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Abstract

We introduce a method to reconstruct an element of a Hilbert space in terms of an arbi-
trary finite collection of linearly independent reconstruction vectors, given a finite number
of its samples with respect to any Riesz basis. As we establish, provided the dimension
of the reconstruction space is chosen suitably in relation to the number of samples, this
procedure can be numerically implemented in a stable manner. Moreover, the accuracy of
the resulting approximation is completely determined by the choice of reconstruction basis,
meaning that the reconstruction vectors can be tailored to the particular problem at hand.

An important example of this approach is the accurate recovery of a piecewise analytic
function from its first few Fourier coefficients. Whilst the standard Fourier projection suffers
from the Gibbs phenomenon, by reconstructing in a piecewise polynomial basis, we obtain
an approximation with root exponential accuracy in terms of the number of Fourier samples
and exponential accuracy in terms of the degree of the reconstruction function. Numerical
examples illustrate the advantage of this approach over other existing methods.

1 Introduction

Suppose that H is a separable Hilbert space with inner product 〈·, ·〉 and corresponding norm ‖·‖.
In this paper, we consider following problem: given the first m samples {〈f, ψj〉}mj=1 of an element
f ∈ H with respect to some Riesz basis {ψj}∞j=1 of H (the sampling basis), reconstruct f to high
accuracy. Not only does such a problem lie at the heart of modern sampling theory [21, 47], it also
occurs in a myriad of applications, including image processing (in particular, Magnetic Resonance
Imaging), and the numerical solution of hyperbolic partial differential equations (PDEs).

In practice, straightforward reconstruction of f may be achieved via orthogonal projection
with respect to the sampling basis. Indeed, for an arbitrary f ∈ H, this is the best possible
strategy. However, in many important circumstances, this approximation converges only slowly
in m, when measured in the norm on H, or not at all, if a stronger norm (for example, the
uniform norm) is considered.

A prominent instance of this problem is the recovery of a function f : T → R from its
first m Fourier coefficients (here T = [−1, 1) is the unit torus). In this instance, H = L2(T) is
the space of all 2-periodic, square-integrable functions of one variable. Provided f is analytic,
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it is well-known that its Fourier series (the orthogonal projection with respect to the Fourier
basis) converges exponentially fast. However, whenever f has a jump discontinuity, its Fourier
series suffers from the well-known Gibbs phenomenon [41]. Whilst convergence occurs in the
L2 norm, uniform convergence is lacking, and the approximation is polluted by characteristic
O (1) oscillations near the discontinuity. Moreover, the rate of convergence is also slow: only

O(m−
1
2 ) when measured in the L2 norm, and O

(
m−1

)
pointwise away from the discontinuity.

Needless to say, the Gibbs phenomenon is a significant blight of many practical applications of
Fourier series [35]. It is a testament to its importance that the design of effective techniques for
its removal remains an active area of inquiry [30, 45].

Returning to the general form of the problem, let us now suppose that some additional
information is known about the function f . For example, f may be sparse in a particular basis
(e.g. a polynomial of low degree) or may possess certain regularity. In particular, in the Fourier
instance, we may know that f is piecewise analytic with jump discontinuities at known locations
in T. In this circumstance, it seems plausible that a better approximation to f can be obtained
by expanding in a different basis (e.g. a piecewise polynomial basis). To this end, let us introduce
the so-called reconstruction space (of dimension n) and seek to approximate f by an element
fn,m consisting of n linearly independent elements of this space.

As we will show in due course, provided reconstruction is carried out in a certain manner,
a suitable approximation fn,m can always be found. Essential to this approach is that m (the
number of samples) is chosen sufficiently large in comparison to n (equivalently, n is chosen
sufficiently small in comparison to m). However, provided this is the case, the approximation
fn,m inherits the principal features of the reconstruction space. In particular, fn,m is quasi-
optimal (or, under certain conditions, asymptotically optimal), in sense that the error ‖f−fn,m‖
can be bounded by a constant multiple of ‖f −Qnf‖, where Qnf is the orthogonal projection
onto the reconstruction space (in other words, the best approximation to f from this space).
Moreover, from a practical standpoint, this method can be implemented by solving a linear least
squares problem. Whenever the reconstruction vectors are suitably chosen (e.g. if they form a
Riesz basis), the corresponding linear system is well-conditioned and the least squares problem
can be solved in O (mn) operations by standard iterative techniques.

Consider once more the example of Fourier series. Let f : T → R be an analytic function
with jump discontinuity at x = −1 (equivalently, an analytic, nonperiodic function). As men-
tioned, the Fourier series of f lacks uniform convergence. However, since f is analytic, it makes
sense to seek to reconstruct f in a system of polynomials. It is well-known that the best nth

degree polynomial approximation of an analytic function converges exponentially fast in n [9].
As we shall prove, with n = O (

√
m), we obtain a quasi-optimal polynomial approximation fn,m

to f from only its first m Fourier coefficients, regardless of the particular family of polynomi-
als used. This results in exponential convergence of fn,m to f in n (the polynomial degree),
or root exponential convergence in m (the number of Fourier samples). Moreover, whenever
Legendre polynomials are used, the approximation is computable in a stable manner in only
O (mn) operations. The use of, for example, Chebyshev polynomials results in a method with

O (n) condition number, that can be implemented in O(mn
3
2 ) operations. Furthermore, whilst

retaining the aforementioned features, this procedure can be easily generalised to recovery of a
piecewise analytic function of one variable (using piecewise polynomial bases), and to the case
of multivariate functions defined in tensor-product regions.

There are a number of existing algorithms for the removal of the Gibbs phenomenon from
Fourier series. One of the most well-known, which also provides a polynomial approximant, is
the Gegenbauer reconstruction technique [29, 30, 31]. As we discuss further in Section 3, the
method developed in this paper has a number of key advantages over this device. Numerical
results also indicate its superior performance for a number of test problems.

The method developed in this paper was previously introduced by the authors in [3] within
the context of abstract sampling theory. Whilst this problem, in this abstract form, has been
extensively studied in the last couple of decades (in particular, by Eldar et al [20, 21], see
also [47]), to the best of our knowledge this particular method does not appear in any existing
literature. For a more detailed discussion of the relation of this approach to existing schemes
we refer the reader to [3]. Conversely, in this paper, after presenting the general version of the
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method in abstract terms, we will focus primarily on its application to the Fourier coefficient
reconstruction problem. On this topic, a similar approach, but only dealing with reconstructions
in Legendre polynomials from Fourier samples of analytic functions, was discussed in [32]. This
can be viewed as a special case of our general framework. Furthermore, by examining this
example as part of this framework, we are able to extend and improve the work of [32] in the
following ways: (i) we derive a procedure allowing for reconstructions in any polynomial basis,
not just Legendre polynomials, (ii) we extend this approach to reconstructions of piecewise
smooth functions using (arbitrary) piecewise polynomial bases, (iii) we generalise this work to
smooth functions of arbitrary numbers of variables and (iv) we obtain improved estimates for
both the error and the necessary scaling n = O (

√
m) required for implementation.

Aside from yielding these improvements, a great benefit of the general framework presented in
this paper is that it is immediately applicable to a whole host of other reconstruction problems.
To illustrate this generality, in the final part of this paper we consider its application to the
accurate reconstruction of a piecewise analytic function from its orthogonal polynomial expansion
coefficients. Such a problem is typical of that occurring in the application of polynomial spectral
methods to hyperbolic PDEs [27], where the shock formation inhibits fast convergence of the
polynomial approximation. As we highlight, this issue can be overcome in a completely stable
fashion by reconstructing in a piecewise polynomial basis.

The outline of the remainder of this paper is as follows. In Section 2 we introduce the re-
construction procedure and establish both stability and error estimates. Section 3 is devoted to
(piecewise) polynomial reconstructions from Fourier samples. In Section 4 we consider recon-
structions from tensor-product spaces, and in Section 5 we discuss other reconstruction problems.
Finally, in Section 6 we present open problems and challenges.

2 General theory of reconstruction

In this section, we describe the reconstruction procedure in its full generality. To this end,
suppose that {ψj}∞j=1 is a Riesz basis (the sampling basis) for a separable Hilbert space H over
the field C. Let 〈·, ·〉 be the inner product on H, with associated norm ‖·‖. Recall that, by
definition, span{ψ1, ψ2, . . .} is dense in H and

c1

∞∑
j=1

|αj |2 ≤

∥∥∥∥∥∥
∞∑
j=1

αjψj

∥∥∥∥∥∥
2

≤ c2
∞∑
j=1

|αj |2, ∀α = {α1, α2, . . .} ∈ l2(N), (2.1)

for positive constants c1, c2. Equivalently, ψj = U(Ψj), where {Ψj}∞j=1 is an orthonormal basis
for H and U : H→ H is a bounded, bijective operator. Using this definition, it is easy to deduce
that {ψj}∞j=1 also satisfies the frame property

d1‖f‖2 ≤
∞∑
j=1

| 〈f, ψj〉 |2 ≤ d2‖f‖2, ∀f ∈ H, (2.2)

for d1, d2 > 0, where the largest possible value for d2 is ‖U‖2H→H and the smallest possible value
for d1 is ‖U−1‖−2

H→H [17].
Suppose now that the first m coefficients of an element f ∈ H with respect to the sampling

basis are given:
f̂j = 〈f, ψj〉 , j = 1, . . . ,m. (2.3)

Set Sm = span{ψ1, . . . , ψm} and let Pm : H→ Sm be the mapping

f 7→ Pmf =

m∑
j=1

〈f, ψj〉ψj . (2.4)

We now seek to reconstruct f in a different basis. To this end, suppose that {φ1, . . . , φn} are
linearly independent reconstruction vectors and define Tn = span{φ1, . . . , φn}. LetQn : H→ Tn
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be the orthogonal projection onto Tn. Direct computation of Qnf , the best approximation
to f from Tn, is not possible, since the coefficients 〈f, φj〉 are unknown. Instead, we seek
to use the values (2.3) to compute an approximation fn,m ∈ Tn that is quasi-optimal, i.e.
‖f −Qnf‖ ≤ ‖f − fn,m‖ ≤ C‖f −Qnf‖ for some constant C > 0 independent of f , n and m.
To do this, we introduce the sesquilinear form am : H×H→ C, given by

am(g, h) = 〈Pmg, h〉 , ∀g, h ∈ H. (2.5)

Note that, since

〈Pmg, h〉 =

m∑
j=1

〈f, ψj〉 〈g, ψj〉 = am(g, f), ∀f, g ∈ H,

am is a Hermitian form on H×H (here z is the complex conjugate of z ∈ C). With this to hand,
we now define fn,m by the following condition

am(fn,m, φ) = am(f, φ), ∀φ ∈ Tn. (2.6)

Upon setting φ = φj , j = 1, . . . , n, this becomes an n × n linear system of equations for the
coefficients α1, . . . , αn of fn,m =

∑n
j=1 αjφj . We shall defer a discussion of the computation of

this approximation to Section 2.3: in the remainder of this section we consider the analysis of
fn,m.

Before proving the main theorem regarding (2.6), let us first give an explanation as to why
this approach works. As mentioned, key to this technique is that the parameter m is sufficiently
large in comparison to n. To this end, let n be fixed and suppose that m → ∞. Due to (2.1),
the mappings Pm converge strongly to a bounded, linear operator P, given by

Pf =

∞∑
j=1

〈f, ψj〉ψj , ∀f ∈ H. (2.7)

Hence, for large m, the equations (2.6) defining fn,m resemble the equations

a(f̃n, φ) = a(f, φ), ∀φ ∈ Tn, (2.8)

where a : H × H → C is the Hermitian form a(f, g) = 〈Pf, g〉. Thus, it is reasonable to expect
that fn,m → f̃n as m→∞, provided such a function f̃n exists. However,

Theorem 2.1. For all n ∈ N, the function f̃n exists and is unique. Moreover,

‖f − f̃n‖ ≤
d2

d1
‖f −Qnf‖, (2.9)

where d1 and d2 arise from (2.2).

This theorem can be established with a straightforward application of the Lax–Milgram
theorem and its counterpart, Céa’s lemma [25]. Indeed, due to (2.2) and (2.7),

d1‖g‖2 ≤ a(g, g) =

∞∑
j=1

| 〈g, ψj〉 |2 ≤ d2‖g‖2, ∀g ∈ H. (2.10)

Hence the form a(·, ·) defines an equivalent inner product on H. Nonetheless, we shall present a
self-contained proof, since similar techniques will be used subsequently.

Proof. Let U : Tn → Cn be the linear mapping g 7→ {〈Pg, φj〉}nj=1. To prove existence and

uniqueness of f̃n it suffices to show that U is invertible, upon which it follows that f̃n =
U−1{〈Pf, φj〉}nj=1. Suppose that Ug = 0. Then, by definition, 〈Pg, φj〉 = 0 for j = 1, . . . , n. Us-

ing linearity, we deduce that 〈Pg, g〉 = 0. Now, it follows from (2.10) that 0 = 〈Pg, g〉 ≥ d1‖g‖2,
giving g = 0. Hence, U is invertible and f̃n exists and is unique.
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Now consider the error estimate (2.9). Using (2.2) once more, we obtain

‖f − f̃n‖2 ≤
1

d1

〈
P(f − f̃n), f − f̃n

〉
.

By definition of f̃n, 〈P(f − f̃n), φ〉 = 0, ∀φ ∈ Tn. In particular, setting φ = f̃n −Qnf , yields

‖f − f̃n‖2 ≤
1

d1

〈
P(f − f̃n), f −Qnf

〉
.

Since a(·, ·) forms an equivalent inner product on H, an application of the Cauchy–Schwarz
inequality gives

‖f − f̃n‖2 ≤
1

d1

[
〈P(f − f̃n), f − f̃n〉〈P(f −Qnf), f −Qnf〉

] 1
2 ≤ d2

d1
‖f − f̃n‖‖f −Qnf‖,

as required.

