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Abstract
This paper is devoted to the asymptotic behaviour of individual eigenvalues of trun-

cated Wiener–Hopf integral operators over increasing intervals. The kernel of the operators
is complex-symmetric and has a rational Fourier transform. Under additional hypotheses,
the main result describes the location of the eigenvalues and provides their asymptotic ex-
pansions in terms of the reciprocal of the length of the truncation interval. Also determined
is the structure of the eigenfunctions.
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1 Introduction

A truncated Wiener–Hopf operator is of the form

(Kτf)(t) := f(t) +
∫ τ

0

k(t− s)f(s) ds, t ∈ (0, τ). (1.1)

We suppose that k is a function in L2(R), so that the integral operator in (1.1) is a Hilbert–
Schmidt operator and thus compact on L2(0, τ) for all τ > 0. Let spKτ be the spectrum of
Kτ . Since Kτ − I is compact, all points in spKτ \ {1} are eigenvalues. We are interested in
the location and the asymptotic behaviour of these eigenvalues as τ tends to infinity.

The two basic assumptions stipulated in this paper are that the kernel k(t− s) is complex-
symmetric, which means that k is a complex-valued function satisfying k(t) = k(−t) for all
t ∈ R, and that the so-called symbol of the operator,

a(x) := 1 +
∫ ∞

−∞
k(t)eixt dt, x ∈ R,

is a rational function. These two assumptions are equivalent to the requirement that

k(t) =


m∑

`=1

p`(t)e−λ`t for t > 0,

m∑
`=1

p`(−t)eλ`t for t < 0,

∗This author acknowledges support of the present work by a grant of the DAAD and by CONACYT grants
80503 and 102800.
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where λ` are complex numbers with Reλ` > 0 and p`(t) are polynomials with complex coeffi-
cients. As k(t) = k(−t) for all t ∈ R if and only if a(x) = a(−x) for all x ∈ R, the Wiener–Hopf
operators considered here are just those with even rational symbols. We may write

a(x) =
r∏

j=1

x2 − ζ2
j

x2 + µ2
j

, x ∈ R, (1.2)

where ζj ∈ C, µj ∈ C, Reµj > 0, and −ζ2
j 6= µ2

k for all j, k. To indicate the dependence of Kτ

on the symbol a and in accordance with the literature, we henceforth denote Kτ by Wτ (a).
This paper was motivated by the recent papers [3], [4], [8], [9] dedicated to the Fox–Li

operator and it was encouraged by the recent investigations in [1], [5] on individual eigenvalues
of certain Hessenberg or Hermitian Toeplitz matrices. The Fox–Li operator is (1.1) with the
kernel k(t) = eit2 . Clearly, k(t − s) is complex-symmetric, and although the function k is not
in L2(R), the Fox–Li operator can be shown to be the identity plus a trace class operator. Its
symbol is

a(x) = 1 +
√
π eiπ/4e−ix2/4. (1.3)

Numerical computations and arguments from physics indicate that the eigenvalues of Wτ (a)
line up along a spiral commencing near the point 1 +

√
π/τ eiπ/4 and rotating clockwise to the

point 1. However mathematically rigorous and at the same time satisfactory results are very
sparse. These include Henry Landau’s analysis of the pseudo-eigenvalues [13] of the Fox–Li
operator and Henry Landau and Harold Widom’s paper [14], which, as shown in [3], provides
deep insight into the singular values of the Fox–Li operator. Of course, (1.3) is far from being
a rational function, but we think that exploring the case of even rational symbols might well
be a first step towards gaining an understanding of the situation for the Fox–Li symbol (1.3).

We take the liberty to repeat the quote from Cochran’s book [10, p. 279] made already
in [8]: ”The analysis of integral equations with general complex-symmetric kernels remains, at
present, an art form in which each separate equation appears to necessitate treatment based
almost solely on its own individual features and peculiarities.” The features and peculiarities
exploited here are the difference kernel and the rationality of the symbol.

We extend a from the real line R to R := R ∪ {±∞} by defining a(±∞) := 1. Let R(a) :=
a(R). By our assumptions, R(a) is an analytic curve in the plane such that when x moves from
−∞ to 0, the symbol a(x) traces out this curve from 1 to a(0), and when x goes further from
0 to ∞ then a(x) follows this curve back from a(0) to 1. The winding number of the function
a about any point outside R(a) is zero.

The Wiener–Hopf analogue of the Brown–Halmos theorem for Toeplitz matrices [6, Propo-
sition 2.17] tells us that spWτ (a) is contained in the convex hull of R(a) for every τ > 0.
Classical results on the finite section method for Wiener–Hopf operators [12, Theorem III.3.1]
show that if a is even and continuous on R ∪ {∞} and U ⊂ C is any open neighbourhood of
R(a), then spWτ (a) ⊂ U for all sufficiently large τ . In [7], the limit of spWτ (a) in the Hausdorff
metric was determined for arbitrary rational symbols a. In the case of even rational symbols,
the result of [7] implies that spWτ (a) converges to R(a) in the Hausdorff metric. There are
also results of the type of Szegő’s limit theorems, which describe the limiting density of the
points in spWτ (a). One such result is Theorem 2.6 of [3]; see also [6, Example 5.39], [15], [18]
for the Toeplitz case. Finally, if a is real-valued, theorems on the asymptotic behaviour of the
extreme eigenvalues of Wτ (a) may already be found in Widom’s papers [16], [17].

The results of this paper are different from those cited in the previous paragraph. We
provide here asymptotic expansions for individual eigenvalues. Under additional hypotheses,
which include that the set R(a) is a curve without self-intersections and that the roots of
certain polynomials are all simple, we prove the following. We associate a number β > 0 with
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a, consider the half-stripe

Sτ := {z ∈ C : Re z > 0, |Im z| ≤ β/τ},

and show that, for τ large enough, all the eigenvalues of Wτ (a) are contained in a(Sτ ). Further,
we construct a finite cover I1 ∪ . . . ∪ IN = (0,∞) by open intervals, and for each I ∈ {In}N

n=1

we consider, subject to certain circumstances, either the segments

Ik,τ :=
[(
k − 1

2

)
π

τ
,

(
k +

1
2

)
π

τ

]
contained in I or the segments

Ik,τ :=
[
k
π

τ
, (k + 1)

π

τ

]
being subsets of I. In this way we obtain N families of rectangles

Sk,τ := {z ∈ Sτ : Re z ∈ Ik,τ}.

We prove that if τ is sufficiently large then each set a(Sk,τ ) contains exactly one eigenvalue,
and the eigenvalue λk,τ in a(Sk,τ ) has an asymptotic expansion

λk,τ ∼ a(kπ/τ) +
c1(kπ/τ)

2iτ
+
c2(kπ/τ)
(2iτ)2

+ . . .

with computable coefficients c1(kπ/τ), c2(kπ/τ), . . .. We also show that the eigensubspaces are
all one-dimensional and describe the structure of the eigenfunctions.

In the following Section 2 we illustrate the strategy of our approach by a simple example.
Section 3 contains the precise statement of our main result, while Sections 4 to 6 are devoted
to its proof. The big advantage of rational symbols is that we have an explicit formula for the
Fredholm determinant

det
(

1
1− λ

(
Wτ (a)− λI

))
. (1.4)

Such a formula was established in [2]. See also [11] for an alternative approach. A point λ 6= 1
is an eigenvalue for Wτ (a) if and only if (1.4) is zero. Our assumption that a is an even function
facilitates the analysis of (1.4) significantly, and after writing λ in the form λ = a(z), we will
arrive at a nonlinear equation for z. If z is restricted to one of the small rectangles Sk,τ , this
equation is of the form z = Φk,τ (z) with a contractive map Φk,τ of Sk,τ into itself. Banach’s
fixed point theorem then accomplishes the rest.

We remark that basic ideas of the present work can already be found in Harold Widom’s
1958 paper [16]. He studied Hermitian kernels, but the equations he obtained and his analysis
of these equations are very similar to what will be done in Section 4, and the method we will use
in Section 6 to determine the eigenfunctions is also essentially already in Widom’s paper [16].
However, the non-Hermitian case has several subtleties, and we see the main contribution of
this paper in overcoming the obstacles caused by them. We also consider the application of
Banach’s fixed point theorem to the eigenvalue analysis of Wiener–Hopf operators as a certain
novelty. Finally, we consider this paper as another piece of the art mentioned in the quote of
Cochran and hope it will be useful for forthcoming research into complex-symmetric kernels.

2 A preparatory example

In order to gain an understanding for some aspects of the general setting, we first consider the
case r = 1, therefore

a(x) =
x2 − ζ2

x2 + µ2
.
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To avoid unnecessarily cumbersome expressions, let us take ζ = 0 and µ = 1. The resulting
symbol a(x) = x2/(x2 + 1) is real-valued and the corresponding kernel

k(t) =

{
−e−t/2 for t > 0,

−et/2 for t < 0,
(2.1)

is Hermitian, but the example nevertheless illustrates the full extent of phenomena associated
with the general setting. For λ 6= 1, the two complex solutions of the equation a(z) = λ are
z = ω1 = ω and z = ω2 = −ω, where ω is any choice of the square root

√
λ/(1− λ). In the

case at hand, the determinant (1.4) is

detWτ

(
a− λ

1− λ

)
= eκτ

(
W1eiωτ +W2e−iωτ

)
(2.2)

with

κ :=
1
2

1
1− λ

− 1, W1 :=
(1 + iω)2

4iω
, W2 :=

(1− iω)2

−4iω

if λ /∈ {0, 1}, while
detWτ (a) = e−τ/2(1 + τ/2)

when λ = 0. We see in particular that λ = 0 is not an eigenvalue. Setting (2.2) to zero, we
arrive at the equation

e2iτω = −W2

W1
=

(
1− iω
1 + iω

)2

=: b(ω). (2.3)

The eigenvalues of Wτ (a) are just the numbers λ = a(z) resulting from the solutions of the
equation e2iτz = b(z). Since |b(z)| = 1 for all z, all solutions of this equation are real numbers,
and we therefore write x instead of z. Specifically, the eigenvalues are λ = a(x), where x satisfies
one of the equations

x =
1
2τ

arg b(x) +
kπ

τ
, k ∈ Z. (2.4)

A moment’s thought reveals that

arg b(x) = 2mπ − 4 arctanx.

