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1. Introduction

We study the convergence of some iterative algorithms for seeking the least value
of a function F (x), x ∈ Rn, which is defined by a subroutine that returns the
value F (x) for any given vector of variables x ∈ Rn. The convergence analysis
requires F to be bounded below and to have bounded second derivatives, but no
derivatives are available to the algorithms. At the beginning of every iteration of
an algorithm, there is a quadratic (or linear) polynomial function

Qk(x) = F (xk) + (x−xk)
Tg

k
+ 1

2
(x−xk)

TGk (x−xk), x∈Rn, (1.1)

that is employed as an approximation to F (x), x∈Rn, when x is sufficiently close
to xk, where k is the iteration number, and where xk is the vector of variables that
has supplied the least calculated value of the objective function so far. The vector
g

k
∈Rn and the n×n symmetric matrix Gk, which may be zero, are generated

by the algorithms. The k-th iteration picks a nonzero step dk from xk, and then
calls the subroutine that returns the new function value F (xk +dk). There are
two kinds of step dk, namely “trust region” steps, chosen to make Qk(xk +dk)
substantially less than Qk(xk), in the hope that most of this reduction in Qk may
be inherited by F , and “alternative” steps, designed to make the approximations
Qk≈F , k=1, 2, 3, . . ., sufficiently accurate. The k-th iteration also picks the new
approximation Qk+1, which satisfies Qk+1(xk+dk)=F (xk+dk), and it applies the
formula

xk+1 =

{
xk, F (xk+ dk)≥F (xk)

xk+ dk, F (xk+ dk)<F (xk).
(1.2)

There are at least three important differences between descriptions of algo-
rithms for practical use and descriptions for convergence theory. One is that in
practice the finite precision of computer arithmetic requires careful attention, but
we make the usual assumptions that all computations are exact, and that the
number of iterations can be infinite. Secondly, all questions about the details of a
practical algorithm have to be answered specifically, but generality is welcome in
convergence theory, in order to broaden the range of applicability of the analysis.
Thirdly, algorithms for practical use may include techniques that are successful
in numerical experiments, but that are without conditions that are needed at
present for proofs of convergence. Thus the NEWUOA software (Powell, 2006),
for example, is much more efficient in practice than the methods studied below.

Throughout this paper, every approximation Qk satisfies n+1 interpolation
conditions

Qk(yi
) = F (y

i
), i=0, 1, . . . , n, (1.3)

where y
0

is the point xk, and where all the values F (y
i
), i=0, 1, . . . , n, have been

computed already, either in some preliminary work or on previous iterations. In
the NEWUOA software, however, more than n+1 interpolation conditions are
employed, in order to supply some information about second derivatives of F . It
is crucial to our theory that, after choosing the matrix Gk of expression (1.1),
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the equations (1.3) provide the gradient ∇Qk(xk) = g
k

uniquely. An equivalent
statement of this nondegeneracy condition is that the positions of the interpolation
points in expression (1.3) are such that the (n+1)×(n+1) matrix

Dk =

 y
0
y

1
· · · y

n

1 1 · · · 1

 (1.4)

is nonsingular. Another equivalent statement is that the volume of the convex
hull in Rn of the points y

i
, i= 0, 1, . . . , n, is nonzero, the volume of the convex

hull being | detDk | /n! .
In our analysis, every Gk is a bounded symmetric matrix, and, except in one

reasonable situation that is addressed later, every Gk can be chosen arbitrarily.
Then the vector g

k
of expression (1.1) is defined by the equations (1.3) with

Qk(xk)=F (xk)=F (y
0
). We allow Gk to be nonzero, because often the progress

of iterative algorithms for unconstrained optimization is unacceptably slow if the
curvature of the objective function is ignored. A convenient way of choosing a
nonzero matrixGk+1 automatically is described at the end of this paper. It obtains
some second derivative information by combining the new calculated function
value F (xk +dk) with the available function values F (y

i
), i = 0, 1, . . . , n. The

reader may find it helpful initially, however, to take the view that all the matrices
Gk, k=1, 2, 3, . . ., are zero.

The convergence of algorithms for optimization without derivatives receives
much attention in the works of Conn, Scheinberg and Vicente (1997, 2009a,
2009b). They have developed most of the published theory of derivative-free
methods that take trust region steps, using a linear or quadratic approximation
to F on each iteration. Let ρk>0 be the trust region radius of the k-th iteration,
which means that, when the step dk of the new function value F (xk+dk) is picked,
it has to satisfy ‖dk‖≤ ρk. They address linear approximations Qk ≈F , defined
by interpolation equations of the form (1.3), and they explain the importance of
the conditions

‖y
i
− xk‖ ≤ c1 ρk, i=1, 2, . . . , n, (1.5)

and
| detDk | ≥ c2 ρ

n
k , (1.6)

where c1 and c2 are positive constants and where Dk is the matrix (1.4). These
conditions are also employed by the COBYLA algorithm of Powell (1994).

Inequalities (1.5) and (1.6), with the boundedness of ∇2F and ∇2Qk, imply
that the gradient g

k
=∇Qk(xk) of the function (1.1) has the property

‖∇Qk(xk)−∇F (xk) ‖ ≤ c3 ρk, (1.7)

where c3 is another positive constant. A proof of this assertion is given in Conn et
al (2009b) and at the end of Section 3 below. Further, if ‖∇F (xk)‖ is much larger
than c3 ρk, and if dk is a “trust region” step, then condition (1.7) implies that
the relative error of the approximation F (xk)−F (xk+dk)≈Qk(xk)−Qk(xk+dk)
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is tiny. In other words, most of the reduction in Qk due to the “trust region”
step is inherited by F . In this situation, standard methods for adjusting the trust
region radius provide ρk+1 ≥ ρk. It follows that, when ρk+1 < ρk occurs, then
‖∇F (xk)‖ is also bounded above by a constant multiple of ρk. We define the
set K by including the iteration number k in K if and only if ρk+1 is strictly less
than all the numbers ρj, j = 1, 2, . . . , k. Hence, if the number of elements of K
is infinite, and if the decreasing sequence ρk+1, k ∈ K, tends to zero, then the
sequence ‖∇F (xk)‖, k∈K, tends to zero too. This argument provides the gist of
our convergence theory. Furthermore, it is proved in Section 7 that our algorithms
supply the limit

‖∇F (xk) ‖ → 0 as k →∞, (1.8)

when k runs through all the positive integers. An unusual feature of this result is
that the choice (1.2) of xk+1 is without a “sufficient decrease” condition.

There is a major strategic difference between the method of COBYLA (Powell,
1994) and the methods of Conn et al (1997, 2009a, 2009b) for achieving the bounds
(1.5) and (1.6). In COBYLA, and in the algorithms of our convergence theory, just
one new function value F (xk+dk) is calculated on each iteration, where dk is either
a “trust region” or an “alternative” step, as mentioned in the opening paragraph
of this section. Then the set {y

i
: i= 0, 1, . . . , n} of interpolation points for the

next iteration is formed by picking an integer t from [1, n], and by replacing the old
y

t
by xk+dk, all the other old interpolation points being retained. Thus only the

(t+1)-th column of the matrix (1.4) is altered, except that the first and (t+1)-th
columns of the new Dk are exchanged if F (xk+dk)<F (xk) occurs, which preserves
the property that F (y

0
) is the least calculated function value so far. It is proved

in Sections 4 and 5 that our “alternative” steps give the conditions (1.5) and (1.6),
these steps being designed either to move a point y

t
that is unacceptably far from

xk or to provide a substantial increase in | detDk |. We apply the strategy that,
if dk is an “alternative” step, then usually dk+1 is a “trust region” step, our aim
being to take advantage immediately of any improvement to the approximation
Qk≈F . On the other hand, Conn et al maintain the bounds (1.5) and (1.6) by
employing a ”model-improvement” algorithm, which calculates additional values
of F if necessary. Whenever it is invoked, it guarantees that all of the conditions
(1.5) and (1.6) are satisfied, so it can happen that many new values of the objective
function are computed without a “trust region” step. Our approach may be much
more efficient when only a small change in Qk≈F is sufficient for the success of
the next “trust region” step.

Our set of algorithms is specified in Section 2. Attention is given to the matrix
(1.4) in Section 3, with the analysis that provides inequality (1.7). The achieve-
ment of conditions (1.5) and (1.6) by our algorithms is established in Sections 4
and 5, respectively. We find in Section 6 that, when the number of iterations is
infinite, at least a subsequence of the norms ‖∇F (xk)‖, k = 1, 2, 3, . . ., tends to
zero. The limit (1.8) is proved in Section 7. Numerical experiments that investi-
gate some nonzero choices of the matrices Gk =∇2Qk, k=1, 2, 3, . . ., are reported
and discussed in Section 8.
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2. Specification of the algorithms

The interpolation points y
i
, i=0, 1, . . . , n, and the second derivative matrix G1 =

∇2Q1 of the first quadratic model Q1≈F are chosen before the first iteration. The
only restriction on the initial points is that the volume of their convex hull in Rn

has to be positive, which means that the initial matrix (1.4) is nonsingular. There
are no restrictions on G1, except that all the matrices Gk, k = 1, 2, 3, . . ., have
to be symmetric and uniformly bounded. After calculating the function values
F (y

i
), i=0, 1, . . . , n, the points are reordered if necessary to satisfy the conditions

F (y
0
) ≤ F (y

i
), i=1, 2, . . . , n. (2.1)

We recall that every model has the form (1.1), where xk = y
0
, and where the

gradient g
k
∈Rn is defined by the equations (1.3) after Gk has been fixed.

We let the trust region radii take values that simplify the theory. The initial
radius ρ1 can be any positive number. We set ρ = ρ1, where ρ = ρ1 is a lower
bound on ρk during the early iterations, the condition ρk≥ρ being required until
it seems that a reduction in ρ is necessary for further progress, as described later.
It is possible to prove the given lemmas and theorems when each ρk is any number
from the interval [ρ,Mρ], where M is a constant that satisfies M≥1, but we make
the simplification M=1, although ρk>ρ is needed for efficiency in practice if ρ1 is
unsuitably small. Specifically, the current trust region radius ρ is never increased,
but it is reduced occasionally, the condition ρ→ 0 as k→∞ being important to
the proof of convergence. Another simplification is that every reduction in ρ is
by a factor of 10, but instead each factor could be any number from the interval
[M1,M2], where M1 and M2 are any constants such that 1<M1≤M2. On each
iteration, k is reserved for the iteration number, and κ is reserved for the number
of the first iteration that is provided with the current value of ρ.