This theorem establishes existence and quasi-optimality of f̃n ≈ fn,m, thereby giving an
intuitive argument for the success of this method. We now wish to fully confirm this observation.
To this end, let

Cn,m = inf
φ∈Tn
‖φ‖=1

m∑
j=1

| 〈φ, ψj〉 |2 = inf
φ∈Tn
‖φ‖=1

〈Pmφ, φ〉 = inf
φ∈Tn
‖φ‖=1

am(φ, φ). (2.11)

The quantity Cn,m plays a fundamental role in this paper. Note that

Lemma 2.2. For all n,m ∈ N, 0 ≤ Cn,m ≤ d2. Moreover, for each n, Cn,m → C∗n ≥ d1 as
m→∞, where

C∗n = inf
φ∈Tn
‖φ‖=1

∞∑
j=1

| 〈φ, ψj〉 |2 = inf
φ∈Tn
‖φ‖=1

〈Pφ, φ〉 = inf
φ∈Tn
‖φ‖=1

a(φ, φ),

and d1 is defined in (2.2).

Proof. Consider first the quantity

εn,m = sup
φ∈Tn
‖φ‖=1

∑
j>m

| 〈φ, ψj〉 |2 = sup
φ∈Tn
‖φ‖=1

〈Pφ− Pmφ, φ〉 . (2.12)

Due to (2.2), the infinite sum is finite for any fixed φ, and tends to zero as m → ∞. Now
let {Φj}nj=1 be an orthonormal basis for Tn and set φ =

∑n
j=1 αjΦj . Two applications of the

Cauchy–Schwarz inequality gives

∑
j>m

| 〈φ, ψj〉 |2 ≤ ‖φ‖2
n∑
k=1

∑
j>m

| 〈Φk, ψj〉 |2.

Hence εn,m ≤
∑n
k=1

∑
j>m | 〈Φk, ψj〉 |2, and we deduce that εn,m is both finite and εn,m → 0 as

m→∞. Noticing that |Cn,m −C∗n| ≤ εn,m, ∀n,m ∈ N, gives the first part of the proof. For the
second, we merely use (2.2).

Aside from Cn,m, we also define the quantity Dn,m by

Dn,m = sup
f∈T⊥n
‖f‖=1

sup
g∈Tn
‖g‖=1

|〈Pmf, g〉| . (2.13)

For this, we have the following lemma:
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Lemma 2.3. For all m,n ∈ N, 0 ≤ Dn,m ≤ d2. Moreover, suppose that P is such that
P(Tn) ⊆ Tn (for example, when P = I is the identity), then D2

n,m ≤ c2εn,m, where εn,m is as
in (2.12). In particular, for fixed n, Dn,m → 0 as m→∞.

Proof. Let f, g ∈ H. By definition,

〈Pmf, g〉 =

m∑
j=1

〈f, ψj〉 〈g, ψj〉 ≤

 m∑
j=1

| 〈f, ψj〉 |2
 1

2
 m∑
j=1

| 〈g, ψj〉 |2
 1

2

. (2.14)

Hence (2.2) now gives the first result. Now suppose that f ∈ T⊥n and P(Tn) ⊆ Tn. Since Pm is
self-adjoint, we have 〈Pmf, g〉 = 〈f,Pmg〉 = 〈f,Pmg − Pg〉. Here the second equality is due to
the fact that f ⊥ Tn and Pg ∈ Tn for g ∈ Tn. By the Cauchy–Schwarz inequality, we obtain

Dn,m ≤ sup
g∈Tn
‖g‖=1

‖Pg − Pmg‖.

For g ∈ Tn, we note from (2.1) that

‖Pg − Pmg‖2 ≤ c2
∑
j>m

| 〈g, ψj〉 |2 = c2 〈Pg − Pmg, g〉 ≤ c2εn,m‖g‖2,

where the final equality follows from the definition of εn,m.

At this moment, we mention the following important fact. The constants Cn,m, Dn,m and
C∗n, as well as the approximation fn,m, are determined only by the space Tn, not by the choice
of reconstructions vectors φ1, . . . , φn themselves. As we shall discuss later, the choice of recon-
struction vectors only affects the stability of the scheme.

This observation aside, we are now able to state the main theorem of this section:

Theorem 2.4. For every n ∈ N there exists an m0 such that the approximation fn,m, defined
by (2.6), exists and is unique for all m ≥ m0, and satisfies the stability estimate ‖fn,m‖ ≤
d2C

−1
n,m‖f‖. Furthermore,

‖f −Qnf‖ ≤ ‖f − fn,m‖ ≤ Kn,m‖f −Qnf‖, Kn,m =
√

1 +D2
n,mC

−2
n,m. (2.15)

Specifically, the parameter m0 is the least value of m such that Cn,m > 0.

To prove this theorem, we first recall that a Hermitian form a : H × H → R is said to be
continuous if, for some constant γ > 0, |a(f, g)| ≤ γ‖f‖‖g‖ for all f, g ∈ H. Moreover, a is
coercive, provided a(f, f) ≥ ω‖f‖2, ∀f ∈ H, for ω > 0 constant [25]. We now require the
following lemma:

Lemma 2.5. Suppose that am : H×H→ R is the sesquilinear form am(f, g) = 〈Pmf, g〉. Then,
am is continuous with constant γ ≤ d2. Moreover, for every n ∈ N there exists an m0 such that
the restriction of am to Tn×Tn is coercive for all m ≥ m0. Specifically, if Cn,m is given by (2.11),
then m0 is the least value of m such that Cn,m > 0, and, for all m ≥ m0, am(f, f) ≥ Cn,m‖f‖2,
∀f ∈ Tn. Finally, for all f ∈ H and g ∈ Tn, we have am(f −Qnf, g) ≤ Dn,m‖f −Qnf‖‖g‖.

Proof. Continuity follows immediately from (2.14). For the second and final results, we merely
use the definitions (2.11) and (2.13) of Cn,m and Dn,m respectively.

Proof of Theorem 2.4. To establish existence and uniqueness, it suffices to prove that the linear
operator U : Tn → Cn, g 7→ {〈Pmg, φj〉}nj=1 is invertible. Suppose that g ∈ Tn with Ug = 0. By
definition, we have 〈Pmg, φj〉 = 0 for j = 1, . . . , n. Using linearity, it follows that 〈Pmg, g〉 = 0.
Lemma 2.5 now gives 0 ≤ Cn,m‖g‖2 ≤ 0. Hence g = 0, and therefore U has trivial kernel.

Stability of fn,m is easily established from the continuity and coercivity conditions. Setting
φ = fn,m in (2.6) gives

Cn,m‖fn,m‖2 ≤ am(fn,m, fn,m) = am(f, fn,m) ≤ d2‖f‖‖fn,m‖,
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as required. Now consider the error estimate (2.15). Suppose that we define en,m = fn,m−Qnf ∈
Tn. Then, by definition of fn,m, we have am(en,m, φ) = am(f −Qnf, φ), ∀φ ∈ Tn. In particular,
setting φ = en,m, we obtain

‖en,m‖ ≤ C−1
n,mDn,m‖f −Qnf‖. (2.16)

Since Qnf is the orthogonal projection onto Tn, we have ‖f − fn,m‖2 = ‖en,m‖2 + ‖f −Qnf‖2,
which gives the full result.

When am is shown to be continuous and coercive, it may be tempting to seek to apply the
Lax–Milgram theorem and Céa’s lemma to obtain Theorem 2.4. However, the Hermitian form
am, when considered as a mapping H×H→ C, will not, in general, be coercive. This is readily
seen from the definition of Cn,m. The finite-dimensional operator Pm|Tn converges uniformly
to P|Tn , whereas its infinite-dimensional counterpart Pm typically does not (for example, when
Pm is the Fourier projection operator and H = L2(T)). Hence, am only becomes coercive when
restricted to Tn × Tn, and these standard results do not automatically apply.

Though Theorem 2.4 establishes an estimate for the error f − fn,m measured in the natural
norm on H, it is also useful to derive a result valid for any other norm defined on a suitable
subspace of H (for example, this may be the uniform norm on T in the case of Fourier series).
To this end, let ||| · ||| be such a norm and define G = {g ∈ H : |||g||| <∞}. We have

Corollary 2.6. Suppose that f ∈ G, Tn ⊆ G and that fn,m is defined by (2.6). Then, for all
m ≥ m0,

|||f − fn,m||| ≤ |||f −Qnf |||+
knDn,m

Cn,m
‖f −Qnf‖, (2.17)

where kn = supφ∈Tn
‖φ‖=1

|||φ||| and Cn,m, Dn,m are given by (2.11) and (2.13) respectively.

Proof. Let en,m = fn,m −Qnf once more. Since en,m ∈ Tn, it follows from the definition of kn
and the inequality (2.16) that

|||en,m||| ≤ kn‖en,m‖ ≤
knDn,m

Cn,m
‖f −Qnf‖.

The full result is obtained from the triangle inequality |||f − fn,m||| ≤ |||en,m|||+ |||f −Qnf |||.

Remark 1 In practice, it is useful to have an upper bound for the constant kn. A simple
exercise gives kn ≤

∑n
j=1 |||Φj |||, where {Φj}nj=1 is any orthonormal basis for Tn.

Theorem 2.4 confirms that the approximation fn,m is quasi-optimal whenever m is sufficiently
large in comparison to n. In other words, the error ‖f − fn,m‖ can be bounded by a constant
multiple (independent of n) of ‖f−Qnf‖. Naturally, whenever {φ1, . . . , φn} are the first n vectors
in an infinite sequence φ1, φ2, . . . that form a basis for H (a natural assumption to make from
a practical standpoint), we find that fn,m converges to f at the same rate as Qnf , provided m
scales appropriately with n. Under the same assumptions, Corollary 2.6 also verifies convergence
of fn,m to f in ||| · |||, whenever Qnf → f in this norm and kn‖f −Qnf‖ → 0 as n→∞.

Note on other feature of this framework. Provided m is such that Cn,m > 0, any function
f ∈ Tn will be recovered exactly by fn,m. In the language of sampling theory, this property is
commonly referred to as perfect reconstruction.

Remark 2 Whilst this framework relies on the fact that m can range independently of n, a
natural question to ask is what happens if m is set equal to n (note that, in this case, one
recovers the well-known consistent sampling framework of Eldar et al [21, 47]). This question
was discussed in detail in [3], where it demonstrated that such an approach often leads to severe
ill-conditioning as n = m → ∞. Additionally, stringent restrictions are placed on the types of
vectors f that can be reconstructed (see also Section 3.6). Conversely, by allowing m to vary
independently of n, we obtain a reconstruction fn,m that is guaranteed to converge for any vector
f ∈ H. Moreover, as we discuss in Section 2.3, provided the reconstruction vectors are suitably
chosen, the computation of fn,m is completely stable.
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2.1 The case of an orthogonal sampling basis

In the previous setup, the sampling basis was assumed to be a Riesz basis. The particular case
of {ψj}∞j=1 being an orthonormal basis warrants further study, since this situation often arises
in applications (e.g. Fourier sampling).

In this setting, both (2.1) and (2.2) (which are now identical) hold with equality and with
all constants being precisely one. In other words, Parseval’s identity

‖f‖2 =

∞∑
j=1

| 〈f, ψj〉 |2, ∀f ∈ H,

holds. Our first result provides a geometric interpretation for the constant Cn,m in terms of
subspace angles. Recall that if U and V are subspaces of H, then the angle θUV is given by

cos(θUV) = inf
u∈U
‖u‖=1

‖QVu‖, (2.18)

where QV : H→ V is the orthogonal projection. We have

Lemma 2.7. Suppose that {ψj}∞j=1 is an orthonormal basis of H. Then Cn,m = cos2(θ), where
θ = θTnSm is the angle between the subspaces Tn and Sm.

Proof. Whenever {ψj}∞j=1 is orthonormal, the operator Pm is the orthogonal projection onto
Sm. Hence the result follows immediately from (2.11) and (2.18).

Whilst this property is interesting, the following result has much greater significance:

Theorem 2.8. Suppose that {ψj}∞j=1 is an orthonormal basis of H. Then, for all m ≥ m0, the
approximation fn,m satisfies

‖f −Qnf‖ ≤ ‖f − fn,m‖ ≤ Kn,m‖f −Qnf‖ (2.19)

where

Kn,m =

√
1 + (1− Cn,m)C−2

n,m =
√

1 + tan2 θ sec2 θ,

and θ is as in Lemma 2.7. In particular, for fixed n, Kn,m → 1 as m → ∞, and hence
fn,m → Qnf as m→∞.

Proof. Note that P = I for an orthonormal sampling basis. In particular, εn,m = C∗n − Cn,m
and C∗n = 1. Hence, using Lemma 2.3 we find that D2

n,m ≤ 1 − Cn,m. The result now follows
from Theorem 2.4.

From this we conclude the following: not only is fn,m quasi-optimal, it is also asymptotically
optimal in the sense that fn,m → Qnf , the best approximation to f from Tn, as m → ∞.
Hence, using this approach, we can recover an approximation to f that is arbitrarily close to
the error minimising approximant (which, as mentioned, cannot be computed directly from the
given samples). Moreover, the rate of convergence of fn,m to Qnf is completely independent of
the particular vector f , and relies only on rate of decay of the parameter 1− Cn,m.

Note that asymptotic optimality also occurs for general Riesz bases whenever P(Tn) ⊆ Tn,
in which case Dn,m → 0 as m→∞ (see Lemma 2.3). The case of orthonormal sampling vectors
presents the most obvious example of a basis satisfying this condition.

Remark 3 Whenever the vectors {ψj}∞j=1 are not orthonormal, a natural question to ask is
whether we can modify the approach for computing fn,m to recover asymptotic optimality. This
can be easily done, at least in theory, by replacing the operator Pm, given by (2.4), with the
orthogonal projection H → Tn. In this case, both Lemma 2.7 and Theorem 2.8 will hold for
nonorthogonal sampling bases. The downside of the approach is that it requires additional
computational cost to compute fn,m, as we explain at the end of the next section.

Another potential means to recover asymptotic optimality is to define Pmg =
∑m
j=1 〈g, ψj〉ψ∗j ,

where {ψ∗j } is the set of dual vectors to the sampling vectors {ψj}. In this case, Pm → I strongly,
and asymptotic optimality follows. In practice, however, one may not have access to the dual
vectors, thus this approach cannot necessarily be readily implemented.
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2.2 Oblique asymptotic optimality

Whenever the sampling basis is orthonormal, fn,m converges to the best approximation Qnf
as m → ∞. An obvious question to ask is what can be said in the general case, where the
vectors {ψj} only form a Riesz basis? The intuitive explanation given previously indicated that

fn,m ≈ f̃n, where f̃n is defined by (2.8). We now wish to confirm this observation. In fact, as in

the orthonormal case, we may demonstrate a stronger result: namely, for fixed n ∈ N, fn,m → f̃n
as m→∞ at a rate that is independent of the particular vector f ∈ H.

