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Abstract

The computation of the linear Schrödinger equation presents substantive
challenges because of the presence of a large parameter. Assuming periodic
boundary conditions, the standard approach to its solution consists of semi-
discretization with a spectral method, followed by an exponential splitting. Our
contention in this paper is that this is sub-optimal. Using other means of semi-
discretization, in particular finite differences or spectral collocation, one obtains
matrices whose commutators are small. This opens up the possibility of using
high-order splittings with arguments made up of nested commutators. In partic-
ular, we introduce a variation on the theme of the classical Zassenhaus splitting
which is time-symmetric and separates powers of the large parameter, rather
than separating powers of the time step.

1 Introduction

Linear Schrödinger equation plays central role in a wide range of applications and
is the fundamental model of quantum mechanics (Griffiths 2004). Its computation
presents many enduring challenges (Jin, Markowich & Sparber 2011) which form the
centrepiece of this paper.

We consider the standard linear Schrödinger equation in one space variable,

iεut = − ε2

2m
uxx − V (x)u, t ≥ 0, x ∈ [−1, 1], (1.1)

where u = u(x, t), given with an initial condition and periodic boundary conditions,
where the potential V is a periodic function of period 2 and ‖V ‖∞ = 1. The important
case of ε = h̄ ≈ 1, 05457168·10−34, the reduced Planck constant , is probably outside the
reach of accurate computation, here we focus on larger, but still exceedingly small,
values of ε. The minute size of ε is a major source of difficulties in the numerical
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discretization of (1.1) because, using naive approach, the very rapid oscillations require
spatial resolution of O(h̄) which, needless to say, is often impractical or, at best,
exceedingly expensive. This is the motivation to pursue alternative approaches, based
in the main on the concept of splittings (Jin et al. 2011, McLachlan & Quispel 2002).

It is important to discuss the assumption on the periodicity of the boundary con-
ditions and of the function V : in many applications of interest the initial condition is
a wave packet – a function which is, to all intents and purposes, zero outside a fairly
small subinterval. The equation being hyperbolic, signals propagate at finite speed,
therefore nothing of much interest happens near the boundaries in long time intervals.
We might impose there either zero Dirichlet or periodic conditions and our choice of
the latter is motivated by the considerably simpler mathematical framework and by
the availability of faster numerical algorithms, due in the main to the fast Fourier
transform (FFT).

In greater generality, the body of ideas in this paper can be extended with little
extra effort to a multivariate linear Schrödinger equation

iεut(x, t) = − ε2

2m
∇u(x, t)− V (x)u(x, t), t ≥ 0, x ∈ [−1, 1]d,

with appropriate periodic boundary conditions. This generalisation is fairly transpar-
ent and, for the sake of simplicity, we consider here just the univariate case.

In the sequel we let ω = 1/ε, thereby rewriting (1.1) in the form

ut(x, t) =
i

2mω
uxx(x, t) + iωV (x)u(x, t). (1.2)

We complement (1.2) with a smooth initial condition at t = 0,

u(x, 0) = φ(x), x ∈ [−1, 1], (1.3)

where φ(−1) = φ(1), and periodic boundary condition at x = ±1,

u(−1, t) = u(1, t), t ≥ 0. (1.4)

The large size of ω causes high oscillations in the solution, rendering standard
numerical methods – whether finite differences, spectral methods or finite elements –
inefficient when solving (1.2). The standard approach which actually works combines
spectral discretization of the space variables with exponential splitting in time (Jin et
al. 2011).

In general, numerical analysis of (1.2) commences with semi-discretization: dis-
cretizing the space variable while retaining the time derivative intact. In other words,
we seek an approximate solution of the equation in a finite-dimensional Hilbert space
H. The new variables are a representation of the solution in this space with respect to
some basis: in the case of finite differences these are the function values on a spatial
grid, for spectral methods these are expansion coefficients with respect to a suitable
orthogonal basis while for finite elements, depending on precise implementation de-
tails, these can be either expansion coefficients in finite-element functions or nodal
values of the solution. In all cases we approximate (1.2) by the homogeneous system
of ordinary differential equations (ODEs)

u′ = (icA + iωB)u, t ≥ 0, u(0) = φ, (1.5)
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where c = (N + 1
2 )2/(2mω), u(t) is a vector, φ is a representation of u(x, 0) with

respect to the same basis, while A and B are (2N + 1) × (2N + 1) matrices. The
reasons for the definition of the scaling factor c will become apparent in the sequel.

The exact solution to that problem is of course known,

u(t) = eit(cA+ωB)φ,

except that direct calculation of the exponential is ineffective for all but minute step-
sizes ∆t > 0, due to the large size of ω.

The main idea in designing effective means to compute the above matrix exponen-
tial are based on the concept of splitting (McLachlan & Quispel 2002). Let τ = i(∆t).
The most ubiquitous is the Strang splitting

eτ(cA+ωB) ≈ e
1
2 τcAeτωBe

1
2 τcA.

