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Abstract

Classical orthogonal polynomials on the real line share the feature that they
all obey a linear second-order differential equation. This is not the case with
regard to orthogonal polynomials on the unit circle: such polynomials or for
that matter their generating functions, are not known to satisfy a differential
equation.

In this paper we study families of polynomials orthogonal on the unit cir-
cle, generalizing the familiar Geronimus and Rogers–Szegő polynomials, whose
generating function obeys a second-order linear functional-differential equation,
a special case of a so-called pantograph equation. This leads to a raft of new
results, expressing such polynomials in terms of q-hypergeometric functions.

1 Introduction

Let {φn}n∈Z+ be the set of monic polynomials orthogonal on the unit circle with
respect to some measure,∫

T
φn(z)φ̄m(z) dµ(z) = 0, m 6= n.

We let an = φn(0), n ∈ Z+ – it is elementary that |an| < 1, n ∈ N. It is known that
the φns obey the three-term recurrence relation

φn(z) = zφn−1(z) + anφ
∗
n−1(z), n ∈ N,
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where p∗(z) = znp̄(z−1), p ∈ Pn, as well as the difference equation

(an+1 + anz)φn(z) = anφn+1(z) + (1− |an|2)an+1zφn−1(z), n ∈ N, (1.1)

with the initial conditions

φ0(z) ≡ 1, φ1(z) = z + a1

(Simon 2005). Note therefore that any sequence {an}n∈Z+
of this kind uniquely defines

a set of OPUC (orthogonal polynomials on the unit circle) and it is known as sequence
of Schur parameters. Let α, c ∈ C, where 0 < |c|, |α| < 1. We are interested in the
orthogonal polynomials corresponding to the sequence

an =

{
1, n = 0,

cαn, n ∈ N.
(1.2)

In that case (1.1) becomes

(α+ z)φn(z) = φn+1(z) + α(1− |c|2|α|2n)zφn−1(z). (1.3)

Note that α = 1 in (1.2) corresponds to Geronimus polynomials, while c = 1 and
α = −q1/2, |q| < 1, to Rogers–Szegő polynomials. Moreover, α = c = 0 correspond
to the standard Lebesgue measure on the unit circle, with φn(z) = zn (in the context
of this paper, for brevity, we call these “Lebesgue polynomials”). Thus, our concern
here is to investigate a far-reaching generalization of these three important families of
orthogonal polynomials on the unit circle: pictorially, this can be represented in the
scheme

α = 1
(Geronimus)

c = 1, α = −q1/2
(Rogers–Szegő)

c = α = 0
(Lebesgue)

an = cαn,

n ∈ N

Note that our approach to OPUC in this paper is purely formal: the polynomials
are defined, using the recurrence (1.1), directly from a set of Schur parameters. Indeed,
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the measure dµ = dµc,α that renders {φn}n∈Z+
is at present unknown, except for few

special cases, and is subject to current investigation.
In Section 2 we demonstrate that a generating function of the OPUC with respect

to the Schur parameters (1.2) obeys a functional-differential equation of a pantograph
type. Such equations are known to possess an expansion in Dirichlet series (Iser-
les 1993) and this line of reasoning is pursued in Section 3 and leads to an explicit
expression for the underlying OPUC. The main currency of this representation is a
q-hypergeometric function which we explore in Section 4. A consequence of our anal-
ysis, presented in Section 5, is a representation of our OPUC in terms of q-Bessel
functions: such representations in terms of hypergeometric or q-hypergeometric func-
tions are ubiquitous in the theory of orthogonal polynomials on the real line but novel
in the context of orthogonal polynomials on the unit circle. Finally, in Section 6 we
explore a limiting behaviour of our representation once the parameters α and c are
allowed to approach values associated with Lebesgue, Rogers–Szegő and Geronimus
polynomials.

2 Orthogonal polynomials on the unit circle and the
pantograph equation

We consider the generating function

Φ(t, z) =

∞∑
n=0

φn(z)

n!
tn.

We will often suppress the dependence of Φ upon z, in which case we write Φ = Φ(t).
Multiplying (1.3) by tn/n! and summing up for n = 1, 2, . . . results in

(α+ z)

∞∑
n=1

φn
n!
tn =

∞∑
n=1

φn+1

n!
tn + αz

∞∑
n=1

φn−1
n!

tn − α|c|2z
∞∑
n=1

φn−1
n!
|α|2ntn.

However,

∞∑
n=1

φn
n!
tn = Φ(t)− Φ(0),

∞∑
n=1

φn+1

n!
tn =

∂

∂t

∞∑
n=2

φn
n!
tn =

∂

∂t
[Φ(t)− Φ(0)− Φ′(0)t] = Φ′(t)− Φ′(0),

∞∑
n=1

φn−1
n!

tn =

∞∑
n=0

φn
(n+ 1)!

tn+1 =

∫ t

0

Φ(x) dx,

∞∑
n=1

φn−1
n!
|α|2ntn =

∞∑
n=0

φn
(n+ 1)!

(|α|2t)n+1 =

∫ |α|2t
0

Φ(x) dx.

Putting all this together, we have

(α+ z)[Φ(t)− Φ(0)] = Φ′(t)− Φ′(0) + αz

∫ t

0

Φ(x) dx− αz|c|2
∫ |α|2t
0

Φ(x) dx.
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Finally, we differentiate this expression with respect to t, whence

(α+ z)Φ′(t) = Φ′′(t) + αzΦ(t)− α|α|2|c|2zΦ(|α|2t).

We rewrite this in the form

Φ′′(t) = (α+ z)Φ′(t)− αzΦ(t) + ατzΦ(qt), (2.1)

where q = |α|2, τ = q|c|2 are both in (0, 1), with the initial conditions Φ(0) = φ0(z) ≡
1, Φ′(0) = φ1(z) = z + cα.

The equation (2.1) is a special instance of the pantograph equation

y′(t) = Ay(t) +By(qt), t ≥ 0, y(0) = y0 ∈ Cd, (2.2)

where A and B are d× d complex matrices and q ∈ (0, 1) (Iserles 1993). It is known
that (2.2) has a unique solution for all t ∈ [0,∞) and that, as long as the eigenvalues
of A reside in the open left complex half-plane and the eigenvalues of A−1B in the
open complex unit disc, it is true that limt→∞ y(t) = 0. Moreover, as long as A is
nonsingular and the spectral radius of A−1B is less than one, the solution of (2.2) can
be expanded into Dirichlet series (Iserles 1993). This has profound implications to our
study of the generating function Φ.