Recall that the form a(·, ·) yields an equivalent inner product on H. Since f̃n is defined by
the equations a(f̃n, φ) = a(f, φ), ∀φ ∈ Tn, the mapping f 7→ f̃n is the orthogonal projection
onto Tn with respect to this inner product. Letting ‖g‖a =

√
a(g, g) be the corresponding norm

on H, we now define the constants

C̃n,m = inf
φ∈Tn
‖φ‖a=1

〈Pmφ, φ〉 , D̃n,m = sup
f∈T⊥n
‖f‖a=1

sup
g∈Tn
‖g‖a=1

| 〈Pmf, g〉 |. (2.20)

In this instance, T⊥n is defined with respect to the a-inner product, i.e. T⊥n = {f ∈ H : a(f, φ) =
0, ∀φ ∈ Tn}. Conversely, when considered with respect to the canonical inner product, this
subspace is precisely P(Tn)⊥ = {f ∈ H : 〈f, φ〉 = 0, ∀φ ∈ P(Tn)}.

Note the similarity between C̃n,m and D̃n,m and the quantities Cn,m and Dn,m defined in
(2.11) and (2.13) respectively. Roughly speaking, the former measure the deviation of fn,m from

Qnf , whereas, as we will subsequently show, the latter determine the deviation of fn,m from f̃n.
With these definitions to hand, identical arguments to those given in the proofs of Lemmas

2.2 and 2.3 now yield:

Lemma 2.9. For all m,n ∈ N, C̃n,m ≥ 1
d2
Cn,m, where Cn,m is as in (2.11). Moreover, for fixed

n, C̃n,m → 1 as m→∞.

Lemma 2.10. For all m,n ∈ N, D̃n,m ≤ d2 and D̃2
n,m ≤ c2(1− C̃n,m). In particular, for fixed

n, D̃n,m → 0 as m→∞.

Using these lemmas, we deduce

Corollary 2.11. If fn,m and f̃n are given by (2.6) and (2.8) respectively, then

‖fn,m − f̃n‖a ≤
D̃n,m

C̃n,m
‖f − f̃n‖a,

and we have the error estimate

‖f − f̃n‖a ≤ ‖f − fn,m‖a ≤ K̃n,m‖f − f̃n‖a, K̃n,m =
√

1 + D̃2
n,mC̃

−2
n,m.

In particular, for any f ∈ H, fn,m → f̃n as m→∞.

Proof. Since (fn,m − f̃n) ∈ Tn, we have

C̃n,m‖fn,m − f̃n‖2a ≤
〈
Pm(fn,m − f̃n), fn,m − f̃n

〉
.

Moreover, because 〈Pmfn,m, φ〉 = 〈Pmf, φ〉, we deduce that

C̃n,m‖fn,m − f̃n‖2a ≤
〈
Pm(f − f̃n), fn,m − f̃n

〉
≤ D̃n,m‖f − f̃n‖a‖fn,m − f̃n‖a,

where the second inequality follows from the definition (2.20) of D̃n,m and the fact that (f−f̃n) ∈
T⊥n , the orthogonal complement of Tn with respect to the a-inner product.

Note that the mappingWn : f 7→ f̃n is an oblique projection with respect to the inner product
〈·, ·〉 on H. In particular, Wn has range Tn and kernel P(Tn)⊥, and we have the decomposition
H = Tn ⊕ P(Tn)⊥. For this reason, we say that fn,m possesses oblique asymptotic optimality.
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2.3 Computation of fn,m

Recall that the computation of the approximation fn,m involves solving the system of equations
(2.6). This can be interpreted as the normal equations of a least squares problem. Suppose that

fn,m =
∑n
j=1 αjφj , α = (α1, . . . , αn) ∈ Cn and f̂ = (f̂1, . . . , f̂m). If U is the m× n matrix with

(j, k)th entry 〈φk, ψj〉, then (2.6) is given exactly by Aα = U†f̂ , where A = U†U and U† is the

adjoint of U . In other words, the vector α is the least squares solution of the problem Uα ≈ f̂ .
This system can be solved iteratively by applying conjugate gradient iterations to the normal

equations, for example. The number of required iterations is dependent on the condition num-
ber κ(A) of the matrix A. Specifically, the number of iterations required to obtain numerical
convergence (i.e. to within a prescribed tolerance) is proportional to

√
κ(A) [26]. In particular,

if κ(A) is O (1) for all n and m ≥ m0, then the number of iterations is also O (1) for all n.
Hence, the cost of computing fn,m is determined solely by the number of operations required to
perform matrix-vector multiplications involving U . In other words, only O (mn) operations.

Naturally, aside from this consideration, the condition number of A is also important since
it determines susceptibility of the numerical computation to both round-off error and noise.
Specifically, an error of magnitude ε in the inputs (i.e. the samples f̂j , j = 1, . . . ,m) will yield
an error of magnitude roughly κ(A)ε in the output fn,m.

For these reasons it is of utmost importance to study the condition number of A. For this, we
first introduce the Hermitian matrix Ã ∈ Cn×n with (j, k)th entry 〈φj , φk〉. Note that Ã is the

Gram matrix of the vectors {φ1, . . . , φn}. In particular, κ(Ã) is a measure of the suitability of
the particular vectors in which to compute Qnf . With Ã to hand, we also introduce the related
matrix Ãa ∈ Cn×n with (j, k)th entry a(φj , φk) = 〈Pφj , φk〉, i.e. the Gram matrix with respect
to the inner product a(·, ·).

The following lemma comes as no surprise:

Lemma 2.12. The matrices Ã and Ãa are spectrally equivalent. In particular, for all n ∈ N,

d1

d2
κ(Ã) ≤ κ(Ãa) ≤ d2

d1
κ(Ã).

Proof. For any Hermitian matrix B, the condition number is the ratio of the largest and smallest
eigenvalues (in absolute value). Moreover, if B is positive definite, then

inf
α∈Cn
α6=0

{
α†Bα

α†α

}
= λmin(B), sup

α∈Cn
α6=0

{
α†Bα

α†α

}
= λmax(B). (2.21)

If φ =
∑n
j=1 αjφj , then α†Ãα = ‖φ‖2 and α†Ãaα = a(φ, φ). Hence, spectral equivalence now

follows immediately from (2.10).

Concerning the condition number of the matrix A, we now have the following:

Lemma 2.13. Suppose that m ≥ m0, where m0 is as in Theorem 2.4, and C̃n,m and Cn,m are
given by (2.11) and (2.20) respectively. Then

C̃n,mκ(Ãa) ≤ κ(A) ≤ 1

C̃n,m
κ(Ãa),

Cn,m
d2

κ(Ã) ≤ κ(A) ≤ d2

Cn,m
κ(Ã).

Moreover, for fixed n, A→ Ãa as m→∞, and, if P = I, A→ Ã = Ãa.

Proof. The matrix A is Hermitian and, provided m ≥ m0, positive definite. Hence, its eigen-
values are given by (2.21). For φ =

∑n
j=1 αjφj , we have α†Aα = 〈Pmφ, φ〉. By definition of

Cn,m and C̃n,m, we find that λmin(A) ≥ Cn,mλmin(Ã) and λmin(A) ≥ C̃n,mλmin(Ãa). Moreover,

by (2.1) we have λmax(A) ≤ d2λmax(Ã) and λmax(A) ≤ λmax(Ãa). The first result now follows
immediately from (2.21). For the second, we merely note that each entry of A converges to the
corresponding entry of Ãa as m→∞.
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Note the important conclusion of this lemma: computing fn,m from (2.6) is no more ill-
conditioned than the computation of the orthogonal projection Qnf or the oblique projection
Wnf in terms of the vectors {φ1, . . . , φn}. In practice, it is often true that these vectors corre-
spond to the first n vectors in a basis {φj}∞j=1 of H with additional structure. Whenever this is
the case, as the following trivial corollary indicates, we can expect good conditioning:

Corollary 2.14. Suppose that {φj}∞j=1 is a Riesz basis for H (with respect to 〈·, ·〉) with constants
c′1 and c′2. Then

κ(A) ≤ c′2d2

c′1Cn,m
.

Proof. This follows immediately follows from (2.1) and Lemma 2.13.

Put together, a fundamental conclusion of Theorem 2.4, Lemma 2.13 and Corollary 2.14 is the
following: for a given reconstruction space Tn, the individual vectors φ1, . . . , φn can be chosen
arbitrarily, without altering the analysis of the approximation fn,m (which itself does not depend
on the individual vectors used to represent it). The choice of vectors only becomes important
when considering the condition number of linear system to solve. Moreover, the quality of a
system of vectors for the reconstruction problem is completely intrinsic, in that it is determined
only by the corresponding Gram matrix (in particular, it is independent of the sampling space).

Corollary 2.14 confirms that the approximation fn,m can be readily computed in a stable
manner for many choices of reconstruction basis. However, to fully implement this method, as
we discuss further in the next section, it is useful to have numerical way of computing Cn,m.
The following lemma provides such a means:

Lemma 2.15. The quantity Cn,m is given by Cn,m = λmin(Ã−1A). Moreover, if Ã and A

commute, then Cn,m = 1− ‖I − Ã−1A‖. In particular, if {φj}nj=1 is an orthonormal basis, then
Cn,m = λmin(A) = 1− ‖I −A‖.

Proof. By definition Cn,m = inf φ∈Tn
‖φ‖=1

〈Pmφ, φ〉. Letting φ =
∑n
j=1 αjφj , we find that

Cn,m = inf
α∈Cn
α 6=0

∑n
j,k=1 αjαk 〈Pmφj , φk〉∑n
j,k=1 αjαk 〈φj , φk〉

= inf
α∈Cn
α6=0

α†Aα

α†Ãα
.

We now claim that, for arbitrary Hermitian positive definite matrices B and C with B nonsin-
gular, the following holds:

inf
α∈Cn
α 6=0

α†Cα

α†Bα
= λmin(B−1C), sup

α∈Cn
α6=0

α†Cα

α†Bα
= λmax(B−1C).

To do so, write B = D†D, with D nonsingular. Then, after rearranging, we obtain

inf
α∈Cn
α6=0

α†Cα

α†Bα
= inf
β∈Cn
β 6=0

β†D−†CD−1β

β†β
= λmin(D−†CD−1),

for example. However, a trivial calculation confirms that the eigenvalues of D−†CD−1 are
identical to those of B−1C, thus establishing the claim. Since Ã is nonsingular, this confirms that
Cn,m = λmin(Ã−1A). For the second result, we merely notice that λmin(B) = 1−λmax(I−B) =
1− ‖I −B‖, whenever B is Hermitian.

In Section 2.1, we briefly discussed a modified approach where the operator Pm, usually given
by (2.4), was replaced by the orthogonal projection operator. The advantage of this approach
is that it guarantees asymptotic optimality. However, the downside is additional computational
expense. Indeed, the corresponding matrix is of the form A = U†V −1U , where V ∈ Cm×m has
(j, k)th entry 〈ψj , ψk〉. Hence, if conjugate gradients iterations are used, at each stage we are
required to compute matrix-vector products involving the m ×m matrix V −1 (assuming that
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V −1 had been precomputed). In general, this requires O
(
m2
)

operations. Thus, we incur a cost

of O
(
m2
)
, as opposed to O (mn) for the original algorithm. Hence, in practice it may be better

settle for only quasi- and oblique asymptotic optimality, whilst retaining a lower computational
cost.

2.4 Conditions for guaranteed, quasi-optimal recovery

Let us return to the standard form of the method once more. To implement this method, it is
necessary to have conditions that guarantee nonsingularity, stability and quasi-optimal recovery.
In other words, for given sampling and reconstruction bases, we wish to study the quantity

Θ(n; θ) = min {m ∈ N : Cn,m ≥ θ} , θ ∈ (0, d2), (2.22)

where Cn,m is given by (2.11) and d2 stems from (2.2) . Note that Cn,m ≤ d2 by (2.2), thereby
explaining the stated range of θ. Also, by Lemma 2.2, we have that limm→∞ Cn,m ≥ d1 > 0,
thus Θ is well-defined.

By definition, Θ(n; θ) is the least m such that ‖f − fn,m‖ ≤ c(θ)‖f −Qnf‖, where

c(θ) =
√

1 + d2
2θ
−2 or

√
1 + (1− θ)θ−2, (2.23)

whenever the sampling basis is orthonormal. In other words, the least m required for quasi-
optimal recovery with constant c(θ). Thus, provided m ≥ Θ(n; θ), the approximation fn,m
converges at the same rate as Qnf as n → ∞. In addition, m ≥ Θ(n; θ) guarantees that
‖fn,m‖ ≤ d2θ

−1‖f‖ and κ(A) ≤ d2θ
−1κ(Ã), thus making the linear system for fn,m solvable in

a number of operations proportional to
√
d2θ−1κ(Ã).

Note that Θ(n; θ) is determined only by the sampling and reconstruction spaces Sm and Tn.
Whilst Θ(n; θ) can be numerically computed for any pair of spaces via the expression given
in Lemma 2.15, analytical bounds must be determined on a case-by-case basis. In the next
section, where we consider the recovery of functions from their Fourier samples using (piecewise)
polynomial bases, we are able to derive explicit forms for such bounds.

Remark 4 As mentioned, the framework developed in this section was first introduced by the
authors in [3]. Whilst a result similar to Theorem 2.4 was proved, there are a number of
important improvements offered by the theory presented in this paper:

1. In [3] it was assumed that the reconstruction vectors φ1, . . . , φn were the first n in an
infinite sequence of vectors that formed a Riesz basis for H. Conversely, Theorem 2.4
depends only on the subspace Tn, and thus the individual reconstruction vectors can be
chosen arbitrarily.

2. The constants Kn,m and Cn,m are known exactly in terms of the sampling and recon-
struction bases, and, whenever the sampling vectors are orthogonal, they possess a simple
geometric interpretation in terms of subspace angles. Moreover, these constants can be
computed by determining either the minimal eigenvalue or, in certain cases, the norm of
an n× n matrix.

3. Simple, explicit bounds for the condition number of the matrix A are known in terms of
the constant Cn,m and the Gram matrix Ã.

