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Note that we do not make an assumptions regarding convergence of this series at this point.
It is evident that, when prescribed either Neumann φ(q+r)(±1) = 0, r = 0, . . . , q − 1, or

Dirichlet φ(r)(±1) = 0 boundary conditions, the operator L is self-adjoint. We now catalogue
the nature of the polyharmonic operator under a variety of other boundary conditions:

Lemma 9. Suppose that p = 1, . . . , q − 1 and that the polyharmonic operator L = (−1)q d2q

dx2q is
equipped with boundary conditions

φ(q+r−p)(±1) = 0, r = 0, . . . , q − 1. (4.4)

Then the adjoint boundary conditions are

ψ(r)(±1) = 0, r = 0, . . . , p− 1, ψ(2q−r−1)(±1) = 0, r = 0, . . . , q − p− 1. (4.5)

In particular, the corresponding pair of polyharmonic eigenfunctions subject to boundary condi-
tions (4.4) and (4.5) are biorthogonal.

Proof. We have∫ 1

−1

Lφ(x)ψ̄(x) dx = (−1)q
2q−1∑
r=0

(−1)r+1φ(r)(x)ψ̄(2q−r−1)(x)
∣∣∣∣1
−1

+
∫ 1

−1

φ(x)Lψ(x) dx.

If φ satisfies boundary conditions (4.4), then this sum vanishes precisely when ψ obeys the
conditions (4.5).

In subsequent analysis, it is necessary to understand the nature of the zero eigenfunction
of the operator L when equipped with boundary conditions (4.4) or (4.5). Recall that the
polyharmonic–Neumann operator has a zero eigenvalue of multiplicity q. The corresponding
eigenspace is Pq−1, the space of polynomials of degree q − 1. Trivial calculations verify that the
polyharmonic operator with boundary conditions (4.4) or (4.5) has a (q−p)-fold zero eigenvalue.
The corresponding eigenspaces are Pq−p−1 and

{
g ∈ Pq+p−1 : g(r)(±1) = 0, r = 0, . . . , p− 1

}
re-

spectively.
We are now in position to prove the main result of this section:

Theorem 4. If we apply the differentiation operator dp

dxp , p = 1, . . . , q − 1, to the set of
polyharmonic–Neumann eigenfunctions, we obtain, up to scalar multiples, the set of polyhar-
monic eigenfunctions that satisfy the boundary conditions (4.4). Furthermore, for f ∈ Hp(−1, 1),
(fN )(p) is the truncated expansion of f (p) in the biorthogonal pair of polyharmonic eigenfunctions
corresponding to boundary conditions (4.4) and (4.5).

Proof. The first result is trivial. For the second, suppose that φn is the nth polyharmonic–
Neumann eigenfunction with eigenvalue µn = α2q

n 6= 0. Let φ(p)
n = cnψn and φ

(2q−p)
n = dnχn,

where {ψn, χn} is the biorthogonal pair corresponding to boundary conditions (4.4) and (4.5).
Assume that such eigenfunctions are normalised so that (ψn, χm) = δn,m. Setting r = p, φ = φn
and f = φn in (4.2) immediately gives

1 =
(−1)q+p

α2q
n

cndn

∫ 1

−1

ψn(x)χn(x) dx.

Hence, cndn = (−1)q+pα2q
n . Moreover, using (4.2) once more,

f̂nφ
(p)
n (x) =

(−1)q+p

α2q
n

cndn

∫ 1

−1

f (p)(x)χn(x) dxψn(x) =
(
f (p), χn

)
ψn(x).

It follows that
dp

dxp

N∑
n=1

f̂nφn(x) =
N∑
n=1

(
f (p), χn

)
ψn(x), (4.6)
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for any N ∈ N. To complete the proof, we need to consider the component of the expan-
sion fN corresponding to the q-fold zero eigenvalue. To this end, suppose that we write
{ψ0,n : n = 0, . . . , q − p − 1} and {χ0,n : n = 0, . . . , q − p − 1} for the sets of polyharmonic
eigenfunctions corresponding to the zero eigenvalue and subject to boundary conditions (4.4)
and (4.5) respectively. It now suffices to show that

dp

dxp

q−1∑
n=0

f̂0,nφ0,n(x) =
q−p−1∑
n=0

(
f (p), χ0,n

)
ψ0,n(x). (4.7)

Since {ψ0,n} is a basis for Pq−p−1, we have dp

dxp

∑q−1
n=0 f̂0,nφ0,n(x) =

∑q−p−1
n=0 anψ0,n(x) for values

an ∈ R. Due to the biorthogonality relation (ψ0,n, χ0,m) = δn,m, we have

an =

(
dp

dxp

q−1∑
m=0

f̂0,mφ0,m, χ0,n

)
.