The “Cauchy” step, d̂k say, of the model (1.1) is defined to be the multiple of
the gradient g

k
that minimizes Qk(xk+d̂k) subject to ‖d̂k‖≤ρ, with d̂k =0 if g

k
is

zero. Every “trust region” step of our algorithms is allowed to be any vector dk

that has the properties

Qk(xk+ dk) ≤ Qk(xk+ d̂k) and ‖dk‖ ≤ ρ, (2.2)

except that the step must be “exact” if k≥κ+5 and if the number

ηk = max{ |Qj(xj+ dj)− F (xj+ dj)| : j=κ, κ+1, . . . , k−1 } (2.3)

is zero, the meaning of “exact” being that dk has to be the vector d that actually
minimizes Qk(xk +d) subject to ‖d‖≤ ρ. We see that ηk is the greatest error of
the approximation Qj(xj +dj)≈F (xj +dj), as j runs through the numbers of the
iterations that have been completed already with the current value of ρ. In the
case k=κ, however, the set of values of j in expression (2.3) is empty, and then
we define ηk to be zero for use later. Our theory remains valid if the condition
k ≥ κ+5 for an “exact” trust region step is replaced by k ≥ κ+M3, where M3
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is any constant positive integer, but we prefer to be parsimonious in our use of
parameters. Another case of parsimony occurs in the inequality

F (xk)− F (xk+ dk) ≥ 0.1 {Qk(xk)−Qk(xk+ dk)}, (2.4)

the factor 0.1 being replaceable by any positive constant that is less than one. We
say that a “trust region” step is “successful” if and only if it achieves a reduction
in the objective function that is bounded below by condition (2.4).

The choice of every “alternative” step dk is made after the integer t has been
picked from [1, n], where y

t
is still the old interpolation point that is going to be

dropped to make room for xk+dk. Then dk is defined, except for its sign, by max-
imizing the volume of the convex hull of the new set of interpolation points in Rn,
subject to ‖dk‖≤ρ. It follows that the direction of dk from xk =y

0
is orthogonal

to the face of the convex hull that has the vertices y
i
, i∈ {0, 1, . . . , n}\{t}, and

the length of dk is ρ. The sign of this step does not matter, but it is suitable
to prefer the sign that provides the smaller value of Qk(xk +dk). There are two
kinds of “alternative” steps, namely “alpha” and “beta” steps, that differ in their
choice of t; they supply the conditions (1.6) and (1.5), respectively.

Our algorithms require five real parameters to be set in advance, namely α, β,
γ, τα and τβ. The value of α can be any constant from the open interval (0, 1),
while β and γ can be any numbers that satisfy β>1 and γ>0. Both τα and τβ can
be any positive integers. The settings α=0.1, β=5, γ=0.01, τα =1 and τβ =5 are
going to be used in the numerical experiments of Section 8. The decision whether
or not to take an “alpha” or a “beta” step depends on α and τα or on β and τβ,
respectively, while γ is employed in the decision whether or not to take a “trust
region” step, as explained below.

The index t of an “alpha” step is given the value that maximizes the volume
of the convex hull of the new set of interpolation points. For i = 1, 2, . . . , n,
let σi be the distance from y

i
to the hyperplane that contains the points y

j
,

j ∈ {0, 1, . . . , n}\{i}, all of the points being the ones at the beginning of the
current iteration. The replacement of y

t
by xk+dk, where dk is an “alternative”

step, multiplies the volume of the convex hull of the current interpolation points
by ρ/σt. Therefore, when the taking of an “alpha” step is under consideration,
the numbers σi, i = 1, 2, . . . , n, are calculated, and t is set to any integer from
[1, n] that satisfies σt≤σi, i=1, 2, . . . , n, which usually defines t uniquely. There
is no need for an “alpha” step, however, if σt is sufficiently large. Indeed, the step
is actually taken if and only if the condition

σt = min{σi : i=1, 2, . . . , n} < αρ (2.5)

holds, which shows the purpose of the parameter α ∈ (0, 1). The parameter τα
controls the frequency of “alpha” steps. Specifically, if τα “trust region” steps
have been taken with the current ρ since the last attempt at an “alpha” step,
then the procedure of this paragraph must be applied before the next attempt at
a “trust region” step.
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A “beta” step replaces the interpolation point y
t
by xk+dk because ‖y

t
−xk‖ is

substantially larger than ρ, but the choice of t from [1, n] is not always the integer
i that gives the greatest of the distances ‖y

i
−xk‖, i = 1, 2, . . . , n. By omitting

some of these values of i, the conditions for taking a “beta” step become helpful
to our criterion for terminating the iterations with the current value of ρ. Thus
termination is guaranteed if a sufficiently long sequence of consecutive iterations
is without a “trust region” step that achieves the “success” of inequality (2.4).
The technique employs a set B of the integers {1, 2, . . . , n}, all of these integers
being included in B at the beginning of each iteration with a new value of ρ
and whenever a “trust region” step is “successful”, but otherwise the number of
elements of B decreases monotonically. With every replacement of y

t
by xk+dk,

the integer t is deleted from B unless it has been removed already. When a “beta”
step is under consideration, and when B is not empty, the integer t is set to an
element of B that has the property ‖y

t
−xk‖≥‖yi

−xk‖, i∈B. Then y
t
is replaced

by xk+dk, where dk is an “alternative” step, if and only if B is not empty and the
inequality

‖y
t
− xk‖ = max{‖y

i
− xk‖ : i∈B} > βρ (2.6)

holds, which shows the purpose of the parameter β > 1. The purpose of τβ is
that, if τβ “trust region” steps have been taken with the current ρ since the last
attempt at a “beta” step, then the procedure of this paragraph must be applied
before the next attempt at a “trust region” step.

It is possible not only for “alpha” and “beta” steps to be considered and not
taken, but also for “trust region” steps to be generated and then abandoned. We
employ the number (2.3), with ηκ = 0, to estimate the accuracy of the approxi-
mation Qk(xk +dk)≈F (xk +dk), and we assume that a “trust region” step dk is
likely to be useful only if the predicted reduction Qk(xk)−Qk(xk +dk) compares
favourably with ηk. Moreover, the length of a step may suggest that the time has
come for a decrease in ρ. Therefore, when dk is a “trust region” step, the new
function value F (xk+dk) is calculated if and only if the conditions

Qk(xk)−Qk(xk+ dk) > γηk and ‖dk‖ ≥ 1
2
ρ, (2.7)

are satisfied, which shows the purpose of the parameter γ >0. In the case k=κ,
the first condition becomes Qk(xk +dk)<Qk(xk), which brings the disadvantage
that a trust region step may be taken that provides only a tiny reduction in the
model Qk. Our theory would become more difficult, however, if the definition
(2.3) of ηk were augmented by errors |Qj(xj+dj)−F (xj+dj)| with j less than κ.

The choice of the old interpolation point y
t

that is dropped to make room
for xk +dk, after calculating the new function value F (xk +dk), is given above
for “alternative” steps dk. The following technique is applied when dk is a “trust
region” step. Our theory requires the volume of the new convex hull of interpola-
tion points to be bounded below by the volume of the old convex hull multiplied
by a positive constant, which is established later for our choice of t. Specifically,
after F (xk+dk) is calculated for a “trust region” step dk, we let the multipliers θi,
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i=0, 1, . . . , n, satisfy the equations

xk + dk =
n∑

i=0

θi yi
and

n∑
i=0

θi = 1, (2.8)

which defines them uniquely, due to the nonsingularity of the matrix (1.4). Then
t is set to any integer from [1, n] that has the property

|θt| ≥ |θi|, i=1, 2, . . . , n. (2.9)

Not all of the numbers θi, i = 1, 2, . . . , n, are zero, because, if they were, then
the equations (2.8) would imply xk+dk = y

0
, which would give the contradiction

dk =0. We find in Section 3 that the volume of the new convex hull is the volume
of the old convex hull multiplied by |θt|.

Nearly all of the conditions on the new model Qk+1(x)≈F (x), x∈Rn, have
been stated already. Because of the interpolation equations, all the freedom in
Qk+1 is given by the freedom in the new second derivative matrix Gk+1 =∇2Qk+1.
We recall from Section 1, however, that there is one “reasonable situation” when
Gk+1 cannot be chosen arbitrarily, subject to symmetry and uniform boundedness.
This situation is related intimately to the need for “exact” trust region steps,
introduced in the sentence that includes expressions (2.2) and (2.3), and explained
in Section 6. It occurs if both k≥κ+5 and ηk+1 =0 hold, and then it is mandatory
to pick Gk+1 =Gk, except that, as stated already, k ≥ κ+5 can be replaced by
k≥κ+M3, where M3 is any constant positive integer. The value ηk+1 =0 includes
Qk(xk +dk) = F (xk +dk), so in this case Gk+1 =Gk implies Qk+1 ≡Qk. In other
words, we retain the old model when there is no need for a change.

We recall that just one new function value F (xk +dk) is computed on each
iteration, but that F (xk+dk) is not calculated if condition (2.5), (2.6) or at least
one of the inequalities (2.7) fails when trying to take an “alpha”, “beta” or “trust
region” step, respectively. Thus more than one kind of step may be tried on an
iteration. We prefer “trust region” steps to occur frequently. Therefore we impose
the rule that not more than one attempt at an “alpha” step and not more than
one attempt at a “beta” step are allowed between any two consecutive attempts at
a “trust region” step with the same value of ρ. Furthermore, we say that a “trust
region” attempt is “unsuccessful” if F (xk+dk) is not calculated or if the reduction
(2.4) is not achieved, and then we require a “beta” step to be tried before the
next attempt at a “trust region” step. Moreover, the first and second attempts
at steps with each new value of ρ are of “alpha” type and of “trust region” type,
respectively. There are no more restrictions on the steps of the algorithms for
our convergence theory, although some choices are still open. For example, the
algorithm in Section 8 attempts an “alpha” step after every attempt at a “trust
region” step, but this feature is unnecessary in our analysis of convergence.

The iterations with the current value of ρ are terminated if a “trust region” step
is “unsuccessful”, as defined in the previous paragraph, and if the next attempt at
a “beta” step does not alter the interpolation points, either because B is empty or
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because all of the distances ‖y
i
−xk‖, i∈B, are at most βρ. It is proved in Section

6 that termination occurs for every ρ in exact arithmetic, even if the number (2.3)
does not become positive as k increases. We find also that, when the calculations
with the current ρ are complete, then ‖∇F (xk)‖ is bounded above by a constant
multiple of ρ, as stated in Section 1.

