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Abstract

The paper is a concise survey of some rigorous results on the Fox–Li
operator. This operator may be interpreted as a large truncation of a
Wiener–Hopf operator with an oscillating symbol. Employing theorems
from Wiener–Hopf theory one can therefore derive remarkable properties
of the Fox–Li operator in a fairly comfortable way, but it turns out that
Wiener–Hopf theory is unequal to the task of answering the crucial ques-
tions on the Fox–Li operator.
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1 Masers, lasers and the Fox–Li operator

The story begun fifty years ago. Fox and Li [13] considered the repeated reflection
of an electromagnetic wave of wave length λ between two plane-parallel rectan-
gular mirrors. By a tensor product phenomenon, it suffices to suppose that the
mirrors are infinite strips of height 2a with distance b between them. A distribu-
tion u(x), x ∈ (−a, a), of the field on one mirror goes over into the distribution
given by

(Au)(x) =
eiπ/4

2
√

λ

∫ a

−a

κ(x− y)u(y) dy, x ∈ (−a, a), (1)
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on the other mirror. Here κ is the function

κ(t) =
e−ik

√
t2+b2

(t2 + b2)1/4

(
1 +

b√
t2 + b2

)
(2)

where k = 1/λ denotes the wave number. What Fox and Li were interested in
were the eigenvalues and eigenfunctions of the operator A: if Au = µu, then the
distribution u(x) will after n reflections be transformed into µnu(x). The number
1− |µ|2 is the energy loss of the mode u at one step. This setup is called a maser
in the case of microwaves (λ ≈ 1 cm) and a laser when working with light waves,
in the range λ ≈ 5 · 10−5 cm.

Let us consider the integral operator A given by (1) on L2(−a, a). Being
compact, it has at most countably many eigenvalues with the origin as the only
possible cluster point. Cochran [11] and Hochstadt [16] provided a rigorous ar-
gument which proves that A has at least one eigenvalue. However, there is no
theorem that would imply more or anything else of interest about the operator
A. Well, A has a difference kernel and hence one would expect that for large a
the eigenvalues of A somehow mimic the values of the Fourier transform of κ,

κ̂(ξ) :=

∫ ∞

−∞
κ(t)eiξt dt, ξ ∈ R.

The function κ̂(ξ) is even, exponentially decaying as |ξ| → ∞, and in L1(R). Had
it been in C(R), we would have had a theorem implying that the eigenvalues of
A cluster along the range κ̂(R) as a →∞. However, κ̂(ξ) behaves like√

π

2|ξ − kb|
[1 + i sign(ξ − kb)]

as ξ → kb and hence it is not even in L∞(R). In addition we should mention that
the case a →∞ is not the really interesting case in physics. One is therefore left
with tackling the eigenvalue problem for A numerically, the big problem in this
connection being that the kernel κ is highly oscillating: note that k ≈ 20000 cm−1

for light waves.

Fox and Li found an ingenious way out. The physically relevant case is the
one where a � b. They wrote

exp(−ik
√

t2 + b2) = exp

(
−ikb

(
1 +

t2

2b2
+ O

(
t4

b4

)))
,

and since |t| < a, one may ignore the O term if kba4/b4 � 1, that is, if a4 � λb3.
As λ � b, this assumption automatically implies that a � b, and therefore
(t2+b2)1/4 and b/

√
t2 + b2 may be replaced by

√
b and 1, respectively. In summary,

the operator A may be approximated by the operator

(A1u)(x) =
eiπ/4e−ikb

√
λb

∫ a

−a

e−i(k/2b)(x−y)2u(y) dy, x ∈ (−a, a).
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The change of variables x → ax, y → ay yields the operator

(A2u)(x) =
aeiπ/4e−ikb

√
λb

∫ 1

−1

e−i(ka2/2b)(x−y)2u(y) dy, x ∈ (−1, 1), (3)

and abbreviating ω := ka2/(2b) = a2/(2λb) and
√

i := eiπ/4 we arrive at the
equality A2 =

√
2πe−ikbF∗

ω with F∗
ω and Fω defined on L2(−1, 1) by

(F∗
ωu)(x) =

√
ωi

π

∫ 1

−1

e−iω(x−y)2u(y) dy, (Fωu)(x) =

√
ω

πi

∫ 1

−1

eiω(x−y)2u(y) dy.