Just to verify that we are on the right track, we note that for z = 0 the pantograph
reduces to the linear differential equation

Φ′′(t) = αΦ′(t), t ≥ 0, Φ(0) = 1, Φ′(0) = cα,

with the solution Φ(t) = ceαt + 1− c. Therefore

an = Φ(n)(0) =

{
1, n = 0,

cαn, n ∈ N,

as required.
It is instructive to examine (2.1) in the three important special cases. For the

Lebesgue case α = c = 0 the equation reduces to Φ′′(t) = zΦ′(t), with the initial
conditions Φ(0) = 1, Φ′(0) = z, therefore Φ(t, z) = etz and we recover φn(z) = zn,
n ∈ Z+. For Geronimus polynomials α = 1, hence q = 1 and τ = |c|2, (2.1) reduces
to an ordinary differential equation,

Φ′′ − (1 + z)Φ′ + (1− |c|2)zΦ = 0, t ≥ 0,

whose general solution is Φ(t) = β+et%+ + β−et%− , where

%± =
1 + z ±

√
(1− z)2 + 4|c|2z

2

are the roots of the quadratic %2 − (1 + z)% + (1 − |c|2)z = 0. Fitting the initial
conditions Φ(0) = 1, Φ′(0) = z + c, we have

β± =
1

2
∓ (1− z)− 2c√

(1− z)2 + 4|c|2z
.

4



This results in the known representation of Geronimus polynomials, namely

φn(z) =

[
1

2
− (1− z)− 2c√

(1− z)2 + 4|c|2z

][
1 + z +

√
(1− z)2 + 4|c|2z

2

]n
(2.3)

+

[
1

2
+

(1− z)− 2c√
(1− z)2 + 4|c|2z

][
1 + z −

√
(1− z)2 + 4|c|2z

2

]n
, n ∈ Z+

(Simon 2005, p. 87). This representation of an orthogonal polynomial system using
‘non-polynomial’ building blocks is similar in this sense to the familiar formula for
Chebyshev polynomials of first and second kind (Rainville 1960, p. 301).

Finally, in the Rogers–Szegő case c = 1, α = −q1/2, we stay with a pantograph
equation, specifically

Φ′′(t) = (z − q1/2)Φ′(t) + q1/2zΦ(t)− q3/2zΦ(qt), t ≥ 0, (2.4)

with Φ(0) = 1, Φ′(0) = z − q1/2.
Our next step is to study the solution of (2.1) in order to obtain a general expression

for the φns – this is the subject matter of the next section. In the last section we
apply our results and we analyse the special cases of Geronimus and Rogers–Szegő
polynomials from the point of view of this paper, i.e. commencing from the pantograph
equation (2.1).

3 Study of the solutions through Dirichlet series

Provided that the pantograph equation (2.2) is in a stable regime, its solution can be
expanded in Dirichlet series,

y(t) =

∞∑
m=0

etq
nAvn, t ≥ 0 (3.1)

(Iserles 1993).
The general pantograph equation

y′(t) = Ay(t) +By(qt), t ≥ 0, y(0) = y0,

has a Dirichlet solution provided that A is invertible and ‖A−1B‖2 < 1. In our case,
we have

y =

[
Φ
Φ′

]
, A =

[
0 1
−αz α+ z

]
, B =

[
0 0
αzτ 0

]
,

therefore

A−1B = τ

[
−1 0
0 0

]
.

The eigenvalues of A are α and z, both nonzero, hence the matrix is nonsingular,
while the spectral radius of A−1B is τ ∈ [0, 1). Consequently, the solution of (2.1)
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can be expanded into a Dirichlet series of the form (2.1). Specifically, Φ possesses the
expansion

Φ(t) =

∞∑
m=0

vmeλq
mt, v0 6= 0,

where λ and {vm}m∈Z+
are constant with respect to t (the variable z is treated as a

parameter). Substituting this into (2.1), we have

λ2
∞∑
m=0

vmq
2meλq

mt = (α+ z)λ

∞∑
m=0

vmq
meλq

mt − αz
∞∑
m=0

vmeλq
mt

+ ατz

∞∑
m=1

vm−1eλq
mt.

Assuming λ 6= 0, the functions eλq
mt are linearly independent for all m ∈ Z, therefore

it follows that

[λ2q2m − (α+ z)qm + αz]vm =

{
0, m = 0,

αzτvm−1, m ∈ N.
(3.2)

The immediate consequence of (3.2) is that, letting m = 0, v0 6= 0 implies

λ2 − (α+ z)λ+ αz = (λ− α)(λ− z) = 0

and we deduce that there exist two admissible values of λ, namely λ = α and λ = z.
Next, we consider the case m ∈ Z. Now

(α− qmλ)(z − qmλ)vm = αzτvm−1,

therefore,

λ = α : (1− qm)
(

1− qmα
z

)
vm = τvm−1,

λ = z : (1− qm)
(

1− qm z

α

)
vm = τvm−1.

Using easy induction, we have

vm =
τm

(q, q)m(α/z, q)m
v0 and vm =

τm

(q, q)m(z/α, q)m
v0

respectively, where (κ, q)m is the Gauss–Heine symbol,

(κ, q)m =

m−1∏
j=0

(1− κqj)

(Gasper & Rahman 2004). This argument has led us to a Dirichlet-series representa-
tion of Φ.
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Theorem 1 The generating function Φ(t, z) =
∑∞
m=0 φm(z)tm/m! of OPUC with

respect to the Schur parameters (1.2) can be expressed explicitly in the form

Φ(t, z) = β1(z)

∞∑
m=0

τm

(q, q)m(α/z, q)m
eαq

mt + β2(z)

∞∑
m=0

τm

(q, q)m(z/α, q)m
ezq

mt. (3.3)

where β1 and β2 are determined by the conditions Φ(0, z) ≡ 1, ∂Φ(0, z)/∂t = z + cα.

Corollary 1 The monic OPUC with respect to the Schur parameters (1.2) is

φm(z) = αmβ1(z)F (αz−1, qmτ, q) + zmβ2(z)F (α−1z, qmτ, q), m ∈ Z+, (3.4)

where

F (ζ, τ, q) =

∞∑
m=0

τm

(q, q)m(ζ, q)m
.

Proof Repeatedly differentiating the Dirichlet series (3.3) term-by-term, a pro-
cedure which is justified by its absolute convergence. 2

Note that F (0, τ, q) is the so-called “little q-exponential function”,

F (0, τ, q) =

∞∑
m=0

τm

(q, q)m
= eq(τ) =

1

(τ, q)∞

(Gasper & Rahman 2004, p. 236), while

lim
|ζ|→∞

F (ζ, qmτ, q) ≡ 1, lim
ζ→0

ζmF (ζ; qmτ, q) =

{
1, m = 0,
0, m ∈ N,

where |ζ| → ∞ does so in a sector of the form | arg ζ| > δ for some δ > 0. Therefore

φ0(0) = β1(0) + β2(0), φn(0) = β1(0)αn, n ∈ N,

where we recall that β1 and β2 are determined by the initial conditions,

φ0(z) ≡ 1, φ1(z) = z + cα.