In view of (4.6) and the fact that (ψn, χ0,m) = 0, we may write

an =

(
dp

dxp

{
q−1∑
m=0

f̂0,mφ0,m +
N∑
m=1

f̂nφm

}
, χ0,n

)
=
(

dp

dxp
fN , χ0,n

)
,

for any N ∈ N+. We now note that, since χ(r)
0,n(±1) = 0 for r = 0, . . . , p− 1, integration by parts

p times gives the relation (
g(p), χ0,n

)
=
(
g, χ

(p)
0,n

)
(4.8)

for any function g ∈ Hp(−1, 1). In particular, an =
(
fN , χ

(p)
0,n

)
. Since N was arbitrary and

fN → f in the L2(−1, 1) norm, it follows that an =
(
f, χ

(p)
0,n

)
. An application of (4.8) now gives

an = (f (p), χ0,n), hence verifying (4.7).

Well-known results for general Birkhoff expansions can now be used to establish convergence
of f (r)

N to f (r) in L2, and hence convergence of fN to f ∈ Hr(−1, 1) in the Hr norm. However, the
particular nature of polyharmonic–Neumann eigenfunctions allows us to present an alternative,
simpler proof of this conjecture in a completely self-contained manner.

4.3 Convergence in Hr norm, r = 1, . . . , q − 1

Throughout this section we write c for a positive constant, independent of f and N .
Our technique of proof will be based on known results for the cases r = 0, q and interpolation

therein for the intermediate values r = 1, . . . , q− 1. To do so, we first need to establish a Bessel-
type inequality in the Hr norm for polyharmonic–Neumann expansions. Specifically, we shall
prove that ‖fN‖r ≤ c‖f‖r for f ∈ Hr(−1, 1) and N ∈ N+.

We commence by stating the following lemma, found in a virtually identical form in [10,
p.2332]:

Lemma 10. Suppose that a = (a1, a2, . . .), where an =
∫ 1

−1
ezn(1±x)f(x) dx (with the same sign

for all n) and f ∈ L2(−1, 1). Suppose further that z 6= 0 and Re z ≤ 0. Then a ∈ l2(N) and
‖a‖ ≤ c‖f‖, where ‖a‖2 =

∑∞
n=1 |an|2.

This lemma possesses the following converse, also found in [10]:

Lemma 11. Suppose that b = (b1, b2, . . .) ∈ l2(N). Then, for Re z ≤ 0 and z 6= 0, the family
of all finite sums of terms of the form bnezn(1±x) is uniformly bounded in L2(−1, 1) with norm
bounded by c‖b‖.

With these lemmas in hand, we now return to the polyharmonic problem:
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Lemma 12. Suppose that {ψn, χn} are a biorthogonal pair of polyharmonic eigenfunctions, with
ψn and χn subject to boundary conditions (4.4) and (4.5) respectively. Then, the family of all
finite sums of terms (f, χn)ψn is uniformly bounded in L2(−1, 1) with norm bounded by c‖f‖.

Proof. Recall Theorem 2. We may write χn as

χn(x) =
q−1∑
s=0

[
aseαnλs(x−1) + bse−αnλs(x+1)

]
+O

(
e−nπγq

)
, (4.9)

with constants as and bs independent of n. Since αn = 1
4 (2n+q−1)π+O (e−nπγq ) and Reλs ≤ 0,

χn is a finite sum of exponentials of the form ezn(1±x) with Re z ≤ 0 and z 6= 0. Hence, for
f ∈ L2(−1, 1), it follows from Lemma 10 that the sequence (f, χn) is in l2(N) with norm bounded
by c‖f‖. Since we may also write ψn in the form (4.9) (with different constants as and bs), the
full result is now a simple consequence of Lemma 11.

We are now able to prove the aforementioned Bessel-type inequality for polyharmonic–
Neumann expansions:

Lemma 13. Suppose that f ∈ Hr(−1, 1), r = 0, . . . , q, and that fN is the truncated expansion
of f in polyharmonic–Neumann eigenfunctions. Then ‖fN‖r ≤ c‖f‖r for all N ∈ N+.

Proof. By Theorem 4, the function f
(r)
N is a finite sum of terms of the form (f (r), χn)ψn. An

application of Lemma 12 now gives the result.

Having established this inequality, we may now prove the key result of this section:

Theorem 5. Suppose that f ∈ Hr(−1, 1), r = 0, . . . , q, and that fN is the truncated expansion
of f in polyharmonic–Neumann eigenfunctions. Then fN converges to f in the Hr(−1, 1) norm.