3. Some properties of the interpolation matrix (1.4)

Inequality (1.7) is established at the end of this section, under the conditions
stated in Section 1, which include the bounds (1.5) and (1.6), where c1, c2 and c3
are positive constants. As in Section 2, we drop the subscript k from the notation
ρk for the trust region radius, which reminds us that ρ may not be altered during
many consecutive iterations. Our theory employs the Lagrange functions Λj,
j = 0, 1, . . . , n, of the interpolation equations (1.3), where Λj(x), x ∈ Rn, is the
linear polynomial that takes the values

Λj(yi
) = δij, i=0, 1, . . . , n, (3.1)

the right hand side δij being the Kronecker delta. The coefficients of each Λj are
defined uniquely by the equations (3.1), because every matrix (1.4) is nonsingular.
We require the remark that the conditions (1.5) and (1.6) imply the property∑n

j=0 |Λj(x)| ≤ c4 if ‖x−xk‖ ≤ ρ, (3.2)

where c4 is another positive constant. It is going to be derived from the dependence
of the Lagrange functions on the determinant of the matrix (1.4), after establishing
the upper bound

| detDk | ≤
∏n

i=1 ‖yi
− y

0
‖ (3.3)

and the lower bound
| detDk | ≥

∏n
i=1 σi, (3.4)

where we recall from Section 2 that σi is the distance from y
i
to the hyperplane that

contains the points y
j
, j ∈{0, 1, . . . , n}\{i}. This analysis suggests a convenient

way of generating the “alternative” steps dk, specified in the first whole paragraph
after expression (2.4).

The justification of the bounds (3.3) and (3.4) begins with the identity

detDk = det

(
y

0
y

1
− y

0
y

2
− y

0
· · · y

n
− y

0

1 0 0 · · · 0

)

= (−1)n det
(
y

1
− y

0
y

2
− y

0
· · · y

n
− y

0

)
= (−1)n detY, (3.5)

say, the first line being valid because the determinant of the matrix (1.4) remains
the same if the first column is subtracted from the later ones, and the second line
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being elementary. We take this construction further by setting š1 =y
1
−y

0
and by

forming the vectors

ši = (y
i
− y

0
)− ∑i−1

j=1 φij (y
j
− y

0
), i=2, 3, . . . , n, (3.6)

where the coefficients φij, 1≤ j < i≤n, are given the values that minimize ‖ši‖.
Thus ši is orthogonal to all vectors in the (i−1)-dimensional linear subspace of
Rn spanned by y

j
−y

0
, j=1, 2, . . . , i−1, which supplies šT

i šj =0, 1≤j <i≤n. In

other words, the n×n matrix S=(š1 š2 · · · šn) is derived by applying the Gram–
Schmidt orthogonalization procedure to the columns of the matrix Y of equation
(3.5). Because each column of S is the corresponding column of Y minus a linear
combination of earlier columns, we have detS = detY . Moreover, the mutual
orthogonality of the columns of S implies that S TS is the diagonal matrix with
the diagonal elements ‖ši‖2, i=1, 2, . . . , n. Thus equation (3.5) gives the formula

| detDk | = | detY | = | detS | = | det (S TS) |1/2 =
∏n

i=1 ‖ši‖. (3.7)

Now the choice š1 =y
1
−y

0
with the coefficients that minimize ‖ši‖ in expression

(3.6) provide the bounds ‖ši‖≤ |yi
−y

0
‖, i=1, 2, . . . , n. It follows from equation

(3.7) that the assertion (3.3) is true.
Our justification of the condition (3.4) employs the vectors

ŝi = y
i
−
{
y

0
+
∑

j∈{1,2,...,n}\{i} ψij (y
j
− y

0
)
}
, i=1, 2, . . . , n, (3.8)

the coefficients ψij being given the values that minimize ‖ŝi‖. The inequalities
‖ŝi‖ ≤ ‖ši‖, i = 1, 2, . . . , n, must hold, because all the freedom in the choice of
ši is available in the choice of ŝi. Moreover, the vector that occurs within the
braces of expression (3.8) is a general point of the hyperplane that contains y

j
,

j ∈ {0, 1, . . . , n}\{i}, so ‖ŝi‖ is the distance σi that has been defined already.
These remarks imply σi =‖ŝi‖≤‖ši‖, i=1, 2, . . . , n. It follows from equation (3.7)
that the assertion (3.4) is also true.

All the matrices Dk, k= 1, 2, 3, . . ., are required to be nonsingular, D1 being
given this property in the first paragraph of Section 2. Moreover, when the volume
of the convex hull of the points y

i
, i= 0, 1, . . . , n, is nonzero, the nonsingularity

follows not only from the volume being | detDk | /n! but also from inequality (3.4).
Therefore the “alternative” steps preserve the nonsingularity of the interpolation
matrix. The definition (1.4) shows that the elements of the new column of Dk+1

are always the components of xk+dk followed by a one, and we find in expression
(2.8) that, after a “trust region” step, this new column is Dk θ, where θ is the
vector in Rn+1 with the components θi, i=0, 1, . . . , n. Further, the replacement
of the (t+1)-th column of Dk by Dk θ is the same as replacing the whole matrix
Dk by the product DkΘt, where Θt is the (n+1)×(n+1) identity matrix, except
that its (t+1)-th column is θ. Thus we deduce from det (DkΘt) = detDk det Θk

that Dk+1 has the property

| detDk+1 | = |θt| | detDk |, (3.9)
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even in the case F (xk +dk)< F (xk), because exchanging the first and (t+1)-th
columns of Dk+1 alters only the sign of detDk+1. Therefore, because condition
(2.9) provides |θt|>0, the “trust region” steps also preserve the nonsingularity of
the interpolation matrix.

This paragraph is a diversion from our theory, in order to expose three strong
advantages in practice of working with the n×n inverse matrix

Z = Y −1 =
(
y

1
− y

0
y

2
− y

0
· · · y

n
− y

0

)−1
, (3.10)

Y being nonsingular because of the nonsingularity of Dk in equation (3.5). We
update Z when Dk is replaced by Dk+1, which can always be done in of magnitude
n2 computer operations. The first advantage occurs when dk is an “alternative”
step. Then we recall from the first complete paragraph after inequality (2.4)
that dk is a vector of length ρ that is orthogonal to the differences y

i
−y

0
, i ∈

{1, 2, . . . , n}\{t}. We see in equation (3.10) that this orthogonality is achieved
by the t-th row of Z. Therefore the formula dk =±ρZ Tet/‖Z Tet‖ provides the
“alternative” step, where et is the t-th coordinate vector in Rn. Secondly, all the
distances σi, i=1, 2, . . . , n, are required when choosing the index t of an “alpha”
step by applying the first part of expression (2.5). The distance σi from y

i
to the

hyperplane that contains the points y
`
, `∈{0, 1, . . . , n}\{i} is |vT

i (y
i
−y

0
)|, where

vi is a vector of unit length that is orthogonal to the hyperplane, and where y
0

can be replaced by any other point in the hyperplane. As before, the definition
(3.10) shows that vT

i is a multiple of the i-th row of Z. Therefore the required
distances are given conveniently by the formula

σi = | eT
i Z (y

i
− y

0
) | / ‖Z Tei‖ = 1 / ‖Z Tei‖, i=1, 2, . . . , n. (3.11)

Thirdly, the parameters θi, i=1, 2, . . . , n, of expression (2.9) are easy to calculate
when Z is available. Indeed, the equations (2.8) with xk =y

0
show that dk is the

vector
dk =

∑n
i=0 θi (yi

− y
0
) =

∑n
i=1 θi (yi

− y
0
), (3.12)

where dk is now a “trust region” step. It follows from equation (3.10) that the
parameters θi, i=1, 2, . . . , n, are the components of the product Zdk.

Next we address the Lagrange functions Λj, j=0, 1, . . . , n, which are the linear
polynomials from Rn to R that satisfy the conditions (3.1). For each j, we let
∆j(x) be the (n+1)×(n+1) matrix that is formed by replacing y

j
by x in the

definition (1.4) of Dk, where x is a general point of Rn. It follows that det ∆j(x),
x ∈ Rn, is a linear polynomial that satisfies ∆j(yi

) = 0, i ∈ {0, 1, . . . , n}\{j}.
Therefore the Lagrange functions are the ratios

Λj(x) = det ∆j(x) / det ∆j(yj
)

= det ∆j(x) / detDk, x∈Rn, j=0, 1, . . . , n. (3.13)

A fundamental and well known property of these functions is that, if `(x), x∈Rn,
is any constant or linear polynomial, then it can be expressed in the form

`(x) =
∑n

j=0 `(yj
) Λj(x), x∈Rn. (3.14)
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The assertion (3.2) is derived from equation (3.13) and from upper and lower
bounds on |det ∆j(x)| and |detDk|, respectively. By regarding x as a new position
of y

j
, inequality (3.3) gives the condition

| det ∆j(x) | ≤ ‖x− y
0
‖∏i∈{1,2,...,n}\{j} ‖yi

− y
0
‖, j=1, 2, . . . , n. (3.15)

Therefore, if the assumptions (1.5) and (1.6) hold with ρk = ρ, equation (3.13)
implies that the last n Lagrange functions have the property

|Λj(x) | ≤ ‖x− y
0
‖ (c1 ρ)

n−1/ (c2 ρ
n), j=1, 2, . . . , n. (3.16)

It follows that, if ‖x−y
0
‖≤ρ, then

∑n
j=1 |Λj(x)| is at most n cn−1

1 /c2. Moreover,
the choice `(x)=1, x∈Rn, in equation (3.14) provides |Λ0(x)|≤1+

∑n
j=1 |Λj(x)|.

Therefore the assertion (3.2) is true with c4 = 1+2n cn−1
1 /c2. We are now ready

to establish the important inequality (1.7).

Lemma 1 If the interpolation points y
i
, i=0, 1, . . . , n, satisfy the conditions (1.5)

and (1.6), with ρk = ρ and xk = y
0
, where Dk is the matrix (1.4), and where c1

and c2 are positive constants, and if ‖∇2F‖ and ‖∇2Qk‖ are uniformly bounded,
where F (x), x ∈Rn, is a general twice differentiable function, and where Qk(x)
x ∈ Rn, has the form (1.1), the vector g

k
∈ Rn being defined by the equations

(1.3) with Qk(y0
)=F (y

0
), then the property (1.7) is achieved, where c3 is another

positive constant.

Proof The Lagrange functions Λj, j = 0, 1, . . . , n, introduced in the first para-
graph of this section, satisfy trivially the equation∑n

j=0 {F (y
j
)−Qk(yj

)}Λj(x) = 0, x∈Rn, (3.17)

because of the interpolation conditions (1.3). We replace F (y
j
) and Qk(yj

) by

their Taylor series expansions

F (y
j
) = F (y

0
) + (y

j
− y

0
)T ∇F (y

0
) +O(‖y

j
− y

0
‖2)

Qk(yj
) = Qk(y0

) + (y
j
− y

0
)T ∇Qk(y0

) +O(‖y
j
− y

0
‖2)

 , (3.18)

whereO(‖y
j
−y

0
‖2) denotes a term whose modulus is at most a constant multiple of

‖y
j
−y

0
‖2, this property being given by the uniformly bounded second derivatives.