Thus, β1(0) = c, β2(0) = 1 − c, and we verify from (3.4) the explicit form of Schur
parameters,

φn(0) = cαn, n ∈ Z+.

It is convenient to reformulate (3.4) somewhat. Thus, we let

η1(z) = β1(z)F (αz−1, τ, q), η2(z) = β2(z)F (α−1z, τ, q)

and

Hm(ζ, τ, q) =
F (ζ, qmτ, q)

F (ζ, τ, q)
, m ∈ Z+.

Then (3.4) can be rewritten in the form

φm(z) = αmη1(z)Hm(αz−1, τ, q) + zmη2(z)Hm(α−1z, τ, q), m ∈ Z+. (3.5)
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The initial conditions being

η1 + η2 = 1,

αH1(αz−1, τ, q)η1 + zH1(α−1z, τ, q)η2 = z + cα,

we obtain

η1(z) =
z + cα− zH1(α−1z, τ, q)

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
, (3.6)

η2(z) =
αH1(αz−1, τ, q)− z − cα

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
.

The representation (3.5) is not the final form in which we can cast the OPUC
{φn}n∈Z+

.

Theorem 2 The OPUC with respect to the Schur parameters (1.2) is

φm(z) = αmη1(z)

m∏
`=1

H1(αz−1, q`τ, q) + zmη2(z)

m∏
`=1

H1(α−1z, q`τ, q), m ∈ Z+,

(3.7)
where η1 and η2 have been given in (3.6).

Proof Follows at once from (3.5), noting that

Hm(ζ, τ, q) =
F (ζ, qτ, q)

F (ζ, τ, q)
× F (ζ, q2τ, q)

F (ζ, qτ, q)
× · · · × F (ζ, qmτ, q)

F (ζ, qm−1τ, q)
=

m∏
`=1

H1(ζ, q`τ, q).

2

The representation (3.7) has an important advantage in comparison with the seem-
ingly simpler form (3.5): we need to deal with just a single function H1, rather than
with Hm for all m ∈ N. It is also reminiscent of the representation (2.3) of Geroniumus
polynomials and indeed we will prove in the sequel that (3.7) becomes (2.3) as α→ 1.

4 The function H1

4.1 Analyticity

It will be proved later in this section that the function

F (ζ, τ, q) =

∞∑
m=0

τm

(q, q)m(ζ, q)m
, τ ∈ (0, q),

is meromorphic in ζ ∈ C. Specifically, it is analytic except for simple polar singularities
at q−` for all ` ∈ Z+, because (q−`, q)m = 0 for m ≥ ` + 1. Our interest is, however,
not in the function F per se but in the ratios Hm(αz−1, τ, q) and Hm(α−1z, τ, q) for
m ∈ N.
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Let ζ = q−` + ε for some ` ∈ Z+ and 0 < |ε| � 1. It is an easy calculation that

(ζ, q)m = (−1)mq(m−1−`)m
(q, q)`

(q, q)`−m
+O(ε), m ≤ `,

(ζ, q)m = (−1)`+1εq−
1
2 (`−1)`(q, q)`(q, q)m−`−1 +O(ε2), m ≥ `+ 1.

Therefore, after further algebra,

F (q−` + ε, τ, q) =
1

ε

(−1)`+1q
1
2 (`−1)`τ `+1

(q, q)`(q, q)`+1
F (q`+2, τ, q) +O(1).

We deduce that

H1(q−` + ε, τ, q) = q`+1H1(q`+2, τ, q) +O(ε).

Therefore the singularity at q−` is removable. This, however, does not mean that
H1, unlike F , is an entire function, because it has polar singularities at the zeros
of F ( · , τ, q). Indeed, we demonstrate in the sequel that H1 is meromorphic, with a
countable number of isolated poles accumulating at infinity.

Note that, according to Section 3, lim|ζ|→∞ F (ζ, τ, q) = 1, as long as ζ is re-
stricted to a sector of the form | arg ζ| > δ > 0. Hence, subject to this restriction,
lim|ζ|→∞H1(ζ, τ, q) = 1, while limM→∞H1(q−M , τ, q) = 0.

4.2 An expansion in ζ

The function F has been given as a power series in τ . However, and given its analyticity
in ζ, it is instructive to expand it in power series in the latter variable. We commence
by observing that

F (ζ, τ, q)− F (qζ, τ, q) =

∞∑
m=1

τm

(q, q)m

[
1

(ζ, q)m
− 1

(qζ, q)m

]

=
ζ

1− ζ

∞∑
m=0

(1− qm)τm

(q, q)m(qζ, q)m

=
ζ

1− ζ
[F (qζ, τ, q)− F (qζ, qτ, q)].

This yields the recurrence relation

F (ζ, τ, q) =
1

1− ζ
[F (qζ, τ, q)− ζF (qζ, qτ, q)]. (4.1)

Before we advance any further, it is useful to recall the definition of an rφs basic
hypergeometric function: given r, s ∈ Z+ and q, a1, . . . , ar, b1, . . . , bs ∈ C, |q| < 1,

rφs

[
a1, . . . , ar;
b1, . . . , bs;

q, z

]
=

∞∑
m=0

(a1, q)m(a2, q)m · · · (ar, q)m
(q, q)m(b1, q)m(b2, q)m · · · (bs, q)m

[
(−1)mq(

m
2 )
]1+s−r

zm

(Gasper & Rahman 2004, p. 4).
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Proposition 3 The function F can be expressed in the form

F (ζ, τ, q) =
1

(ζ, q)∞(τ, q)∞

∞∑
m=0

(τ, q)m
(q, q)m

q
1
2 (m−1)m(−ζ)m (4.2)

=
1

(ζ, q)∞(τ, q)∞
1φ1

[
τ ;
0;
q, ζ

]
.

Proof We commence by proving that, for any r ∈ Z+,

F (ζ, τ, q) =
1

(ζ, q)r

r∑
m=0

[
r
m

]
q

q
1
2 (m−1)m(−ζ)mF (qrζ, qmτ, q),

where [
n
m

]
q

=
(q, q)n

(q, q)m(q, q)n−m
, 0 ≤ m ≤ n,

is the q-binomial symbol (Gasper & Rahman 2004, p. 235).
This is certainly true for r = 0 and, because of (4.1), for r = 1. Moreover, using

induction on r and applying (4.1) on the right-hand side,

F (ζ, τ, q)

=
1

(ζ, q)r

r∑
m=0

[
r
m

]
q

q
1
2 (m−1)m

(−ζ)m

1− qrζ
[F (qr+1ζ, qmτ, q)− qrζF (qr+1ζ, qm+1τ, q)]

=
1

(ζ, q)r+1

{
r∑

m=0

[
r
m

]
q

q
1
2 (m−1)m(−ζ)mF (qr+1ζ, qmτ, q)

+

r+1∑
m=1

[
r

m− 1

]
q

q
1
2 (m−2)(m−1)+r(−ζ)mF (qr+1ζ, qmτ, q)

}

and the desired expression follows from identity[
r
m

]
q

+ qr−m+1

[
r

m− 1

]
q

=

[
r + 1
m

]
q

(Gasper & Rahman 2004, p. 235).
To prove (4.2), we let r →∞, noting that for every fixed m

lim
r→∞

[
r
m

]
q

=
1

(q, q)m

and that

lim
r→∞

F (qrζ, τ, q) = F (0, τ, q) =

∞∑
m=0

τm

(q, q)m
= eq(τ) =

1

(τ, q)∞

(cf. Section 2). 2
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Using (4.2), we investigate the analycity of H1. Our point of departure is the
observation that

F (ζ, τ, q) =
G(ζ, τ, q)

(τ, q)∞(ζ, q)∞
,

where

G(ζ, τ, q) =

∞∑
m=0

(−1)m
(τ, q)m
(q, q)m

q
1
2 (m−1)mζm.