Proof. Since we have already proved the result for r = 0, q, we assume that r = 1, . . . , q − 1. In
this case, given ε > 0, there exists g ∈ Hq(−1, 1) with ‖f − g‖r < ε [2]. In view of Lemma 13,
‖fN − gN‖r < cε. Hence

‖f − fN‖r ≤ ‖g − gN‖r + ‖f − g‖r + ‖fN − gN‖r < ‖g − gN‖q + (1 + c)ε.

Since g ∈ Hq(−1, 1), ‖g − gN‖q < ε for large N (by Theorem 3), completing the proof.

An immediate consequence of this theorem is uniform convergence of polyharmonic–Neumann
expansions:

Corollary 3. Suppose that f ∈ Hr(−1, 1), r = 1, . . . , q, and that fN is the truncated polyharmonic–
Neumann expansion of f . Then f

(s)
N converges uniformly to f (s) for s = 0, . . . , r − 1.

Proof. This follows immediately from the Sobolev imbedding Hs(−1, 1) ↪→ Cs−1[−1, 1], s ∈ N,
(see, e.g. [2]) and Theorem 5.

In particular, this corollary establishes that fN converges uniformly to f ∈ H1(−1, 1). Note
that this improves upon a result proved in [6], which assumed Hq(−1, 1)-regularity.

We remark in passing that, as a consequence of Theorem 5, the expansion of a function in
any biorthogonal pair of polyharmonic eigenfunctions with boundary conditions (4.4) and (4.5)
converges in the L2 norm. This result, as mentioned, is known in a more general context. The
(somewhat circuitous) method of proof presented above cannot be extended to arbitrary Birkhoff
expansions (except in certain cases), since it relies both on the particular duality of polyharmonic
eigenfunctions and known results for the Dirichlet and Neumann cases (themselves consequences
of standard spectral theory for self-adjoint differential operators).

Theorem 5 and Corollary 3 clearly demonstrate the advantage gained from increasing the
parameter q: namely, higher orders of convergence. As we consider in Section 5, this in turn
corresponds to faster convergence rates. In addition, these results provide criteria for both the
best and worst boundary conditions to prescribe to the polyharmonic operator in terms of the
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convergence of the truncated expansion fN , as opposed to the arguments of Section 2.2 based on
the decay of the coefficients f̂n. Specifically, it is easily established that the expansion based on
polyharmonic eigenfunctions subject to boundary conditions (4.4) converges maximally in the
Hq−p(−1, 1) norm, p = 0, . . . , q. Correspondingly, for boundary conditions (4.5), only L2(−1, 1)
convergence occurs. Hence, choosing p = 0 for the highest possible degree of convergence, we
once more arrive at Neumann boundary conditions. Conversely, Dirichlet boundary conditions
(p = q) give the worst degree of convergence.

4.4 Pointwise convergence

Corollary 3 verifies that fN and its first (q−1) derivatives converge uniformly to the correspond-
ing derivatives of f . In this section, we prove that the qth derivative of fN , whilst not converging
uniformly on [−1, 1], does in fact converge to f (q) uniformly in compact subsets of (−1, 1).

To prove this result, we first note that the expression (4.2) for the coefficient f̂n can be
repeatedly integrated by parts to give

f̂n =
1
α2q
n

p−1∑
s=0

(−1)s
[
f (q+s)(1)φ(q−s−1)

n (1)− f (q+s)(−1)φ(q−s−1)
n (−1)

]
+

(−1)p

α2q
n

∫ 1

−1

f (q+p)(x)φ(q−p)
n (x) dx, (4.10)

provided f ∈ Hq+p(−1, 1), p = 0, . . . , q. In particular, since αn = O (n) and φ
(q−1)
n (±1) =

(±1)ndq−1α
q−1
n +O

(
nq−1e−nπγq

)
by Lemma 6, we have

f̂n =
1
α2q
n

[
f (q)(1)φ(q−1)

n (1)− f (q)(−1)φ(q−1)
n (−1)

]
+O

(
n−q−2

)
.

=
dq−1

αq+1
n

[
f (q)(1) + (−1)n+1f (q)(−1)

]
+O

(
n−q−2

)
, (4.11)

for f ∈ Hq+2(−1, 1). Furthermore, for x ∈ (−1, 1), it follows from Theorem 2 that

φ(q)
n (x) = αqn(−1)qc0

[
e−iαn(x−1) + (−1)n+1eiαn(x+1)

]
+O

(
nqe−

1
2nπγq(1−|x|)

)
. (4.12)

We are now in a position to establish pointwise convergence of f (q)
N to f :

Theorem 6. Suppose that f ∈ Hq+2(−1, 1) and that fN is the truncated expansion of f in
polyharmonic–Neumann eigenfunctions. Then f

(q)
N converges to f (q) uniformly in compact sub-

sets of (−1, 1).