4. The behaviour of fn,m as m→∞ (for n fixed) can be fully explained in terms of oblique
asymptotic optimality.

3 Polynomial reconstructions from Fourier samples

One of the most important examples of this procedure is the reconstruction of an analytic, but
nonperiodic function f to high accuracy from its Fourier coefficients. Direct expansion in Fourier
series converges only slowly in the L2(−1, 1) norm, and suffers from the Gibbs phenomenon
near the domain boundary. Hence, given the first m Fourier coefficients of f , we now seek to
reconstruct f to high accuracy in another basis.
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Let H = L2(−1, 1) (the space of square integrable functions on (−1, 1)), f : (−1, 1)→ R and

ψj(x) =
1√
2

eijπx, j ∈ Z,

be the standard Fourier basis functions. For m ≥ 2, we assume that the coefficients

f̂j =

∫ 1

−1

f(x)ψj(x) dx, j = −
⌊m

2

⌋
+ 1, . . . ,

⌊m
2

⌋
− 1,

are known (note that, whenever m is even, this means that the first m − 1 Fourier coefficients
of f are given. We will allow this minor discrepancy since it simplifies ensuing analysis). As
a consequence of Theorem 2.4, we are free to choose the reconstruction space. The orthogonal
projection of an analytic function onto the space Pn−1 of polynomials of degree less than n is
known to converge exponentially fast at rate ρ−n, where ρ > 1 is determined from the largest
Bernstein ellipse within which f is analytic [9]. Hence, we let Tn = Pn−1. Note that an
orthonormal basis for Tn is given by the functions

φj(x) =
√
j + 1

2Pj(x), j ∈ N, (3.1)

where Pj is the jth Legendre polynomial. Moreover, if Qn is the orthogonal projection onto Tn,
then it is well-known that

‖f −Qnf‖ ≤ cf
√
nρ−n, (3.2)

where cf depends only on the maximal value of f on the Bernstein ellipse indexed by ρ. Naturally,
we could also assume finite regularity of f throughout, with suitable adjustments made to the
various error estimates. However, for simplicity we shall not do this.

With this to hand, provided m ≥ Θ(n; θ) for some θ > 0, where Θ(n; θ) is defined in
(2.22), the approximation fn,m obtained from the reconstruction procedure satisfies ‖f−fn,m‖ ≤
c(θ)‖f−Qnf‖ (see Theorem 2.4). In particular, ‖f−fn,m‖ ≤ c(θ)cf

√
nρ−n. Hence, exponential

convergence of fn,m. The key question remaining is how large m must be in comparison to n to
ensure such rates of convergence. Resolving this question involves estimating the quantity Cn,m,
a task we next pursue.

3.1 Estimates for Θ(n; θ)

For both numerical and analytical estimates of Θ(n; θ) we need to select an appropriate basis of
Pn−1 (recall from Section 2 that Θ(n; θ) is independent of the basis used). A natural choice is
the orthonormal basis (3.1) of scaled Legendre polynomials. Fortunately, in this case, the inner
products 〈φk, ψj〉 (i.e. the entries of the matrix U) are known in closed form:

〈φk, ψj〉 = (−i)k

√
k + 1

2

j
Jk+ 1

2
(jπ), j ∈ Z, k ∈ N, (3.3)

where Jm is the Bessel function of first kind. This follows directly from

jm(z) =
1

2
(−i)m

∫ 1

−1

eizxPm(x) dx, ∀z ∈ C, (3.4)

(see [1, 10.1.14]), where jm is the spherical Bessel function of the first kind, given by

jm(z) =

√
π

2z
Jm+ 1

2
(z).

With this to hand, we may compute Cn,m (and, in turn, Θ(n; θ)) via the expression given in
Lemma 2.15. In Figure 1 we display the functions Θ(n; 1

2 ) and Θ(n; 1
4 ) against n. Immediately,

we witness quadratic growth of Θ(n; θ) with n, a result we verify in this section. In doing so,
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Figure 1: The functions Θ(n; θ) (left) and n−2Θ(n; θ) (right) for θ = 1
2

(squares) and θ = 1
4

(circles).

we shall also derive an upper bound for Θ(n; θ) in terms of n and θ. This gives an explicit,
analytic condition for quasi-optimal recovery. Whilst such a bound is completely robust (in that
it holds for all n), we notice from Figure 1 that Θ(n; θ), when scaled by n−2, quickly converges
to an asymptotic limit. In practice it is wasteful to use a larger value of m than necessary (or,
conversely, for fixed m a overly pessimistic value of n). Hence, in the second part of this section,
we will also derive an asymptotic bound for Θ(n; θ).

We commence as follows:

Lemma 3.1. Suppose that Tn = Pn−1, Sm is the space spanned by the first m Fourier basis
functions and m ≥ max{2, 2

πn}. Then Cn,m satisfies

Cn,m ≥ 1− 4(π − 2)n2

π2(2bm2 c − 1)
.

Proof. From the definition of Cn,m and the fact that {ψj} is an orthonormal basis we have

1− Cn,m = 1− inf
φ∈Tn
‖φ‖=1

〈Pmφ, φ〉 = sup
φ∈Tn
‖φ‖=1

〈φ− Pmφ, φ〉 = sup
φ∈Tn
‖φ‖=1

‖φ− Pmφ‖2,

where Pm is the Fourier projection operator. It now follows that 1−Cn,m ≤
∑n−1
k=0 ‖φk−Pmφk‖2,

where φk is given by (3.1). By Parseval’s theorem and the expression (3.3), we find that

‖φk − Pmφk‖2 =
∑

|j|≥bm2 c

k + 1
2

j
|Jk+ 1

2
(jπ)|2.

Now, using a known result for Bessel functions [32], it can be shown that

k + 1
2

j
|Jk+ 1

2
(jπ)|2 ≤ 2k + 1

jπ
√
j2π2 − (k + 1

2 )2
,

provided jπ > k + 1
2 . Hence, for m > 2

πn,

‖φk − Pmφk‖2 ≤
2(2k + 1)

π2

∑
j≥bm2 c

1

j

√
j − (k+ 1

2 )2

π2

. (3.5)

Now, it was shown in [32] that
∑
j≥m

1

j
√
j2−c2

≤ 1
c arcsin c

m− 1
2

, whenever m ≥ c+ 1
2 . This gives

‖φk − Pmφk‖2 ≤
4

π
arcsin

[
2k + 1

(2bm2 c − 1)π

]
,

and

1− Cn,m ≤
4

π

n−1∑
k=0

arcsin

[
2k + 1

(2bm2 c − 1)π

]
.
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We estimate this sum by the integral of arcsin t. We have

1− Cn,m ≤ 2(2bm2 c − 1)

∫ 2n
(2bm

2
c−1)π

0

arcsin tdt.

Now, arcsinx ≤ (arcsin 1)x for 0 ≤ x ≤ 1. It follows that F (x) =
∫ x

0
arcsin tdt ≤ F (1)x2.

Computing this integral exactly, we arrive at F (1) = π
2 − 1. Upon substituting x = 2n

(2bm2 c−1)π ,

this completes the proof.

This lemma confirms that it is sufficient for m to scale quadratically with n for quasi-optimal
recovery. Using this result, we find that

Theorem 3.2. Suppose that Tn and Sm are as in Lemma 3.1. Then, for n ≥ 2, Θ(n; θ) satisfies

Θ(n; θ) ≤ 2

⌈
1

2
+

2(π − 2)

π2(1− θ)
n2

⌉
, ∀n ∈ N.

Proof. Suppose that m ≥ {2, 2
πn}. Then, by Lemma 3.1, Cn,m ≥ θ if

1− 4(π − 2)n2

π2(2bm2 c − 1)
≥ θ.

Rearranging, we find that

2
⌊m

2

⌋
≥ 1 +

4(π − 2)n2

π2(1− θ)
⇒ m ≥ 2

⌈
1

2
+

2(π − 2)

π2(1− θ)
n2

⌉
and the theorem is proved, provided the right-hand side exceeds max{2, 2

π θ}. Since n ≥ 2, the
right-hand side is certainly greater than 2. Moreover,

1 +
4(π − 2)n2

π2(1− θ)
≥ 8(π − 2)n

π
>

2n

π
,

as required.

Using a similar approach, we are also able to obtain an asymptotic bound for Θ(n; θ) that is
sharper than if were to use Theorem 3.2 directly:

Theorem 3.3. Suppose that Tn and Sm are as in Lemma 3.1. Then the function Θ(n; θ)
satisfies

n−2Θ(n; θ) ≤ 4

π2(1− θ)
+O

(
n−2

)
, n→∞.

Proof. Suppose that m = cn2 and recall (3.5). Since j < n and k > 1
2cn

2, we deduce that

‖φk − Pmφk‖2 ≤
2(2k + 1)

π2

∑
j>bm2 c

1

j2
+O

(
n−4

)
=

4(2k + 1)

cπ2n2
+O

(
n−4

)
.

Hence

1− Cn,cn2 ≤ 4

cπ2n2

n−1∑
k=0

(2k + 1) +O
(
n−2

)
=

4

cπ2
+O

(
n−2

)
.

Rearranging now gives the result.

In Figure 2 we compare the function n−2Θ(n; θ) for θ = 1
2 ,

1
4 and the global and asymptotic

bounds of Theorems 3.2 and 3.3. Note that both bounds are reasonably sharp in comparison
to the computed values. In particular, as n → ∞, n−2Θ(n; 1

2 ) quickly approaches the limiting
value c ≈ 0.38, whereas the global and asymptotic upper bounds are 0.93 and 0.81 respectively.

At this moment, we reiterate an important point. Whilst Legendre polynomials were used
in the proof of Lemma 3.1, the constant Cn,m is independent of the particular reconstruction
basis, and is only determined by the space Tn. Hence, Theorems 3.2 and 3.3 provide a priori
estimates regardless of the particular implementation of the reconstruction procedure. In the
next section, we discuss the choice of polynomial basis and its effect on the numerical method.
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Figure 2: The function n−2Θ(n; θ) (squares), the global bound (circles) and the asymptotic bound
(crosses), for n = 2, . . . , 80 and θ = 1

2
(left), θ = 1

4
(right).

Remark 5 In some applications, medical imaging, for example, oversampling is common. For-
mally speaking, this is the situation where we wish to recover a function f with support in [−1, 1]
from its Fourier samples taken over an extended interval K ⊇ [−1, 1] (e.g. K = [− 1

ε ,
1
ε ] for some

0 < ε ≤ 1). In this case, proceeding in a similar manner to before, we let H = L2(K),

ψj(x) =
√

c
2eicjπx, x ∈ K,

where c = 1
2 |K| and Tn =

{
φ : φ|[−1,1] ∈ Pn−1, supp(φ) ⊆ [−1, 1]

}
. Using similar arguments to

those of Lemma 3.1, one can also derive estimates for Cn,m and Θ(n; θ) in this case. In fact,

Cn,m ≥ 1− 4(π − 2)n2

cπ2(m− 1)
, (3.6)

and

Θ(n; θ) ≤ 2

⌈
1

2
+

2(π − 2)

cπ2(1− θ)
n2

⌉
, ∀n ∈ N, n−2Θ(n; θ) ≤ 4

cπ2(1− θ)
+O

(
n−2

)
, n→∞.

In particular, we retain the scaling m = O
(
n2
)
, regardless of the of size of the interval K.

3.2 Choice of polynomial basis

The results proved in this section are independent of the polynomial basis used for implementa-
tion. In selecting such a basis, there are two questions which must be resolved. First, how stable
is the resultant method, and second, how can the entries of the matrix U (as defined in Section
2.3) be computed? A straightforward choice is the orthogonal basis of Legendre polynomials
(3.1). In this case, Ã = I, where Ã is the Gram matrix for {φ0, . . . , φn−1}, making the method
well-conditioned (Lemma 2.13). Moreover, the entries of U are known explicitly via (3.3).

Having said this, there is also interest in reconstructing in other polynomial bases. In many
circumstances it may be advantageous to have an approximation fn,m that is easily manipulable.
In this sense, an approximant composed of Legendre polynomials is not as convenient as one
consisting of Chebyshev polynomials (of the first or second kind); the latter being easy to
manipulate via the Fast Fourier Transform. To this end, the purpose of this section is to detail
the implementation of this method in terms of general Gegenbauer polynomials.

Gegenbauer polynomials arise as orthogonal polynomials with respect to the inner product

〈f, g〉λ =

∫ 1

−1

f(x)g(x)(1− x2)λ−
1
2 dx, λ > −1

2
.

For given λ, we denote the jth such polynomial by Cλj ∈ Pj . Important special cases are the

Legendre polynomials (λ = 1
2 ), and Chebyshev polynomials of the first (λ = 0) and second

(λ = 1) kind. By convention [7] (see also [31]), each polynomial Cλj is normalised so that

Cλj (1) =
Γ(j + 2λ)

j!Γ(2λ)
, (3.7)
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where Γ is the Gamma function, in which case it is known that (see [7, p.174])

‖Cλj ‖2λ =
√
π

Γ(j + 2λ)Γ(λ+ 1
2 )

j!Γ(2λ)Γ(λ)(j + λ)
, (3.8)

where ‖f‖λ =
√
〈f, f〉λ. With this to hand, we now define

φj =
1

‖Cλj ‖λ
Cλj , j = 0, 1, 2, . . . , (3.9)

and seek to reconstruct f in this basis.
Our first task is to compute the entries of the matrix U . For this, we need to compute

integrals of the form

Ik(z) =

∫ 1

−1

Cλk (x)eizx dx, k = 0, 1, 2, . . . ,

where z ∈ R. Fortunately, such integrals obey a simple recurrence relation:

Lemma 3.4. For z 6= 0, the integrals Ik(z) satisfy

I0(z) = 2Cλ0 (1)
sin z

z
, I1(z) = 2iCλ1 (1)

sin z − z cos z

z2
,

Ik+1(z) =
2i(k + λ)

z
Ik(z) + Ik−1(z)− i

eiz + (−1)ke−iz

z

[
Cλk+1(1)− Cλk−1(1)

]
, k = 1, 2, . . . .

When z = 0, we have

I0(0) = 2Cλ0 (1), Ik(0) =
1 + (−1)k

2(k + λ)

[
Cλk+1(1)− Cλk−1(1)

]
, k = 1, 2, . . . .