It is obvious that G is an entire function of ζ.
Given an entire function f(ζ) =

∑∞
m=0 fmζ

m, its order is defined by

ρ(f) = lim sup
r→∞

log log max−π≤θ≤π |f(reiθ)|
log r

(Hille 1962, p. 182) and, while at the first instance it describes the behaviour near
the singularity at ∞, it can be used to reveal many other interesting features. An
alternative expression for ρ(f) is

ρ(f) = lim sup
n→∞

m logm

log |fm|−1

(Hille 1962, p. 186). Therefore

ρ(G) = lim sup
m→∞

m logm

log(q, q)m − log(τ, q)m + 1
2 (m− 1)m| log q|

= 0.

Since ρ(G) = 0, G(0, τ, q) = 1 and G is clearly not a polynomial in ζ (recall that τ < 1),
we use the Hadamard factorization theorem to argue that it can be represented in the
form

G(ζ, τ, q) =

∞∏
n=1

(
1− ζ

σn

)
, ζ ∈ C,

where σn = σn(τ, q) ∈ C accumulate at ∞. We deduce that

H1(ζ, τ, q) =
(τ, q)∞
(qτ, q)∞

G(ζ, qτ, q)

G(ζ, τ, q)
= (1− τ)

∞∏
n=1

1− ζ/σn(qτ, q)

1− ζ/σn(τ, q)
. (4.3)

In particular, this indeed proves that H1 is meromorphic.
The only possible impediment to the analyticity of H1 are poles, i.e. the zeros of

G( · , τ, q). However,

G(ζ, 0, q) =

∞∑
m=0

(−1)m
q

1
2 (m−1)m

(q, q)m
ζm = Eq(−ζ) = (ζ, q)∞

– Eq is the ‘big q-exponential function’ (Gasper & Rahman 2004, p. 236). Therefore,
for τ = 0 the only zeros ofG( ·, 0, q) are q−`, ` ∈ Z+, all positive, distinct and cancelling
each other in the quotient H1.
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Next, we compute G(q−`, τ, q) for ` ∈ Z+ and τ > 0. To this end we utilize the
identity

(τ, q)m =

m∑
k=0

(−1)k
[
m
k

]
q

q
1
2 (k−1)kτk, m ∈ Z+,

whose inductive proof is trivial and left to the reader. Thus,

G(q−`, τ, q) =

∞∑
m=0

(−1)m
q

1
2 (m−1)m

(q, q)m

m∑
k=0

(−1)k
[
m
k

]
q

q
1
2 (k−1)k−m`τk

=

∞∑
k=0

(−1)k

(q, q)k
q

1
2 (k−1)kτk

∞∑
m=k

(−1)m
q

1
2 (m−1)m−m`

(q, q)m−k

=

∞∑
k=0

q(k−1)k−k`

(q, q)k
τk

∞∑
m=0

(−1)m
q

1
2 (m−1)m+(k−`)m

(q, q)m

=

∞∑
k=0

q(k−1)k−k`

(q, q)k
τkEq(−qk−`) =

∞∑
k=0

q(k−1)k−k`

(q, q)k
τk(qk−`, q)∞

= (q, q)∞

∞∑
k=`+1

q(k−1)k−k`

(q, q)k(q, q)k−`−1
τk > 0

(note that all the series above converge).
Likewise, given 0 < |δ| � 1, an identical algebra yields

G(q−`+δ, τ, q) =

∞∑
k=0

q(k−1)k−k(`−δ)(qk−`+δ, q)∞.

Now, while for k ≥ `+ 1 it is true that

(qk−`+δ, q)∞ =
(q, q)∞

(q, q)k−`−1
,

for k = 0, 1, . . . , ` we obtain

(qk−`+δ, q)∞ = (1− qδ)(−1)`−kq−
1
2 (`−k−1)(`−k)(q, q)`−k(q, q)∞[1 +O(δ)].

Therefore

(qk−`+δ, q)∞

= (−1)`−k(1− qδ)q− 1
2 (`−1)`(q, q)∞

∑̀
k=0

(−1)kτk
(q, q)`−k
(q, q)k

q
1
2 (k−1)k+δk[1 +O(δ)]

+G(q−`, τ, q)[1 +O(δ)].

While G(q−`, τ, q) > 0, we can render the first sum negative by choose δ > 0 when ` is
even, δ < 0 otherwise. Moreover, G(q−`, τ, q) = O(τ `), hence small (τ ∈ (0, q)), while
the first sum is O(1) in τ . We deduce that for every sufficiently small τ > 0 and ` ∈ N

12



Figure 4.1: The function G(ζ, τ, q) for two different values of q, sketched for ζ ∈ [1, q−1]
and ζ ∈ [q−2, q−3] for τ = 1

20 ,
1
10 ,

1
5 (for q = 9

16 ) and τ = 1
16 ,

1
8 ,

1
4 (for q = 1

4 ) denotes
by solid, dash-dot and dash line styles.

it is true that σ2`−1(τ) < σ2`(τ) lie in the interval (q−2`+1, q−2`), the first very near
the left endpoint and the second very near the right endpoint.

Moreover, while q−
1
2 (`−1)` increases very rapidly with `, the other terms depend

on ` only in a fairly weak manner. Therefore we can expect |σ`−q−`| to decrease very
rapidly as ` grows, and this is confirmed by numerical computations. On the other
hand, the interval (1, q−1) is the obvious place where things are more interesting.
For 0 < τ � 1 two zeros emerge from the endpoints, ‘sliding’ inwards: numerical
calculations confirm that after a short while they may coalesce into a double zero,
which subsequently bifurcates into the complex plane as a conjugate pair of zeros.
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Fig 4.1 displays G for different values of q and τ in the first two intervals of the form
[q−2`, q−2`−1]. In the first interval in the case q = 9

16 there are two zeros for τ = 1
20 ,

which have emerged for τ = 0 from the endpoints and which coalesce very near τ = 1
10

(actually, at τ ≈ 0.09992063019) and, having moved to complex plane, G is positive
throughput the interval for increasing τ . For q = 1

4 , however, double zeros persist in
the first interval for all τ ∈ (0, q]. Shifting our attention to the second interval (in
the right column), we observe the presence of zeros very near the endpoints: we are
already in the asymptotic regime.