Fix m = m0 and insert the corresponding argument of b in (2.4). Denote the right-hand side
of (2.4) by Ψk,τ (x). We then have

|Ψk,τ (x)−Ψk,τ (y)| = 2
τ
| arctanx− arctan y| ≤ 2

τ
|x− y|

for all x, y ∈ R, which shows that if τ > 2, then Ψk,τ is a contractive map of R into itself.
Hence, each of the equations (2.4) has a unique solution. The set of solutions may be denoted
by {xk,τ}k∈Z. In fact, this set does not depend on m0: see Figure 2.1. The set {xk,τ}k∈Z
is symmetric about the origin, and hence the eigenvalues of Wτ (a) are the (real) numbers
λk,τ = a(xk,τ ) obtained from taking all xk,τ with xk,τ > 0.

In the general case, things are more elaborate. We will again arrive at an equation z =
Ψk,τ (z) with a map Ψk,τ that is contractive for sufficiently large τ . However, z is then located
in a complex domain which, moreover, may not contain all of R. The problem then is to find
appropriate closed subsets of C, the complete metric spaces required by Banach’s fixed point
theorem, so that Ψk,τ maps these subsets into themselves. We will construct small rectangles
Sk,τ which do that job. In the special case at hand, these rectangles collapse to line segments
on R and the general construction that will follow below amounts to the following.
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Figure 2.1: We took τ = 5. The horizontal lines are y = kπ/τ , the upper curve is the graph
of y = x + (2/τ) arctanx (corresponding to m = 0), and the lower curve is the graph of
y = x+ (2/τ) arctanx− π/τ (corresponding to m = 1).

Let I1 be the open interval I1 := (0, 2/3) and choose arg b(x) = −4 arctanx for x ∈ I1. Note
that then arg b(x) lies in (−π, π) and is separated from the boundary points ±π as x ranges
over I1. Let Kτ (I1) denote the set of all integers k for which the closed line segments

Ik,τ :=
[(
k − 1

2

)
π

τ
,

(
k +

1
2

)
π

τ

]
(2.5)

are contained in I1. For each k ∈ Kτ (I1), consider equation (2.4). Since arg b(x) is in (−π, π),
it follows that

1
2τ

arg b(x) +
kπ

τ
∈

((
k − 1

2

)
π

τ
,

(
k +

1
2

)
π

τ

)
.

Thus, Ψk,τ maps Ik,τ into itself. Banach’s fixed point theorem now yields a set X1 := {xk,τ,1}
of solutions of equation (2.4). Next, let I2 := (1/3, 3) and choose arg b(x) = 2π − 4 arctanx for
x ∈ I2. This time arg b(I2) is contained in a closed subset of (0, 2π), we denote by Kτ (I2) the
integers k for which

Ik,τ :=
[
k
π

τ
, (k + 1)

π

τ

]
is contained in I2, and consider equation (2.4) for k ∈ Kτ (I2). Our choice of the argument
guarantees that Ψk,τ (Ik,τ ) ⊂ Ik,τ and we again have recourse to Banach’s fixed point theorem.
We obtain a second set X2 := {xk,τ,2} of solutions. Finally, for x in I3 := (2,∞) we proceed as
for x ∈ I1, that is, take arg b(x) = −4 arctanx, consider equation (2.4) for k in the set Kτ (I3)
of all integers for which the segments (2.5) are subsets of I3, and eventually arrive at a third
set X3 := {xk,τ,3} of solutions of (2.4). Note that the sets Xi and Xj coincide on Ii ∩ Ij ,

X1 ∩ I1 ∩ I2 = X2 ∩ I1 ∩ I2, X2 ∩ I2 ∩ I3 = X3 ∩ I2 ∩ I3.

The set of eigenvalues of Wτ (a) is a(X1 ∪X2 ∪X3).
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Let us now turn to the eigenfunctions. Suppose that λ = a(ω) is an eigenvalue of Wτ (a).
We start with the initial guess ϕτ (t) = c1eiωt + c2e−iωt and consider the equation

(1− λ)ϕτ (t) +
∫ τ

0

k(t− s)ϕτ (s) ds = 0 (2.6)

with k given by (2.1). Evaluating the integrals
∫ τ

0
k(t− s)e±ωs ds and writing

λ =
ω2

ω2 + 1
= 1− 1

2
1

1 + iω
− 1

2
1

1− iω
,

equation (2.6) becomes(
1

1 + iω
c1 +

1
1− iω

c2

)
e−t +

[
e(−1+iω)τ

1− iω
c1 +

e(−1−iω)τ

1 + iω
c2

]
et = 0.

The left-hand side is identically zero if and only if
1

1 + iω
1

1− iω
eiωτ

1− iω
e−iωτ

1 + iω

 (
c1
c2

)
=

(
0
0

)
. (2.7)

The determinant of the matrix is

e−iωτ

(1 + iω)2
− eiωτ

(1− iω)2
,

and this is zero exactly when (2.3) holds. As equation (2.3) is satisfied when λ = a(ω) is
an eigenvalue, the set of solutions to (2.7) is a one-dimensional space. Taking the solution
c1 = 1 + iω, c2 = −(1− iω) we get the eigenfunction

ϕτ (t) = (1 + iω)eiωt − (1− iω)e−iωt. (2.8)

Now note that equation (2.3) is equivalent to the satisfaction of one of the two equations

eiτω =
1− iω
1 + iω

, eiτω = −1− iω
1 + iω

. (2.9)

Letting θ := −1 if the first equation in (2.9) is satisfied and θ := 1 if the second holds, we get

1− iω
1 + iω

= −θeiωτ (2.10)

and may rewrite (2.8) in the form

ϕτ (t) = (1 + iω)
[
eiωt + θeiωτe−iωt

]
.

Thus, ignoring scalar multiples, we finally may represent the eigenfunction (2.8) also in the
form

ϕτ (t) =

{
cos

(
ω

(
t− τ

2

))
for θ = 1,

sin
(
ω

(
t− τ

2

))
for θ = −1.

(2.11)

We remark that, after replacing ω by x, the first and second equations in (2.9) are in turn
equivalent to equation (2.4) with odd and even k, respectively. In other terms, θ = 1 corresponds
to even k in (2.4) while θ = −1 originates in an odd k in (2.4).
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3 The main results

Consider the symbol a given by (1.2) with ζj ∈ C, µj ∈ C, Reµj > 0, and −ζ2
j 6= µ2

k for all j, k.
Throughout what follows we assume that the set R(a) has no self-intersections (which means in
particular that a(0) 6= a(∞) = 1), that a′(x) 6= 0 for 0 < x <∞, and that each of the equations
a(z) = a(0) and a(z) = 1 has 2r− 2 zeros in C \R. The latter requirement is equivalent to the
stipulation that the second derivatives of a(x) and a(1/x) are nonzero for x = 0.

Our assumptions imply that for each λ ∈ R(a) \ {1} the equation a(z) = λ has exactly 2r
complex roots

ω1(λ), ω2(λ), . . . , ωr(λ),−ω1(λ),−ω2(λ), . . . ,−ωr(λ). (3.1)

We may label the zeros so that ω1(λ) ∈ R and Imωj(λ) > 0 for j ≥ 2. Furthermore, we denote
by ±ωj(1) (j ≥ 2) the roots of the equation a(z) = 1, labelled again so that Imωj(1) > 0.
Clearly, there is a compact set Ω in the open upper half-plane such that ωj(λ) ∈ Ω for all
λ ∈ R(a) and all j ≥ 2. We may also assume that the points iµ1, . . . , iµr belong to Ω. Note
there exist constants δ > 0 and C <∞ such that

Imωj(λ) > 4δ, |ωj(λ)| < C/2

for λ ∈ R(a) and j ≥ 2.
Now take λ from an open neighbourhood U ⊂ C of R(a) and suppose that λ is not equal

to 1. Then the equation a(z) = λ has again the roots (3.1). Labelling the roots appropriately
and choosing U small enough, we can guarantee that

Imωj(λ) > 3δ, |ωj(λ)| < C (3.2)

for λ ∈ U and j ≥ 2 and that

|Imω1(λ)| < δ or |ω1(λ)| > 2C (3.3)

for λ ∈ U \{1}. Note also that if ω2(λ0), . . . , ωr(λ0) are distinct, then, again under appropriate
labelling, ω2(λ), . . . , ωr(λ) depend analytically on λ in an open neighbourhood of λ0.

Proposition 3.1 If the points ω2(1), . . . , ωr(1) are distinct then there exist an open neigh-
bourhood U1 ⊂ C of the point 1 and a number τ1 such that |Imω1(λ)| < δ for all λ ∈
(U1 \ {1}) ∩ spWτ (a) with τ > τ1.

Thus, once the hypothesis of Proposition 3.1 is satisfied, U may be chosen so small that
instead of (3.3) we have

|Imω1(λ)| < δ (3.4)

for all λ 6= 1 in U ∩ spWτ (a) with τ > τ1. Since spWτ (a) ⊂ U for all τ > τ ′, we conclude
that, under the hypothesis of Proposition 3.1 and for τ > τ ′′ := max(τ ′, τ1), all eigenvalues λ
of Wτ (a) lie in U and are of the form λ = a(z) with |Im z| < δ. To state it differently, the
eigenvalues near the point 1 are not just close to R(a), they are very close to R(a).