Proof. First consider the sequences

a±N (x) =
N∑
n=1

(±1)n

αn
e−iαn(x−1), b±N (x) =

N∑
n=1

(±1)n

αn
eiαn(x+1), N ∈ N.

We claim that these sequences converge uniformly in compact subsets of (−1, 1). Note that
e−iαN+n(x−1) = e−iαN (x−1)(−1)ne−i 12nπ(x+1) +O (e−nπγq ). Hence, for example,

a+
N+M − a

+
N =

2e−iαN (x−1)

π

M∑
n=0

(−1)n

n+N + 1
2 (q − 1)

e−i 12nπ(x+1) +O
(
Ne−Nπγq

)
.

Much like the tail of a Fourier series, this sum tends to zero as N →∞ for every M ∈ N. Hence
a+
N forms a Cauchy sequence, and thus converges uniformly in compact subsets of (−1, 1) to a

continuous function a+(x). Similar arguments confirm convergence of a−N and b±N . Using (4.11),
(4.12) and this result, we deduce convergence of f (q)

N (x) to a continuous function g(x). Since
f

(q)
N → f (q) in the L2 norm and g is continuous, we conclude that g ≡ f (q), as required.
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Figure 3: The Gibbs phenomenon for polyharmonic–Dirichlet expansions. Graph of f(x) = 1 and f50(x)
for −1 ≤ x ≤ 1, where q = 2 (left), q = 3 (right) and fN is the expansion of f in polyharmonic–Dirichlet
eigenfunctions.

As mentioned, the expansion of a function f in polyharmonic–Dirichlet eigenfunctions does
not converge uniformly on [−1, 1]. However, in view of Lemma 8, the previous theorem equiva-
lently states that such expansions converge away from the endpoints x = ±1. Near the endpoints,
however, they suffer from a Gibbs-type phenomenon. In Figure 3 we exhibit this effect for the
approximation of the function f(x) = 1 by polyharmonic–Dirichlet eigenfunctions: the presence
of O (1) oscillations near x± 1 highlighting the Gibbs phenomenon in this case.

5 Rate of convergence

The intent of this section is to provide estimates for the rate of convergence of the approximation
fN . We first derive results in various Sobolev norms. However, the exponential asymptotics of
Section 3 can be used to provide precise expressions for the pointwise error f(x)− fN (x) at any
point x ∈ [−1, 1]. In turn, this allows us to derive not only the stated O

(
N−q−1

)
estimate for

the convergence rate in (−1, 1), but also an exact expression for the leading order error term as
a function of x. We dedicate Section 5.2 to this topic.

5.1 Convergence rate in various norms

Standard techniques of Fourier analysis are used to derive the first result of this section:

Lemma 14. Suppose that f ∈ Hr(−1, 1). Then ‖f − fN‖r ≤ cNr−s‖f‖s for s = r, . . . , q.

Proof. Consider the case r = 0. By (2.7), we have ‖f−fN‖2 =
∑
n>N |f̂n|2. Note that α2s

n |f̂n|2 =(
f (s), ψn

)
, where ψn is a polyharmonic eigenfunction equipped with boundary conditions (4.4)

and p = q − s. It now follows from the proof of Lemma 12 that
∑
n>N α

2s
n |f̂n|2 ≤ c‖f‖2s. Using

this result and the fact that αn = O (n), we obtain

‖f − fN‖2 =
∑
n>N

α2s
n

α2s
n

|f̂n|2 ≤ N−2s
∑
n>N

α2s
n |f̂n|2 ≤ N−2s‖f‖2s,

which completes the proof for r = 0. Now suppose that r = 1, . . . , s. Recall the interpolation
inequality (see, for example [2])

‖g‖r ≤ c‖g‖1−
r
s ‖g‖

r
s
s , ∀g ∈ Hs(−1, 1). (5.1)

Setting g = f − fN and using the previously derived result, we obtain

‖f − fN‖r ≤ cN−s(1−
r
s )‖f‖1−

r
s

s ‖f − fN‖
r
s
s = cNr−s‖f‖1−

r
s

s ‖f − fN‖
r
s
s .

Note that ‖f−fN‖s ≤ ‖f‖s+‖fN‖s. An application of Lemma 13 now gives ‖f−fN‖s ≤ c‖f‖s,
thus completing the proof.
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Figure 4: Error in approximating f(x) = e2x by FN [f ](x) for q = 1 (squares), q = 2 (circles), q = 3

(crosses) and q = 4 (diamonds). Left: scaled error Nq+ 1
2 ‖f −FN [f ]‖ for N = 1, . . . , 100. Right: scaled

error Nq− 1
2 ‖f −FN [f ]‖1.