Proof. Recall the identity (see [7, p.176])

Cλj (x) =
1

2(j + λ)

d

dx

[
Cλj+1 − Cλj−1

]
, j = 1, 2, . . . .

Substituting this into the expression for Ik(z) and integrating by parts gives

Ik(z) =
1

2(k + λ)

[(
Cλk+1(x)− Cλk−1(x)

)
eizx

]1
x=−1

− iz

2(k + λ)
[Ik+1(z)− Ik−1(z)] .

Rearranging now gives the general recurrence for k ≥ 1. For k = 0, 1, we merely note that
Cλ0 (x) = Cλ0 (1), Cλ1 (x) = Cλ1 (1)x and that∫ 1

−1

eizx dx = 2
sin z

z
,

∫ 1

−1

xeizx dx = 2
sin z − z cos z

z2
.

The result for z = 0 is derived in a similar manner.

Using this recurrence formula, the matrix U can be formed in O (mn) operations. With this
to hand, we now turn our attention to the condition number of Ã:

Theorem 3.5. Let Ã be Gram matrix for the vectors {φ0, . . . , φn−1}, where φj is given by

(3.9). Then, κ(Ã) = O
(
n|2λ−1|) as n → ∞. In particular, whenever φ0, . . . , φn−1 arise from

Chebyshev polynomials (of the first or second kinds), then κ(Ã) = O (n).

To prove this theorem, we first require the following two lemmas. For convenience, we
will write L2

λ(−1, 1), λ > − 1
2 , for the space of square-integrable functions with respect to the

Gegenbauer weight function (1− x2)λ−
1
2 .
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Lemma 3.6. Suppose that − 1
2 < λ < 1

2 . Then, for all g ∈ L∞(−1, 1), we have ‖g‖ ≤ ‖g‖λ and,
for some cλ > 0 independent of g,

‖g‖λ ≤ cλ‖g‖λ+ 1
2 ‖g‖

1
2−λ∞ . (3.10)

Conversely, if λ ≥ 1
2 then, for all g ∈ L∞(−1, 1), ‖g‖ ≤ ‖g‖λ and

‖g‖ ≤ cλ‖g‖
1

λ+1
2

λ ‖g‖
λ− 1

2
λ+1

2∞ . (3.11)

Proof. Suppose first that − 1
2 < λ < 1

2 . Trivially, ‖g‖ ≤ ‖g‖λ. Now consider the other inequality.
For any 0 < ε < 1, we have

‖g‖2λ =

∫ 1

−1

|g(x)|2(1− x2)λ−
1
2 dx

=

∫
|x|≤1−ε

|g(x)|2(1− x2)λ−
1
2 dx+

∫
1−ε<|x|≤1

|g(x)|2(1− x2)λ−
1
2 dx

≤ (1− (1− ε)2)λ−
1
2 ‖g‖2 + 2‖g‖2∞

∫ 1

1−ε
(1− x2)λ−

1
2 dx,

where ‖ · ‖∞ is the uniform norm on [−1, 1]. Note that (1 − (1 − y)2)λ−
1
2 < yλ−

1
2 , ∀y ∈ (0, 1).

It now follows that

‖g‖2λ ≤ ελ−
1
2 ‖g‖2 +

2

λ+ 1
2

ελ+ 1
2 ‖g‖2∞, 0 < ε < 1.

Let c > 2 be arbitrary. Then ‖g‖2 < c‖g‖2∞, so we may let ε = ‖g‖2
c‖g‖2∞

. Substituting this into the

previous expression immediately gives (3.10).
Now suppose that λ > 1

2 . Once more, trivial arguments give that ‖g‖λ ≤ ‖g‖. For the other

inequality, we proceed in a similar manner. We have ‖g‖2 ≤ ε 1
2−λ‖g‖2λ + 2ε‖φ‖2∞. For c > 2 we

now set ε =
(
‖g‖λ
c‖g‖∞

) 2

λ+1
2 , which gives (3.11).

Lemma 3.7. Let λ ≥ 1
2 . Then, for all φ ∈ Pn−1, ‖φ‖∞ ≤ kn,λ‖φ‖λ, where kn,λ depends only

on n and λ and satisfies kn,λ = O
(
nλ+ 1

2

)
as n→∞.

Proof. Let {φ0, . . . , φn−1} be given by (3.9), and write an arbitrary φ ∈ Pn−1 as φ =
∑n−1
j=0 ajφj ,

where
∑n−1
j=0 |aj |2 = ‖φ‖2λ. By the Cauchy–Schwarz inequality,

‖φ‖2∞ ≤ ‖φ‖2λ
n−1∑
j=0

‖φj‖2∞ = k2
n,λ‖φ‖2λ.

We now wish to estimate ‖φj‖∞. Recall that ‖Cλj ‖∞ = Cλj (1) [7, p.206]. Hence, by (3.7) and
(3.8), we have

‖φj‖2∞ =
Γ(j + 2λ)(j + λ)

j!
√
πΓ(2λ)Γ(λ+ 1

2 )
.

Consider the ratio Γ(j+2λ)
j! . By Stirling’s formula,

Γ(j + 2λ)

j!
= O

(
j2λ−1

)
, j →∞.

Hence ‖φj‖2∞ = O
(
j2λ
)
, which gives k2

n,λ = O
(
n2λ+1

)
, as required.
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Figure 3: Error in approximating f(x) = e−x cos 4x by fn,m(x) for n = 1, . . . , 40. Left: log error
log10 ‖f−fn,m‖∞ (squares) and log10 ‖f−fn,m‖ (circles) against n. Right: log error against m = 0.2n2.

Proof of Theorem 3.5. Since Ã is Hermitian and positive definite, its condition number is the
ratio of its maximum and minimum eigenvalues. By a simple argument, we find that

λmax(Ã) = sup
φ∈Pn−1

φ 6=0

‖φ‖2

‖φ‖2λ
, λmin(Ã) = inf

φ∈Pn−1

φ 6=0

‖φ‖2

‖φ‖2λ
.

Consider the case λ > 1
2 . By Lemma 3.6, we have λmin(Ã) ≥ 1 and

λmax(Ã) ≤ c2λ sup
φ∈Pn−1

φ6=0

(
‖φ‖∞
‖φ‖λ

)2
λ− 1

2
λ+1

2
.

Using Lemma 3.7, we deduce that λmax(Ã) = O
(
n2λ−1

)
, as required. For the case − 1

2 < λ < 1
2 ,

we proceed in a similar manner.

This theorem confirms that the method can be implemented using Chebyshev polynomials
whilst incurring only a mild growth in the condition number. It follows that, if conjugate
gradients are used to compute the approximation, the total computational cost of forming fn,m
is O(mn

3
2 ), as opposed to O (mn) in the Legendre polynomial case. In the next section we

present several examples of this implementation.

Remark 6 Whilst Theorem 3.5 provides an asymptotic estimate for κ(Ã) (and hence κ(A)), it
may also be useful to derive global bounds. With effort, one could obtain versions of Lemmas
3.6 and 3.7 involving explicit bounds. For the sake of brevity, we shall not do this. However,
whenever Chebyshev polynomials are used (arguably the most important case), it is a relatively
simple exercise to confirm that

κ(Ã) ≤ 2
√

2n, κ(Ã) ≤ 3
2
3π−

1
3

[
n(n+ 1

2 )(n+ 1)
] 1

3 ,

in the first and second kind cases respectively.

3.3 Numerical examples

We now present several numerical examples of this method. All examples employ the value m =
0.2n2, and the first series of examples consider the implementation using Legendre polynomials.
In Figure 3 we consider the function f(x) = e−x cos 4x. Since f is analytic in this case, we
witness exponential convergence in terms of n and root exponential convergence in terms of
m. Note the effectiveness of the method: using less than 100 Fourier coefficients, we obtain an
approximation with 13 digits of accuracy.

As indicated by Theorem 2.4, the approximation fn,m is quasi-optimal. To highlight this
feature of the method, Figure 4 displays both the error in approximating f by fn,m and the best
approximation Qnf . Note the very close correspondence of the two graphs.
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Figure 4: Error in approximating f(x) = e−x cos 4x by fn,m(x) (squares) and Qnf(x) (circles) for
n = 1, . . . , 40. Left: log uniform error. Right log L2 error.
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Figure 5: Error in approximating f(x) = 1
1+x2 by fn,m(x) for n = 1, . . . , 80. Left: log error log10 ‖f −

fn,m‖∞ (squares) and log10 ‖f − fn,m‖ (circles) against n. Right: log error against m = 0.2n2.

The example in Figures 3 and 4 is, in fact, entire. Hence, the approximation fn,m converges
super-geometrically in n (as seen in Figure 3). For a meromorphic function, with complex
singularity lying outside [−1, 1], the convergence rate is truly exponential at a rate ρ. This is
demonstrated in Figure 5, the approximated function being f(x) = 1

1+x2 . Note that, despite
the poles at x = ±i, the approximation fn,m still obtains 13 digits of accuracy using only 250
Fourier coefficients.

Next we consider reconstructions in other polynomials using the work of the previous section.
In Table 1 we give the error in approximating the function f(x) = e−x cos 4x with Chebyshev
polynomials of the first and second kinds. Note that the resulting uniform error is virtually
identical to the case of the Legendre polynomial implementation (unsurprisingly, since all three
implementations compute exactly the same approximation fn,m, up to numerical error). More-
over, as evidenced by Table 2, the payoff is only mild growth in the condition number κ(A).

3.4 Connections to earlier work

Rather than choosing m such that Cn,m ≥ θ, it may appear advantageous to find the mini-
mum m such that Cn,m > 0. In other words, the smallest m such that fn,m is guaranteed to
exist. Letting θ = 0 in Theorems 3.2 and 3.3, we immediately obtain a sufficient condition of
the form m ≥ cn2, for some c > 0. However, this result is far too pessimistic: it is known
that reconstruction is always possible, provided m ≥ n [32]. For this reason, it may appear

n 5 10 15 20 25 30 35 40
(a) 1.45e0 1.85e-3 3.03e-7 2.53e-12 1.06e-14 8.42e-14 4.06e-14 5.31e-14
(b) 1.45e0 1.85e-3 3.03e-7 2.53e-12 3.51e-14 1.16e-13 4.57e-14 7.70e-14
(c) 1.45e0 1.85e-3 3.03e-7 2.49e-12 6.76e-14 7.33e-14 6.40e-14 5.15e-14

Table 1: Comparison of the error ‖f−fn,m‖∞ with m = 0.2n2, where fn,m is formed from (a) Legendre
polynomials and Chebyshev polynomials of the (b) first and (c) second kinds.
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n 5 10 15 20 25 30 35 40
(a) 3.57 5.55 4.21 5.20 4.40 5.06 4.50 6.77
(b) 13.74 49.99 52.63 91.89 92.89 133.02 133.49 191.19
(c) 3.90 5.67 7.25 9.33 11.91 13.96 16.56 18.92

Table 2: Comparison of the condition number κ(A) with m = 0.2n2, where A is formed from (a)
Legendre polynomials and Chebyshev polynomials of the (b) first and (c) second kinds.

favourable to reconstruct using m = n, leading to the so-called inverse polynomial reconstruc-
tion method [37, 38]. Unfortunately, however, this approach is extremely unstable. The linear
system has geometrically large condition number, making the procedure extremely sensitive to
both noise and round-off error. Moreover, a continuous analogue of the Runge phenomenon
occurs. Roughly speaking, the approximation fn,m only converges to f if geometric decay of
‖f −Qnf‖ is faster than the geometric growth of ‖A−1‖, meaning that only functions analytic
in sufficiently large complex regions can be approximated by this procedure (as discussed in
detail in [3], this behaviour can be understood in terms of the operator-theoretic properties of
finite sections of certain non-Hermitian infinite matrices). On the other hand, by allowing m to
range independently of n, we overcome all these difficulties, and obtain a stable method whose
convergence is completely determined by the convergence of Qnf to f .

For the specific example of Legendre polynomial reconstructions from Fourier samples, this
approach has also been recently considered in [32]. Therein, the estimate m = O

(
n2
)

was
derived, along with bounds for the error. Naturally, this problem is just one specific example of
our general framework. However, within this context, our work improves and extends the results
of [32] in the following ways:

1. Reconstruction is completely independent of the particular polynomial basis used. In
particular, the estimates for Θ(n; θ) and ‖f − fn,m‖ are determined only by the spaces Tn
and Sm. This allows for analysis of reconstructions in arbitrary polynomial bases, not just
the Legendre polynomials used in [32].

2. The estimates for Θ(n; θ) in Theorems 3.2 and 3.3 improve those given in [32]. In particular,
it was shown in [32, Theorem 4.2] that

Cn,αn2 ≥ 1− 8

π
arcsin

1

πα
, ∀n ∈ N, α ≥ 1, (3.12)

(our constant Cn,m corresponds to the quantity σ2
n,m in [32]). Conversely, Lemma 3.1 leads

to the improved bounds

Cn,αn2 ≥ 1− 4(π − 2)

π2(α− n−2)
∀n ≥ max

{
2

πα
,

√
2

α

}
, α > 0, (3.13)

and

Cn,αn2 ≥ 1− 4

π2α
+O

(
n−2

)
, n→∞, α > 0. (3.14)

Not only are these bounds sharper, they also hold for a greater range of α, thus permitting
reconstruction with m = αn2 for any α > 0, as opposed to just α ≥ 1. This leads to
savings in computational cost, and, in cases where m is fixed, allows larger values of n
to be used, thereby increasing accuracy. To illustrate this improvement, note that (3.12)
gives the estimate κ(A) ≤ 5.71 when m = n2. Conversely, our estimate (3.13) yields the
bound 2.61 for n ≥ 2, and (3.14) gives the asymptotic bound 1.68. To compare, direct
computation of κ(A) indicates that κ(A) ≤ 1.32 for all n, and κ(A)→ 1.2 as m→∞.

3. Piecewise analytic functions and function of arbitrary numbers of variables can be recovered
in a analogous fashion, with similar analysis (see Sections 3.5 and 4 respectively).
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Figure 6: Error in approximating the function (3.15) by fn,m(x) for n = 1, . . . , 80. Left: the function
f(x). Right: log error log10 ‖f − fn,m‖∞ (squares) and log10 ‖f − fn,m‖ (circles) against m = 0.2n2.