Inequality (1.5) allows these terms to be replaced by O(ρ2). Thus, after cancelling
the value Qk(y0

)=F (y
0
), equations (3.17) and (3.18) provide the bound∣∣∣∑n

j=0 (y
j
− y

0
)T{∇F (y

0
)−∇Qk(y0

)}Λj(x)
∣∣∣ = O(ρ2)

∑n
j=0 |Λj(x)|, (3.19)

x ∈ Rn. Because the function `(x) = (x−y
0
)T{∇F (y

0
)−∇Qk(y0

)}, x ∈ Rn, is
a linear polynomial, the identity (3.14) shows that the left hand side of expres-
sion (3.19) is just |`(x)|. We also recall that already we have deduced inequality
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(3.2) from the conditions (1.5) and (1.6). Therefore equation (3.19) supplies the
condition∣∣∣ (x− y

0
)T{∇F (y

0
)−∇Qk(y0

)}
∣∣∣ = O(ρ2) if ‖x− y

0
‖ ≤ ρ. (3.20)

Although we are regarding x−y
0

as a step in the space of the variables, there is
no need to take this view. Instead, after dismissing the case ∇F (y

0
) =∇Qk(y0

)
when inequality (1.7) is trivial, we let x−y

0
be the vector

x− y
0

= {∇F (y
0
)−∇Qk(y0

)} ρ / ‖∇F (y
0
)−∇Qk(y0

)‖ (3.21)

in equation (3.20). Thus we find that the bound (1.7) is true, which completes
the proof. qed

4. Upper bounds on distances between interpolation points

We are going to show that the algorithms of Section 2 provide the property that
the distances ‖y

i
−xk‖, i=1, 2, . . . , n, are bounded above by a constant multiple

of ρ on all iterations, which is needed in Lemma 1 above. The analysis includes
the remark that, for every run of 3n+3 consecutive iterations without a reduction
in ρ, at least one of these iterations achieves a “successful” trust region step,
where “successful” is defined immediately after expression (2.4). This remark is
employed also in Sections 5 and 6, but no other details of the proof of Lemma
2 below are required later. Therefore we consider the frequency of “successful”
trust region steps before presenting the formal statement of Lemma 2 and its
justification. Thus, if the reader omits the proof of Lemma 2, which occupies
most of this section, then the coherence of the paper is preserved.

Let p and q be any positive integers with q≥ p+4, such that no “successful”
trust region steps and no reductions in ρ occur while the iteration number k
satisfies p≤k≤q. The assertion in the previous paragraph, which we are going to
prove next, is the bound q≤p+3n+1. We recall from the penultimate paragraph
of Section 2 that, as the “trust region” steps are assumed to be “unsuccessful”,
every three consecutive iterations with p≤ k≤ q include at least one attempt at
a “trust region” step and at least one attempt at a “beta” step. Therefore, if the
iteration number k satisfies p+3≤ k≤ q, then the most recent previous attempt
at a “trust region” step was “unsuccessful”. It follows that, throughout these
q−p−2 iterations, every attempt at a “beta” step is accepted, because otherwise
the termination condition at the end of Section 2 would be achieved.

We complete the proof by considering the set B, introduced in the paragraph
that includes expression (2.6). The absence of “successful” trust region steps
and reductions in ρ while the iteration number satisfies p ≤ k ≤ q implies that
|B| decreases monotonically during these iterations, where |B| is the number of
elements of B. Further, the value of |B| is at most n−1 at the beginning of the
(p+3)-th iteration. Now |B| is reduced by one whenever a “beta” step is taken, so
this happens at most n−1 times during the iterations with p+3≤k≤q. Also the
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number of steps dk that are not “beta” steps during these iterations is at most
2n, because we have noted already that every three consecutive iterations include
at least one “beta” step. Thus q−p−2, which is the total number of iterations
with p+3≤k≤q, is at most 3n−1. This conclusion is exactly the required bound
q≤p+3n+1.

Having proved that every run of 3n+3 consecutive iterations without a reduc-
tion in ρ includes at least one “successful” trust region step, we now present the
rest of the argument that establishes condition (1.5).

Lemma 2 The algorithms of Section 2 provide the property that, on every
iteration, the interpolation points satisfy the conditions

‖y
i
− xk‖ = ‖y

i
− y

0
‖ ≤ c1 ρ, i=1, 2, . . . , n, (4.1)

where c1 is a positive constant and ρ is the trust region radius.

Proof Let y
i

and y+
i
, i = 0, 1, . . . , n, be the interpolation points at the begin-

ning and end of the k-th iteration, respectively. We recall from the penultimate
paragraph of Section 1 that only y

t
and y

0
may be changed during the iteration,

y
t

being replaced by xk +dk, and then y
0

being switched with the new y
t

if and
only if the reduction F (xk +dk)<F (xk) is achieved. It follows from y

0
= xk and

‖dk‖≤ρ that this construction gives the bounds

‖y+
t
− y+

0
‖ ≤ ρ and ‖y+

i
− y+

0
‖ ≤ ‖y

i
− y

0
‖+ ρ, i=1, 2, . . . , n. (4.2)

We combine them with the operations on the set B mentioned above. Let i be
any integer from [1, n] that is not an element of B at the beginning of the k-th
iteration. Then y

i
was the new interpolation point x`+d` of the `-th iteration, for

some integer ` < k that is greater than the number of the most recent iteration
that picked B = {1, 2, . . . , n}. This choice of B occurs for each new value of ρ
and immediately after every “successful” trust region step. Therefore the analysis
in the second and third paragraphs of this section supplies ` ≥ k−3n−2. We
increase ` if necessary, in order that y+

i
=y

i
holds on all iterations with numbers

`+1, `+2, . . . , k−1. Further, the value of ‖y
i
−y

0
‖ is no greater than ρ at the

beginning of the (`+1)-th iteration, and each iteration with a number in the
interval [`+1, k−1] increases ‖y

i
−y

0
‖ by at most ρ, due to the bounds (4.2). Thus,

on the k-th iteration for general k, we deduce the property

‖y
i
− y

0
‖ ≤ (k−`) ρ ≤ (3n+2) ρ, i∈{1, 2, . . . , n}\B. (4.3)

At the beginning of the first iteration, we may regard ρ and ‖y
i
−y

0
‖, i =

1, 2, . . . , n, as constants. Therefore condition (4.1) is achieved initially by making
c1 sufficiently large. Moreover, we recall from the last paragraph of Section 2
that the iterations with the current value of ρ are complete only if ‖y

i
−y

0
‖≤βρ

holds for every i∈B, and then inequality (4.3) gives ‖y
i
−y

0
‖≤max [3n+2, β] ρ,
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i= 1, 2, . . . , n. We also recall from the second paragraph of Section 2 that every
reduction in ρ is by a factor of 10. It follows that the conditions

‖y
i
− y

0
‖ ≤ 10 max [3n+2, β] ρ, i=1, 2, . . . , n, (4.4)

are satisfied immediately after each change to ρ, so we require the value of c1 to
be at least 10 max [3n+2, β]. It remains to prove that the lemma is true during
any sequence of iterations that does not alter ρ.

We define Γk to be the sum
∑n

i=1 ‖yi
− y

0
‖ on the k-th iteration for every

k. We are going to prove that Γk is bounded above by a constant multiple of ρ.
Expression (4.2) shows that ‖y+

t
−y+

0
‖ is substantially less than ‖y

t
−y

0
‖ if ‖y

t
−y

0
‖

is sufficiently large, which is usual when a “beta” step is taken. Thus a “beta”
step can cause the new sum Γk+1 =

∑n
i=1 ‖y+

i
−y+

0
‖ to be less than Γk by a large

multiple of ρ. Such reductions can compensate for any increases in the sum on
the other iterations, these increases being bounded by the condition

Γj+1 ≤ Γj + nρ, (4.5)

which is a direct consequence of the inequalities (4.2), where j is the number of
any iteration that is given the current value of ρ.

The purpose of the parameter τβ is to provide enough “beta” steps for our proof
of convergence. It is stated in Section 2 that at most τβ “trust region” steps are
taken without an attempt at a “beta” step, and that, after every “unsuccessful”
attempt at a “trust region” step, a “beta” step is tried before the next attempt at
a “trust region” step. Therefore, between any two consecutive attempts at “beta”
steps, there are at most τβ attempts at “trust region” steps. Also, consecutive
attempts at “alpha” steps are always separated by at least one “trust region”
attempt. Thus the number of “alpha” steps between two consecutive attempts at
“beta” steps is at most τβ+1. It follows that the number of consecutive iterations
without trying a “beta” step is bounded above by 2τβ+1.

Let k be the number of an iteration that attempts a “beta” step, and assume
for the moment that Γk has the lower bound

Γk > n max [ 3n+2, β, (2τβ+2)n ] ρ = c5 ρ, (4.6)

c5 being the constant nmax [3n+2, β, (2τβ +2)n]. We also let ‖y
t
−y

0
‖ be the

greatest of the distances ‖y
i
−y

0
‖, i=1, 2, . . . , n. The definition Γk =

∑n
i=1 ‖yi

−y
0
‖

with the assumption (4.6) give ‖y
t
−y

0
‖>(3n+2)ρ and ‖y

t
−y

0
‖>βρ. We deduce

from condition (4.3) that t is an element of B, so ‖y
t
−y

0
‖ is the greatest of the

distances ‖y
i
−y

0
‖, i∈B. Therefore both parts of expression (2.6) are achieved,

which makes the attempt at a “beta” step successful on the k-th iteration.
This “beta” step provides the property

Γk+1 ≤
{
Γk − ‖yt

− y
0
‖
}

+ nρ

≤ Γk + nρ− n−1 Γk < Γk − (2τβ+1)nρ, (4.7)
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the first line being due to the bounds (4.2), and the second line being due to the
choice of t and to the assumption (4.6). Let ` be the number of the next iteration
that includes an attempt at a “beta” step. We found that ` is at most k+2τβ+2
in the paragraph before last. Thus inequalities (4.7) and (4.5) give the conditions

Γj < Γk, j=k+1, k+2, . . . , `. (4.8)

On the other hand, if k and ` are the numbers of iterations that make consecutive
attempts at “beta” steps, and if the bound (4.6) fails, then inequality (4.5) with
`≤k+2τβ+2 supply the property

Γj ≤ {c5 + (2τβ+2)n} ρ, j=k+1, k+2, . . . , `. (4.9)

We recall from the second paragraph of Section 2 that κ is the number of the
first iteration that employs the current value of ρ, and the remarks in the first two
paragraphs of this proof provide Γκ≤ c6ρ, where c6 is another positive constant.
Hence, corresponding to the conditions (4.9), the inequalities

Γj ≤ {c6 + (2τβ+2)n} ρ, j=κ, κ+1, . . . , κ̂, (4.10)

hold, where κ̂ is the number of the first iteration that attempts a “beta” step with
the current ρ.