This lemma gives estimates for the convergence rate of fN in various Sobolev norms. However,
for smooth functions f , it leads to the conclusion that ‖f − fN‖ = O (N−q). This turns out not
to be the case, the convergence rate is in fact O(N−q−

1
2 ), as the following result demonstrates:

Theorem 7. Suppose that f ∈ Hq+1(−1, 1). Then ‖f−fN‖r ≤ cNr−q− 1
2 ‖f‖q+1 for r = 0, . . . , q.

Moreover, ‖(f − fN )(r)‖∞ ≤ cNr−q‖f‖q+1 for r = 0, . . . , q − 1.

Proof. From (4.10) we find that |f̂n| ≤ cn−q−1‖f‖q+1. Hence, using (2.7), we have

‖f − fN‖2 ≤ c‖f‖2q+1

∑
n>N

n−2q−2 ≤ cN−2q−1‖f‖2q+1,

which gives the result for r = 0. By an identical argument, using (4.3) instead of (2.7), we also
obtain the corresponding result for r = q. The full proof now follows after an application of (5.1)
with g = f − fN and s = q. To derive the estimate for the uniform error, we use Theorem 7 and
the Sobolev interpolation inequality ‖g‖∞ ≤ c

√
‖g‖‖g‖1, ∀g ∈ H1(−1, 1), with g = (f − fN )(r).

The first part of Theorem 7 is verified in Figure 4. The result for the uniform error, i.e.
‖f − fN‖∞ = O (N−q) was confirmed in Figure 1.

5.2 The error f(x)− fN(x)

The exponential asymptotics of Section 3 allow us to determine an explicit asymptotic expan-
sion for the error f(x) − fN (x) in inverse powers of N . This expansion involves only certain
derivatives of f evaluated at the endpoints x = ±1. A particular consequence of this result is
the aforementioned estimate f(x)− fN (x) = O

(
N−q−1

)
for −1 < x < 1. However, we may also

give an exact expression for the leading order behaviour of the error as a function of both N
and x. This was originally established in [21] for the modified Fourier (q = 1) case. Our result,
proved in a similar manner, extends this result to arbitrary q ≥ 2.

For simplicity, we assume that f ∈ C∞[−1, 1] throughout this section. Minor modifications
can be made to the results proved herein to deal with lower regularity. To commence, recall that

φn(x) =
q−1∑
s=0

cs

[
eλsαn(x−1) + (−1)n+q+1e−λsαn(x+1)

]
+O

(
e−nπγq

)
, (5.2)

by Theorem 2. For convenience, we disregard all exponentially small terms from this point
onwards. Note also that ‖φn‖ ∼ c, where the constant c is known explicitly (Lemma 7). Suppose
now that we define

Θ±(r,N ;x) =
1
c2

∑
n≥N

(±1)n

αrn
φn(x), r > 1, N ∈ N+. (5.3)
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Note that the functions Θ± are well-defined and continuous (as functions of x) for all values
r > 1, since the infinite sum converges uniformly on [−1, 1] (though we have not explicitly
shown it, it is a simple exercise to verify that ‖φn‖∞ = O (1) for all n). We seek explicit
expressions for Θ±. In [21] it was shown for the case q = 1 that Θ± can be written in terms of
a particular special function, the Lerch transcendental function Φ(z, s, a) [23], defined by

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
, Re a > 0, Re s > 1, |s| ≤ 1. (5.4)

As we now demonstrate, Lerch functions are also used to express Θ± for arbitrary q ≥ 1:

Lemma 15. The function Θ±(r,N ;x) satisfies

Θ±(r,N ;x) =
2r(±1)N

πrc2

q−1∑
s=0

cs

[
eλsαN (x−1)Φ

(
±e

1
2λs(x−1)π, r, 1

2 (2N + q − 1)
)

+ (−1)qe−λsαN (x+1)Φ
(
∓e−

1
2λs(x+1)π, r, 1

2 (2N + q − 1)
)]
,

where Φ is the Lerch transcendental function (5.4).

Proof. Consider the sum
∑
n≥N

eλαn

αrn
. Using the asymptotic expressions for αn, we have

∑
n≥N

eλαn

αrn
=
∑
n≥N

eλ
1
4 (2n+q−1)π

[ 1
4 (2n+ q − 1)π]r

=
eλαN

(π2 )r

∞∑
m=0

(e
1
2λπ)m

[m+ 1
2 (2N + q − 1)]r

=
(

2
π

)r eλαNΦ
(

e
1
2λπ, r, 1

2 (2N + q − 1)
)
. (5.5)

Next, consider the sum
∑
n≥N (−1)n eλαn

αrn
. In an identical manner, we derive

∑
n≥N

(−1)n
eλαn

αrn
=
(

2
π

)r (−1)NeλαNΦ
(
−e

1
2λπ, r, 1

2 (2N + q − 1)
)
.