Theorem 3.2 If the points ω2(a(0)), . . . , ωr(a(0)) are distinct, then there is a number τ2 such
that for τ > τ2 the operator Wτ (a) has no eigenvalues λ ∈ U with |Reω1(λ)| ≤ π/(2τ).

The hypothesis of Theorem 3.2 ensures in particular that λ = a(0) is not an eigenvalue for
all sufficiently large τ . Moreover, since we may assume a priori that all eigenvalues lie in U , it
follows that all eigenvalues may be sought in the form λ = a(z) with Re z > π/(2τ). Note that
z = ω1(λ), provided that ω1(λ) is chosen to have positive real part.
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Fix an open neighborhood U ⊂ C of R(a). Then spWτ (a) ⊂ U for all sufficiently large τ .
Let Π = {z ∈ C : |Im z| < δ, a(z) ∈ U}. For z ∈ Π consider the two functions

Q(z) :=
r∏

`=1

(z − iµ`),

P (z) :=
r∏

`=2

[z − ω`(a(z))]

and set

b(z) :=
Q(−z)2

Q(z)2
· P (z)2

P (−z)2
.

Using (3.2) and (3.3) and taking into account that Im (iµj) > 4δ, it is easily seen that there
exists a constant β ∈ (0,∞) such that

e−β ≤ |b(z)| ≤ eβ (3.5)

for all z ∈ Π.
Now let I ⊂ (0,∞) be an open interval and suppose there exists a σ > 0 such that either

b(I) ⊂ {z ∈ C : −π + 2σ < arg z < π − 2σ} (3.6)

or
b(I) ⊂ {z ∈ C : 2σ < arg z < 2π − 2σ}. (3.7)

Since b(z) → 1 as |z| → ∞, there is an x0 > 0 such that (3.6) is satisfied for I = (x0,∞).
Analogously, because b(0) = 1, we have case (3.6) whenever I = (0, y0) for some sufficiently
small y0 > 0. Clearly, if the length of I is sufficiently small, then always one of (3.6) or (3.7)
holds. We can therefore cover (0,∞) by finitely many open intervals I such that either (3.6)
or (3.7) is in force for each I. In the case of (3.6) we let Kτ (I) denote the set of all integers
k ≥ 1 for which

Ik,τ :=
[(
k − 1

2

)
π

τ
,

(
k +

1
2

)
π

τ

]
⊂ I,

while if (3.7) is valid then we denote by Kτ (I) the integers k ≥ 1 for which

Ik,τ :=
[
k
π

τ
, (k + 1)

π

τ

]
⊂ I.

If both (3.6) and (3.7) are true then we make a choice in favour of either of the two possibilities.
For k ∈ Kτ (I), let Sk,τ be the rectangle

Sk,τ := {z ∈ C : Re z ∈ Ik,τ , |Im z| ≤ β/τ}.

Clearly, there exists a τ ′′′ such that if τ > τ ′′′ then

b(Sk,τ ) ⊂ {z ∈ C : −π + σ < arg z < π − σ}

for all k ∈ Kτ (I), provided that (3.6) holds and

b(Sk,τ ) ⊂ {z ∈ C : σ < arg z < 2π − σ}

for all k ∈ Kτ (I) if (3.7) is satisfied. Finally, for z ∈ Sk,τ , define log b(z) as log |b(z)|+ i arg b(z)
with arg b(z) in (−π + σ, π − σ) in the case (3.6) and in (σ, 2π − σ) in the case (3.7).

Herewith our main result.
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Theorem 3.3 Let clos I be the closure of I in [0,∞] and suppose that for λ in a(clos I) the
roots ω2(λ), . . . , ωr(λ) are distinct. Then there exists a τ0 such that the following is true for
every τ > τ0.

(a) If λ = a(z) ∈ U is an eigenvalue of Wτ (a) such that Re z ∈ Ik,τ for some k ∈ Kτ (I),
then z ∈ Sk,τ .

(b) For each k ∈ Kτ (I), the set a(Sk,τ ) contains exactly one eigenvalue λk,τ of the operator
Wτ (a). The algebraic multiplicity of this eigenvalue is 1.

(c) The function

Φk,τ (z) :=
kπ

τ
+

1
2iτ

log b(z)

is a contractive map of Sk,τ into itself and, letting

z
(0)
k,τ :=

kπ

τ
, z

(n)
k,τ := Φk,τ (z(n−1)

k,τ ) (n ≥ 1),

we have
λk,τ = a(z(n)

k,τ ) +O(1/τn+1) as τ →∞
uniformly in k ∈ Kτ (I), that is, there exist constants Cn <∞ independent of k and τ such that

|λk,τ − a(z(n)
k,τ )| ≤ Cn/τ

n+1

for all τ > τ0 and all k ∈ Kτ (I).

We remark that we have to work with intervals I instead of (0,∞) for two reasons. The first
is that restricting the function b to I allows us to choose an argument of b with properties that
enable the application of Banach’s fixed point theorem: we have encountered this issue already
in Section 2. The second reason is our assumption that the roots ω2(λ), . . . , ωr(λ) are distinct.
We did not encounter this problem in the special case studied in Section 2. In general, however,
there may occur multiple roots, but this will happen at isolated points only. Theorem 3.3 is
then applicable to intervals I whose closure does not contain those isolated points.

Corollary 3.4 If the points ω2(1), . . . , ωr(1) are distinct then Wτ (a) has infinitely many eigen-
values for every sufficiently large τ .

Indeed, in that case Theorem 3.3(b) is applicable with I = (x0,∞) for some sufficiently
large x0 > 0. We just quote this corollary because we don’t know any rigorous argument that
would imply that the Fox–Li operator has infinitely many eigenvalues.

The first three iterations in Theorem 3.3(c) give

zk,τ = z0 +
c1(z0)
2iτ

+
c2(z0)
(2iτ)2

+
c3(z0)
(2iτ)3

+O

(
1
τ4

)
with z0 := z

(0)
k,τ := kπ/τ and

c1(z0) = log b(z0), c2(z0) =
b′(z0)
b(z0)

log b(z0),

c3(z0) =
b′(z0)2

b(z0)2
log b(z0) +

b′′(z0)b(z0)− b′(z0)2

2b(z0)2
(log b(z0))2.

Accordingly, λk,τ equals

a(z0) +
1

2iτ
a′(z0)c1(z0) +

1
(2iτ)2

[
a′(z0)c2(z0) +

a′′(z0)
2

c1(z0)2
]

+
1

(2iτ)3

[
a′(z0)c3(z0) + a′′(z0)c1(z0)c2(z0) +

a′′′(z0)
6

c1(z0)3
]

+O

(
1
τ4

)
. (3.8)
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If a is real valued, which occurs if and only if k(t) = k(−t) for all t, thenWτ (a) is a selfadjoint
operator. In this case |b(x)| = 1 for x ∈ R, hence the function Φk,τ in Theorem 3.3(c) maps
Ik,τ into itself and becomes

Φk,τ (x) =
kπ

τ
+

1
2τ

arg b(x)

for x ∈ Ik,τ . It follows in particular that all eigenvalues are real, as they should be for a
selfadjoint operator.

The first approximation in (3.8) gives

λk,τ = a(z0) +
1

2iτ
a′(z0) log b(z0) +O(1/τ2)

= a(z0) +
1
2τ
a′(z0) arg b(z0)−

i
2τ
a′(z0) log |b(z0)|+O(1/τ2).

The tangent to R(a) through a(z0) has the parametric representation λ = a(z0)+a′(z0)t, t ∈ R,
and increasing values of the parameter t provide the tangent with an orientation. The point
a(z0) + (1/2τ)a′(z0) arg b(z0) lies on this tangent. It follows that, up to the O(1/τ2) term, the
eigenvalue λk,τ is located on the right of the tangent if |b(z0)| > 1, while λk,τ is on the left of
the tangent if |b(z0)| < 1.

Figures 3.1 and 3.2 illustrate Theorem 3.3 by an example. The symbol a is given by (7.1).
Note that b starts at the point 1 and is first inside the unit circle when tracing out the curve
R(b) clockwise. The corresponding eigenvalues of Wτ (a) are accordingly on the left of the curve
R(a). Eventually b enters the exterior of the unit circle and stays there, which implies that
the eigenvalues of Wτ (a) move to the right of the curve R(a). As the latter eigenvalues are
extremely close to R(a), this is almost not visible at the resolution of the plot.

Figure 3.1: The range R(a) is indicated on the left, while the range of b on (0,∞) is indicated
on the right. The latter is traced out clockwise, starting and terminating at 1.

The following result represents a version of Theorem 3.3 that avoids the use of the intervals
Ik,τ . In contrast to Theorem 3.3, we now let log b denote any logarithm of b which is continuous
on Π; note that such logarithms exist because b(0) = 1 and b(z) → 1 as |z| → ∞.

10



Figure 3.2: The eigenvalues, denoted by small discs and overlaid on R(a), for τ = 20, 50, 100.

Theorem 3.5 Let the hypothesis of Theorem 3.3 be satisfied and choose an open neighbourhood
V ⊂ U of a(clos I) such that the roots ω2(λ), . . . , ωr(λ) are distinct for λ ∈ V . Then there exists
a τ0 such that the following is true for every τ > τ0. The eigenvalues of Wτ (a) belonging to V
are given by λk,τ = a(zk,τ ) where k1 ≤ k ≤ k2 and k1, k2 ≥ 1 depend on τ and V . Moreover
|Im zk,τ | < β/τ and Re zk,τ < Re zk+1,τ for all k. Defining z(n)

k,τ as in Theorem 3.3(c), we have

λk,τ = a(z(n)
k,τ ) +O(1/τn+1) as τ →∞

uniformly in k.

We remark that if the roots ω1(λ), . . . , ωr(λ) are distinct for all λ ∈ R(a), so that Theo-
rem 3.3 may be employed with I = (0,∞), then Theorem 3.5 holds with k1 ≤ k ≤ k2 replaced
by 1 ≤ k <∞.