Let j be the number of any iteration that is given the current value of ρ.
Because we are seeking an upper bound on Γj that is valid for every j, we may
assume without loss of generality that Γj is the largest of the numbers Γi, i =
κ, κ+1, . . . , j. We employ expression (4.10) in the case j≤ κ̂. Otherwise, we let k
and ` be the numbers of the iterations that make consecutive attempts at “beta”
steps with κ̂ ≤ k < j ≤ `. The value of ρ given to the `-th iteration is always
the current one, because it is stated at the end of Section 2 that a “beta” step
is attempted on the last iteration with the current ρ. Our assumption includes
Γk≤Γj, which rules out the possibility (4.8). It follows that inequality (4.6) fails,
the alternative being that condition (4.9) is satisfied. Therefore, for every j under
consideration, the property∑n

i=1 ‖yi
− y

0
‖ = Γj ≤ {max [c5, c6] + (2τβ+ 2)n } ρ (4.11)

is achieved, which establishes that all the distances ‖y
i
−y

0
‖, i= 1, 2, . . . , n, are

bounded above by a constant multiple of ρ. The proof is complete. qed

5. Lower bounds on determinants of interpolation matrices

Inequality (1.6) is justified in this section, using the bound (3.4) and Lemma 2.
Again the reader may skip the proof without losing the coherence of the paper.

Lemma 3 The algorithms of Section 2 provide the property that, on every
iteration, the determinant of the interpolation matrix (1.4) satisfies the condition

| detDk | ≥ c2 ρ
n, (5.1)
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where c2 is a positive constant and ρ is the trust region radius.

Proof The paragraph that includes expression (2.5) states that at most τα “trust
region” steps may be taken for the current ρ without an attempt at an “alpha”
step. Moreover, we found at the beginning of Section 4 that every run of 3n+3
consecutive iterations with the current ρ includes at least one “successful” trust
region step. Therefore we may let τ̂α be a constant integer such that every run of
τ̂α consecutive iterations with the current ρ includes at least one attempt at an
“alpha” step.

We require positive lower bounds on the ratio | detDk+1 | / | detDk | in the three
cases when the k-th iteration takes an “alpha” or a “beta” or a “trust region”
step. The identity (3.9) is satisfied for a “trust region” step, θt being given by
expressions (2.8) and (2.9), and we recall that the equations (2.8) with y

0
= xk

supply the formula (3.12). Therefore the choice (2.9) with Lemma 2 yield the
property

‖dk‖ = ‖∑n
i=1 θi (yi

− y
0
) ‖ ≤ |θt|

∑n
i=1 ‖yi

− y
0
‖ ≤ n c1 |θt| ρ. (5.2)

Thus the bound

| detDk+1 | = |θt| | detDk | ≥ | detDk | ‖dk‖ / (nc1ρ) ≥ | detDk | / (2nc1) (5.3)

is achieved in the “trust region” case, the last part being due to the second of the
necessary conditions (2.7) for a “trust region” step.

We treat the “alpha” and “beta” cases by employing the remark, given after
the definition (1.4), that | detDk | /n! is the volume of the convex hull of the
points y

i
∈ Rn, i = 0, 1, . . . , n. Indeed, because the k-th iteration replaces y

t

by xk +dk = y
0
+dk, the ratio | detDk+1 | / | detDk | is just σ+

t /σt, where σt and

σ+
t are the distances from y

t
and y

0
+dk, respectively, to the hyperplane that

contains the points y
j
, j ∈ {0, 1, . . . , n}\{t}. In both cases the step dk is the

“alternative” one, defined in the paragraph after expression (2.4), and having the
property σ+

t = ‖dk‖ = ρ. Moreover, in the “alpha” case σt is the least of the
positive numbers σi, i = 1, 2, . . . , n, that satisfy inequality (3.4), which implies
σt ≤ | detDk |1/n, and it is sufficient in the “beta” case that Lemma 2 provides
σt≤‖yt

−y
0
‖≤c1ρ. Thus we deduce the bound

| detDk+1 | = (σ+
t /σt) | detDk | ≥ ρ | detDk | / | detDk |1/n (5.4)

or
| detDk+1 | = (σ+

t /σt) | detDk | ≥ | detDk | / c1, (5.5)

when the k-th iteration takes an “alpha” step or a “beta” step, respectively.
Let k be the number of an iteration that attempts an “alpha” step, and let ` be

the number of the next iteration that also attempts an “alpha” step. We consider
the value of | detDj+1 | when the iteration number j is in the interval [k, `−1]. The
value of ρ is constant during these iterations, because the calculations with each
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new value of ρ begin by attempting an “alpha” step, as stated in the penultimate
paragraph of Section 2. Furthermore, there is a greatest integer k satisfying k≤j
and a least integer ` satisfying `> j such that k and ` are numbers of iterations
that try to take “alpha” steps. Thus j is in a unique interval [k, `−1]. The
definition of τ̂α in the first paragraph of this proof provides `≤k+τ̂α.

Because either a “trust region” or a “beta” step is taken on all but the first of
the iterations under consideration, expressions (5.3) and (5.5) give the bounds

| detDj+1 | ≥ | detDj | / (2nc1), j=k+1, k+2, . . . , `−1. (5.6)

We are also going to establish that the inequalities

| detDj+1 | > | detDk |, j=k, k+1, . . . , `−1, (5.7)

are achieved if | detDk | is sufficiently small. Therefore for the moment we make
the assumption

| detDk | < {min [α, (2nc1)
−τ̂α ] }n ρn = c7 ρ

n, (5.8)

say. By combining the α term of this assumption with the bound (3.4), we find
that

∏n
i=1 σi≤| detDk |<(αρ)n holds on the k-th iteration. Hence, as stated in the

paragraph that includes expression (2.5), this iteration actually takes an “alpha”
step. Thus, because of inequality (5.4), condition (5.8) provides the property

| detDk+1 | ≥ ρ | detDk | / | detDk |1/n > (2nc1)
τ̂α | detDk|. (5.9)

It follows from expression (5.6) with `≤k+τ̂α that the bounds (5.7) are satisfied
as required, the value of 2nc1 being greater than one, because some of the points
y

i
, i = 1, 2, . . . , n, in condition (1.5) are allowed to be outside the current trust

region, so c1>1 holds.
Whenever the k-th iteration takes an “alpha” step, the volume of the convex

hull of the interpolation points is increased, which is the condition | detDk+1 |>
| detDk |, the alternative being that a “trust region” or “beta” step is taken, giving
the weaker bound (5.6) with j=k. Therefore, if k and ` are indices of iterations
that make consecutive attempts at “alpha” steps as before, but if assumption
(5.8) fails, then the conditions (5.6) with `≤k+τ̂α supply the inequalities

| detDj+1 | ≥ | detDk | / (2nc1)
τ̂α ≥ c7 ρ

n/ (2nc1)
τ̂α , k≤j<`. (5.10)

Expressions (5.7) or (5.10) are valid when the assumption (5.8) holds or fails,
respectively. Together they yield the bound

| detDj+1 | ≥ min [ | detDk |, c7 ρn/ (2n c1)
τ̂α ], k≤j<`, (5.11)

for every value of | detDk |.
The property (5.11) is the inequality

| detDj+1 | ≥ min [ | detDκ |, c7 ρn
κ/ (2n c1)

τ̂α ] (5.12)
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in the case k = κ, the notation ρκ being used for ρ because it is useful later,
where κ is still the number of the first iteration that employs the current value
of ρ. The following argument shows that the bound (5.12) remains true when
the j-th iteration employs ρ=ρκ, but k is greater than κ in expression (5.11). If
this assertion is false, we let j be the least integer such that failure occurs, which
implies | detDj+1 |< | detDi+1 |, i=κ, κ+1, . . . , j−1, because the right hand side
of expression (5.12) is independent of j. Thus | detDj+1 | is less than | detDk | in

condition (5.11), so this condition reduces to | detDj+1 | ≥ c7ρ
n
κ/(2nc1)

τ̂α , giving
the contradiction that inequality (5.12) is satisfied as required.

We complete the proof by letting c2 be the constant

c2 = min [ | detD1 | / ρn
1 , c7 / (2nc1)

τ̂α ], (5.13)

and by showing that the bound (5.1) is achieved for every iteration number k. The
choice (5.13) implies c2≤| detD1 | /ρn

1 , which covers the case k=1. Furthermore,
if j is the number of any iteration that picks the new point xj+dj using the initial
trust region radius ρ = ρ1, then inequality (5.12) is satisfied with κ = 1, which
gives the alleged property

| detDj+1 | ≥ min [ | detD1 |, c7 ρn
1/ (2n c1)

τ̂α ] = c2 ρ
n. (5.14)

Therefore it is sufficient to establish that, if c2 is the constant (5.13), and if the
condition (5.1) holds at the beginning of every iteration that is given the current
value of ρ, then this property is also achieved for the next value of ρ. The proof
is completed by induction.

We continue to let κ be the number of an iteration that reduces the trust
region radius, the values of ρ at the end and start of this iteration being ρκ and
10ρκ, respectively. In accordance with the remarks at the end of the previous
paragraph, we assume that condition (5.1) holds on every iteration that is given
the trust region radius 10ρκ, which supplies | detDκ | ≥ c2(10ρκ)

n > c2ρ
n
κ. By

substituting this bound into inequality (5.12) we find that the new matrices Dj+1,
generated by the iterations that employ ρ=ρκ, have the property

| detDj+1 | ≥ min [ c2 ρ
n
κ , c7 ρ

n
κ / (2nc1)

τ̂α ] = c2 ρ
n
κ, (5.15)

the last assertion being valid because the number (5.13) satisfies c2≤c7/(2nc1)τ̂α .
Therefore the lemma is true. qed

6. Weak convergence

The bounded second derivatives of the objective function F and the quadratic
models Qk, which have been assumed already, are important to our analysis of
convergence. We let the constants Φ and Ω be upper bounds on ‖∇2F (x)‖, x∈Rn,
and ‖Gk‖=‖∇2Qk‖, k=1, 2, 3, . . ., respectively. The range x∈Rn can be replaced
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by the union of the trust regions {x : ‖x−xk‖ ≤ ρk}, k = 1, 2, 3, . . . . Another
important assumption is that F is bounded below.

Weak convergence is proved in this section, which means that the algorithms
of Section 2 have the property that the gradient norms ‖∇F (xk)‖, k=1, 2, 3, . . .,
are not bounded away from zero. There are two separate parts of the analysis,
namely showing the termination of the sequence of iterations with each value of
ρ, and establishing the inequality ‖∇F (xk)‖≤ c8ρ on at least one iteration with
the current value of ρ, where c8 is another positive constant. The first part gives
the limit ρk→0 as k→∞, all changes to ρ being reductions by a factor of 10, and
then the bounds ‖∇F (xk)‖ ≤ c8ρk, for suitable values of k, establish that weak
convergence is achieved.