Note that F∗
ω is really the adjoint of Fω. The operator Fω is now called the Fox–

Li operator, and the eigenvalues and eigenfunctions of this operator are what one
wants to know.

After the change of variables x → x/
√

ω − 1, y → y/
√

ω − 1 the operator Fω

becomes the operator given by

(Fωu)(x) =
1√
πi

∫ 2
√

ω

0

ei(x−y)2u(y) dy, x ∈ (0, 2
√

ω ), (4)

on L2(0, 2
√

ω ), and since ω = a2/(2λb) may also be assumed to be very large,
Fω is a very large truncation of a Wiener–Hopf operator.

In summary, the Fox–Li operator is a reasonable approximation to the original
physical problem and at the same time a large truncated Wiener–Hopf operator
whenever λ2b2 � a4 � λb3. Fox and Li themselves showed that already the
moderate choice a = 25λ, b = 100λ, leads to acceptable numerical results.

2 Wiener–Hopf operators

An integral operator on L2(0,∞) of the form

(Wu)(x) =

∫ ∞

0

%(x− y)u(y) dy, x ∈ (0,∞),

is called a Wiener–Hopf operator. Such an operator is bounded on L2(0,∞)
if and only if the Fourier transform a := %̂, taken in the distributional sense,
is a function in L∞(R). The function % is uniquely determined by its Fourier
transform a, henceforth we denote the operator W by W (a). The function a is
usually referred to as the symbol of W (a). Note that W (a) is the compression
to L2(0,∞) of the operator which acts on L2(R) by the following rule: take the
Fourier transform, multiply the result by a, and then take the inverse Fourier
transform.

For τ ∈ (0,∞), the truncated Wiener–Hopf operator Wτ (a) is defined on
L2(0, τ) by

(Wτu)(x) =

∫ τ

0

%(x− y)u(y) dy, x ∈ (0, τ). (5)
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The Fourier transform of %(t) = eit2 is %̂(ξ) =
√

πi e−iξ2/4. Thus, letting σ(ξ) =
e−iξ2/4, we see that the Fox–Li operator Fω given by (4) is nothing but W2

√
ω(σ),

and the problem is to find the eigenvalues and eigenfunctions of Wτ (σ) as τ =
2
√

ω →∞.

The spectral theory of Wiener–Hopf operators is well developed, one could
say that Wiener–Hopf operators and their discrete analogues, Toeplitz operators,
are the best understood nontrivial classes of non-selfadjoint operators. We refer
to [7] for a presentation of the matter. However, as already said, no result of this
theory is immediately applicable to provide any deeper insight into the spectrum
sp Wτ (σ) of Wτ (σ). The best that is available to date is the following result.

Theorem 1 We have sp W (σ) = D and sp Wτ (σ) ⊂ D for every τ > 0, where D
is the closed unit disc in the complex plane.

This was established in [5]. The nontrivial part of the theorem is that sp W (σ)
is all of D. In [5] it is actually shown that sp Wτ (σ) is contained in the open unit
disc D and that each point λ ∈ D belongs to the essential spectrum of W (σ),
which means that W (σ)− λI is not even invertible modulo compact operators.

3 Eigenvalues

The physicists’s intuition, like in Vainshtein’s paper [23], and numerical compu-
tations, made by Cochran and Hinds [12] for probably the first time, indicate
that the eigenvalues of Wτ (σ) lie along a spiral commencing at 1 and rotating
clockwise to the origin: cf. Fig.1. To date, no person alive has been able to prove
this, even less so to derive rigourously the shape of the spiral. The following
result gives an idea of what one is already proud of.

Theorem 2 The operator Wτ (σ) is a trace class operator with at least one eigen-
value for every τ > 0, and with the possible exception of at most countably many
τ ∈ (0,∞), the operator Wτ (σ) has a countable number of eigenvalues.