Although the analysis of the function G is valuable in understanding the behaviour
of H1, it is of interest to convert F into a ‘proper’ power series in ζ, thereby repre-
senting H1 as a quotient of two power series. To this end we replace eq(ζ) = 1/(ζ, q)∞
by its expansion

∑∞
n=0 ζ

n/(q, q)n. It then follows from (4.2) that

(τ, q)∞F (ζ, τ, q) =

∞∑
n=0

ζn

(q, q)n

∞∑
m=0

(τ, q)m
(q, q)m

q
1
2 (m−1)m(−1)mζm

=

∞∑
m=0

(τ, q)m
(q, q)m

(−1)mq
1
2 (m−1)m

∞∑
n=m

ζn

(q, q)n−m

=

∞∑
n=0

ζn

(q, q)n

n∑
m=0

(−1)m
[
n
m

]
q

q
1
2 (m−1)m(τ, q)m.

The outcome is a power series representation of F ,

F (ζ, τ, q) =
1

(τ, q)∞

∞∑
n=0

dn(τ)ζn,

where

dn(τ) =
1

(q, q)n

n∑
m=0

(−1)m
[
n
m

]
q

q
1
2 (m−1)m(τ, q)m, n ∈ Z+. (4.4)

Proposition 4 The above coefficients dn(τ) satisfy d0 ≡ 1 and

dn(τ) =

n∑
m=1

q(m−1)m

(q, q)m

[
n− 1
m− 1

]
q

τm, n ∈ N. (4.5)

Proof The expressions (4.4) and (4.5) match for n = 0, 1. We continue by induc-
tion on n ≥ 1. Firstly, using identity I.45 from (Gasper & Rahman 2004, p. 235), we
deduce from (4.4) that

dn(τ) =
1

(q, q)n

n∑
m=0

(−1)m

{[
n− 1
m

]
q

+ qn−m
[
n− 1
m− 1

]
q

}
q

1
2 (m−1)m(τ, q)m

=
dn−1(τ)

1− qn
− qn−1 1− τ

(q, q)n

n−1∑
m=0

(−1)m
[
n− 1
m

]
q

q
1
2 (m−1)m(qτ, q)m

=
1

1− qn
[dn−1(τ)− qn−1(1− τ)dn−1(qτ)], n ∈ N.
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Likewise, for n ≥ 2 (4.5) yields

1

1− qn
[dn−1(τ)− qn−1(1− τ)dn−1(qτ)]

=
1

1− qn
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

τm − qn−1

1− qn
(1− τ)

n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

(qτ)m

=
1

1− qn
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

(1− qn+m−1)τm

+
1

1− qn
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

qn+m−1τm+1

=
1

1− qn

{
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

(1− qn+m−1)τm

+

n∑
m=2

q(m−2)m+n

(q, q)m−1

[
n− 2
m− 2

]
q

τm

}

=
1

1− qn
n∑

m=1

q(m−1)m

(q, q)m

{[
n− 2
m− 1

]
q

(1− qn+m−1) + qn−m
[
n− 2
m− 2

]
q

(1− qm)

}
τm

=

n∑
m=1

q(m−1)m

(q, q)m

[
n− 1
m− 1

]
q

τm,

as can be confirmed by straightforward calculation. We thus obtained the left-hand
side of (4.5). In other words, the functions dn in (4.4) and (4.5) obey the same
recurrence relation, Since they match for n = 1, an inductive proof follows. 2

Since (τ, q)∞/(qτ, q)∞ = 1−τ , the outcome of our analysis is the rational expansion

H1(ζ, τ, q) = (1− τ)

∞∑
n=0

dn(qτ)ζn

∞∑
n=0

dn(τ)ζn
, (4.6)

where alternative expressions for dn have been given in (4.4) and (4.5).
Bearing in mind the representation (3.7), combining the values of H1 at z/α and

at α/z, it is perhaps more illuminating to consider (4.6) not as a rational expansion
in ζ about the origin but as a Fourier expansion on circles of radii |α| = q1/2 and
|α|−1 = q−1/2.

4.3 An expansion of the generating function

The above expressions of the function F provides an expansion of the generating
function in z and z−1. It is enough to taking into account the expression (3.3) and to
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recall that we have:

F (α−1z; |c|2qN , q) =
(|c|2, q)N
(|c|2, q)∞

[
1 +

∞∑
n=1

dn(|c|2qN )
( z
α

)n]
,

F (αz−1; |c|2qN , q) =
(|c|2, q)N
(|c|2, q)∞

[
1 +

∞∑
n=1

dn(|c|2qN )
(α
z

)n]
,

where

dn(x) =

n∑
m=1

q(m−1)m

(q, q)m

[
n− 1
m− 1

]
q

xm, n ∈ N.

Also, the function F provides a first approximation to the sequence of OPUC as a
expansion in z and z−1 using (3.4)

φN (z) = αNβ1(z)F (αz−1; |c|2qN , q) + zNβ2(z)F (α−1z; |c|2qN , q), n ∈ Z+,

where β1 and β2 are determined from the initial conditions φ0 ≡ 1 and φ1(z) = cα+z.
Therefore,

β1(z) =
zF (α−1z; |c|2q, q)− (cα+ z)F (α−1z; |c|2, q)

zF (αz−1; |c|2, q)F (α−1z; |c|2q, q)− αF (αz−1; |c|2q, q)F (α−1z; |c|2, q)
,

β2(z) =
(cα+ z)F (αz−1; |c|2, q)− αF (αz−1; |c|2q, q)

zF (αz−1; |c|2, q)F (α−1z; |c|2q, q)− αF (αz−1; |c|2q, q)F (α−1z; |c|2, q)
.

Incidentally, for all N ∈ N we have

φN (0) = cαN
F (∞; |c|2qN , q)
F (∞; |c|2q, q)

= cαN ,

because F (∞; |c|2qN , q) ≡ 1 according to our computation.