In order to retain the structure of the paper, where proofs of lemmas can be
omitted without loss of coherence, there is only one lemma in this section, given
at the end, which shows termination of the iterations with the current value of ρ.
We address first the bound in the previous paragraph that employs the constant
c8. We pick the value

c8 = (19
9
c3 + 5

4
Ω + 5

9
Φ) max [γ, 1], (6.1)

the constants c3 and γ being taken from expressions (1.7) and (2.7), respectively.
It is proved in the next three paragraphs that this choice supplies the following
property. If the bound

‖∇F (xk)‖ > c8 ρ (6.2)

holds, and if the k-th iteration tries to take a “trust region” step, then all the
conditions (2.7) and (2.4) are achieved, which makes the attempt “successful”.

We assume inequality (6.2) and that dk is a “trust region” step, so it has to
satisfy the conditions (2.2). Expression (1.1) with the definition of the “Cauchy”
step d̂k imply the bound

Qk(xk+ d̂k) ≤ Qk

(
xk− ρ g

k
/ ‖g

k
‖
)
≤ Qk(xk)− ρ ‖g

k
‖+ 1

2
Ω ρ2

≤ Qk(xk)− 1
2
ρ
(
‖g

k
‖+ ‖∇F (xk)‖

)
+ 1

2
(c3+ Ω) ρ2, (6.3)

the last line being due to Lemma 1. It follows from the relations (2.2), (6.2) and
(6.1) that dk has the property

Qk(xk+ dk) ≤ Qk(xk+ d̂k) ≤ Qk(xk)− 1
2
ρ ‖g

k
‖+ 1

2
ρ2 (−c8+ c3+ Ω)

≤ Qk(xk)− 1
2
ρ ‖g

k
‖ − 1

8
Ω ρ2. (6.4)

On the other hand, if d is any vector with ‖d‖< 1
2
ρ, then expression (1.1) with

F (xk)=Qk(xk) show that Qk(xk+d) is strictly greater than the right hand side of
inequality (6.4), which excludes d=dk. Therefore the bound ‖dk‖≥ 1

2
ρ is achieved,

which is the second of the conditions (2.7) that are necessary for the “success” of
an attempt at a “trust region” step.
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Next we require a bound on |Qj(xj+dj)−F (xj+dj)|, where j is the number of
any iteration that employs the current value of ρ. The constants Ω and Φ in the
first paragraph of this section, with ‖dj‖≤ρ, provide the properties

|Qj(xj+ dj)−Qj(xj)− dT
j ∇Qj(xj) | ≤ 1

2
Ω ρ2

|F (xj+ dj)− F (xj)− dT
j ∇F (xj) | ≤ 1

2
Φ ρ2

 . (6.5)

Thus the identity Qj(xj)=F (xj) and Lemma 1 supply the condition

|Qj(xj+ dj)− F (xj+ dj) | ≤ (c3+
1
2
Ω + 1

2
Φ) ρ2, (6.6)

which is used in two ways. Firstly, because of the definition (2.3), the right hand
side γηk of the first part of expression (2.7) is no greater than (c3+

1
2
Ω+ 1

2
Φ)γρ2,

while the left hand side is bounded below by the inequality

Qk(xk)−Qk(xk+ dk) ≥ Qk(xk)−Qk(xk+ d̂k) ≥ ρ ‖g
k
‖ − 1

2
Ω ρ2

≥ ρ ‖∇F (xk)‖ − (c3+
1
2
Ω) ρ2 ≥ (c8− c3− 1

2
Ω) ρ2, (6.7)

which is deduced from the conditions (2.2) on the “trust region” step dk, from the
first line of expression (6.3), from Lemma 1, and from the assumption (6.2). It
follows that the first of the conditions (2.7) for a “successful” trust region step is
achieved as required if we pick a value of c8 that makes (c8−c3− 1

2
Ω) greater than

(c3+
1
2
Ω+ 1

2
Φ)γ. We see that the choice (6.1) is adequate.

Therefore, when ‖∇F (xk)‖>c8ρ holds and when the k-th iteration generates a
“trust region” step dk, then, as explained in the paragraph that includes expression
(2.7), the new function value F (xk+dk) is calculated. It remains to show in this
case that the condition (2.4) for the “success” of the step is satisfied too. Because
F (xk) and Qk(xk) are the same, this condition is equivalent to the requirement

0.9 {Qk(xk)−Qk(xk+ dk)} ≥ Qk(xk)−Qk(xk+ dk)− {F (xk)− F (xk+ dk)}
= F (xk+ dk)−Qk(xk+ dk). (6.8)

The properties (6.7) and (6.6) show that the left and right hand sides of expression
(6.8) are bounded below and above by 0.9(c8−c3− 1

2
Ω)ρ2 and by (c3+

1
2
Ω+ 1

2
Φ)ρ2,

respectively. Therefore, in order to satisfy inequality (2.4), we require c8 to satisfy
the constraint

0.9 (c8− c3− 1
2
Ω) ≥ c3+

1
2
Ω+ 1

2
Φ ⇐⇒ c8 ≥ 19

9
c3+

19
18

Ω + 5
9
Φ, (6.9)

which is also achieved by the choice (6.1). It follows from the conclusions of the
last three paragraphs that, if the k-th iteration tries to take a “trust region” step,
and if the attempt is not “successful”, then ‖∇F (xk)‖ is at most c8ρ.

We recall from the last paragraph of Section 2 that the iterations with the
current value of ρ are terminated only after an unsuccessful attempt at a “trust
region” step. Then the analysis above provides the bound ‖∇F (xk)‖ ≤ c8ρ on

21



at least one iteration with the current ρ. Thus weak convergence is achieved, as
mentioned already, provided ρ tends to zero. In other words, weak convergence
occurs if the sequence of iterations with any constant value of ρ is finite, which is
proved below in Lemma 4, after a remark on the “exact” trust region steps of the
algorithms.

It is stated in Section 2 that, if the number (2.3) is zero for sufficiently large
k, then the “trust region” step dk is required to minimize Qk(xk +dk) subject
to ‖dk‖ ≤ ρ, instead of being any vector that satisfies the conditions (2.2). The
reason for the stronger conditions on dk when ηk is zero is shown by the following
example. Let F be the quadratic function

F (x) = ξ2 + 3 η2 + 0 ζ2, x∈R3, (6.10)

where ξ, η and ζ are the components of x∈R3, the factor 0 making F independent
of ζ, let the initial trust region radius be ρ=2, let the initial quadratic model be
Q1≡F , and let x1 be so close to the origin that every “Cauchy” step d̂k satisfies
‖d̂k‖≤ 1. Because Qk ≡F allows Qk+1≡Qk due to Qk(xk +dk) =F (xk +dk), we
find by induction that Qk≡F can hold for every k≥1. Thus all the numbers (2.3)
are zero. The purpose of the example is to show that the number of iterations
with the initial ρ may be infinite if “trust region” steps do not have to be “exact”.
Indeed, we let every “trust region” step be the sum dk = d̂k+e3, where d̂k is still
the “Cauchy” step, and where e3 is the third coordinate vector in R3. This choice
has the properties Qk(xk +dk) =Qk(xk + d̂k), ‖dk‖ ≤ ρ and ‖dk‖> 1

2
ρ, so all the

inequalities (2.2) and (2.7) are achieved, the value of ηk being zero. Therefore
the new function value F (xk +dk) is calculated. The identity Qk ≡ F implies
that F (xk)−F (xk +dk) is the positive number Qk(xk)−Qk(xk +dk). It follows
from condition (2.4) that every attempt at a “trust region” step is “successful”.
Thus the conditions for terminating the sequence of iterations, given in the last
paragraph of Section 2, are never achieved. The particular choice (6.10) of the
objective function has the property that, if x1 has the components ξ1 =1, η1 =1/3
and ζ1 = 0, and if the “alpha” and “beta” steps make no changes to the centre
of the trust region, then, for every positive integer j, the point xk+1 = xk +dk of
the j-th “trust region” step has the components ξk+1 =2−j, ηk+1 =(−2)−j/3 and
ζk+1 =j.

Lemma 4 Let any algorithm from Section 2 be applied to a function F that,
as usual, is bounded below and has bounded second derivatives. The number of
iterations with each value of ρ is finite.

Proof The difference F (xk)−F (xk+1) tends to zero as k → ∞, because the
sequence F (xk), k = 1, 2, 3, . . ., is monotonically decreasing and bounded below,
but we are going to find in several situations that every “successful” trust region
step dk with the current value of ρ has the property F (xk)−F (xk+dk)≥ ĉ, where
ĉ is a positive number that depends on ρ but not on k. Then it follows from
equation (1.2) that the number of “successful” trust region steps with the current
ρ is finite. Moreover, we recall from the beginning of Section 4 that at least one
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“successful” trust region step occurs in every run of 3n+3 consecutive iterations
with fixed ρ. In those situations, therefore, the sequence of iterations with the
current ρ does terminate as required.

One of the situations occurs when the number (2.3) becomes positive during
the iterations with the current ρ. We let ηκ̌ be the first positive value of ηk, which
is a lower bound on later values of ηk, and we assume that the k-th iteration takes
a “successful” trust region step, where k ≥ κ̌. Because the conditions (2.4) and
(2.7) are necessary for “success”, the bound F (xk)−F (xk+dk)>0.1γηκ̌ is achieved.
The argument of the previous paragraph completes the proof of Lemma 4 in this
case, ĉ being the positive number 0.1γηκ̌.