This was proved in [11], [16], [19]. The approach of [11] and [16] is based
on proving that det(I − zWτ (σ)) is a nonconstant entire function of z. This
function has infinitely many discrete zeros of finite multiplicity unless it reduces
to a polynomial, which is shown to happen for at most countably many values of
τ . Combining Theorem 1 with the observation that Wτ (a) is of trace class, one
can say even a little more. Namely, let {µn(Wτ (σ))}N

n=1 denote the eigenvalues
of Wτ (σ) counted with their algebraic multiplicities. Then

N∑
n=1

µn(Wτ (σ)) = tr Wτ (σ) =
1√
πi

∫ τ

0

ei·02

dx =
τ√
πi

,
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Figure 1: The eigenvalues of Wτ (σ), with τ = 2
√

ω = 25, 50 and σ given by (4).

and since |µn(Wτ (σ))| ≤ 1 for all n, it follows that

τ√
π

=

∣∣∣∣∣
N∑

n=1

µn(Wτ (σ))

∣∣∣∣∣ ≤
N∑

n=1

|µn(Wτ (σ))| ≤ N,

which reveals that Wτ (σ) has at least τ/
√

π eigenvalues.

Vainshtein [23] even raised a conjecture on the shape of the spiral1. It says
that its parametric representation is µ = exp(−α(τ)xν − iβ(τ)xν), x ∈ (0,∞),
with

ν = 2, α(τ) ≈ ζ(1/2)π3/2

8
√

2 τ 3
, β(τ) ≈ π2

4τ 2
, (6)

where ζ(1/2) is Riemann’s zeta function at the point 1/2, and that x = n gives
approximately µn. We will return to this conjecture below.

Theorems of the type of Szegő’s limit theorem [14] give asymptotic expansions
for the trace tr ϕ(Wτ (a)) =

∑
n ϕ(µn(Wτ (a))), where ϕ : C → C belongs to a

certain class of so-called test functions. The following first-order result for the
case ϕ(z) = zj was proved in [5].

Theorem 3 For each fixed natural number j,

tr W j
τ (σ) =

τ√
πij

+ o(τ) as τ →∞.

1According to [12], this conjecture comes from “using a distinctly physical approach based
on wave-guide theory”, but we admit that we have not been able to follow the argument of [23].
Moreover, numerical computations do not support the conjecture.
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The operator W j
τ (σ) is the integral operator on L2(0, τ) with the kernel

mj(x, y) :=
1

(πi)j/2

∫ τ

0

. . .

∫ τ

0

exp

(
i

j∑
n=1

(xn − xn+1)
2

)
dx2 . . . dxj,

where x1 = x and xj+1 = y. The trace of W j
τ (σ) is

∫ τ

0
mj(x, x) dx, and in [5] we

proved that the leading term of the asymptotics of this multivariate oscillatory
integral is τ/

√
πij. We have not been able to determine the second term of the

asymptotic expansion for general j.

Results like Theorem 3 can be used to test conjectures on the asymptotic
eigenvalue distribution. Suppose we are given a family {bτ}τ>0 of functions bτ :
(0,∞) → C and we want to know whether it might be true that the eigenvalues
of Wτ (σ) are asymptotically distributed like samples of bτ (x) at x = n. We have

tr W j
τ (σ) =

∑
n

µj
n(Wτ (σ)),

∫ ∞

0

bj
τ (x) dx ≈

∑
n

bj
τ (n),

and this is the motivation for saying that the eigenvalues of Wτ (σ) are asymp-
totically distributed as the values of bτ (in a very weak sense) if, for each natural
number j ≥ 1,

tr W j
τ (σ) =

∫ ∞

0

bj
τ (x) dx + o(τ) as τ →∞.

Using Theorem 3 we showed the following theorem in [5], which justifies at least
a few pieces of Vainshtein’s conjecture.

Theorem 4 Let bτ (x) = exp(−α(τ)xν−iβ(τ)xν) with positive real numbers α(τ),
β(τ), ν. Then the eigenvalues of Wτ (σ) are asymptotically distributed as the
values of bτ if and only if

ν = 2, α(τ) = o

(
1

τ 2

)
, β(τ) =

π2

4τ 2
+ o

(
1

τ 2

)
.