Finally, a result on eigenfunctions.

Theorem 3.6 Suppose that the numbers µ1, . . . , µr are distinct. Let λ be an eigenvalue of
Wτ (a) and assume that the roots ω2(λ), . . . , ωr(λ) are distinct. Then every eigenfunction ϕτ ∈

11



L2(0, τ) of Wτ (a) corresponding to λ is of the form

ϕτ (t) =
r∑

j=1

[
cjeiωj(λ)t + cr+je−iωj(λ)t

]
, (3.9)

satisfies ϕτ (τ − t) = θϕτ (t) for all t ∈ (0, τ) with θ ∈ {±1}, and can be rewritten in the form

ϕτ (t) =



r∑
j=1

2cjeiωj(λ)τ/2 cos
(
ωj(λ)

(
t− τ

2

))
for θ = 1,

r∑
j=1

2icjeiωj(λ)τ/2 sin
(
ωj(λ)

(
t− τ

2

))
for θ = −1.

The coefficients cj can be computed from the linear algebraic system that arises after in-
serting ansatz (3.9) in equation (2.6). We demonstrated this in Section 2 for the kernel k given
by (2.1).

4 The Wiener–Hopf determinant

Let U ⊂ C be a sufficiently small open neighbourhood of R(a) and take a point λ ∈ U \{a(0), 1}
such that the roots ω2(λ), . . . , ωr(λ) are all distinct. We then have

a(x)− λ

1− λ
=

(x− ξ1(λ)) . . . (x− ξ2r(λ))
(x2 + µ2

1) . . . (x2 + µ2
r)

=
r∏

j=1

x2 − ωj(λ)2

x2 + µ2
j

.

Thus, ξ1(λ), . . . , ξ2r(λ) are simply the roots ±ω1(λ), . . . ,±ωr(λ) labelled in a different manner.
In what follows we will frequently abbreviate ξj(λ) and ωj(λ) to ξj and ωj . From (3.2) and (3.3)
we see that ω1 6= 0 and that±ω1 cannot coincide with any of the roots±ω2, . . . ,±ωr. This shows
that the roots ξ1, . . . , ξ2r are distinct. Proposition 2.4 of [2] tells us that Wτ ((a − λ)/(1 − λ))
is the identity plus a trace class operator, and Theorem 5.1 of [2] shows that

detWτ

(
a− λ

1− λ

)
= eκτ

∑
M

WMewM τ (4.1)

where κ = κ(λ) is some constant, the sum is over all subsets M ⊂ {ξ1, . . . , ξ2r} of cardinality
r, and, with M c := {ξ1, . . . , ξ2r} \M and R := {µ1, . . . , µr},

wM :=
∑

ξj∈Mc

iξj ,

WM :=

∏
ξj∈Mc,µm∈R(iξj + µm)

∏
µ`∈R,ξk∈M (µ` − iξk)∏

µ`∈R,µm∈R(µ` + µm)
∏

ξj∈Mc,ξk∈M (iξj − iξk)
.

The point λ belongs to spWτ (a) if and only if (4.1) is zero, whereby its algebraic multiplicity
is its multiplicity as a zero of (4.1). The dominant terms in (4.1) are those for which

ImwM =
∑

ξj∈Mc

Im ξj (4.2)

is minimal. Recall that (3.2) and (3.3) are valid and that Reµj > 4δ, |µj | < C for j ≥ 2.

Proof of Proposition 3.1. Subject to our assumption, there exists an open neighbourhood
U1 ⊂ C of 1 such that ω2(λ), . . . , ωr(λ) are distinct for λ ∈ U1. Take λ ∈ U1 \ {1} and suppose
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that λ ∈ spWτ (a). We may assume that λ 6= a(0). Because of (3.3), it remains to show that
the two inequalities |ω1(λ)| > 2C and |Imω1(λ)| ≥ δ cannot hold simultaneously if τ is large
enough. So assume that |ω1(λ)| > 2C and, for the sake of definiteness, Imω1(λ) ≥ δ. Note
that (4.1) holds.

If M c
0 = {−ω1,−ω2, . . . ,−ωr}, then the number ImwM0 given by (4.2) takes a certain

negative value, and changing any of the minus signs in M c
0 to plus signs results in a value

of (4.2) that is by at least 2δ larger than the value of ImwM0 . Suppose for a moment that
W−1

M0
WM = O(1) for M 6= M0. Then (4.1) yields

detWτ

(
a− λ

1− λ

)
= eκτWM0e

iwM0τ
(
1 +O(e−2δτ )

)
,

and hence λ cannot be in spWτ (a) for all τ larger than some τ1, which is the desired contra-
diction.

It remains to prove that W−1
M0
WM = O(1) for M 6= M0. We put

ν :=
∏

µ`∈R,µm∈R

(µ` + µm).

Note that ν is a nonzero constant. In what follows we use abbreviations like∏
µm∈R

(. . .+ µm) =:
∏

(. . .+ µm),
∏

µ`∈R

(µ` − . . .) =:
∏

(µ` − . . .)

whenever the range of the product is clear from the context. We have WM0 = AM0(λ)BM0(λ)
where

AM0(λ) :=
∏

(−iω1 + µm)
∏

(µ` − iω1)
−2iω1

∏
k≥2(−iω1 − iωk)

∏
j≥2(−iωj − iω1)

, (4.3)

BM0(λ) :=

∏
j≥2

∏
(−iωj + µm)

∏
k≥2

∏
(µ` − iωk)

ν
∏

j,k≥2(−iωj − iωk)
. (4.4)

Since |ωj + ωk| < 2C, Re (−iωj + µm) > 3δ + 4δ = 7δ, Re (µ` − iωk) > 7δ for j, k ≥ 2, there
exists a constant C1 ∈ (0,∞) such that

1/C1 ≤ |BM0(λ)|.

Taking into account the inequalities |µm| < C/2, |µ`| < C/2, |ωk| < C (k ≥ 2), |ωj | < C
(j ≥ 2), |ω1| > 2C and that ω1 occurs in the power 2r in the numerator and in the power 2r−1
in the denominator of AM0(λ), we see that there exists a constant C2 ∈ (0,∞) such that

|ω1|/C2 ≤ |AM0(λ)|.

We now turn to WM . Suppose first that

M c = {−ω1, ξ2, . . . , ξr}, M = {ω1, η2, . . . , ηr},

where {ξ2, . . . , ξr, η2, . . . , ηr} = {±ω2, . . . ,±ωr}. Then WM = AM (λ)BM (λ) with

AM (λ) :=
∏

(−iω1 + µm)
∏

(µ` − iω1)
−2iω1

∏
(−iω1 − iηk)

∏
(iξj − iω1)

, (4.5)

BM (λ) :=
∏ ∏

(iξj + µm)
∏ ∏

(µ` − iηk)
ν

∏ ∏
(iξj − iηk)

. (4.6)
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The number ξj −ηk is of one of the six forms 2ωj , −2ωj , ωj +ωk, ωj −ωk, −ωj +ωk, −ωj −ωk,
where j 6= k. Clearly, |Im (2ωj)| > 6δ and |Im (ωj + ωk)| > 6δ. Our assumption that the ωj

and ωk are distinct implies that

inf
λ∈U1

|ωj(λ)− ωk(λ)| > 0.

Consequently,
|BM (λ)| ≤ C3

for some constant C3 < ∞. Furthermore, as above when considering AM0(λ), we deduce the
existence of a constant C4 <∞ such that

|AM (λ)| ≤ C4|ω1|.

Combining the estimates we obtain

|W−1
M0
WM | ≤ C1C2C3C4.

Suppose next that

M c = {−ω1, ω1, ξ3, . . . , ξr}, M = {η1, η2, . . . , ηr}

with {ξ3, . . . , ξr, η1, . . . , ηr} = {±ω2, . . . ,±ωr}. Then WM = AM (λ)BM (λ) where

AM (λ) :=
∏

(−iω1 + µm)
∏

(iω1 + µm)∏
(−iω1 − iηk)

∏
(iω1 − iηk)

,

BM (λ) =
∏ ∏

(iξj + µm)
∏ ∏

(µ` − iηk)
ν

∏ ∏
(iξj − iηk)

,

and we conclude as above that

|BM (λ)| ≤ C5, |AM (λ)| ≤ C6,

which results in the estimate

|W−1
M0
WM | ≤ C1C2C5C6/|ω1| < C1C2C5C6/(2C).

The case in which M c = {ξ1, ξ2, . . . , ξr} or M c = {ω1, ξ2, . . . , ξr} can be tackled similarly.
�

Let us now suppose that the hypothesis of Theorem 3.3 is satisfied. Then there exists an
open neighbourhood U ⊂ C of a(clos I) such that ω2(λ), . . . , ωr(λ) are distinct for λ ∈ U . Take
λ ∈ U \ {a(0), 1}. Then formula (4.1) is applicable. Clearly, (3.2) holds. If I is an infinite
interval, then Proposition 3.1 shows that (3.4) is valid. In the case where I is a finite interval,
we can obviously guarantee (3.4) by choosing U sufficiently small.