For the remainder of the proof, we restrict attention to the alternative case
when every ηk is zero for the current ρ. Then, as stated in Section 2, the “trust
region” steps are required to be “exact”, and the algorithms set Qk+1≡Qk, which
is reasonable when F (xk+dk)=Qk(xk+dk) occurs. Hence all iterations with the
current ρ employ Qk≡Qκ, and each change F (xk)−F (xk+dk) is the same as the
predicted change Qk(xk)−Qk(xk+dk). Thus the conditions (2.4) and (2.7) for a
“successful” trust region step reduce to the inequalities

Qk(xk)−Qk(xk+ dk) > 0 and ‖dk‖ ≥ 1
2
ρ. (6.11)

We introduce the notation λ1≤λ2≤ . . .≤λn for the eigenvalues of Gk =∇2Qκ,
arranged in ascending order. If λ1 is negative, then an “exact” trust region step
dk satisfies ‖dk‖=ρ and Qk(xk)−Qk(xk+dk)≥ 1

2
|λ1| ρ2. Indeed, this inequality can

be achieved by letting dk be an eigenvector of ∇2Qκ with length ρ. It follows from
the first paragraph of this proof that the number of iterations with the current ρ is
finite, ĉ being the positive number 1

2
|λ1| ρ2. Another possibility is that λ1 is zero

and Qκ(x), x∈Rn, is not bounded below. Then the gradient g
κ
=∇Qκ(xκ) is not

in the linear space spanned by the eigenvectors of ∇2Qκ with nonzero eigenvalues.
In other words, there is a vector, w say, in the null space of ∇2Qκ that satisfies
‖w‖=1 and wTg

κ
>0. The null space property supplies the condition

wTg
k

= wT
(
g

κ
+∇2Qκ (xk− xκ)

)
= wTg

κ
> 0 (6.12)

for every relevant iteration number k. Furthermore, if dk is an “exact” trust region
step, then Qk(xk)−Qk(xk+dk) is at least wTg

κ
ρ, because Qk is a linear polynomial

along the direction w. Again it follows from the first paragraph of this proof that
Lemma 4 is true, ĉ being the number wTg

κ
ρ.

The only remaining situation is when the model Qk(x) = Qκ(x), x ∈ Rn, is
bounded below, but, as in the example when F is the function (6.10), some of the
eigenvalues of Gk =∇2Qκ may be zero. If, during the iterations with the current
ρ, a point xk occurs such that Qκ(xk) is the least value of Qκ(x), x ∈Rn, then
the first of the conditions (6.11) must fail, and formula (1.2) provides xk+1 =xk.
Thus, by induction, there are no more trust region steps with the current ρ, so
termination occurs within the next 3n+3 iterations. This argument covers the
case when Qκ is a constant function. For the remainder of the proof, we let λ` be
the least positive eigenvalue of ∇2Qκ.
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We consider an attempt at a “trust region” step when the gradient g
k

=
∇Qκ(xk) satisfies ‖g

k
‖ ≥ ρλ`. The direction d = −g

k
/‖g

k
‖ is the multiple of

the Cauchy step that has length one, and the inequality

d
dθ
Qκ(xk+ θ d) = dT∇Qκ(xk+ θ d) = dT (g

k
+ θ∇2Qκ d)

≤ −‖g
k
‖+ θΩ ≤ −ρλ` + θΩ, θ∈R, (6.13)

shows that the quadratic function Qκ(xk +θd), θ ∈ R, decreases monotonically
when θ is in the interval [0, ρλ`/Ω], where Ω is still an upper bound on ‖∇2Qκ‖.
We pick θ=ρλ`/Ω, which provides ‖θd‖≤ρ, due to λ`≤Ω and ‖d‖=1. It follows
that an “exact” trust region step dk would achieve the condition

Qk(xk)−Qk(xk+ dk) ≥ Qk(xk)−Qk(xk+ θ d) ≥ −1
2
θ dTg

k

= 1
2
‖g

k
‖ ρλ` /Ω ≥ 1

2
ρ2λ2

` /Ω. (6.14)

Thus, by analogy with the argument in the first paragraph of this proof in the
case ĉ= 1

2
ρ2λ2

`/Ω, the number of “successful” trust region steps dk with ‖g
k
‖≥ρλ`

is finite.
This conclusion implies that, for all sufficiently large k with the current ρ,

every “successful” trust region step dk requires ‖g
k
‖<ρλ`. Let dk be “successful”

in this setting, which happens during every run of 3n+3 consecutive iterations if
termination does not occur. We investigate vectors d that satisfy the equation

∇Qκ(xk+ d) = g
k
+∇2Qκ d = 0. (6.15)

They exist because g
k

is in the range space of ∇2Qκ when Qκ(x), x ∈ Rn, is
bounded below. Further, we make d unique when ∇2Qκ is singular by requiring
it to be in the range space of ∇2Qκ too. Thus the identity (6.15) provides ‖g

k
‖=

‖∇2Qκ d‖ ≥ λ`‖d‖, so the condition ‖g
k
‖< ρλ` supplies ‖d‖< ρ. It follows from

equation (6.15) that the “successful” step dk can satisfy ∇Qκ(xk +dk) = 0. This
actually happens, because Qκ(xk +dk) is the least value of the convex function
Qκ(x), x ∈ Rn, if and only if ∇Qκ(xk +dk) is zero. Then, because of remarks
in the paragraph between expressions (6.12) and (6.13), no more “trust region”
steps are possible with the current ρ. Therefore termination occurs after at most
n more “alpha” steps and n more “beta” steps, with no further changes to the
position of the trust region centre. The proof is complete. qed

7. Strong convergence

The main conclusion of the previous section is that, if the given conditions on the
objective function hold, and if our algorithms take an infinite number of iterations,
then the limit

lim inf { ‖∇F (xk)‖ : k=1, 2, 3, . . . } = 0 (7.1)
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is achieved. It is proved below that “lim inf” can be replaced by “lim” without
making any more assumptions.

Theorem 1 Let any algorithm from Section 2 be applied to a function F that, as
usual, is bounded below and has bounded second derivatives, and let the number
of iterations be infinite. Then, as k→∞, the gradients ∇F (xk), k = 1, 2, 3, . . .,
converge to the zero vector in Rn.

Proof Let ε be any positive number. It is sufficient to prove that the condition
‖∇F (xk)‖≤10 ε is satisfied for all sufficiently large values of k. We let k(ε) be the
least positive integer such that the trust region radius ρ of the k(ε)-th iteration
has the property

ρ ≤ 5
9
ε / c8, (7.2)

where c8 is the constant (6.1). We recall from Section 2 that the trust region
radius is never increased, and that all reductions are by a factor of 10. It follows
from Lemma 4 that k(ε) is well defined. Further, k≥k(ε) is both necessary and
sufficient for inequality (7.2) to hold on the k-th iteration.

Let the iteration number k satisfy the conditions k≥k(ε) and ‖∇F (xk)‖≥ε.
The property (7.2) gives ‖∇F (xk)‖ ≥ 9

5
c8ρ > c8ρ. Thus, as stated in the third

paragraph of Section 6, if the k-th iteration tries to take a “trust region” step,
then the attempt is “successful”. In this case expression (6.7) is valid and it
supplies the inequality

Qk(xk)−Qk(xk+ dk) ≥ ρ ‖∇F (xk)‖ − (c3+
1
2
Ω) ρ2

≥ ρ ε
{
1− 5

9
(c3+

1
2
Ω) / c8

}
, (7.3)

the last line being derived from ‖∇F (xk)‖≥ε and ρ≤ 5
9
ε/c8. Now definition (6.1)

provides (c3 + 1
2
Ω)≤ 9

19
c8, and the condition (2.4) is necessary for the “success”

of a “trust region” step. Therefore the iteration under consideration achieves a
decrease in the objective function that has the lower bound

F (xk)− F (xk+1) ≥ 0.1 {Qk(xk)−Qk(xk+ dk)} ≥ 7
95
ρ ε. (7.4)

Another advantage of the property (7.2) is that it gives the condition

‖∇F (xk+1)−∇F (xk)‖ ≤ ε, k≥k(ε). (7.5)

Indeed, formula (1.2) with ‖dk‖≤ρ imply ‖xk+1−xk‖≤ρ, so the upper bound Φ
on ‖∇2F‖ with inequality (7.2) yield the relation

‖∇F (xk+1)−∇F (xk)‖ ≤ Φ ρ ≤ 5
9
εΦ / c8. (7.6)

The assertion (7.5) follows from the remark that the definition (6.1) includes
c8≥ 5

9
Φ.

Let ` be any integer that satisfies `≥ k(ε)+2 and ‖∇F (x`)‖> 10ε. We can
assume that ` exists because otherwise there is nothing more to prove. Further,
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let m be the least integer that satisfies m≥ ` and ‖∇F (xm+1)‖< ε, which also
exists, because of the limit (7.1). We consider the iterations whose numbers k are
in the interval `≤k≤m. Because condition (7.5) holds for all integers k in [`,m],
the triangle inequality with ‖∇F (x`)‖>10ε and ‖∇F (xm+1)‖<ε imply that m is
at least `+9.

The following argument shows that, during these iterations, the trust region
radius ρ remains constant. If this statement were false, then, because of the
criterion for reducing ρ, given at the end of Section 2, the j-th iteration would
have to make an “unsuccessful” attempt at a “trust region” step with the current
ρ for some integer j that satisfies max[`−2, κ]≤j≤m, where κ is still the number
of the first iteration that employs the current ρ. Our choices of ` and m, however,
with the bound (7.5), provide j ≥ k(ε) and ‖∇F (xj)‖ ≥ ε in all of these cases,
so the possibility of an “unsuccessful” attempt at a “trust region” step has been
excluded already in the second paragraph of this proof.

We require a lower bound on the number, ν say, of “trust region” steps dk

when k runs through the interval [`,m]. The total number of iterations for these
values of k is m−`+1, and every 3 consecutive iterations include at least one
attempt at a “trust region” step, all of them being “successful”. Thus ν is at least
(m−`−1)/3. The elementary relation

‖∇F (xm+1)−∇F (x`)‖ ≤
∑m

k=` ‖∇F (xk+1)−∇F (xk)‖
≤ (m− `+ 1) Φ ρ (7.7)

gives a lower bound on m− `, the second line being taken from the first part
of expression (7.6). Moreover, because ` and m satisfy ‖∇F (x`)‖ > 10ε and
‖∇F (xm+1)‖<ε, we have set up the inequality

‖∇F (xm+1)−∇F (x`)‖ > 9 ε. (7.8)

These remarks, including the relation (7.7), supply the condition

ν ≥ m−`−1

3
=
(
1− 2

m−`+1

)
m−`+1

3
>
(
1− 2

m−`+1

)
3 ε

Φ ρ
. (7.9)

Already we have noted that m≥ `+9 holds, which gives m−`+1≥10. It follows
that ν is bounded below by the positive number (12 ε)/(5Φρ).

The reduction (7.4) is achieved on each of the ν “trust region” iterations
addressed in the previous paragraph. It follows from the lower bound on ν that
the monotonically decreasing sequence F (xk), k=1, 2, 3 . . ., has the property

F (x`)− F (xm+1) ≥ (84 ε2) / (475Φ). (7.10)

We try to choose several {`,m} pairs recursively, letting the first ` be the least
integer that satisfies `≥k(ε)+2 and ‖∇F (x`)‖>10 ε, and letting each subsequent
` be the least integer that satisfies ‖∇F (x`)‖> 10 ε and that is greater than the
most recent previous value of m. Reductions in ρ are expected in some of the
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intervals between m and the next `. The number of {`,m} pairs generated by this
recursion must be finite, because otherwise inequality (7.10) would contradict the
assumption that F is bounded below. Therefore the condition ‖∇F (xk)‖ ≤ 10 ε
holds for all sufficiently large k, which is the required result. qed

8. Quadratic models and numerical results

Some introductory numerical results are presented in this section that investigate
gains in efficiency when linear models are replaced by quadratic ones in a version
of our algorithms. As stated in Section 2, this version employs the parameter
settings α=0.1, β=5, γ=0.01, τα =1 and τβ =5. These values were chosen before
beginning the calculations reported below, so the parameters have not been tuned.
Further, apart from minor changes of wording, the writing of Sections 1 to 7 was
completed before starting work on the calculations.