4 Singular values

The singular values of Wτ (σ) are the positive square roots of the eigenvalues of
Wτ (σ)W ∗

τ (σ). Since W ∗
τ (σ) = Wτ (σ), we have

(Wτ (σ)W ∗
τ (σ)u)(x) =

1

π

∫ τ

0

(∫ τ

0

ei(x−t)2e−i(t−y)2 dt

)
u(y) dy, x ∈ (0, τ),

and hence Wτ (σ)W ∗
τ (σ) = V ∗C1V where V is the unitary operator given by

(V u)(x) = eix(τ−x)u(x) and C1 is defined by

(C1u)(x) =
1

π

∫ τ

0

sin(τ(x− y))

x− y
u(y) dy, x ∈ (0, τ).
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The change of variables x → x/τ , y → y/τ shows that C1 may be replaced by

(C2u)(x) =
1

π

∫ τ2

0

sin(x− y)

x− y
u(y) dy, x ∈ (0, τ 2).

The Fourier transform of sin t/(πt) is χ(−1,1), the characteristic function of the
interval (−1, 1). Consequently, the singular values of Wτ (σ) are the square roots of
the eigenvalues of the operator C2 = Wτ2(χ(−1,1)). This observation was probably
first made in [4].

We are thus led to Wiener–Hopf with real-valued symbols. So, let us suppose
that a ∈ L∞(R) is real-valued. Then the operators W (a) and Wτ (a) are self-
adjoint. Hartman and Wintner [15] showed that sp W (a) equals the convex hull
of the essential range of a. In [8] it was proved that sp Wτ (a) ⊂ sp W (a) for all
τ > 0 and that sp Wτ (a) converges to sp W (a) in the Hausdorff metric. Using
these general results and taking into account that ‖Wτ (a)‖ < ‖a‖∞ unless a is a
constant, we arrive at the following.

Theorem 5 The set of the singular values of Wτ (σ) is contained in [0, 1) for
every τ > 0 and converges to the segment [0, 1] in the Hausdorff metric as τ →∞.

Szegő’s limit theorem gives the first term of the asymptotics of the trace
of ϕ(Wτ (a)) for arbitrary real-valued a ∈ L∞(R) and the first two terms of the
asymptotics if, in addition, a is smooth enough; see [7], [14]. Hence, for a = χ(−1,1)

we cannot derive a second order result in this way. Fortunately, the case where
a = γχ(α,β) was studied in detail by Landau and Widom [18]2. They proved that
if α < β and γ > 0 are real numbers, then

tr ϕ(Wτ (γχ(α,β))) = τ
ϕ(γ)(β − α)

2π
+

log τ

π2

∫ γ

0

γϕ(x)− xϕ(γ)

x(γ − x)
dx + O(1)

for every ϕ ∈ C∞(R) satisfying ϕ(0) = 0. This was conjectured by Slepian [20]. A
second proof of this result is in [24]. In [4] we applied this formula to Wτ2(χ(−1,1))
in order to get the following result on the finer distribution of the singular values
of Wτ (σ).

Theorem 6 Denote by N(x, y) the number of singular values of Wτ (σ), counted
with their multiplicities, which lie in the interval (

√
x,
√

y). Then for each δ in
(0, 1/2),

N(1− δ, 1) =
τ 2

π
− 2 log τ

π2
log

1− δ

δ
+ o(log τ),

N(δ, 1− δ) =
4 log τ

π2
log

1− δ

δ
+ o(log τ),

N(0, δ) = ∞.

2The reader might enjoy knowing the following, which is cited from [1]: “Harold Widom
grew up in Brooklyn, New York. He went to Stuyvesant High School where he was captain
of the math team. Coincidentally, the captain of the rival team at the Bronx High School of
Science was Henry Landau ...”
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Thus, although, by Theorem 5, the singular values fill [0, 1] densely as τ goes
to ∞, the overwhelming majority of them are concentrated extremely close to
the endpoints of the segment.

5 Complex wave numbers

Let us assume that the wave number k lies in the lower complex half-plane,
k = k0−iε with k0 = 1/λ and ε > 0. This assumption may not be of great interest
in maser and laser theory, but it might be satisfied in problems of acoustics and,
more importantly, it makes the problem nicely accessible to Wiener–Hopf theory.