The two candidates for sets M with minimal values (4.2) are given by

M c
1 := {−ω1,−ω2, . . . ,−ωr}, M c

2 := {ω1,−ω2, . . . ,−ωr},

because changing one −ωj with j ≥ 2 to ωj yields an increase by at least 6δ. Formula (4.1)
gives

e−κτ detWτ

(
a− λ

1− λ

)
= WM1e

wM1τ +WM2e
wM2τ +

∑
M 6=M1,M2

WMewM τ , (4.7)
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and since e(wM2−wM1 )τ = e2iω1τ , it follows that (4.7) equals

WM2e
wM1τ

e2iω1τ +W−1
M2
WM1 +

∑
M 6=M1,M2

W−1
M2
WMe(wM−wM1 )τ


= WM2e

wM1τ

e2iω1τ +W−1
M2
WM1

1 +
∑

M 6=M1,M2

W−1
M1
WMe(wM−wM1 )τ

 . (4.8)

We have M1 = {ω1, ω2, . . . , ωr} and thus

WM1 =

∏
(−iω1 + µm)

∏
j≥2

∏
(−iωj + µm)

∏
(µ` − iω1)

∏
k≥2

∏
(µ` − iωk)

ν(−2iω1)
∏

k≥2(−iω1 − iωk)
∏

j≥2(−iωj − iω1)
∏

j,k≥2(−iω1 − iωk)
,

and since M2 = {−ω1, ω2, . . . , ωr}, we obtain

WM2 =

∏
(iω1 + µm)

∏
j≥2

∏
(−iωj + µm)

∏
(µ` + iω1)

∏
k≥2

∏
(µ` − iωk)

ν(2iω1)
∏

k≥2(iω1 − iωk)
∏

j≥2(−iωj + iω1)
∏

j,k≥2(−iω1 − iωk)
.

Consequently, W−1
M2
WM1 is equal to

−
∏

(−iω1 + µm)
∏

(µ` − iω1)
∏

k≥2(iω1 − iωk)
∏

j≥2(−iωj + iω1)∏
(iω1 + µm)

∏
(µ` + iω1)

∏
k≥2(−iω1 − iωk)

∏
j≥2(−iωj − iω1)

= −
∏

(−ω1 + iµm)
∏

(−iµ` − ω1)
∏

k≥2(ω1 − ωk)
∏

j≥2(ω1 − ωj)∏
(ω1 − iµm)

∏
(−iµ` + ω1)

∏
k≥2(−ω1 − ωk)

∏
j≥2(−ω1 − ωj)

= −Q(−ω1)2

Q(ω1)2
P (ω1)2

P (−ω1)2
= −b(ω1).

Recall next that we have λ = a(z) with z = ω1 = ω1(λ) in Π. Thus, taking into account (4.8),
we see that the equation detWτ ((a− λ)/(1− λ)) = 0 may be written in the form

e2iτz = b(z)(1 + ϕτ (z)) (4.9)

where
ϕτ (z) =

∑
M 6=M1,M2

W−1
M1
WMe(wM−wM1 )τ .

As we have assumed that λ 6= a(0), we may so far use (4.9) only for z ∈ Π \ {0}. The following
lemma will justify the equation for z = 0 too.

Lemma 4.1 Suppose that ω2(a(0)), . . . , ωr(a(0)) are distinct. Then, as z → 0,

detWτ ((a− a(z))/(1− a(z)))

equals

e(κ0+o(1))τf(z)e−iτ(ω2(a(z))+...+ωr(a(z)))

[
eiτz/b(z)− e−iτz

z
+ gτ (z)

]
where κ0 ∈ R, f(z) = f(0) + O(z) with f(0) 6= 0, and |gτ (z)| ≤ Ce−3δτ with some constant
C <∞ independent of z and τ .
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Proof. We write ω1 = z and λ = a(z), and may suppose that |Im z| < δ. From (4.1) we
obtain

e−κτ detWτ

(
a− a(z)
1− a(z)

)
= WM1

ewM1τ +
∑

M 6=M1

W−1
M1
WMewM τ


where M c

1 := {−z,−ω2, . . . ,−ωr}. In the proof of Proposition 3.1, the set M c
1 was denoted by

M c
0 . Formulæ (4.3), (4.4) give WM1 = AM1(λ)BM1(λ) with

AM1(λ) :=
∏

(−iz + µm)
∏

(µ` − iz)
−2iz

∏
(−iz − iωk)

∏
(−iωj − iz)

,

BM1(λ) :=
∏ ∏

(−iωj + µm)
∏ ∏

(µ` − iωk)
ν

∏ ∏
(−iωj − iωk)

,

which shows that

WM1 =: −f(z)
z

= −1
z
(f(0) +O(z))

with f(0) 6= 0.
Let M c

2 := {−z,−ω2, . . . ,−ωr}. Above we saw that W−1
M1
WM2 = −1/b(z). Consequently,

WM1

(
ewM1τ +W−1

M1
WM2e

wM2τ
)

= −f(z)
z

[
eiτ(−z−ω2−...−ωr) − 1

b(z)
eiτ(z−ω2−...−ωr)

]
= f(z)

eiτz/b(z)− e−iτz

z
e−iτ(ω2+...+ωr).

Now consider

M c
− := {−z, ξ2, . . . , ξr}, M− = {z, η1, . . . , ηr},

M c
+ := {z, ξ2, . . . , ξr}, M+ = {−z, η1, . . . , ηr}

with {ξ2, . . . , ξr, η1, . . . , ηr} = {±ω2, . . . ,±ωr}. Then

WM− =
∏

(−iz + µm)
∏ ∏

(iξj + µm)
∏

(µ` − iz)
∏ ∏

(µ` − iηk)
ν(−2iz)

∏
(−iz − iηk)

∏
(iξj − iz)

∏ ∏
(iξj − iηk)

and hence W−1
M1
WM− = D−E− with

D− =
∏

(−iz + iωk)
∏

(−iωj − iz)∏
(−iz − iηk)

∏
(iξj − iz)

,

E− =
∏ ∏

(−iωj − iωk)
∏ ∏

(iξj + µm)
∏ ∏

(µ` − iηk)∏ ∏
(−iωj + µm)

∏ ∏
(µ` − iωk)

∏ ∏
(iξj − iηk)

.

Thus, D−E− converges to a finite limit G as z → 0. Analogously,

WM+ =
∏

(iz + µm)
∏ ∏

(iξj + µm)
∏

(µ` + iz)
∏ ∏

(µ` − iηk)
ν(2iz)

∏
(iz − iηk)

∏
(iξj + iz)

∏ ∏
(iξj − iηk)

,

which yields W−1
M1
WM+ = D+E+ with

D+ =
∏

(−iz − iωk)
∏

(−iωj − iz)
∏

(iz + µm)
∏

(µ` + iz)∏
(−iz + µm)

∏
(µ` − iz)

∏
(iz − iηk)

∏
(iξj + iz)

,

E+ =
∏ ∏

(−iωj − iωk)
∏ ∏

(iξj + µm)
∏ ∏

(µ` − iηk)∏ ∏
(−iωj + µm)

∏ ∏
(µ` − iωk)

∏ ∏
(iξj − iηk)

.
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It follows that D+E+ tends to −G as z → 0. We arrive at the conclusion that

WM1

[
W−1

M1
WM−ewM−τ +W−1

M1
WM+ewM+τ

]
= −f(z)

z

[
(G+O(z))eiτ(−z+ξ2+...+ξr) − (G+O(z))eiτ(z+ξ2+...+ξr)

]
= f(z)

[
G

eiτz − e−iτz

τz
τeiτ(ξ2+...+ξr) +O(eτδ)eτ(ξ2+...+ξr)

]
.

Because Im (ξ2 + . . .+ ξr) ≥ −Im (ω2 + . . .+ ωr) + 6δ, the term in the brackets is

O(τ)e−iτ(ω2+...+ωr)O(e−6δτ ) +O(eδτ )e−iτ(ω2+...+ωr)O(e−6δτ ),

and this is O(e−5δτe−iτ(ω2+...+ωr)). If

MC := {z,−z, ξ3, . . . , ξr} or M c := {ξ1, ξ2, . . . , ξr},

then WM = O(1) as z → 0 and therefore W−1
M1
WM = O(z) as z → 0. In that case

Im
∑

ξj ≥ −Im (ω2 + . . .+ ωr) + 3δ.

Thus,
WM1W

−1
M1
WMewM τ = f(z)O(1)e−iτ(ω2+...+ωr)O(e−3δτ ).

Finally, the constant κ equals −kλ(0)− (µ1 + . . .+ µr) (cf. Theorem 5.1 of [2]) with

kλ(0) :=
∫ ∞

−∞

 r∏
j=1

x2 − ωj(λ)2

x2 + µ2
j

− 1

 dx
2π

.

Clearly, κ converges to a finite limit κ0 as λ→ a(0). �

By the last lemma, in a punctured neighbourhood of z = 0 the equation

detWτ ((a− a(z))/(1− a(z))) = 0

is equivalent to
eiτz/b(z)− e−iτz

z
+ gτ (z) = 0,

which may be written in the form

e2iτz = b(z)(1− zeiτzgτ (z)) =: b(z)(1 + ϕτ (z)).

The lemma shows that ϕτ (z) → 0 as z → 0. Let us define ϕτ (0) := 0. Since obviously b(0) = 1,
it then follows that (4.9) may also be employed for z = 0 and thus for all z ∈ Π provided the
points ω2(a(0)), . . . , ωr(a(0)) are distinct.

Lemma 4.2 There exists a constant γ ∈ (0,∞) such that |b′(z)| ≤ γ for all z ∈ Π.

Proof. Clearly,
1
2
b′(z)
b(z)

= −Q
′(−z)
Q(−z)

− Q′(z)
Q(z)

+
P ′(z)
P (z)

+
P ′(−z)
P (−z)

.

The first two quotients on the right are bounded because Im (iµj) > 4δ. Furthermore,

P ′(z)
P (z)

=
r∑

j=2

1− ω′j(a(z))a
′(z)

z − ωj(a(z))
=

r∑
j=2

1− ω′j(λ)a′(z)
z − ωj(λ)

with λ = a(z). We know that |Im (z − ωj(λ))| > 2δ and that a′(z) is bounded for z ∈ Π.
Since a(ωj(λ)) = λ, it follows that ω′j(λ) = 1/a′(ωj(λ)), and as ωj(λ) is a simple root of a,
we conclude that the infimum of |a′(ωj(λ))| over λ ∈ U is strictly positive. This shows that
P ′(z)/P (z) is bounded for z ∈ Π, and the same is of course also true for P ′(−z)/P (−z). �
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Lemma 4.3 If 0 /∈ Π or if 0 ∈ Π but the roots ω2(a(0)), . . . , ωr(a(0)) are distinct, then

ϕτ (z) = O(e−2δτ ) and ϕ′τ (z) = O(τe−2δτ )

uniformly in z ∈ Π.