We conclude that∑
n≥N

(±1)n
eλαn

αrn
=
(

2
π

)r (±1)NeλαNΦ
(
±e

1
2λπ, r, 1

2 (2N + q − 1)
)
. (5.6)

With this to hand, we replace φn by (5.2) in (5.3), giving

Θ±(r,N ;x) =
1
c2

q−1∑
s=0

cs

∑
n≥N

(±1)n
eλsαn(x−1)

αrn
+ (−1)q+1

∑
n≥N

(∓1)n
e−λsαn(x+1)

αrn


= c−2

(
2
π

)r q−1∑
s=0

cs

[
(±1)NeλsαN (x−1)Φ

(
±e

1
2λ(x−1)π, r, 1

2 (2N + q − 1)
)

+ (−1)q+1(∓1)Ne−λsαN (x+1)Φ
(
∓e−

1
2λs(x+1)π, r, 1

2 (2N + q − 1)
)]
,

as required.

The functions Θ± appear explicitly in the asymptotic expansion of f(x)− fN (x). To derive
such result we first recall the expression (4.10) for the coefficient f̂n. Setting p = q and iterating
we arrive at (see also [6])

f̂n ∼
∞∑
r=0

q−1∑
s=0

(−1)rq+s

α
2(r+1)q
n

[
f ((2r+1)q+s)(1)φ(q−s−1)

n (1)− f ((2r+1)q+s)(−1)φ(q−s−1)
n (−1)

]
.
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Since αn = O (n) and φ(r)
n = O (nr), this is an asymptotic expansion (in the Poincaré sense) for

the coefficient f̂n in inverse powers of n. Moreover, recalling that φ(r)
n (±1) ∼ (±1)r+n+q+1drα

r
n

(see Lemma 6), we have

f̂n ∼
∞∑
r=0

q−1∑
s=0

(−1)rq+sdq−s−1

α
(2r+1)q+s+1
n

[
f+

(2r+1)q+s + (−1)n+s+1f−(2r+1)q+s

]
, (5.7)

where f±r = f (r)(±1). With (5.7) in hand, we now obtain the main result of this section:

Theorem 8. For large N , the error f(x)− fN (x) has the following asymptotic expansion

f(x)− fN (x) ∼
∞∑
r=0

q−1∑
s=0

(−1)rq+sdq−s−1

[
f+

(2r+1)q+sΘ
+((2r + 1)q + s+ 1, N ;x)

+ (−1)s+1f−(2r+1)q+sΘ
−((2r + 1)q + s+ 1, N ;x)

]
. (5.8)

Proof. We may write f(x) − fN (x) =
∑
n≥N ‖φn‖−2f̂nφn(x). Substituting the asymptotic ex-

pansion (5.7) and replacing the various infinite sums with Θ± now yields the result.

Note that it is not clear a priori that (5.8) is an asymptotic expansion for f(x) − fN (x) in
the usual Poincaré sense. However, this turns out to be the case, since the functions Θ±(r,N ;x)
satisfy Θ±(r,N ;x) = O (N−r) for −1 < x < 1 and Θ±(r,N ;x) = O

(
N1−r) when x = ±1. In

fact, not only can we derive such estimates, we may also exactly determine the leading order
asymptotic behaviour of the functions Θ±(r,N ; ·) in these cases:

Lemma 16. The function Θ±(r,N ;x) satisfies

Θ±(r,N ;x) = c0c
−2(±1)N

[
e−iαNx

1∓ ie−
1
2 iπx

+ (−1)q+1 eiαNx

1± ie
1
2 iπx

]
eiαNα−rN +O

(
N−r−1

)
,

uniformly for x in compact subsets of (−1, 1). In particular, Θ±(r,N ;x) = O (N−r).

Proof. For x ∈ (−1, 1) we have Reλs(x− 1) < 0 and Reλs(x+ 1) > 0, s = 1, . . . , q − 1. Hence,
up to exponentially small terms,

Θ±(r,N ;x) =
2r(±1)Nc0

πrc2

[
e−iαN (x−1)Φ

(
±e−i 12 (x−1)π, r, 1

2 (2N + q − 1)
)

+ (−1)q+1eiαN (x+1)Φ
(
∓ei 12 (x+1)π, r, 1

2 (2N + q − 1)
)]
.