Replacing k by k0− iε in (2) and proceeding as in Section 1, the operator (3)
now becomes

(A2,εu)(x) =
aeiπ/4e−ikb

√
λb

∫ 1

−1

e−i(k0a2/2b)(x−y)2e−(εa2/2b)(x−y)2u(y) dy, (7)

and letting ω = k0a
2/(2b) and τ = 2

√
ω, we get the operator

(Fω,εu)(x) =
1√
πi

∫ τ

0

ei(x−y)2e−(ε/k0)(x−y)2u(y) dy, x ∈ (0, τ) (8)

in place of the operator (4). Here τ is a large number. The spectrum of (7)
is what we are looking for, and this spectrum is

√
2π e−ik0be−εb times the com-

plex conjugates of the points in the spectrum of Fω,ε. The Fourier transform of
(1/
√

πi)eit2e−(ε/k0)t2 is

σε/k0(ξ) =
1√

1 + iε/k0

exp

(
− (ε/k0)ξ

2

4(1 + ε2/k2
0)

)
exp

(
−i

ξ2

4(1 + ε2/k2
0)

)
and hence we may write Fω,ε = Wτ (σε/k0). Obviously, for ε = 0, the symbol
σε/k0 coincides with σ. The function σ is in L∞(R) but not in L1(R), neither

it is continuous on the one-point compactification Ṙ of R, which causes a great
deal of problems in employing Wiener–Hopf theory. In contrast to this, σε/k0 is

in L1(R) ∩ C(Ṙ), which facilitates matters significantly.

The kernels of the operators (4) and (8) are complex-symmetric, which implies
that the symbol, i.e. the Fourier transform of the kernel function, is even. Note
that if a is even, a(ξ) = a(−ξ) for ξ ∈ R, then we may think of the essential range
R(a) of a as a curve which is traced out by a(ξ) from a(∞) to a(0) as ξ moves from
−∞ to 0 and then backwards from a(0) to a(∞) as ξ moves further from 0 to +∞.
Complex-symmetric Toeplitz matrices and Wiener–Hopf operators with complex-
symmetric kernels have certain peculiarities. The following was established in [4]
and is the continuous analogue of results by Tilli [21] and Widom [25]. Namely,
let a ∈ L1(R)∩C(Ṙ), suppose a is even, and assume also that the essential range
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R(a) of a does not contain interior points. The last assumption is always satisfied
if a has some minimal smoothness. Then the spectrum of Wτ (a) converges toR(a)
in the Hausdorff metric. Secondly, if ϕ : C → C is any continuous function such
that ϕ(z)/z converges to a finite limit as z → 0, then∑

n

ϕ(µn(Wτ (a))) =
τ

2π

∫ ∞

−∞
ϕ(a(ξ)) dξ + o(τ).

Applying these two general results to a = σε/k0 , we obtain the following two
theorems from [4].

Theorem 7 As τ → ∞, the spectrum of Wτ (σε/k0) converges in the Hausdorff
metric to the logarithmic spiral

R(σε/k0) =

{
z ∈ C : z =

1√
1 + iε/k0

e−(i+ε/k0)θ for some θ ∈ [0,∞]

}
.

Theorem 8 The number of eigenvalues of Wτ (σε/k0) which lie close to the piece
of the logarithmic spiral of the previous theorem given by θ ∈ (0, θ0) is

2τ

π

√
(1 + ε2/k2)θ0 + o(τ).

Note that we are not able to prove something like these two theorems for
Wτ (σ) because σ is neither in L1(R) nor in C(Ṙ).

6 Pseudospectrum

Fix ε > 0. The ε-pseudospectrum spεB of a bounded linear operator B on some
complex Hilbert space is the set of all µ ∈ C for which ‖(B − µI)−1‖ ≥ 1/ε. The
spectrum of B is considered to be a subset of spεB. If B is a normal operator,
then spεB is simply the closed ε-neigbourhood of sp B. However, for non-normal
operators this is in general no longer the case, and for such operators the pseu-
dospectrum is in many instances of even greater use than the spectrum [22].
The notion of the psedospectrum was independently invented several times [22],
and one of these inventions was made by Landau [17] when studying the Fox–Li
operator. We first state a simple result from [5].

Theorem 9 Given ε > 0, there is a τ0 > 0 such that spεWτ (σ) ⊃ D for τ > τ0.