Proof. Suppose first that 0 is not in Π. We begin by considering the case where

M c = {−ω1, ξ2, . . . , ξr}, M = {ω1, η2, . . . , ηr}.

Then
e(wM−wM1 )τ = eiτ

P
j≥2(ξj+ωj).

Since M 6= M1, there is a j ≥ 2 such that ξj = ωj , in which case Im (ξj + ωj) > 6δ. Thus,

|e(wM−wM1 )τ | = O(e−6δτ ).

We have WM = AM (λ)BM (λ) with λ = a(z) and AM (λ), BM (λ) given by (4.5), (4.6). More-
over, WM1 = AM0(λ)BM0(λ) where AM0(λ), BM0(λ) are as in (4.3), (4.4). Hence

ϕM,τ (z) := W−1
M1
WMe(wM−wM1 )τ = D(λ)E(λ)eiτ

P
(ξj(λ)+ωj(λ))

with

D(λ) :=
AM (λ)
AM0(λ)

=

∏
k≥2(−iω1 − iωk)

∏
j≥2(−iωj − iω1)∏

(−iω1 − iηk)
∏

(iξj − iω1)
,

E(λ) :=
BM (λ)
BM0(λ)

=

∏ ∏
(iξj + µm)

∏ ∏
(µ` − iηk)

∏
j,k≥2(−iωj − iωk)∏

j≥2

∏
(−iωj + µm)

∏
k≥2

∏
(µ` − iωk)

∏ ∏
(iξj − iηk)

.

As in the proof of Proposition 3.1 we see that D(λ) = O(1) and E(λ) = O(1). This shows that
ϕM,τ (z) = O(e−6δτ ). We further have ϕ′M,τ (z) = T1 + T2 + T3 with

T1 := E′(λ)a′(z)D(λ)eiτ
P

(ξj(λ)+ωj(λ)),

T2 := D′(λ)a′(z)E(λ)eiτ
P

(ξj(λ)+ωj(λ)),

T3 := D(λ)E(λ)eiτ
P

(ξj(λ)+ωj(λ))iτ
[∑

(ξ′j(λ) + ω′j(λ)
]
a′(z).

Since a′(z) = O(1) and E′(λ) = O(1), we get T1 = O(e−6δτ ).
Next, because ω1 = ω1(λ) = z, we may write

D′(λ)a′(z) =
d
dz

∏
k≥2[−iz − iωk(a(z))]

∏
j≥2[−iωj(a(z))− iz]∏

[−iz − iηk(a(z))]
∏

[iξj(a(z))− iz]
.

Using the fact that [−iz + ωk(a(z))]′ = −i + ω′k(a(z))a′(z) and that ωk(a(z)) and a′(z) are
bounded and doing this also for the remaining factors in the expression on the right, we obtain

D′(λ)a′(z) =
(−iz)4r−5 + f4r−6(z)(−iz)4r−6 + . . .+ f0(z)∏

k≥2(−iz − iηk(a(z)))2
∏

j≥2(iξj(a(z))− iz)2

with bounded coefficients f4r−6(z), . . . , f0(z). The denominator is of the form

(−iz)4r−4 + g4r−5(z)(−iz)4r−5 + . . .+ g0(z)

with bounded coefficients, and since

|Im z| < δ, |Im ξj(a(z))| > 3δ, |Im ηk(a(z))| > 3δ,
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the denominator is bounded away from zero. This proves that D′(λ)a′(z) = O(1) and hence
T2 = O(e−6δτ ).

Finally, taking into account that a(ωj(λ)) = λ and a(ξj(λ)) = λ, we get

ω′j(λ) = 1/a′(ωj(λ)), ξ′j(λ) = 1/a′(ξj(λ)).

Our assumption that the roots ω2(λ), . . . , ωr(λ) are all simple implies that

inf
λ∈U

|a′(ωj(λ))| > 0, inf
λ∈U

|a′(ξj(λ))| > 0.

Hence ω′j(λ) = O(1) and ξ′j(λ) = O(1), which shows that T3 = O(τe−6δτ ).
The proof is analogous in the remaining cases. We remark that if

M c = {−ω1, ω1, ξ3, . . . , ξr}, M = {ξ2,−ξ2,−ξ3, . . . ,−ξr},

then
e(wM−wM1 )τ = eiτ(ξ3+...+ξr+ω1+ω2+...+ωr),

and in the case ξ3 = −ω3, . . . , ξr = −ωr we have∣∣∣e(wM−wM1 )τ
∣∣∣ = e−Im (ω1+ω2)τ

with −Imω1− Imω2 < δ− 3δ = −2δ. This is the explanation for the e−2δτ in the statement of
the lemma. The proof in the case where 0 /∈ Π is complete.

Let finally 0 ∈ Π but suppose that the roots ω2(a(0)), . . . , ωr(a(0)) are distinct. We may then
combine the previous argument with Lemma 4.1 to deduce that ϕτ (z) = O(e−2δτ ). By a more
elaborate but still straightforward analysis, one can show that the function gτ in Lemma 4.1
satisfies |g′τ (z)| ≤ Cτe−3δτ as |z| → 0 with some constant C independent of z and τ . After
defining ϕ′τ (0) := 0, this yields the estimate ϕ′τ (z) = O(τe−2δτ ). �

5 The nonlinear equation

In this section we prove Theorems 3.2 and 3.3. Suppose that the hypothesis of Theorem 3.3
is satisfied. We may also assume that the neighbourhood U is replaced by a an open neigh-
bourhood of a(clos I) such that ω2(λ), . . . , ωr(λ) are separated away from each other for λ ∈ U .
For the sake of definiteness, we assume that (3.6) is in force. We already know that if τ is
large enough then λ = a(z) ∈ U \ {a(0), 1} is an eigenvalue of Wτ (a) if and only if (4.9) holds.
Note that we may assume that 0 /∈ Π if clos I does not contain the origin. On the other hand,
if 0 ∈ clos I and thus 0 ∈ Π, then the hypothesis of Theorem 3.3 guarantees that the points
ω2(a(0)), . . . , ωr(a(0)) are distinct. Furthermore, taking τ sufficiently large, we may, by virtue
of Lemma 4.3, guarantee that log |1 + ϕτ (z)| ∈ (−β, β) and arg(1 + ϕτ (z)) ∈ (−σ, σ).

Proof of Theorem 3.3(a). Let z = x+ iε with x ∈ Ik,τ . If z satisfies (4.9), then

x =
1
2τ

[
arg b(z) + arg(1 + ϕτ (z))

]
+
`π

τ
, (5.1)

ε = − 1
2τ

log |b(z)| − 1
2τ

log |1 + ϕτ (z)|, (5.2)

where the argument of b(z) is chosen in (−π + σ, π − σ) and ` ∈ Z. From (3.5) we see that
log |b(z)| ∈ [−β, β], while we have ensured that log |1 + ϕτ (z)| ∈ (−β, β). This proves that
ε ∈ (−2β/(2τ), 2β/(2τ)). �
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Proof of Theorem 3.3(b). The existence of exactly one eigenvalue in a(Sk,τ ) will follow
from (4.9) in conjunction with Banach’s fixed point theorem, once we have proved that the map

Ψk,τ (z) :=
1

2iτ

(
log b(z) + log(1 + ϕτ (z))

)
+
kπ

τ
(5.3)

is a contraction of Sk,τ into itself. Note that the right-hand sides of (5.1) and (5.2) with ` = k
are just Re Ψk,τ (z) and Im Ψk,τ (z). Let z ∈ Sk,τ . Then the right-hand of (5.1) with ` = k is in

1
2τ

(−π + σ, π − σ) +
1
2τ

(−σ, σ) +
kπ

τ
=

((
k − 1

2

)
π

τ
,

(
k +

1
2

)
π

τ

)
,

while the right-hand side of (5.2) lies in

− 1
2τ

[−β, β]− 1
2τ

(−β, β) =
(
−β
τ
,
β

τ

)
.

Thus, Ψk,τ maps Sk,τ into itself. If f is an analytic function satisfying |f ′(z)| ≤ M for z in
some convex domain G, then

|f(z1)− f(z2)| ≤ 2
√

2M |z1 − z2|

for z1, z2 ∈ G. Since

Ψ′k,τ (z) =
1

2iτ

(
b′(z)
b(z)

+
ϕ′τ (z)

1 + ϕτ (z)

)
and ∣∣∣∣b′(z)b(z)

∣∣∣∣ < γeβ ,
ϕ′τ (z)

1 + ϕτ (z)
= O(τe−2δτ )

by virtue of (3.5) and Lemmas 4.2 and 4.3, we conclude that Ψk,τ is contractive whenever τ is
sufficiently large.

The algebraic multiplicity of λk,τ = a(zk,τ ) is the multiplicity of z := zk,τ as a zero of the
equation (4.9). Assume that the multiplicity is at least 2. Differentiating equation (4.9) we get

2iτe2iτz = b′(z)(1 + ϕτ (z)) + b(z)ϕ′τ (z).

But this is impossible for large τ , since the absolute value of the left-hand side is 2τe−2τIm z ≥
2τe−2β whereas that of the right-hand side is bounded due to (3.5) and Lemma 4.3. �

Proof of Theorem 3.3(c). According to the proof of part (b), λk,τ = a(zk,τ ) where
zk,τ ∈ Sk,τ is the unique solution of the equation z = Ψk,τ (z). The same argument as in the
proof of part (b) shows that Φk,τ is a contractive map of Sk,τ into itself. We now suppress the
subscripts k, τ .