5 A representation of the OPUC as q-Bessel func-
tions

In this section we obtain an explicit representation of the OPUC sequence {φn} as

a linear combination of the q-Bessel functions J
(2)
ν (cf. (Gasper & Rahman 2004,

p. 4) for the definition of q-Bessel functions). This is very much in line with the
numerous explicit representations of orthogonal polynomials on the real line in terms of
hypergeometric and q-hypergeometric functions (Chihara 1978, Ismail 2005). Bearing
in mind the definition of F and the representation (3.4) of the OPUC {φn}, a simple
calculation leads to

F (ζ, τ, q)− F (ζ, qτ, q) =

∞∑
m=1

(1− qm)τm

(q, q)m(ζ, q)m
=

∞∑
m=1

τm

(q, q)m−1(ζ, q)m

=

∞∑
m=0

τm+1

(q, q)m(ζ, q)m+1
=

τ

1− ζ
F (qζ, τ, q).
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We thus deduce the functional equation

F (ζ, τ, q) = F (ζ, qτ, q) +
τ

1− ζ
F (qζ, τ, q), (5.1)

given in tandem with the initial condition F (ζ, 0, q) ≡ 1.
Note, incidentally, that the function

F̃ (ζ, τ, q) =
1

(ζ, q)∞(τ, q)∞

is a solution of (5.1), as can be verified easily by direct substitution. Needless to say,
F̃ 6= F (cf. (4.2)), but then we have never claimed that (5.1) has a unique solution.

We now start similarly to Subsection 4.2, yet progress differently,

F (ζ, τ, q)− F (qζ, τ, q) =

∞∑
m=1

τm

(q, q)m(ζ, q)m+1
[(1− ζqm)− (1− ζ)]

= ζ

∞∑
m=1

τm

(q, q)m−1(ζ, q)m+1
=

ζτ

(1− ζ)(1− qζ)
F (q2ζ, τ, q).

Let
χr = F (qrζ, τ, q), r ∈ Z+.

(Needless to say, χr = χr(ζ, τ, q), but it is convenient to use a more economical
notation.) We have just proved that

χ0 = χ1 +
ζτ

(ζ, q)2
χ2

and, replacing ζ with qrζ for r ∈ Z+, we deduce the recurrence

χr = χr+1 +
ζqrτ

(ζqr, q)2
χr+2, r ∈ Z+. (5.2)

Proposition 5 For every s ∈ Z+ it is true that

χ0 =

s∑
`=0

[
s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`
χs+`. (5.3)

Proof By induction on s. The statement is trivial for s = 0 and reduces to (5.2)
for s = 1. In general, we assume (5.3) for s and use (5.2),

χ0 =

s∑
`=0

[
s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`

[
χs+1+` +

qs+`ζτ

(qs+`ζ, q)2
χs+`+2

]

=

s∑
`=0

[
s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`
χs+1+`

+

s+1∑
`=1

qs+`−1

(qs+`−1ζ, q)2

[
s

`− 1

]
q

q(`−2)(`−1)(ζτ)`

(ζ, q)`−1(qsζ, q)`−1
χs+1+`.
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Let us examine the `th term (we restrict our attention to 1 ≤ ` ≤ s, cases ` = 0 and
` = s+ 1 being trivial):[

s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`
+

[
s

`− 1

]
q

qs+`−1+(`−2)(`−1)(ζτ)`

(ζ, q)`−1(qsζ, q)`+1

=
q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`+1

{[
s
`

]
q

(1− qs+`ζ) +

[
s

`− 1

]
q

qs−`+1(1− q`−1ζ)

}
.

But [
s
`

]
q

(1− qs+`ζ) +

[
s

`− 1

]
q

qs−`+1(1− q`−1ζ)

=
(q, q)s

(q, q)`(q, q)s+1−`

[
(1− qs+1−`)(1− qs+`ζ) + (1− q`)(qs−`+1 − qsζ)

]
=

(q, q)s
(q, q)`(q, q)s+1−`

(1− qs+1)(1− qsζ) =

[
s+ 1
`

]
q

(1− qsζ),

therefore the `th term is

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`+1

[
s+ 1
`

]
q

(1− qsζ) =

[
s+ 1
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qs+1ζ, q)`
.

This is precisely (5.3) for s+ 1 and the inductive proof is complete. 2

We now let s→∞ in (5.3),

lim
s→∞

χs+` = lim
s→∞

F (qs+`ζ, τ, q) = F (0, τ, q) = eq(τ) =
1

(τ, q)∞
,

lim
s→∞

(qsζ, q)` = (0, q)` = 1,

lim
s→∞

[
s
`

]
q

= lim
s→∞

(q, q)s
(q, q)`(q, q)s−`

=
(q, q)∞

(q, q)`(q, q)∞
=

1

(q, q)`
.

Therefore

F (ζ, τ, q) = eq(τ)

∞∑
`=0

q(`−1)`
(ζτ)`

(q, q)`(ζ, q)`
=

1

(τ, q)∞
0φ1

[
—;
ζ;

q, ζτ

]
.

There are several generalizations of Bessel functions into the real of q-functions.
In particular, the second q-Bessel function is

J (2)
ν (x, q) =

(qν+1, q)∞
(q, q)∞

(x
2

)ν
0φ1

[
—;
qν+1;

q,− 1
4x

2qν+1

]
(Gasper & Rahman 2004, p. 25). Letting

µ =
log ζ

log q
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(in other words, qµ = ζ) we thus have

J
(2)
µ−1(2

√
τ , q) =

(ζ, q)∞
(q, q)∞

τ (µ−1)/20φ1

[
—;
ζ;

q,−ζτ
]

and we conclude that

F (ζ, τ, q) =
(q, q)∞

(τ, q)∞(ζ, q)∞
(−τ)−(µ−1)/2J

(2)
µ−1(2i

√
τ , q). (5.4)

We now use (3.4) to obtain an explicit representation of the φms in terms of q-
Bessel functions. To this end we note that we need to reckon for both F (αz−1, qmτ, q)
and F (α−1z, qmτ, q). However, if qµ(z) = α−1z then q−µ(z) = αz−1. Therefore,

φm(z) =
(q, q)∞

(qmτ, q)∞

{
αmβ1(z)

(αz−1, q)∞
(−qmτ)[µ(z)+1]/2J

(2)
−µ(z)−1(2i(qmτ)1/2, q)

+
zmβ2(z)

(α−1z, q)∞
(−qmτ)[−µ(z)+1]/2J

(2)
µ(z)−1(2i(qmτ)1/2, q)

}
, m ∈ Z+.

6 Limiting behaviour

In this section we consider the three cases when the Schur parameters an = cαn are
allowed to approach their limiting values, which correspond to known OPUC: α = 0
(Lebesgue), c = 1 (Rogers–Szegő) and α = 1 (Geronimus). The first is trivial, while
the third case confronts us with the greatest difficulty.

In the Lebesgue case the pantograph equation (2.1) becomes the (trivial) ODE
Φ′′ = zΦ′ which, in tandem with the initial conditions Φ(0) = 1, Φ′(0) = z, results
in the explicit solution Φ(t, z) = etz. Hence φm(z) = zm – no great surprise here!
To deduce this from directly from the representation (3.5), we note first that in the
current case F (ζ, τ, q) = (1 − τ)−1 is independent of ζ and this implies that also
Hm(ζ, τ, q) = (1 − τ)−1. Therefore, by (3.6), η2(z) ≡ 1 − τ and, α being zero, we
recover φm(z) = zm from (3.5).