3.5 Reconstruction of piecewise analytic functions

Naturally, whenever the approximated function is not analytic, the convergence rate of the
polynomial approximant fn,m to f is not exponential. For example, consider the function

f(x) =

{
(2e2π(x+1) − 1− eπ)(eπ − 1)−1 x ∈ [−1,− 1

2 )
− sin( 2πx

3 + π
3 ) x ∈ [− 1

2 , 1]
(3.15)

This function was put forth in [46] to test algorithms for overcoming the Gibbs phenomenon.
Aside from the discontinuity, its sharp peak makes it a challenging function to reconstruct
accurately. Since this function is discontinuous, we expect only low-order, algebraic convergence
of fn,m in the L2 norm, but no uniform convergence, an observation confirmed in Figure 6.

However, by reconstructing this function in a polynomial basis, we are not exploiting the
known information about f : namely, the jump discontinuity at x = − 1

2 . The general procedure
set out in Section 2 allows us to use such information in designing a reconstruction basis. Natu-
rally, since f is analytic in the subintervals [−1,− 1

2 ] and [− 1
2 , 1], a better choice is to reconstruct

f in a piecewise polynomial basis. The aim of this section is to describe this procedure.
Seeking generality, suppose that f : [−1, 1] → R is piecewise analytic with jump disconti-

nuities at −1 < x1 < . . . < xl < 1. Let x0 = −1 and xl+1 = 1. We assume that f has been
sampled via f̂j = 〈f, ψj〉, j = 1, . . . ,m, where 〈·, ·〉 is the Euclidean inner product on L2(−1, 1).
In examples, these will be the Fourier samples of f , but the construction described below holds
for arbitrary sampling bases consisting of functions defined on [−1, 1].

Throughout we shall assume that the discontinuity locations x1, . . . , xl are known exactly.
Although this may be a reasonable assumption in many applications, a fully-automated algorithm
must also incorporate a scheme for singularity detection. We shall not discuss possible approaches
for doing this, and we refer the reader to [45] for further details.

Given the additional information about the location of the singularities of f , we now design a
reconstruction basis to mirror this feature. We shall construct such a basis via local co-ordinate
mappings. To this end, let Ir = [xr, xr+1], cr = 1

2 (xr+1 − xr) and define Λr(x) = x−xr
cr
− 1, so

that Λ(Ir) = [−1, 1]. Suppose now that T′n is a space of functions defined on [−1, 1] (e.g. the
polynomial space Pn−1). By convention, we assume that each φ ∈ T′n is extended by zero to the
whole real line, i.e. φ(x) = 0 for x ∈ R\[−1, 1]. Let Tn,r be the space of functions defined on Ir,
given by Tn,r = {φ ◦ Λr : φ ∈ T′n}. We now define the new reconstruction space in the obvious
manner:

Tn = {φ : φ|Ir ∈ Tnr,r, r = 0, . . . , l} , n =

l∑
r=0

nr,

and seek an approximation fn,m ∈ Tn to f via the conditions am(fn,m, φ) = am(f, φ), ∀φ ∈ Tn,
where am is defined in (2.5). Suppose now that {φ1, . . . , φn} is a collection of linearly independent
reconstruction functions with T′n = span{φ1, . . . , φn}. We construct a basis for Tn by scaling. To
this end, we let φr,j = 1√

cr
φj ◦Λr, and notice that Tn = span {φr,j : j = 1, . . . , nr, r = 0, . . . , l}.

Note that, if {φj} are orthonormal, then so are {φr,j}. With this basis in hand, the approximation
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fn,m is now given by

fn,m =

l∑
r=0

nr∑
j=1

αr,jφr,j ,

where the coefficients αr,j are determined by the aforementioned equations. As before, this is

equivalent to the least squares problem Uα ≈ f̂ with block matrix U = [U1, . . . , Ul], where Ur is
the m× nr matrix with (j, k)th entry

〈φr,k, ψj〉 =
1
√
cr

∫ xr+1

xr

φk(Λr(x))ψj(x) dx.

Here f̂ = (f̂1, . . . , f̂m)>, α = [α0, . . . , αl] and αr = (αr,1, . . . , αr,nr )
>.

Naturally, estimation of the constant Cn,m is vital. The following lemma aids in this task:

Lemma 3.8. The constant Cn,m satisfies

Cn,m ≥ 1−
l∑

r=0

(1− Cnr,m,r) ,

where Cnr,m,r = infφ∈Tnr,r
‖φ‖=1

〈Pmφ, φ〉.

Proof. For φ ∈ Tn, denote φ|Ir by φ[r]. Assume that φ[r] is extended to [−1, 1] by zero, so that

φ =
∑l
r= φ

[r]. Since φ[r] ⊥ φ[s] for r 6= s, it follows that

1− Cn,m = sup

{∑l
r=0

〈
φ[r] − Pmφ[r], φ[r]

〉∑l
r=0 ‖φ[r]‖2

: φ[r] ∈ Tnr,r, r = 0, . . . , l,

l∑
r=0

‖φ[r]‖2 6= 0

}
.

Note that, for ar ≥ 0 and br > 0, r = 0, . . . , l, the inequality

l∑
r=0

ar ≤
l∑

r=0

ar
br

l∑
r=0

br,

holds. Setting ar =
〈
φ[r] − Pmφ[r], φ[r]

〉
and br = ‖φ[r]‖2 and using this inequality gives

1− Cn,m ≤ sup

{
l∑

r=0

〈
φ[r] − Pmφ[r], φ[r]

〉
‖φ[r]‖2

: φ[r] ∈ Tnr,r, r = 0, . . . , l,

l∑
r=0

‖φ[r]‖2 6= 0

}

≤
l∑

r=0

sup

{
〈φ− Pmφ, φ〉
‖φ‖2

: φ ∈ Tnr,r, ‖φ‖ 6= 0

}
,

and this is precisely
∑l
r=0(1− Cnr,m,r).

Let us now focus on piecewise polynomial reconstructions from Fourier samples, in which
case Tn is the space of functions φ with φ|Ir a polynomial of degree nr. Regarding the rate of
convergence of the resulting approximation fn,m, it is a simple exercise to confirm that

‖f − fn,m‖ ≤ c(θ)cf
l∑

r=0

√
nrρ
−nr
r ,

where c(θ) is defined in (2.23), cf is a constant depending on f only and ρr is determined by
the largest Bernstein ellipse (appropriately scaled) within which the function f |Ir is analytic.
Hence, exponential convergence of fn,m to f . The main question remaining is that of estimating
the function Θ(n; θ) for this reconstruction procedure. For this, we have the following result,
which extends Theorems 3.2 and 3.3 to this case:
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Theorem 3.9. The function Θ(n; θ) satisfies

Θ(n; θ) ≤ 2

⌈
1

2
+

2(π − 2)

π2(1− θ)

l∑
r=0

n2
r

cr

⌉
, ∀n =

l∑
r=0

nr, n0, . . . , nl ∈ N,

and

Θ(n; θ) ≤ 4

π2(1− θ)

l∑
0

n2
r

cr
+O (1) , n0, . . . , nl →∞.

Proof. In view of Lemma 3.8, it suffices to consider Cnr,mr,r. To this end, let J = [α, β] ⊆ [−1, 1],
Tn,J be the space of functions φ with supp(φ) ⊆ J and φ|J ∈ Pn−1, and define

En,m = sup
φ∈Tn,J
‖φ‖=1

〈φ− Pmφ, φ〉 .

Let Λ(x) = x−α
c −1, where c = 1

2 (β−α), and write φ = Φ◦Λ, where supp(Φ) ⊆ [−1, 1]. Consider
the quantity 〈φ, ψj〉. By definition of ψj , we have

〈φ, ψj〉 =
1√
2

∫ 1

−1

φ(x)e−ijπx dx =
c√
2

e−ijπ(α+c)

∫ Λ(1)

Λ(−1)

Φ(y)e−ijπcy dy.

Let K = [Λ(−1),Λ(1)] = Λ([−1, 1]) ⊇ [−1, 1] and let Pm,K be the Fourier projection operator
based on the interval K. It now follows that

En,m = sup
{
〈Φ− Pm,KΦ,Φ〉 : supp(Φ) ⊆ [−1, 1], Φ|[−1,1] ∈ Pn−1, ‖Φ‖ = 1

}
.

This is now precisely the setup of Remark 5. Using (3.6), we therefore deduce that

En,m ≤
4(π − 2)n2

cπ2(2bm2 c − 1)
.

Letting J = Ir, c = cr and using Lemma 3.8, we now obtain

Cn,m ≥ 1− 4(π − 2)

π2(2bm2 c − 1)

l∑
r=0

n2
r

cr
, (3.16)

from which the result follows immediately.

To implement this scheme, it is necessary to compute the values (3.5). By changing variables,
it is easily seen that

〈φr,k, ψj〉 =

√
cr
2

e−ijπdr

∫ 1

−1

φk(y)e−ijπcry dy,

where dr = 1
2 (xr+1 + xr). Since (3.4) holds for all z ∈ C, it follows that

〈φr,k, ψj〉 = e−ijπdr (−i)k

√
k + 1

2

j
Jk+ 1

2
(jπcr), (3.17)

whenever the functions φr,k arise from scaled Legendre polynomials. Naturally, if the functions
φr,k arise from arbitrary scaled Gegenbauer polynomials, computation of the values (3.5) can be
carried out recursively via the algorithm described in Section 3.2 (for appropriate choices of z).

In Figure 7 we apply this method to the function (3.15) using the orthonormal basis of
scaled Legendre polynomials. The improvement over Figure 6 is dramatic: using only m ≈ 250
(with n0 = n1 = 16) we obtain 13 digits of accuracy. Note that, as expected, root exponential
convergence occurs. Moreover, as predicted by (3.16), and illustrated in Table 3, the condition
number of the matrix A remains small.
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Figure 7: Error in approximating the function (3.15) by fn,m(x). Left: log error log10 ‖f − fn,m‖∞
(squares) and log10 ‖f − fn,m‖ (circles) against m = 1, . . . , 500 with n0 = n1 chosen so that m =
1
5

(
n2
0

c0
+

n2
1

c1

)
. Right: the error log10 |f(x)− fn,m(x)| against x ∈ [−1, 1] for m = 20, 40, 80, 160.

m 10 20 40 80 160 320 640 1280
Cn,m 0.05 0.34 0.33 0.44 0.44 0.47 0.49 0.50
κ(A) 19.88 2.92 3.06 2.27 2.27 2.11 2.03 1.98

Table 3: The constant Cn,m and the condition number κ(A) against m.

3.6 Comparison to existing methods

Numerous methods exist for recovering functions to high accuracy from their Fourier data.
Applications are myriad, and range from medical imaging [5, 6] to postprocessing of numerical
solutions of hyperbolic PDEs [27, 36]. Prominent examples which deliver high global accuracy
(in contrast to standard filtering techniques, which only yield high accuracy away from the
singularities of a function [30]) include Gegenbauer reconstruction [29, 30, 31], techniques based
on extrapolation [19], Padé methods [18] and Fourier extension methods [10, 33] (for a more
complete list, see [12] and references therein).

Whilst many of these methods deliver exponential convergence in terms of m (the number
of Fourier coefficients), they all suffer from ill-conditioning. This comes as no surprise: the
problem of reconstructing a function from its Fourier coefficients can be viewed as a continuous
analogue of the recovery of a function from m equidistant pointwise values. As proved in [42],
any method for this problem that converges exponentially fast in m will suffer from exponentially
poor conditioning. We conjecture that a similar result holds in the continuous case.

Aside from increased susceptibility to round-off error and noise, ill-conditioning often makes
so-called inverse methods (e.g. extrapolation and Fourier extension methods) costly to imple-
ment. Conversely, the method proposed in the paper does not suffer from any ill-conditioning.
This negative consequence of [42] is circumvented, precisely because we witness only root expo-
nential convergence in m. However, an advantage of this approach is that it delivers exponential
convergence in n, the degree of the final approximant fn,m. In many applications it may be
necessary manipulate fn,m, its relatively low degree making such operations reasonably cheap.
Thus, this method has the advantage of compression, a feature not shared by the majority of
the other methods mentioned previously.

A well-established and widely used alternative to this method is the Gegenbauer recon-
struction technique, proposed by Gottlieb et al [31]. Much like this approach, it computes a
polynomial approximation. Yet it stands out as being direct, meaning that no linear system or
least squares problem is required to be solved. Whilst the original method has been shown to
suffer from a generalised Runge phenomenon [11], thereby severely affecting its applicability, an
improved approach based on Freud polynomials was recently developed in [24].

Comparatively speaking, this approach delivers exponential convergence in O
(
m2
)

opera-

tions. On the other hand, our method obtains root exponential convergence at a cost of O(m
3
2 )

operations. However, despite being theoretically more efficient, the various constants involved
in the Gegenbauer/Freud procedure tend to be rather large.
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m 64 128 256 512 1024 2048 4096
(a) 8.90e-01 1.37e-01 1.84e-04 1.01e-07 9.33e-13 5.27e-13 5.23e-14
(b) 2.40e-04 8.36e-09 2.40e-14 1.38e-14 1.74e-14 2.26e-14 2.59e-14

Table 4: Comparison of the (a) Freud polynomial method and (b) generalised reconstruction method
applied to (3.15). Here m is the total number of Fourier samples.

Indeed, in Table 4 we compare the error in approximating the function (3.15) using both
procedures (the data for the Freud method is taken from [24, Table 1]. Note that the param-
eter N used therein is such that 2N = m is the total number of Fourier coefficients). As is
evident, the method proposed in this paper obtains an error of order 10−14 using less than 256
Fourier coefficients, whereas the Freud procedure does not reach this value until more than 1024
coefficients are used.

The most likely reason for this improvement is that the generalised reconstruction method is
quasi-optimal, thereby delivering a near-optimal polynomial approximation, whereas the Gegen-
bauer and Freud procedures do not possess this feature. Indeed, in the Gegenbauer case at
least, we can quantitatively explain this phenomenon (the corresponding results for the Freud
polynomial case are not so well understood). It is known that, for analytic functions f , the
approximation Fn,m obtained from the Gegenbauer procedure converges geometrically at rate
γm, where

γ = max

{
ρ−1,

(β + 2α)β+2α

(2πe)αααββ

}
,

(see [30, eqn. (4.12)]). Here λ = αm is the parameter of the Gegenbauer polynomials used and
n = βm is the degree of the polynomial Fn,m. Thus, in practice, the Gegenbauer method may
converge much more slowly than the best polynomial approximation Qmf , which converges at
rate ρ−m. Conversely, our approach offers root exponential convergence at a rate determined
solely by ρ: ‖f − fn,m‖ ∼ ρ−

√
m.