In [21] an asymptotic expansion for the Lerch function Φ(−eiπz, r,M) was derived. In particular,

Φ(−eiπz, r,M) = M−r
(
1 + eiπz

)−1
+O

(
M−(r+1)

)
, M →∞, −1 < x < 1.

We now consider the four Lerch functions appearing in the previous expression. Setting M =
1
2 (2N + q − 1), we have

Φ
(

e−i 12 (x−1)π, r, 1
2 (2N + q − 1)

)
= Φ

(
−e−i 12 (x+1)π, r, 1

2 (2N + q − 1)
)

= M−r
(

1− ie−
1
2 iπx

)−1

+O
(
M−(r+1)

)
.

Similarly

Φ
(
−ei 12 (x+1)π, r, 1

2 (2N + q − 1)
)

= M−r
(

1 + ie
1
2 iπx

)−1

+O
(
M−(r+1)

)
.

Hence

Θ+(r,N ;x) = c0c
−2

[
e−iαNx

1− ie−
1
2 iπx

+ (−1)q+1 eiαNx

1 + ie
1
2 iπx

]
eiαNα−rN +O

(
N−r−1

)
.

In a similar manner, we find an expression for Θ−(r,N ;x), giving the result.
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It remains to determine the behaviour of Θ±(r,N ;x) when x = ±1. For this, we have

Lemma 17. The functions Θ±(r,N ;x) satisfies Θ±(r,N ;∓1) = O (N−r) and

Θ±(r,N ;±1) =
2(±1)q+1d0

c2π(r − 1)
α1−r
N +O

(
N−r

)
.

Proof. By the definition of Θ±, we have

Θ±(r,N ;∓1) =
1
c2

∑
n≥N

(±1)n

αrn
φn(∓1).

Since φ(∓1) = (∓1)n+q+1d0 by Lemma 6, it follows that

Θ±(r,N ;∓1) =
d0(∓1)q+1

c2

∑
n≥N

(−1)n

αrn
=
d02r(∓)q+1(−1)N

c2πr
Φ
(
−1, r, 1

2 (2N + q − 1)
)
,

and this is O (N−r). Now consider Θ±(r,N ;±1). By identical arguments

Θ±(r,N ;±1) =
2r(±1)q+1d0

c2πr

∞∑
m=0

1
[m+ 1

2 (2N + q − 1)]r
.

The right hand size is precisely ζ(r, 1
2 (2N + q − 1)), where ζ is the Hurwitz zeta function [1].

The result now follows immediately, since ζ(r,M) ∼ 1
r−1M

1−r for large M .

As shown in [21], it is also possible to provide a full asymptotic expansion for the Lerch
function Φ. Hence, we could have given a complete asymptotic expansion for Θ± in inverse
powers of N . However, our interest lies primarily with the leading order behaviour of Θ±, and
in turn the error f(x)− fN (x), for which we have the following theorem:

Theorem 9. The error f(x)− fN (x) satisfies

f(x)− fN (x) =
dq−1c0eiαN

c2αq+1
N

[
f+
q + (−1)N+qf−q

] [
(−1)q+1G+(N ;x) +G−(N ;x)

]
+O

(
N−q−1

)
,

uniformly for x in compact subsets of (−1, 1), where G±(N ;x) = e±iαNx(1 ± ie
1
2 iπx)−1. In

particular, f(x)− fN (x) = O
(
N−q−1

)
for −1 < x < 1. Moreover,

f(±1)− fN (±1) =
2dq−1d0(±1)q

c2πq
α−qN +O

(
N−q−1

)
= O

(
N−q

)
.

Proof. We combine Lemmas 16 and 17 with (5.8).

This theorem is verified in Figure 5. In particular, the oscillations (at a frequency of O (N))
present in the diagrams are due to the e±iαNx terms appearing in the functions G±. Moreover,
the envelope curve, which grows large as |x| → 1, is explained by the denominators 1± ie

1
2 iπx.

6 Derivative conditions and higher-order convergence

Closer inspection of the asymptotic expansion (5.8) reveals that the rate of convergence of the
approximation fN is completely determined by the values of certain derivatives of the function
f evaluated at x = ±1. As proved, for arbitrary functions with no vanishing derivatives, the
uniform error is O (N−q). However, whenever a finite number of such derivatives are zero, we
can expect faster convergence of the approximation.