6.1 Rogers–Szegő polynomials

The OPUC whose sequence of Schur parameters is given by an = αn = (−1)nqn/2,
where q ∈ (0, 1), are the familiar Rogers–Szegő polynomials (Simon 2005), whose
explicit form is well known,

φm(z) =

m∑
j=0

(−1)m−j
[
m
j

]
q

q
1
2 (m−j)zj , m ∈ Z+. (6.1)

Setting α = −q1/2 presents absolutely no problems in our analysis – recall that q =
|α|2, consistently with the current setting. Thus, we can readily deduce from (4.2)
that

F (ζ, qm, q) =
1

(ζ, q)∞(qm, q)∞

∞∑
`=0

(−1)`
[
m+ `− 1

`

]
q

q
1
2 (`−1)`ζ`, m ∈ N.
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In particular,

F (ζ, q, q) =
1

(ζ, q)∞(q, q)∞
r(ζ),

F (ζ, q2, q) =
1

(ζ, q)∞(q2, q)∞

∞∑
`=0

(−1)`
1− q`+1

1− q
q

1
2 (`−1)`ζ`

=
1

(ζ, q)∞(q, q)∞
[r(ζ)− qr(qζ)],

where

r(ζ) = G(ζ, q, q) =

∞∑
`=0

(−1)`q
1
2 (`−1)`ζ`

is an entire function of order zero: all of the analysis in Subsection 4.2 applies here.
With greater generality, it follows from (Gasper & Rahman 2004, p. 235) that

F (ζ, qm, q) =
1

(ζ, q)∞(q, q)∞

m−1∑
j=0

[
m− 1
j

]
q

q
1
2 j(j+1)r(qjζ), m ∈ N.

Therefore

Hm(ζ, q, q) =
F (ζ, qm+1, q)

F (ζ, q, q)
=

m∑
j=0

[
m
j

]
q

q
1
2 j(j+1) r(q

jζ)

r(ζ)
. (6.2)

It can be verified at once by elementary algebra that

r(qζ) =
1− r(ζ)

ζ
, ζ ∈ C,

therefore, by induction,

r(qmζ) = (−1)mq−
1
2 (m−1)mζ−m

[
r(ζ)−

m−1∑
`=0

(−1)`q
1
2 (`−1)`ζ`

]
.

Therefore, in principle (6.2) can be reformulated employing just r(ζ), but this adds
little to our understanding.

Intriguingly, the function r resembles a Jacobi theta function. Specifically, r(ζ) +

r(ζ−1) = −1 +
∑∞
`=−∞(−1)`q

1
2 (`−1)`ζ`. But, letting p = q1/2, we have

∞∑
`=−∞

(−1)`q
1
2 (`−1)`ζ` = p−1/4

∞∑
`=−∞

(−1)`p(`−
1
2 )

2

ζ` = p−1/4
∞∑

`=−∞

p(`+
1
2 )

2

(−ζ−1)`.

Let z = log(−ζ)/(2i). Then

∞∑
`=−∞

(−1)`q
1
2 (`−1)`ζ` = p−1/4e−izθ2(z, p),
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where θ2 is the second Jacobi theta function (Rainville 1960, p. 316). Unfortunately,
this intriguing connection with theta functions does not provide, insofar as we can see,
much insight into Rogers–Szegő polynomials.

Abandoning the theta connection, we substitute (6.2) into (3.5) to recover an
alternative representation of Rogers–Szegő polynomials, substituting (6.2) into

φm(z) = (−1)mqm/2η1(z)Hm(−q1/2z−1, qm+1, q) + zmη2(z)Hm(−q−1/2z, qm+1, q),

where η1 and η2 can be also expressed using the form for H1 from (6.2).

6.2 Geronimus polynomials

The limiting case α = 1, therefore q = 1, corresponding to Geronimus polynomi-
als, is substantially more complicated, because the q-factorials (q, q)m, littering our
denominators, become zero, hence naive progression to the limit does not work.

We recall from Section 2 that in this case the generating function Φ obeys an ODE
with the explicit solution (2.3). using the notation therein, we let

%∗+(z) = z%̄+(z−1)

and observe that, conjugation flipping the sign of a square root, it is true that %∗+(z) =
%−(z). Consequently, for Geronimus polynomials,

φm(z) = β+(z)%m+ (z) + β−(z)%∗+
m(z), m ∈ Z+, (6.3)

where we recall that

%+(z) = 1
2 [1 + z +

√
(1− z)2 + 4|c|2z].

Our intent is to demonstrate that, as α → 1, the expression (3.7) tends to (6.3).
This is not a straightforward statement since, as α → 1, so does q and the function
F becomes unbounded. Fortunately the functions F (ζ, qτ, q) and F (ζ, τ, q), at the
numerator and denominator of H1 respectively, blow up at a commensurate rate and
their quotient H1(ζ, τ, q) remains bounded.

Lemma 6 Bearing in mind that q = |α|2, it is true that

lim
α→1

H1(α−1z, τ, q) =
%−(z)

z
=
%∗+(z)

z
. (6.4)

Proof Set

R(ζ, τ, q) =
F (qζ, τ, q)

F (ζ, τ, q)

and denote

H◦1 (z, c) = lim
α→1

H1(α−1z, τ, q), R◦(z, c) = lim
α→1

R(α−1z, τ, q).
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(Recall that τ = q|c|2.) We have

F (ζ, τ, q)− F (ζ, qτ, q) =

∞∑
m=1

τm

(q, q)m−1(ζ, q)m
=

τ

1− ζ

∞∑
m=0

τm

(q, q)m(qζ, q)m

=
τ

1− ζ
F (qζ, τ, q),

while we have already proved in Section 5 that

F (ζ, τ, q)− F (qζ, τ, q) =
ζτ

(1− ζ)(1− qζ)
F (q2ζ, τ, q).

Dividing the first identity by F (ζ, τ, q), we have

1−H1(ζ, τ, q) =
τ

1− ζ
F (qζ, τ, q)

F (ζ, τ, q)
⇒ H1(ζ, τ, q) = 1− τ

1− ζ
R(ζ, τ, q),

while similar division in the second identity yields

1−R(ζ, τ, q) =
ζτ

(1− ζ)(1− qζ)

F (qζ, τ, q)

F (ζ, τ, q)
× F (q2ζ, τ, q)

F (qζ, τ, q)

=
ζτ

(1− ζ)(1− qζ)
R(ζ, τ, q)R(qζ, τ, q).