Suppose now that the number of Fourier coefficients is fixed. Then, ignoring various con-
stants, the Gegenbauer method will offer a lower error than the generalised reconstruction pro-
cedure only when γm . ρ−

√
m. In other words,

m &

(
log ρ

log γ

)2

.

In typical examples (see [30, 31]), the parameter values α = β = 1
4 have been used, giving the

condition m & 19(log ρ)2. Thus, for reasonably analytic functions f (i.e. analytic in a sufficiently
large Bernstein ellipse), the Gegenbauer procedure will only begin to outperform the generalised
reconstruction method when the parameter m is rather large. Moreover, whenever f is entire (as
is the case with the example in Table 4), the generalised reconstruction procedure will converge
super-geometrically (in n = O (

√
m)), whereas the Gegenbauer method may still converge only

exponentially at rate γ. Thus, in this situation the Gegenbauer method may never outperform
the generalised reconstruction method for any finite m.

Aside from improved numerical performance, let us mention several other benefits. First,
as discussed, the final approximation consists of only O(

√
m) terms, as opposed to O (m).

Second, the basis for the polynomial reconstruction space Tn can be chosen arbitrarily (in
particular, independently of m) without affecting the convergence. The only downside is a mild
increase in condition number if nonorthogonal polynomials are employed. In contrast, for the
Freud/Gegenbauer procedure, only very specific types of polynomials can be used (which may
not be simple to construct or manipulate [24]), and, whenever the number of samples m is varied,
all polynomials used for reconstruction must be changed.

To somewhat temper our claims, we mention that we have only considered one particular test
function. There may well be problems where the Freud/Gegenbauer procedure performs better,
and the intention of future work is to present a more thorough comparison of the two methods.
That aside, one advantage of Gegenbauer method is that it is local: the approximation in each
subdomain is computed separately and independently of any other subdomain. Conversely, with
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our approach, the computations are inherently coupled. Nevertheless, it may be possible to
devise a local version of our approach, a question we intend to explore in future investigations.

4 Reconstructions in tensor-product spaces

Thus far, we have focused on the reconstruction of univariate functions from Fourier samples.
A simple extension of this approach, via tensor products, is to functions defined in cubes. The
aim of this section is to detail this generalisation.

To formalise this idea, let us return to the general perspective of Section 2. Suppose that
the Hilbert space H can be expressed as a tensor-product H = H1 ⊗ · · · ⊗ Hd of Hilbert spaces
Hi, i = 1, . . . , d, each having inner product 〈·, ·〉i. Note that, for f = f1 ⊗ · · · ⊗ fd ∈ H and
g = g1 ⊗ · · · ⊗ gd ∈ H, we have

〈f, g〉 =

d∏
i=1

〈fi, gi〉i .

Now suppose that the sampling basis consists of tensor-product functions. To this end, let

ψj = ψ1,j1 ⊗ · · · ⊗ ψd,jd , j = (j1, . . . , jd) ∈ Nd,

and, for m = (m1, . . . ,md) ∈ Nd, set

Sm = span {ψj : j = (j1, . . . , jd), 1 ≤ ji ≤ mi, i = 1, . . . , d} .

We assume throughout that the collection {ψi,j}∞j=1 is a Riesz basis for Hi for i = 1, . . . , d (hence
{ψj} is a Riesz basis for H). With this to hand, we define the operator Pm : H→ Sm by

Pmf =

m1∑
j1=1

· · ·
md∑
jd=1

〈f, ψj〉ψj .

Note that Pm(f1 ⊗ · · · ⊗ fd) = P1,m1
f1 ⊗ · · · ⊗ Pd,mdfd, where Pi,mi : Hi → Si,mi is defined

in the obvious manner. In a similar fashion, we introduce the reconstruction vectors φj =
φ1,j1 ⊗ · · · ⊗ φd,jd , which form a basis for the reconstruction space

Tn = span {φj : j = (j1, . . . , jd), 1 ≤ ji ≤ ni, i = 1, . . . , d} , n = (n1, . . . , nd) ∈ Nd.

As before, we construct the approximation fn,m ∈ Tn via the equations am(fn,m, φ) = am(f, φ),
∀φ ∈ Tn, where am(f, g) = 〈Pmf, g〉, ∀f, g ∈ H.

To cast this problem in a form suitable for computations, let U [i] ∈ Cmi×ni be the matrix
with (j, k)th entry 〈ψi,j , φi,k〉i. Let U ∈ Cm̄,n̄ be the matrix of the d-variate reconstruction
method, where m̄ = m1 . . .md and n̄ = n1 . . . nd. Then, it is easily shown that

U =

d⊗
i=1

U [i], A =

d⊗
i=1

A[i],

where A = U†U , and A[i] = (U [i])†U [i], and, in this case, B1⊗B2 denotes the Kronecker product
of matrices the B1 and B2. By a trivial argument, we conclude that the number of operations
required to compute fn,m is of order (n1m1) . . . (ndmd)

√
κ(A).

Recall that the spectrum of the Kronecker product matrix B1 ⊗B2 consists precisely of the
pairs λµ, where λ is an eigenvalue of B1 and µ is an eigenvalue of B2. From this, we easily
deduce that

κ(A) =

d∏
i=1

κ(A[i]).

Hence, κ(A) is completely determined by the matrices A[i], with the ith such matrix correspond-
ing to the univariate reconstruction problem with sampling basis {ψi,j}mij=1 and reconstruction
basis {φi,j}nij=1. Unsurprisingly, a similar observation also holds for the quantity Cn,m:
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Lemma 4.1. The constant Cn,m satisfies Cn,m =
∏d
i=1 Ci,ni,mi .

Proof. By Lemma 2.15, Cn,m = λmin(Ã−1A) and Ci,ni,mi = λmin((Ã[i])−1A[i]), i = 1, . . . , d,

where Ã and Ã[i] are defined in the obvious manner. Since Ã = Ã[1]⊗· · ·⊗ Ã[d], the matrix Ã−1

is the Kronecker product of matrices (Ã[i])−1. The result now follows immediately.

4.1 Reconstruction of piecewise smooth functions

Having presented the general case, we now turn our attention to the reconstruction of a piecewise
smooth function f : [−1, 1]d → R. We shall make the significant (see later discussion) assumption
that f is smooth in hyper-rectangular subregions of [−1, 1]d. To this end, let li ∈ N for i =
1, . . . , d and suppose that

−1 = x0,i < x1,i < . . . < xli,i < xli+1,i = 1,

and define Ir,i = [xr,i, xr+1,i] for r = 0, . . . , li. For r = (r1, . . . , rd), we write Ir = Ir1,1×· · ·×Ird,d,
so that the collection

{Ir : r = (r1, . . . , rd), ri = 0, . . . , li, i = 1, . . . , d} ,

consists of disjoint sets whose union is [−1, 1]d. We assume that f is smooth within each
subdomain Ir. In addition, for ri = 0, . . . , li and i = 1, . . . , d, let cri,i = 1

2 (xri+1,i − xri,i) and

set Λri,i(x) =
x−xri,i
cri,i

− 1, x ∈ Iri . Note that Λri,i(Iri,i) = [−1, 1].

We now construct a reconstruction space. To this end, for n ∈ N let T′n, dim T′n = n, be a
space of functions φ : R→ C with supp(φ) ⊆ [−1, 1]. Define

Tn,r,i = {φ ◦ Λr,i : φ ∈ T′n} , n ∈ N.

Now suppose that n is the vector (n1, . . . , nd), where

ni =

li∑
r=0

nr,i, i = 1, . . . , d,

for some nr,i ∈ N. We now define the reconstruction space Tn by

Tn =
d⊗
i=1

li⊕
r=0

Tnr,i,r,i.

We seek a basis for this space. Let {φ1, . . . , φn}, n ∈ N, be a basis for T′n, and set

φr,j,i =
1
√
cr,i

φj ◦ Λr,i.

A basis for Tn is now given by

{φr1,j1,1 ⊗ · · · ⊗ φrd,jd,d, j = 1, . . . , nri,i, ri = 0, . . . , li, i = 1, . . . , d} .

This framework gives a general means in which to construct reconstruction bases in the tensor-
product case for functions which are piecewise smooth with discontinuities parallel to the co-
ordinate axes. Suppose now that we consider the recovery of such a function from its Fourier
samples. Using the above framework, we are easily able to construct a basis consisting of
piecewise polynomials of several variables. The main question remaining is that of estimating
the function Cn,m. However, in view of the Lemma 4.1 and the results derived in Section 3.1, a
simple argument gives
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Figure 8: The errors log10 ‖f − fn,m‖ (squares) and log10 ‖f − fn,m‖∞ (circles) for n1 = n2 = 1, . . . , 25,

where f(x) = ex
2y (left) and f(x, y) = sin 3xy (right).

Theorem 4.2. Suppose that n = (n1, . . . , nd), where ni =
∑li
r=0 nr,i, and let

Θ(n; θ) = min{m = (m1, . . . ,md) : Cn,m ≥ θ}, θ ∈ (0, 1).

If θ1, . . . , θd ∈ (0, 1) satisfy θ = θ1 . . . θd, then we may write

Θ(n; θ) = (Θ1(n1; θ1), . . . ,Θd(nd; θd)) ,

where, for i = 1, . . . , d,

Θi(ni; θi) ≤ 2

⌈
1

2
+

2(π − 2)

π2(1− θi)

li∑
r=0

n2
r,i

cr,i

⌉
,

and

Θi(ni; θi) ≤
4

π2(1− θi)

li∑
r=0

n2
r,i

cr,i
+O (1) , n0,i, . . . nli,i →∞.

The main consequence of this theorem is the following: regardless of the dimension, the
variables m1, . . . ,md must scale quadratically with n1, . . . , nd to ensure quasi-optimal recovery.
Consider now the most simple example of this approach: namely, where f is smooth in [−1, 1]d,
so that Tn consists of multivariate polynomials. In Figure 8 we plot the error in approximating
the functions f(x, y) = ex

2y and f(x, y) = sin 3xy, using parameters m1 = m2 = 0.5n2
1 and

n2 = n1. As in the univariate case, we observe the accuracy of this technique. For example,
using only m1 = m2 ≈ 200 and n1 = n2 ≈ 20 we obtain an error of order 10−14.

Remark 7 This approach (and many others based on tensor-product formulations) has the
significant shortcoming that it requires the function to be singular in regions parallel to the co-
ordinate axes. Naturally, this is a rather restrictive condition. For a function with singularities
lying on a curve (in two dimensions, for example), one potential alternative is to apply the
one-dimensional method along horizontal and vertical slices, and recover the two-dimensional
function from the resulting one-dimensional reconstructions.

However, the generality of the reconstruction framework presented in this paper allows for
another approach. Given that we can reconstruct in any basis, an obvious alternative is to
subdivide the domain into triangular elements and use a finite element basis for reconstruction.
This is a subject for future investigation.

5 Other sampling problems

Overcoming the Gibbs phenomenon in Fourier series is an obvious application of the general
framework developed in Section 2. However, there is no reason to restrict to this case, and this
framework can be readily applied to design effective methods for a variety of other problems. In
this section we describe several related problems, and the application of this framework therein.
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5.1 Modified Fourier sampling

Modified Fourier series were proposed in [34] as a minor adjustment of Fourier series. In the
domain [−1, 1], rather than expanding a function f in the classical Fourier basis

{cos jπx : j ∈ N} ∪ {sin jπx : j ∈ N+},

we construct the modified Fourier expansion using the basis

{cos jπx : j ∈ N} ∪ {sin(j − 1
2 )πx : j ∈ N+},

instead. Though this basis arises from only a minor adjustment of the Fourier basis, the result
is an improved approximation: the modified Fourier series of a smooth, nonperiodic function
converges uniformly at a rate of O

(
m−1

)
, whilst Fourier series suffers from the Gibbs phe-

nomenon. Although the convergence rate remains slow, the improvement over Fourier series,
whilst retaining many of their principal benefits, has given rise to a number of applications of
such expansions. For a more detailed survey, we refer the reader to [4].

We shall consider modified Fourier expansions in a somewhat different context. Given the
similarity between the two bases, it is reasonable to assume that any sampling procedure (e.g.
an MRI scanner) can be adapted to compute the modified Fourier coefficients of a given function
(or image/signal), as opposed to the standard Fourier samples. Indeed, if

Ff(t) =

∫ 1

−1

f(x)e−iπtx dx,

is the Fourier transform of f , then the modified Fourier coefficients are precisely

f̂Cj =

∫ 1

−1

f(x) cos jπx dx =
1

2
[Ff(j) + Ff(−j)] ,

f̂Sj =

∫ 1

−1

f(x) sin(j − 1
2 )πxdx =

i

2

[
Ff(j − 1

2 ) + Ff( 1
2 − j)

]
,

and hence can be computed from samples of the Fourier transform. This raises the question:
given that the general framework can handle sampling in either, is there an advantage gained
from sampling in the modified Fourier basis, as opposed to the Fourier basis? As we shall show,
provided the function is analytic and nonperiodic, this is indeed the case. Specifically, when we
reconstruct in a polynomial basis, we require fewer samples to obtain quasi-optimal recovery to
within a prescribed degree.

Suppose that we carry out the reconstruction procedure as in Section 3 but using modified
Fourier samples instead of Fourier samples. For this, we set

Pmf(x) =
1

2
f̂C0 +

bm2 c∑
j=1

[
f̂Cj cos jπx+ f̂Sj sin jπx

]
.

Naturally, we consider the function Θ(n; θ) once more. In Figure 9 we plot the function Θ(n; θ)
for the modified Fourier basis. Upon comparison with Figure 2, we conclude the following:
using modified Fourier sampling, as opposed to standard Fourier sampling leads to a noticeable
improvement. Specifically, n−2Θ(n; 1

2 ) is approximately 0.15 for large n in the modified Fourier
case, as opposed to 0.4 in the Fourier case.