To properly detail this effect, we define the finite set Dm ⊆ N by

Dm = {l ∈ N : l = (2r + 1)q + s < m, r ∈ N, s = 0, . . . , q − 1} , m ∈ N, (6.1)

27



-0.5 0.5

-0.00001

-5. ´ 10-6

5. ´ 10-6

0.00001

-0.5 0.5

-5. ´ 10-8

5. ´ 10-8

Figure 5: Pointwise error f(x)−f50(x) for |x| ≤ 9
10

with q = 2 (left), q = 3 (right) and f(x) = x2 cos 2x.

and, for p = 0, . . . , q − 1 and k ∈ N we let

ρk,0 = 2kq, ρk,p = (2k + 1)q + p, p = 1, . . . , q − 1. (6.2)

Note that the derivative f (l)(±1) appears in (5.8) if and only if l ∈ Dρk,p for some k, p. For
this reason, we say that a function f obeys the first ρk,p derivative conditions if f (l)(±1) = 0,
∀l ∈ Dρk,p .

For example, when q = 1 this condition is equivalent to f (2r+1)(±1) = 0, r = 0, . . . , k − 1.
The properties of modified Fourier expansions of functions obeying such derivative conditions
have been detailed in [3, 5].

Returning to the general case, we have

Theorem 10. Suppose that f obeys the first ρk,p derivative conditions. If p 6= 0, then the error
‖f − fN‖∞ = O (N−ρk,p) and f(x)− fN (x) = O

(
N−ρk,p−1

)
uniformly for x in compact subsets

of (−1, 1). For p = 0 these values are O
(
N−(2k+1)q

)
and O

(
N−(2k+1)q−1

)
respectively.

Proof. This follows immediately after substituting the derivative conditions into the expression
(5.8) and using the estimates of Lemmas 16 and 17 for the functions Θ±.

This theorem demonstrates the effect of derivative conditions on the convergence rate of
polyharmonic–Neumann expansions. For example, when q = 1 a function obeying the first
2k = ρk,0 conditions has an O

(
N−2k−1

)
uniform error; a result which is also found in [3, 21].

Throughout this and the previous section we have assumed that the approximated function
is smooth. This is not necessary, and results could have been also derived under lower smooth-
ness assumptions. Naturally, derivative conditions only makes sense for functions of sufficient
smoothness. However, as the following theorem attests, whenever this is the case they also endow
the approximation fN with a higher degree of convergence:

Theorem 11. Suppose that f obeys the first ρk,p derivative conditions and that f ∈ Hρk,p(−1, 1)
for p 6= 0 or f ∈ H2kq+l(−1, 1) when p = 0, where l = 0, . . . , q. Then, the approximation fN
converges to f in the Hr norm for r = 0, . . . , ρk,p or r = 0, . . . , 2kq + l respectively.

For the sake of brevity, we omit the proof of this result, which follows along similar lines to
that of Theorem 5, making necessary adjustments for the particular derivative conditions.

7 Conclusions

The aim of the paper was to study expansions in polyharmonic eigenfunctions equipped with
homogeneous Neumann boundary conditions. First, we have obtained exponential asymptotics
for both the eigenvalues and eigenfunctions, and, using these results, determined a full asymptotic
expansion for the error in approximating a smooth function by its truncated expansion. In doing
so, we have resolved several conjectures raised in [6]. Moreover, we have detailed how such
asymptotic estimates can be used to efficiently construct the truncated expansion.
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The main drawback of polyharmonic–Neumann expansions is that, though it is theoretically
possible to obtain arbitrarily high orders of convergence, as q increases so does the computational
cost in forming the approximation fN . Therefore, it seems inadvisable to use values of q much
greater than q = 4. Nevertheless, as mentioned in Section 1, slowly convergent modified Fourier
expansions have been found to offer a number of advantage over more rapidly convergent methods
in a number of applications. Polyharmonic–Neumann expansions may also possess benefits in
these regards, and this remains a question for future research.

If rapid convergence were required, however, it may be better to use a small value of q in
combination with a technique to accelerate convergence. Since the factors that control conver-
gence are now well-understood (see Section 6), such a device can be developed. In [12] and [4],
the convergence acceleration of modified Fourier expansions has been addressed. Techniques
presented therein could also be extended to this setting.

Modified Fourier expansions were generalised in [16] to d-variate cubes, and their convergence
studied in [5]. This presents an obvious extension of polyharmonic–Neumann expansions. How-
ever, care must be taken. Polyharmonic eigenfunctions in cubes cannot be expressed in terms of
simple functions, and thus are of little use in practical computations. However, it can be shown
that the eigenfunctions of the subpolyharmonic operator L = (−1)q

(
∂2q
x1

+ . . .+ ∂2q
xd

)
arise pre-

cisely as Cartesian products of the univariate polyharmonic eigenfunctions studied in this paper.
Hence, this provides a potential means to generalise such expansions to higher dimensions.
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