Letting α→ 1, hence q → 1, ζ → z and τ → |c|2, we obtain the quadratic equation

|c|2zR◦2(z, c) + (1− z)2R◦(z, c)− (1− z)2 = 0,

therefore

R◦(z, c) = − 1− z
2|c|2z

[(1− z)±
√

(1− z)2 + 4|c|2z]

and analyticity at the origin means that we need to take a minus sign inside the square
brackets. Therefore

H◦1 (z, c) = lim
α→1

[
1− τ

1− ζ
R(ζ, τ, q)

]
= 1− |c|2

1− z
R◦(z, c)

= 1 +
(1− z)−

√
(1− z)2 + 4|c|2z
2z

=
1 + z −

√
(1− z)2 + 4|c|2z

2z
=
%−(z)

z

and the proof follows. 2

Formulæ (2.3) and (3.7) are both linear combinations of two components: for (2.3)
these are powers of %+ and %−. Let us restrict the attention to the curve of orthog-
onality, |z| = 1. The functions %± have two branch points, 1 − 2|c|2 ± i|c|

√
1− |c|2,

both of unit modulus. Since conjugations flips the sign of a square root, it follows
from (6.4) that

H1(αeiθ, τ, q) = H1(α−1eiθ, τ, q)
α→1−→ e−iθ

2

[
1 + eiθ −

√
(1− eiθ)2 + 4|c|2eiθ

]
= %+(eiθ)
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for every θ ∈ [−π, π]. We deduce that

lim
α→1

φm(z) = [ lim
α→1

η1(z)]λm+ (z) + [ lim
α→1

η2(z)]λm− (z), m ∈ Z+.

Although it is possible to prove directly (and messily) that limα→1 η1 = β+ and
limα→1 η2 = β−, this is not necessary, because η1,2 and β± are determined by the
equations

β+(z) + β−(z) = 1, β+(z)%+(z) + β−(z)%−(z) = z + c

and

η1(z) + η2(z) = 1, αH1

(α
z
, τ, q

)
η1(z) + zH1

( z
α
, τ, q

)
η2(z) = z + cα.

Thus, once α → 1, the second set of equations tends to the first, we obtain the right
limits to η1 and η2 and our polynomials indeed converge to Geronimus polynomials.

6.3 A set of Geronimus-like polynomials

Another limiting case of the Schur parameters

an =

{
1, n = 0,

cαn, n ∈ N,

is when |α| = 1. In other words, |an|2 = |c|2, n ∈ N, the recurrence relation (1.1)
becomes

(α+ z)φn(z) = φn+1(z) + αz(1− |c|2)φn−1(z), n ∈ Z+

and the generating function Φ obeys the ODE

Φ′′(t)− (α+ z)Φ′(t) + αz(1− |c|2)Φ(t) = 0,

whose solution with the initial conditions Φ(0) = φ0(z) = 1, Φ′(0) = φ1(z) = z+ cα is

Φ(t) = 1
2

[
1 +

(2c− 1)α+ z√
(α− z)2 + 4α|c|2z

]
e

1
2 [α+z+

√
(α−z)2+4α|c|2z]t

+ 1
2

[
1− (2c− 1)α+ z√

(α− z)2 + 4α|c|2z

]
e−

1
2 [α+z+

√
(α−z)2+4α|c|2z]t.

Therefore,

φn(z) = Φ(n)(0) = 1
2

[
1 +

(2c− 1)α+ z√
(α− z)2 + 4α|c|2z

][
α+ z +

√
(α− z)2 + 4α|c|2z

2

]n

+ 1
2

[
1− (2c− 1)α+ z√

(α− z)2 + 4α|c|2z

][
α+ z −

√
(α− z)2 + 4α|c|2z

2

]n
, n ∈ Z+.
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Figure 6.1: The real and imaginary parts of φn(eiθ) for n = 4 (top row), n = 10
(second row) and n = 50 (bottom row), with c = 3

4 and different values of |α| = 1.

Letting α = 1, we recover the Geronimus polynomials. Note that letting |α| → 1 in
(3.7) presents no difficulties as long as the limit is not a root of unity. However, this
can be accomplished for all such α using the methodology of the previous subsection.

In Fig. 6.1 we display the real and imaginary parts of φn for c = 3
4 and different

values of n and |α| = 1, plotted on the unit circle. Note that the first column corre-
sponds to α = 1, i.e. to classical Geronimus polynomials. It is quite evident that for
large n the polynomials (relatively to their maxima) decay very rapidly in part of the
unit circle.

Using the explicit form of the φns that we have just derived, we can compute
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another generating function,

Ψ(t) =

∞∑
n=0

φn(z)tn

=

[
1 +

(2c− 1)α+ z√
(α− z)2 + 4α|c|2z

]
1

2− [α+ z +
√

(α− z)2 + 4α|c|2z]t

+

[
1− (2c− 1)α+ z√

(α− z)2 + 4α|c|2z

]
1

2− [α+ z −
√

(α− z)2 + 4α|c|2z]t

=
1 + (c− 1)αt

1− (α+ z)t+ α(1− |c|2)zt2
.

Another interesting observation is the following. Let us compute explicitly φ∗n.
Since |α| = 1, we have ᾱ = α−1 and

φ∗n(z) =
zn

2

1 +

2c̄− 1

α
+

1

z√(
1

α
− 1

z

)2

+
4|c|2
αz

 1

2n

 1

α
+

1

z
+

√(
1

α
− 1

z

)2

+
4|c|2
αz

n

+
zn

2

1−

2c̄− 1

α
+

1

z√(
1

α
− 1

z

)2

+
4|c|2
αz

 1

2n

 1

α
+

1

z
−

√(
1

α
− 1

z

)2

+
4|c|2
αz

n

= 1
2

[
1 +

(2c̄− 1)z + α√
(α− z)2 + 4α|c|2z

]
1

(2α)n
[α+ z +

√
(α− z)2 + 4α|c|2z]n

+ 1
2

[
1− (2c̄− 1)z + α√

(α− z)2 + 4α|c|2z

]
1

(2α)n
[α+ z −

√
(α− z)2 + 4α|c|2z]n.

Therefore, once we let c = 1, we have αnφ∗n(z) = φn(z), in other words φ∗n is a rotation
of φn. Moreover, for every c ∈ C \ {0} it is true that φ∗n(0) ≡ 1, n ∈ Z+.

Finally, it follows from (2.3) that

φn(αz) = 1
2

[
1 +

2c− 1 + z√
(1− z)2 + 4|c|2z

]{
α[1 + z +

√
(1− z)2 + 4|c|2z]

2

}n

+ 1
2

[
1− 2c− 1 + z√

(1− z)2 + 4|c|2z

]{
α[1 + z −

√
(1− z)2 + 4|c|2z]

2

}n
= αnφ̌n(z),

where φ̌n is the standard Geronimus polynomial. This relation means that the orthog-
onality measure of the polynomials φn is a rotation by parameter α of the orthogonal-
ity measure of Geronimus polynomials. It is very well known that this orthogonality
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measure is supported in an arc of the unit circle and, under certain condition for the
parameter c, the support additionally includes a single pure point (Simon 2005, p. 84).
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