This result means that, if the number of samples m is fixed, we are able to take a much larger
value of n in the modified Fourier case, whilst retaining quasi-optimal recovery (with constant
c(θ)). As a result, we obtain better, guaranteed accuracy. To illustrate this improvement, in
Figure 10 we compare the errors in approximating the function f(x) = e−x cos 8x from either its
Fourier or modified Fourier data. In both cases the number of samples m was fixed, and n was
chosen so that the parameter Cn,m ≥ 1

2 . As is evident, the method based on modified Fourier
samples greatly outperforms the other. For example, using only m = 120 samples, we obtain an
error of order 10−14 for the former, in comparison to only 10−4 for the latter.

As in the Fourier case, to implement the modified Fourier-based approach it is necessary to
have estimates for the function Θ(n; θ). These are particularly simple to derive:
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Figure 9: The function n−2Θ(n; θ) (squares), the globabl bound (circles) and the asymptotic bound
(crosses) for n = 1, . . . , 80 and θ = 1

2
(left), θ = 3

4
(right).

50 100 150 200

-12

-10

-8

-6

-4

-2
50 100 150 200

-12

-10

-8

-6

-4

-2

Figure 10: The errors log10 ‖f−fn,m‖∞ (left) and log10 ‖f−fn,m‖ (right) against m = 5, 10, 15, . . . , 200,
where fn,m is computed from modified Fourier (squares) or Fourier (circles) samples.

Lemma 5.1. Let Tn = Pn−1 and Sm be the space spanned by the first m modified Fourier basis
functions. Then the function Θ(n; θ) satisfies

Θ(n; θ) ≤
⌈

2

π
√

1− θ
knn

2

⌉
, where kn = n−2 sup

φ∈Pn−1

‖φ‖=1

‖φ′‖.

Proof. In [2] it was shown that ‖φ − Pmφ‖ ≤ 2
mπ‖φ

′‖ for all sufficiently smooth functions φ.
The result now follows immediately from the definition of Cn,m.

As a result of this lemma, analytical bounds for Θ(n; θ) are dependent solely on the constant
kn of the Markov inequality ‖φ′‖ ≤ knn2‖φ‖, ∀φ ∈ Pn−1. Markov inequalities and their constants
are well understood. The question of determining kn was first studied by Schmidt [43], in which
the estimates

kn ≤
1√
2
, ∀n, κn →

1

π
, n→∞, (5.1)

were derived. In [44] the following improved asymptotic estimate was also obtained:

knn
2 =

(n+ 1
2 )2

π

[
1− π2 − 3

12(n+ 1
2 )2

+
Rn

(n+ 1
2 )4

]−1

, n ≥ 5, (5.2)

where −6 < Rn < 13 (we refer the reader to [8] for a more thorough discussion of both these
results and more recent work on this topic). Returning to Θ(n; θ) we now substitute the result
of Lemma 5.1 into (5.1) and (5.2) to obtain the global and asymptotic bounds. In Figure 9
we compare these bounds to their numerically computed values. The relative sharpness of such
estimates is once more observed.

5.2 Polynomial sampling

The primary concern of this paper has been reconstruction from Fourier (or Fourier-like) sam-
ples. However, in several circumstances, most notably the spectral approximation of PDEs
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with discontinuous solutions [23, 27], the problem arises where a piecewise analytic function has
been sampled in an orthogonal polynomial basis. As previously noted, this approximation will
converge slowly (and suffer from a Gibbs-type phenomenon near discontinuities), hence it is nec-
essary to seek a new approximant with faster convergence. Whilst a version of the Gegenbauer
reconstruction method has been developed for this task [28, 29], the advantages of the method
proposed in this paper (see Section 3.6) make it a potential alternative to this existing approach.
Hence, the purpose of this section is to give a brief overview of this application.

It is beyond the scope of this paper to develop this example of the reconstruction procedure
in its full generality. Instead, we consider only the recovery of a piecewise analytic function
f : [−1, 1]→ R from its first m Legendre polynomial coefficients f̂j = 〈f, ψj〉, j = 0, . . . ,m− 1,

where ψj = (j + 1
2 )

1
2Pj(x) is the jth normalised Legendre polynomial. Proceeding as in Section

3.5, we assume that f has jump discontinuities as −1 < x1 < . . . < xl < 1, and seek an
approximation of the form

fn,m(x) =

l∑
r=0

nr−1∑
j=0

αr,jφr,j(x), n =

l∑
r=0

nr,

where φr,j(x) = 1√
cr
φj(Λr(x)), Λr(x) = x−xr

cr
− 1, cr = 1

2 (xr+1 − xr) and {φ0, . . . , φn−1}
is a system of polynomials on [−1, 1]. Since f is piecewise analytic, we expect exponential
convergence of fn,m to f , provided m is sufficiently large in comparison to n.

Aside from determining how large m must be in comparison to n for recovery, the main
question remaining is that of implementation, i.e. how to compute the entries of the matrix U .
This requires evaluation of the integrals∫ xr+1

xr

ψj(x)φr,k(x) dx, j = 0, . . . ,m− 1, k = 0, . . . , n− 1.

Whenever the reconstruction functions φr,k arise from Gegenbauer polynomials, these calcula-
tions can be done iteratively. For the sake of brevity, we will not describe this computation
in full generality. Instead, we consider only the situation where the functions φr,k arise from
Legendre polynomials, in which case we are required to compute the integrals∫ xr+1

xr

Pj(x)Pk(Λr(x)) dx, j = 0, . . . ,m− 1, k = 0, . . . , n− 1, r = 0, . . . , l.

We have

Lemma 5.2. Let

uj,k =

∫ b

a

Pj(x)Pk(cx+ d) dx, j, k = 0, 1, 2, . . . , (5.3)

where ca+ d = −1 and cb+ d = 1. Then

u0,0 = b− a, uj,0 =
1

j
[Pj+1(x)− xPj(x)]

b
x=a , j = 1, 2, . . . ,

u0,k =
2

c
δ0,k, u1,k =

2

3c
δ1,k −

2d

c
δ0,k, k = 0, 1, 2, . . . ,

and, for j ≥ 2 and k ≥ 1,

uj,k =
(2j − 1)(k + 1)

cj(2k + 1)
uj−1,k+1 +

(2j − 1)k

cj(2k + 1)
uj−1,k−1 −

d(2j − 1)

cj
uj−1,k −

j − 1

j
uj−2,k. (5.4)

Proof. Recall the recurrence relation

jPj(x) = (2j − 1)xPj−1(x)− (j − 1)Pj−2(x), j = 2, 3, . . . , (5.5)

for Legendre polynomials [1, chpt 22]. Substituting this into (5.3) gives

uj,k =
2j − 1

j

∫ b

a

xPj−1(x)Pk(cx+ d) dx− j − 1

j
uj−2,k.
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Figure 11: Left: the error log10 |f(x) − fn,m(x)| for −1 ≤ x ≤ 1 and m = 20, 40, 80, 160. Right: log
errors log10 ‖f − fn,m‖∞ (squares) and log10 ‖f − fn,m‖ (circles) against m.

Letting x 7→ cx+ d in (5.5) and rearranging, we find that

xPk(x) =
k + 1

c(2k + 1)
Pk+1(cx+ d)− d

c
Pk(cx+ d) +

k

c(2k + 1)
Pk−1(cx+ d).

The recurrence (5.4) now follows upon substituting this into the previous expression.

Next consider uj,0. Since P0 ≡ 1, we have u0,0 = b − a and uj,0 =
∫ b
a
Pj(x) dx for j ≥ 1.

Recall that the jth Legendre polynomial satisfies the Legendre differential equation [1, chpt 22][
(1− x2)P ′j(x)

]′
= −j(j + 1)Pj(x).

Substituting for Pj in
∫ b
a
Pj(x) dx and integrating gives

uj,0 =
1

j(j + 1)

[
(x2 − 1)P ′j(x)

]b
x=a

.

The result now follows directly from the expression

(1− x2)P ′j(x) = (j + 1)(xPj(x)− Pj+1(x)), j = 0, 1, 2, . . . .

To complete the proof, we consider u0,k and u1,k. By the assumptions on a, b, c, d, we find that

u0,k =
1

c

∫ 1

−1

Pk(x) dx.

Orthogonality now gives u0,k = 2
c δ0,k, as required. For u1,k we have

u1,k =
1

c

∫ 1

−1

(y − d)Pk(y) dy =
1

c

(
2

3
δ1,k − 2dδ0,k

)
,

as required.

In Figure 11 we consider the approximation of the function

f(x) =

{
sin cosx − 1

2 ≤ x <
1
2 ,

0 otherwise.
(5.6)

by the aforementioned method, using parameter values m = 1
8n

2, n0 = n2 = 1
4n and n1 = 1

2n.
As exhibited, we obtain 13 digits of accuracy using only m ≈ 120 Legendre coefficients of (5.6).
Note that, although we have not shown it, the scaling m = O

(
n2
)

appears to be sufficient for
recovery. Numerical results, demonstrating this hypothesis, are given in Table 5.

The function (5.6) was introduced in [28] to test the Gegenbauer reconstruction method when
applied to this type of problem. As shown in Figure 11, we obtain a uniform error of roughly
10−8 using only m = 40 coefficients, and when m = 120, the corresponding value is 10−14. In
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n 8 16 24 32 40 48 56 64 72 80
Cn,m 0.98 0.87 0.85 0.85 0.85 0.84 0.84 0.84 0.84 0.84
κ(U∗U) 19.97 4.17 3.57 3.57 3.50 3.43 3.43 3.41 3.38 3.38

Table 5: The values Cn,m and κ(U∗U) against n, where m = 1
8
n2.

comparison, the Gegenbauer method gives errors of roughly 10−3 and 10−7 for these values of
m (see [28, Fig. 3]), the latter being 107 times larger.

Whilst this method appears to be a promising alternative, it should be mentioned that the
recursive scheme to compute the entries of U requires O

(
m2
)

operations. Since only O (mn)
operations are required to compute the approximation fn,m, this is clearly less than ideal. Having
said that, the Gegenbauer reconstruction method requires O

(
m2
)

operations to compute each
approximant, whereas with this scheme this higher cost is only incurred in a preprocessing step.

6 Conclusions and future work

We have presented a reconstruction procedure to recover a function using any collection of
linearly independent vectors, given a finite number of its samples with respect to an arbitrary
Riesz basis. This approach is both stable and quasi-optimal, provided the number of samples
m is sufficiently large in comparison to the number of reconstruction vectors n. Moreover, this
condition can be estimated numerically or, in certain circumstances, analytically. A prominent
example of this approach is the reconstruction of a piecewise analytic function from its Fourier
samples. Using a piecewise polynomial basis, this results in an approximation that converges
root exponentially in terms of m, or exponentially in terms of n.

There are many potential avenues to pursue in extending this work, as we now detail:

1. Piecewise polynomial reconstructions from polynomial samples. In the final section in the
paper we detailed the recovery of a piecewise analytic function in a piecewise polynomial basis,
given its Legendre polynomial expansion coefficients. Herein, an important open problem is
verifying that the scaling m = O

(
n2
)

is sufficient for reconstruction. Other challenges involve
devising an iterative scheme for computing the entries of U valid for reconstructions in arbitrary
Gegenbauer polynomials, and which involves only O (mn) operations, as opposed to O

(
m2
)
.

Naturally, future work will also investigate the extension of this approach to reconstruction from
arbitrary Gegenbauer polynomial expansion coefficients (as opposed to just Legendre polynomial
expansion coefficients).

2. Gegenbauer polynomial reconstructions from Fourier samples. As shown, the reconstruc-
tion procedure can be implemented with arbitrary Gegenbauer polynomials. However, unless
Legendre polynomials are used, the reconstruction is not stable. This problem arises because
Gegenbauer polynomials do not form a Riesz basis for the space L2(−1, 1) unless λ = 1

2 . How-
ever, Gegenbauer polynomial do form an orthogonal basis for the weighted space L2

ω(−1, 1),

where ω(x) = (1 − x2)λ−
1
2 . Hence, it is natural to ask whether the reconstruction procedure

can be adjusted to incorporate this additional structure, thereby yielding a stable method. It
turns out that this can be done, with the first step being the derivation of an extended abstract
framework along similar lines to Section 2. We are currently compiling results in this case, and
will report the details in a future paper.

3. Applications. Aside from the obvious applications in image and signal processing, the are a
number of other potential uses of the procedure. First, it may be applicable to the spectral dis-
cretisation of PDEs. Spectral methods are extremely efficient for solving problems with smooth
solutions. However, for problems that develop discontinuities, e.g. hyperbolic conservation laws,
a postprocessor is required to recover high accuracy [27]. The Gegenbauer reconstruction tech-
nique has recently been applied to such problems (see [23, 27] and references therein). Given
the potential advantages of the method developed in this paper (see Section 3.6), it is significant
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interest to apply this approach to these problems. Aside from high accuracy, a pertinent issue in
the use of spectral approximations for nonsmooth problems is the question of stability [27]. Since
the generalised reconstruction procedure is well-conditioned, there may also be a benefit in this
regard. Outside of PDEs, the Gegenbauer reconstruction technique has also been extended to
other types of series, including radial basis functions [39], Fourier–Bessel series [40] and spherical
harmonics [22]. Future work will also consider generalisation of the method of this paper along
these lines.

4. Spline and wavelet-based reconstructions. Reconstructions in spline and wavelet bases are
important in numerous applications. In [3], the authors gave a first insight into the application
of such bases to the Fourier sampling problem. However, the theory is far from complete.
Moreover, the use of more exotic objects, such a curvelets [16] and ridgelets [15], remains to be
investigated.

5. Recovery from pointwise samples. The discrete analogue of the Fourier coefficient recovery
problem involves the reconstruction of a function from m equispaced samples in [−1, 1]. This
problem has received more attention of late [13, 42] than the continuous case considered in
this paper. In particular, the so-called mock–Chebyshev method [14] can be viewed as a discrete
analogue of this approach. Whilst the mock–Chebyshev method is well understood, there remain
a number of other reconstruction from pointwise samples problems of interest. In particular,
with application to spectral collocation schemes based on Chebyshev or Legendre polynomials,
the recovery of a piecewise analytic function from its values at Gauss or Gauss–Lobatto nodes.
Future work will consider this problem.
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