Put z(0) = w(0) := kπ/τ and define z(n) and w(n) by

z(n) := Φ(z(n−1)), w(n) := Ψ(w(n−1)) (n ≥ 1).

From the proof of part (b) we know that there exists a constant K <∞ such that

|Φ(z1)− Φ(z2)| ≤
K

τ
|z1 − z2|, |Ψ(w1)−Ψ(w2)| ≤

K

τ
|w1 − w2|

for all z1, z2, w1, w2 ∈ Sk,τ . We therefore deduce from Banach’s fixed point theorem that
w(n) → zk,τ and that

|w(n) − zk,τ | ≤
(
K

τ

)n

|z(0) − zk,τ | = O

(
1

τn+1

)
. (5.4)
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We claim that
z(n) = w(n) +O(e−2δτ ). (5.5)

By Lemma 4.3,

ψτ (z) := − 1
2iτ

log(1 + ϕτ (z)) = O(e−2δτ ).

Thus, we have Φ(z) = Ψ(z) + ψτ (z) and

z(1) = Φ(z(0)) = Ψ(z(0)) + ψτ (z(0))
= Ψ(w(0)) +O(e−2δτ ) = w(1) +O(e−2δτ ),

which is (5.5) for n = 1. But if (5.5) is true for some n, then

z(n+1) = Φ(z(n)) = Φ
(
w(n) +O(e−2δτ )

)
= Φ(w(n)) +

K

τ
O(e−2δτ )

= Ψ(w(n)) + ψτ (w(n)) +
K

τ
O(e−2δτ )

= w(n+1) +O(e−2δτ ),

which is (5.5) for n+ 1. Consequently, (5.5) is true for all n ≥ 1. Combining (5.4) and (5.5) we
get

|z(n) − zk,τ | = O

(
1

τn+1

)
,

whence

λk,τ = a(zk,τ ) = a

(
z(n) +O

(
1

τn+1

))
= a(z(n)) +O

(
1

τn+1

)
.

All estimates are uniform in k. �

Proof of Theorem 3.2. There exists an open neighbourhood V ⊂ C of the point z = 0
such that ω2(a(z)), . . . , ωr(a(z)) are distinct for z ∈ V . The function

hτ (z) := detWτ

(
a− a(z)
1− a(z)

)
is analytic in V . Since

lim
z→0

eiτz/b(z)− e−iτz

z
= 2iτ − b′(0),

Lemma 4.1 implies that hτ (0) 6= 0 and that therefore λ = a(0) is not an eigenvalue of Wτ (a)
whenever τ is large enough.

Now assume that Wτ (a) has an eigenvalue λ = a(z) ∈ U with z 6= 0 and |Re z| ≤ π/(2τ).
Then z = x + iε with x ∈ I0,τ . The reasoning of the proof of Theorem 3.3(a) shows that
|ε| < β/τ . Hence z ∈ S0,τ . The map Ψk,τ introduced in the proof of Theorem 3.3(b) makes
also sense for k = 0, and one can verify as in the proof of Theorem 3.3(b) that Ψk,τ is a
contractive map of S0,τ into itself. As z satisfies equation (4.9), it is a solution of the equation
z = Ψ0,τ (z). Now we can repeat the argument of the proof of Theorem 3.3(c) for k = 0
to conclude that Φ0,k : S0,k → S0,k is contractive and that z must also satisfy the equation
z = Φ0,k(z). However, by Banach’s fixed point theorem, the unique solution of this equation is
z = 0. This contradiction completes the proof. �

Proof of Theorem 3.5. We know that λ ∈ V is an eigenvalue if and only if λ = a(z) and z
satisfies equation (4.9). This equation is in turn equivalent to the equation z = Ψk,τ (z) for some
k ≥ 1, where Ψk,τ is given by (5.3). Let m0 be the maximum of | arg b(z)|+ | arg(1 +ϕτ (z))| as
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z ranges over Π. If z = x+ iε and z = Ψk,τ (z), then x and ε satisfy (5.1) with ` = k and (5.2).
We have log |b(z)| ∈ [−β, β], and can guarantee that log |1+ϕτ (z)| is in (−β, β). Consequently,

z ∈ S∗k,τ :=
{
z ∈ C : Re z ∈

[
kπ

τ
− m0

2τ
,
kπ

τ
+
m0

2τ

]
, |Im z| ≤ β

τ

}
.

Note that S∗k,τ is automatically a subset of Π for all k ≥ 1 if only τ is large enough. This
proves that the solutions of the equation z = Ψk,τ (z) necessarily belong to S∗k,τ . The existence
of exactly one solution will follow from Banach’s fixed point theorem once we have proved that
the map Ψk,τ is a contraction of S∗k,τ into itself. But it is obvious that Ψk,τ maps S∗k,τ into
itself, and exactly as in the proof of Theorem 3.3(b) we see that Ψk,τ is contractive on S∗k,τ .
Let us denote the unique solution of the equation z = Ψk,τ (z) by zk,τ .

We now prove that Re zk,τ < Re zk+1,τ . Abbreviating b(1 + ϕτ ) to c, we have

Re zk+1,τ − Re zk,τ = Re Ψk+1,τ (zk+1,τ )− Re Ψk,τ (zk,τ )

=
π

τ
+

1
2τ

(
arg c(zk+1,τ )− arg c(zk,τ )

)
. (5.6)

In the proof of Theorem 3.3(b) we have observed that

1
2τ
|arg c(zk+1,τ )− arg c(zk,τ )| ≤ K

τ
|zk+1,τ − zk,τ |

with some constant K <∞, and since

|zk+1,τ − zk,τ | ≤
(k + 1)π

τ
+
m0

2τ
− k

τ
+
m0

2τ
=
m0 + π

τ
,

it follows that (5.6) is positive whenever τ > (m0 + π)K/π.
Finally, the argument of the proof of Theorem 3.3(c) remains literally true with Sk,τ replaced

by S∗k,τ . This yields the remaining part of Theorem 3.5. �

6 The eigenfunctions

In this section we prove Theorem 3.6. The basic idea of the proof goes back to Widom [16],
who considered Hermitian kernels.

Let F : L2(−∞,∞) → L2(R) be the Fourier transform,

(Ff)(x) :=
1
2π

∫ ∞

−∞
f(t)eixt dt, x ∈ R.

We may think of L2(0, τ) as a subspace of L2(−∞,∞) and denote by FL2(0, τ) the image
of L2(0, τ) under the Fourier transform. Functions in FL2(0, τ) may be continued to entire
functions on C. We let χ(0,τ) stand for the orthogonal projection of L2(−∞,∞) to L2(0, τ).
Note that χ(0,τ) is nothing but restriction to (0, τ) or, in other terms, multiplication by the
characteristic function of the interval (0, τ). Finally, let Pτ := Fχ(0,τ)F

−1. Thus, Pτ is the
orthogonal projection of L2(R) to FL2(0, τ).

Proof of Theorem 3.6. Let λ be an eigenvalue of the operator Wτ (a) and let ϕτ ∈ L2(0, τ)
be an eigenfunction corresponding to λ. The equation Wτ (a)ϕτ = λϕτ is equivalent to

Pτ ((a(x)− λ)Eτ (x)) = 0, (6.1)

where Eτ := Fϕτ . Since µ1, . . . , µr are distinct, the function a has the partial fraction decom-
position

a(x) = 1 +
r∑

j=1

Aj

x2 + µ2
j

= 1 +
r∑

j=1

(
αj

x− iµj
− αj

x+ iµj

)
.
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Inserting this in (6.1) we get

(1− λ)Eτ (x) +
r∑

j=1

αjPτ

(
Eτ (x)
x− iµj

)
−

r∑
j=1

αjPτ

(
Eτ (x)
x+ iµj

)
= 0. (6.2)

It is well known that if Reµ > 0, then

Pτ

(
E(x)
x− iµj

)
=
E(x)− E(iµ)

x− iµ
, Pτ

(
E(x)
x+ iµj

)
=
E(x)− eiτ(x+iµ)E(−iµ)

x+ iµ

for every E ∈ FL2(0, τ). Thus, (6.2) may be written as

(1− λ)Eτ (x) +
r∑

j=1

αj
Eτ (x)− Eτ (iµj)

x− iµj
−

r∑
j=1

αj
Eτ (x)− eiτ(x+iµj)Eτ (−iµj)

x+ iµj
= 0,

or equivalently,

(a(x)− λ)Eτ (x) =
r∑

j=1

yj

x− iµj
+

r∑
j=1

yr+jeiτx

x+ iµj
(6.3)

with
yj := αjEτ (iµj), yr+j = −αje−τµjEτ (−iµj).

It follows that

Eτ (x) =
1

a(x)− λ

 r∑
j=1

yj

x− iµj
+

r∑
j=1

yr+jeiτx

x+ iµj


=

1
a(x)− λ

p2r−1(x) + eiτxq2r−1(x)
(x2 + µ2

1) . . . (x2 + µ2
r)
,

where p2r−1(x) and q2r−1(x) are polynomials of degree at most 2r − 1. Now note that

1− λ

a(x)− λ
=

(x2 + µ2
1) . . . (x

2 + µ2
r)

(x− ξ1) . . . (x− ξ2r)

with ξj := ξj(λ) and that we may ignore the scalar multiple 1− λ when considering eigenfunc-
tions. We therefore obtain

Eτ (x) =
p2r−1(x) + eiτxq2r−1(x)

(x− ξ1) . . . (x− ξ2r)
=

2r∑
j=1

bj + djeiτx

x− ξj
.

The entire function Eτ has no poles. Hence bj + djeiτξj = 0, which yields

Eτ (x) =
2r∑

j=1

dj
eiτx − eiτξj

x− ξj
=

2r∑
j=1

cj
eiτ(x−ξj) − 1

x− ξj
.