This theorem may be restated as follows. Given ε > 0 and µ ∈ D, there is a
τ0 > 0 such that for every τ > τ0 we can find uτ ∈ L2(0, τ) satisfying ‖uτ‖ = 1
and ‖Wτ (σ)uτ − µuτ‖ ≤ ε. The following theorem is Landau’s [17]. He takes µ
from the unit circle T and is able to say much more in this case.
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Theorem 10 Given ε > 0, µ ∈ T, and C > 0, there exists a τ0 > 0 such that
for every τ > τ0 there are at least Cτ functions uτ,n which form an orthonormal
system in L2(0, τ) and satisfy ‖Wτ (σ)uτ,n − µuτ,n‖ ≤ ε. Moreover, if µ1 and µ2

are distinct points on T, then these functions corresponding to µ1 and µ2 can be
chosen to be mutually orthogonal.

Landau [17] writes that this theorem “shows that for large Fresnel number
ω the laser cannot be expected to settle to a single mode.” Physical features of
the pseudospectrum of the Fox–Li operator are also discussed in the work by Sir
Michael Berry and his co-workers; see, e.g., [2], [3].

7 Challenges

So what are the big open problems for the Fox–Li operator we are, all progress
notwithstanding, left with? Here are a few of them. (a) Determine the absolute
value of the outmost or better of the outmost and next eigenvalues. (b) Prove
that the eigenvalues cluster, in some sense, along a spiral. (c) Prove that this
spiral migrates towards the unit circle as τ → ∞. (d) Determine the shape of
the spiral. Is it as conjectured by Vainshtein (6), is it related to theta-three as
tabled in [4], or is it something completely different? (e) Describe the density
of the eigenvalue distribution along the spiral. (f) Determine the eigenfunctions:
numerical indications in [10] are that the eigenfunctions corresponding to leading
eigenvalues are trigonometric functions superimposed with low-amplitude rapid
oscillation, while for small eigenvalues the eigenfunctions are wave packets.

These questions are of course also of interest for the operator with the original
kernel function (2).

We should emphasize that, with the exception of problems (d) and (e), these
questions have all been solved numerically. Approaching the Fox–Li operator
numerically is not a triviality, since this involves working with highly oscillatory
integrals. That Cochran and Hinds [12] were able to show us the spirals as early as
1974 must in this light be appreciated as an admirable feat. Since then numerical
methods for highly oscillatory integral equations have been elaborated by many
mathematicians, and by now the apparatus is well developed to overcome nearly
all subtleties caused by high frequencies. We refer to the recent papers [9], [10]
and the references therein for more on the computational mathematics for the
Fox–Li and related operators.

Finally, we repeat that two peculiarities of the Fox–Li operator are that its
kernel is complex-symmetric and that it depends only on the difference of the
arguments. To gain deeper insight into the Fox–Li operator it seems therefore
reasonable first to attain greater command of simpler operators with such kernels.
In [6], we accordingly considered Wiener–Hopf operators with even and rational
symbols. These are given by (5) where %(t) is a finite sum of terms of the form
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pn(|t|)e−γn|t| with polynomials pn and complex numbers γn such that Re γn > 0.
The symbol a = %̂ is an even and rational function in L1(R) ∩ C(Ṙ). Hence,
by what was outlined in Section 5, sp Wτ (a) converges to the curve R(a) formed
by the range of a in the Hausdorff metric. However, in the case at hand we
can say more. There are explicit formulae for the Fredholm determinants of
Wiener–Hopf operators with rational symbols. Given a and under additional
technical assumptions, we used these formulae to construct a certain function
b : (0,∞) → C and to prove that there is a numbering {µn}∞n=1 of the eigenvalues
of Wτ (a) such that, with ξn := nπ/τ ,

µn = a(ξn) +
1

2τ
a′(ξn) arg b(ξn)− i

2τ
a′(ξn) log |b(ξn)|+ O(1/τ 2).

Note that the tangent to R(a) through a(ξn) has the parametric representation
µ = a(ξn) + a′(ξn)t, t ∈ R, and increasing values of the parameter t provide the
tangent with an orientation. The point a(ξn) + (1/2τ)a′(ξn) arg b(ξn) lies on this
tangent. It follows that, up to the O(1/τ 2) term, the eigenvalue µn is located
on the right of the tangent if |b(ξn)| > 1, while it is on the left of the tangent if
|b(ξn)| < 1. Furthermore, the eigenfunctions for an eigenvalue µn are shown to
be linear combinations of eizjx where zj ∈ C ranges over the finite set of solutions
of the algebraic equation a(z) = µn.
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Apartado Postal 14-740, 07000 México, D.F., México
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