The version sets Qk+1 ≡Qk whenever possible, which happens if and only if
F (xk+dk)=Qk(xk+dk) occurs. Otherwise, in the usual case F (xk+dk) 6=Qk(xk+dk),
the equation

Qk+1(x)−Qk(x) = {F (xk+ dk)−Qk(xk+ dk)}Λ(x), x∈Rn, (8.1)

defines a function Λ that is a linear or quadratic polynomial. The interpolation
conditions Qk+1(xk +dk) =F (xk +dk) and Qk+1(yi

) =F (y
i
), i∈{0, 1, . . . , n}\{t},

are satisfied. Therefore, because of the conditions (1.3) on Qk, the function Λ has
the properties

Λ(xk+ dk) = 1 and Λ(y
i
) = 0, i∈{0, 1, . . . , n}\{t}. (8.2)

We take the view that, if F (xk+dk) 6=Qk(xk+dk) holds, then Qk+1 is constructed
in the following way. We pick a linear or quadratic polynomial Λ that obeys the
Lagrange equations (8.2). Then we obtain Qk+1 by applying formula (8.1). The
conditions (8.2) define Λ uniquely when it is a linear polynomial, because of the
nonsingularity of the matrix (1.4) on the (k+1)-th iteration.

Also, when Λ is a linear polynomial, the value Λ(y
t
) is nonzero. Indeed,

if this assertion were false, then the conditions Λ(y
i
) = 0, i = 0, 1, . . . , n, with

the nonsingularity of the matrix (1.4) on the k-th iteration would imply Λ≡ 0,
which would contradict Λ(xk +dk) = 1. It follows from Qk(yt

) = F (y
t
) that, if

F (xk+dk)−Qk(xk+dk) is nonzero in expression (8.1), and if Qk+1 achieves all the
conditions

Qk+1(xk+ dk) = F (xk+ dk) and Qk+1(yi
) = F (y

i
), i=0, 1, . . . , n, (8.3)

then Λ must be quadratic instead of linear. Thus the updating of the model
provides Qk+1 with some second derivative information, and Λ is required to have
the properties

Λ(xk+ dk) = 1 and Λ(y
i
) = 0, i∈{0, 1, . . . , n}. (8.4)
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One way of satisfying them is to let Λ0 be any linear polynomial that takes the
values Λ0(yt

)=0 and Λ0(xk+dk)=1, and to let the quadratic Λ be the product of
Λ0 with the linear function Λ that is defined by the equations (8.2).

In the numerical experiments of this section on quadratic models, we fix the
freedom in Λ by applying the symmetric Broyden method, which works very
well in the NEWUOA software (Powell, 2006). Specifically, Λ is the quadratic
polynomial such that ‖∇2Λ‖F is least subject to the conditions (8.4), where the
subscript F denotes the Frobenius norm of a matrix. Thus the sum of squares
of the elements of the second derivative matrix ∇2Λ is minimized subject to the
linear constraints (8.4). This quadratic programming problem defines Λ uniquely,
and its solution requires only O(n2) computer operations when the matrix (3.10)
is available. We note also that this Λ is independent of the choice of t. Another
remarkable property of the symmetric Broyden method is that, if F happens to
be quadratic, then, because the calculation of Qk+1 is a least squares projection
of Qk into an affine linear set that includes F , the reduction

‖∇2Qk+1−∇2F‖2
F = ‖∇2Qk−∇2F‖2

F − ‖∇2Qk+1−∇2Qk‖2
F (8.5)

is achieved in the error of the approximation ∇2Q ≈∇2F . These errors hardly
ever become small in practice, however, but it is highly useful that, if equation
(8.5) holds on every iteration, then ‖∇2Qk+1−∇2Qk‖ tends to zero as k→∞.

The data for our numerical experiments are an initial vector of variables x0, the
initial and final values of the trust region radius, set to 10−1 and 10−6, respectively,
a subroutine that supplies F (x) for any x in Rn, and a switch that is “off” or
“on”, where “off” causes every modelQk to be a linear polynomial, and where “on”
causes models to be updated by the symmetric Broyden method of the previous
paragraph. The n+1 function values F (x0) and F (x0 +10−1ei), i = 1, 2, . . . , n,
are calculated before the first iteration, where ei is the i-th coordinate direction
in Rn. The model Q1 of the first iteration is always the linear polynomial that
interpolates these values, the initial set {y

i
: i = 0, 1, . . . , n} being composed of

the points x0 and x0+10−1ei, i=1, 2, . . . , n, with y
0

satisfying condition (2.1).
Two of the favourite objective functions of the author are employed, namely

the “trigonometric sum of squares”

F (x) =
2n∑
i=1

{
ci −

n∑
j=1

[Sij sin(xj/σj) + Cij cos(xj/σj) ]
}2
, x∈Rn, (8.6)

and the “chained Rosenbrock” function

F (x) =
n−1∑
j=1

{4 (xj− x2
j+1)

2+ (1−xj+1)
2}, x∈Rn. (8.7)

In expression (8.6), each Sij and Cij is a fixed random integer from [−100, 100],
each σj is a random constant from [1, 10], and each ci is defined by F (x∗)=0,
after choosing x∗ randomly from [−π, π]n. Further, the starting vector x0 in the
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n Switch “off” Switch “on”

20 18667 – 32022 2813 – 6559
40 28700 – 37674 6158 – 8875
80 63271 – 77076 14630 – 16619
160 159351 – 250010 29278 – 36067
320 426316 – 529585 63693 – 69215

Table 1: Range of values of #F for the problem (8.6)

n Switch “off” Switch “on”

20 12345 – 18431 1223 – 2115
40 10465 – 27292 2926 – 3793
80 38592 – 52637 5393 – 7036
160 49710 – 132376 13171 – 16510
320 113636 – 233876 31516 – 44620

Table 2: Range of values of #F for the problem (8.7)

case (8.6) is picked by letting the weighted differences [x0−x∗]j/σj, j=1, 2, . . . , n,
be independent random numbers from [−π/10, π/10], where [x0−x∗]j is the j-th
component of x0−x∗. In the case (8.7), the components of x0 are random numbers
from the logarithmic distribution on [0.5, 2], and all the components of the optimal
vector of variables x∗ are one.

Different choices of the random numbers provide five test problems for each
n in the cases (8.6) and (8.7). The values of #F and the final error ‖xf−x∗‖∞
were recorded whenever an algorithm was applied to a test problem, where #F is
the total number of calls of the subroutine that supplies F (x) and where xf is the
vector of variables returned by the algorithm. Tables 1 to 4 show the ranges of
#F and of ‖xf−x∗‖∞ over the five test problems for both objective functions, as
indicated in the captions of the tables. The left and right halves of the tables were
calculated by an algorithm that employs linear or quadratic models, respectively.
The rows of the tables are distinguished by the number of variables n, which runs
through the set {10×2` : `=1, 2, 3, 4, 5}.

The results in the tables are a triumph for the use of quadratic models instead
of linear ones, the values of #F and ‖xf−x∗‖∞ being reduced usually by more
than a factor of five, although in both cases the number of interpolation points
y

i
, i= 0, 1, . . . , n, and xk +dk is the same on each iteration, and the definitions

of the “alpha” and “beta” steps are also the same. The calculation of a “trust
region” step when the switch is “on” is taken from NEWUOA (Powell, 2006), the
method being a combination of conjugate gradients and two dimensional searches
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n Switch “off” Switch “on”

20 7.9×10−5 – 2.2×10−4 7.6×10−6 – 1.6×10−5

40 6.8×10−5 – 1.2×10−4 9.8×10−6 – 1.3×10−5

80 7.1×10−5 – 1.6×10−4 8.4×10−6 – 2.1×10−5

160 2.2×10−4 – 1.1×10−3 1.1×10−5 – 1.2×10−5

320 1.0×10−3 – 3.8×10−3 8.1×10−6 – 1.4×10−5

Table 3: Range of values of ‖xf− x∗‖∞ for the problem (8.6)

n Switch “off” Switch “on”

20 1.0×10−4 – 1.4×10−4 5.7×10−6 – 1.1×10−5

40 7.2×10−5 – 1.1×10−4 1.9×10−6 – 6.8×10−6

80 1.4×10−4 – 2.6×10−4 9.5×10−7 – 1.0×10−5

160 3.8×10−4 – 9.4×10−4 4.1×10−6 – 1.7×10−5

320 1.3×10−3 – 2.2×10−3 7.2×10−6 – 1.8×10−5

Table 4: Range of values of ‖xf− x∗‖∞ for the problem (8.7)

round the boundary of the trust region, which usually requires only O(n2) com-
puter operations to make Qk(xk+dk) close to its optimal value. The author had
not expected the linear and quadratic models to perform so well when there are
hundreds of variables. Perhaps the test functions (8.6) and (8.7) are too easy.

Another consideration is that much better efficiency may be achieved by avoid-
ing long sequences of changes to the variables that are unnecessarily small. In
many algorithms, ρ is doubled automatically if dk is of length ρ and if it provides
a sufficiently large decrease in the objective function, the condition

F (xk+ dk) ≤ F (xk)− 0.7 [Qk(xk)−Qk(xk+ dk)] (8.8)

being typical. The trust region radius is reduced later when F (x)−F (xk +dk)
compares unfavourably with Qk(xk)−Qk(xk+dk). The author is going to run some
experiments that take the adjustment of ρ from NEWUOA. Then the parameter
ρ of the algorithms of Section 2 becomes a lower bound on the trust region radius,
which is reduced by a factor of ten, as in Section 2, when the iterations with the
current lower bound are complete.

Our work may be important to constrained optimization without derivatives, if
the objective and constraint functions can be calculated outside the feasible region.
One can employ the present number of interpolation points on each iteration,
with the given “alpha” and “beta” steps to maintain inequalities (1.5) and (1.6),
and each new value of F can be included in the updating of quadratic models
by the symmetric Broyden method, as described earlier in this section. This
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approach seems to be straightforward when all the constraints are linear, because
the contributions from the constraints are confined to the calculation of “trust
region” steps, which is a quadratic programming problem. Furthermore, it is
hoped that the small number of interpolation points on each iteration may provide
some useful new algorithms for nonlinear constraints.
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