Since ∫ τ

0

e−iξteitx dt =
eiτ(x−ξ) − 1

x− ξ
,

we arrive at the desired representation

ϕτ (t) =
2r∑

j=1

cje−iξt. (6.4)
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If
ϕτ (t) +

∫ τ

0

k(t− s)ϕτ (s) ds = λϕτ (t)

and k(t− s) = k(s− t) then

ϕτ (τ − t) +
∫ τ

0

k(t− s)ϕτ (τ − s) ds = λϕτ (τ − t).

Thus, if ϕτ (t) is an eigenfunction, then so is also ϕτ (τ − t). As the eigensubspace is one-
dimensional due to Theorem 3.3(b), we conclude that ϕτ (τ − t) = θϕτ (t) with some scalar
θ 6= 0. Taking the Fourier transform we get

eiτxEτ (−x) = θEτ (x). (6.5)

If Eτ (0) 6= 0, this implies that θ = 1. In case Eτ (0) = 0 and E′τ (0) 6= 0, we obtain after
differentiation of (6.5) that θ = −1. Continuing in this way we see that if

Eτ (0) = . . . = E(n−1)
τ (0) = 0, E(n)

τ (0) 6= 0,

then θ = (−1)n.
Now recall that {ξ1, . . . , ξ2r} = {±ω1, . . . ,±ωr}. We may therefore rewrite equality (6.4) in

the form

ϕτ (t) =
r∑

j=1

(
cjeiωjt + cr+je−iωjt

)
,

whence

ϕτ (τ − t) =
r∑

j=1

(
cr+je−iωjτeiωjt + cjeiωjτe−iωjt

)
.

Using the equality ϕτ (τ − t) = θϕτ (t) and taking into consideration that e±iωjt are linearly
independent, we get cr+j = θeiωjτ cj and thus,

ϕτ (t) =
r∑

j=1

cj

(
eiωjt + θeiωj(τ−t)

)
.

Clearly, this can be written in the form asserted in the theorem. �

As the left-hand side of (6.3) vanishes for x = ξj , so also must the right-hand side. Conse-
quently,

r∑
j=1

yj

ξk − iµj
+

r∑
j=1

yr+jeiτξk

ξk + iµj
= 0, k = 1, . . . , 2r. (6.6)

This is a linear system with 2r equations and 2r variables y1, . . . , y2r. It has a nontrivial solution
if and only if its determinant is zero, and computing the determinant one gets an expression
similar to the right-hand side of (4.1) and eventually arrives at equation (4.9). This is the way
in which Widom proceeded in [16] to tackle the case of Hermitian kernels.

Let

a(x) =
x2

x2 + 1

be as in Section 2. Then r = 1, µ = 1, ξ1 = ω, ξ2 = −ω, formula (6.3) reads

(1− λ)
x2 − ω2

x2 + µ2
Eτ (x) =

y1
x− i

+
y2eiτx

x+ i
, (6.7)
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and system (6.6) becomes
1

ω − i
eiτω

ω + i
1

−ω − i
e−iτω

−ω + i

 (
y1
y2

)
=

(
0
0

)
.

The determinant of the matrix equals

eiτω

(ω + i)2
− e−iτω

(ω − i)2
,

and this is zero if and only if (2.3) satisfied. Let y1, y2 be any nontrivial solution. From (6.7)
we get

(1− λ)Eτ (x) = y1
x+ i
x2 − ω2

+ y2
x− i
x2 − ω2

eiτx, (6.8)

and using

x+ i
x2 − ω2

=
ω + i

2ω(x− ω)
+

ω − i
2ω(x+ ω)

,
x− i
x2 − ω2

=
ω − i

2ω(x− ω)
+

ω + i
2ω(x+ ω)

,

we deduce that (6.8) is equal to

y1(ω + i) + y2(ω − i)eiτx

2ω(x− ω)
+
y1(ω − i) + y2(ω + i)eiτx

2ω(x+ ω)
. (6.9)

Since (6.8), hence also (6.9), cannot have poles, it follows that

y1(ω + i) + y2(ω − i)eiτω = 0,
y1(ω − i) + y2(ω + i)e−iτω = 0.

Hence, (6.9) can be written in the form

y2(ω − i)(eiτx − eiτω)
2ω(x− ω)

+
y2(ω + i)(eiτx − e−iτω)

2ω(x+ ω)

=
y2(ω − i)

2ω
eiτω eiτ(x−ω) − 1

x− ω
+
y2(ω + i)

2ω
e−iτω eiτ(x+ω) − 1

x+ ω
.

Taking the inverse Fourier transform we obtain

(1− λ)ϕτ (t) =
y2(ω − i)

2ω
eiτωe−iωt +

y2(ω + i)
2ω

e−iτωeiωt

and, ignoring scalar multiples, we finally get

ϕτ (t) = c1eiωt + c2e−iωt

with c1 = (ω + i)e−iτω and c2 = (ω − i)eiτω. By virtue of (2.10),

c2e−iτω

c1
=
ω − i
ω + i

eiτω =
−i(1 + iω)
i(1− iω)

eiτω = θ.

Thus, ϕτ (t) = c1

(
eiωt + θeiτωe−iωt

)
, which results in (2.11).
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7 Numerical examples

In this section we illustrate our narrative with two numerical examples. The first corresponds
to the operator with the symbol

a(x) =
−(16 + 68i)− (10 + 30i)x2 − (3 + 2i)x2 + x6

(12 + 16i) + (20 + 12i)x2 + (9− 4i)x4 + x6
= 1 + 2

3∑
k=1

αkµk

x2 + µ2
k

(7.1)

where α = [−1,−i,−2] and µ = [1, 1 + i, 3 − i]. The curve R(a) and the range of b on (0,∞)
are plotted in Fig. 3.1. In Fig. 3.2 we display the eigenvalues of Wτ (a) for different values of τ ,
overlaid on R(a). Note that we have computed the eigenvalues both using Theorem 3.3(c) and
by the finite section algorithm from [8]: both results match to very high accuracy. Note that
the eigenvalues congregate near R(a), are nearly equispaced and their density grows linearly
with τ : all this is in complete conformity with Theorem 3.3. The rapid speed of convergence
of the iterative scheme from Theorem 3.3(c) is illustrated by Fig. 7.1, where we have zoomed
into a small portion of R(a). Note that the first iteration z(1)

k,τ is already difficult to distinguish
from the exact eigenvalues at the resolution of the plot!

Figure 7.1: The speed of convergence of a(n)
k,20 for growing n. The equispaced points z(0)

k,20 are

denoted by white circles, the first iteration z
(1)
k,20 by filled-in discs and the eigenvalues λ(n)

k,20 by
white stars.

Rapid convergence is further emphasized in Table 1, where we have displayed the error of
the iterates visible in Fig. 7.1, as well as in Table 2, where similar information, corresponding to
the same portion of R(a), has been displayed for τ = 100. The decay of the error is consistent
with the O(1/τn+1) estimate from Theorem 3.3(c).
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Table 1: The error |z(n)
k,τ − λk,τ | for τ = 20, k = 10, . . . , 17 and the iterations n = 0, 1, 2, 3, 4.

iteration 10 11 12 13 14 15 16 17
0 9.84−02 7.69−02 6.02−02 4.75−02 3.80−02 3.10−02 2.58−02 2.19−02

1 3.69−03 2.68−03 1.95−03 1.42−03 1.03−03 7.55−04 5.55−04 4.11−04

2 1.40−04 9.47−05 6.38−05 4.26−05 2.82−05 1.84−05 1.20−05 7.70−06

3 5.33−06 3.55−06 2.09−06 1.28−06 7.70−07 4.51−07 2.58−07 1.44−07

4 2.03−07 1.18−07 6.85−08 3.86−08 2.10−08 1.10−08 5.56−09 2.71−09

Table 2: The error |z(n)
k,τ −λk,τ | for τ = 100, k = 50, 55, . . . , 85 and the iterations n = 0, 1, 2, 3, 4.

iteration 50 55 60 65 70 75 80 85
0 2.09−02 1.62−02 1.26−02 9.87−03 7.86−03 6.38−03 5.29−03 4.48−03

1 1.66−04 1.19−04 8.50−05 6.11−05 4.42−05 3.21−05 2.35−05 1.73−05

2 1.32−06 8.69−07 5.75−07 3.79−07 2.48−07 1.62−07 1.05−07 6.72−08

3 1.05−08 6.37−09 3.89−09 2.35−09 1.40−09 8.14−10 4.65−10 2.60−10

4 8.32−11 4.67−11 2.63−11 1.46−11 7.86−12 4.10−12 2.07−12 1.01−12

Our second example is a(x) = 1 + 2
∑4

k=1 αkµk/(x2 + µ2
k), where α = [−1, 2 + i, 3i, 1 + i]

and µ = [1 + 2i, 2, 2 − 3i, 3 + 4i]. The set R(a) and the range of b are displayed in Fig. 7.2.
The transition of the eigenvalues from one side of R(a) to the other is illustrated in Fig. 7.3 for
different values of τ . Fig. 7.4 recapitulates (to different scale) the right-hand side of Fig. 7.2,
except that the portions corresponding to (3.6) and (3.7) are denoted differently: the first with
circles and the second with pluses.

Figure 7.2: The range R(a) is indicated on the left, while the range of b on (0,∞) is indicated
on the right.
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Figure 7.3: The eigenvalues of Wτ (a) for different values of τ . The eigenvalues consistent with
(3.6) are denoted by a star and those conforming with (3.7) by a disc.

Figure 7.4: The range of b on (0,∞) with the points corresponding to (3.6) and to (3.7) denoted
by circles and pluses, respectively.
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[5] A. Böttcher, S. Grudsky, and E. A. Maksimenko, Inside the eigenvalues of certain Hermi-
tian Toeplitz band matrices. J. Comput. Appl. Math. 233 (2010), 2245–2264.
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