We commit above an error of O
(
τ3

)
: such a splitting is said to be of order 2. However,

the order of spatial discretization typically is much larger than 2 – in particular, for
spectral methods the order of convergence is “spectral”: the error decays faster than
a reciprocal of any power of the number of degrees of freedom. It makes absolutely no
sense to couple an exceedingly precise discretization in space with a crude discretiza-
tion in time, and this motivates the quest for higher-order splittings. Typically, such
splittings are of the form

eα1τcAeβ1τωBeα2τcAeβ2τωB · · · eαrτcAeβrτωBeαrτcA · · · eβ2τωBeα2τcAeβ1τωBeα1τcA.
(1.6)

Note a number of features of (1.6). Firstly, it is symmetric: it reads the same from
left or right. This has two important advantages. Such splittings are always of an
even order and they preserve useful structural features of the underlying solution
(Hairer, Lubich & Wanner 2006). Secondly, it separates scales: the argument of each
exponential scales either like ω or like ω−1. This is critical once we wish to evalu-
ate the exponentials to good accuracy using, for example, Krylov subspace methods
(Hochbruck & Lubich 1997).

There are a number of well-known means to obtain splittings (1.6) of higher order.
The most popular is the Yošida device (Yošida 1990). Denote the Strang splitting by
S1(τ ;A,B) and set

S2(τ ;A,B) = S1(α1τ ;A,B)S1((1− 2α1)τ ;A,B)S1(α1τ ;A,B),

where α1 = (1 − 21/3)−1. Then the order of S2 is 4 and it is also symmetric. In
general, letting

Sr+1(τ ;A,B) = Sr(αrτ ;A,B)Sr((1− 2αr)τ ;A,B)Sr(αrτ ;A,B)

with αr = (2− 21/r)−1, r ∈ N, results in a method of order 2(r + 1). In principle, this
allows methods of arbitrarily high order, except that this requires inordinately large
number of terms. Denote the number of individual exponentials in Sr by sr, hence
s1 = 3. It is easy to see that sr+1 = 3sr − 2, because two exponentials with a scaled
A argument can be amalgamated. Therefore sr = 2 · 3r−1 + 1 exponentials for order
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2r: a fairly steep cost, clearly unacceptable once we want to match the high order of
spatial discretization.

Although it is possible to improve the ‘yield’ of (1.6) somewhat, the number of
exponentials imposes significant restriction on order (McLachlan & Quispel 2002).
The reason is another feature of (1.6), namely that the arguments of all exponentials
are scaled matrices A and B. The alternative, using the Baker–Campbell–Hausdorff
formula, leads to arguments which are linear combinations of commutators. The latter
course of action is considered flawed, because commutators tend to be large and so,
in the context of the Schrödiner equation, should be avoided – having large ω is bad
enough! A major point that we strive to make in this paper is that this assertion is
false! Once we choose correctly the space discretization, commutators become small
and we are free to use them in our quest to decrease the number of exponentials in a
splitting.

In Section 2 we present a simple example of a finite difference method which leads
to small commutators. This is followed by a general conditions on finite difference
methods that ensure the consistency of (1.5), while producing small commutators.We
then consider the highest-order finite difference methods supported on the grid: pseu-
dospectral methods which exhibit up to order 2N with 2N + 1 grid points.

Section 3 is devoted to spectral collocation. While the standard spectral semi-
discretization does not generate small commutators, the less familiar spectral colloca-
tion is up to the task.

Having established a framework for splittings that allow for nested commutators
of A and B, in Section 4 we consider a highly effective new splitting algorithm, the
symmetric Zassenhaus formula. This requires fairly technical and tedious algebra,
which we relegate to Appendices A and B.

A word about stability. In all our discussion we assume that c = O(1) for ω � 1,
i.e. that N ∼ ω1/2. In other words, our asymptotic analysis is in the frequency ω,
requiring the dimension of the semi-discretization to grow as ω increases. This is at
odds with classical stability analysis: fixed ω, N → ∞. However, our purpose here
is accuracy, rather than stability. Stability, formally, is assured: both τcA and τB
are, in all our semi-discretizations, skew-Hermitian matrices. Hence so are all their
commutators and their linear combinations. Therefore each component in any of the
splittings considered here is an exponential of a normal matrix (hence, eigenvalue
analysis suffices for stability (Iserles, Munthe-Kaas, Nørsett & Zanna 2000)) which, in
addition, is skew-Hermitian (hence all exponentials are unitary, thus of unit `2 matrix
norm).

2 Finite difference methods

2.1 The BCH formula and splittings

The core of the problem in splitting the exponential function is the fact that, unless
X and Y commute, etXetY 6= et(X+Y ). More specifically

etXetY = eBCH(tX,tY ), BCH(tX, tY ) =
∞∑

m=1

Zm(X, Y )tm, (2.1)
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where

Z1 = X + Y, Z2 = 1
2 [X, Y ], Z3 = 1

12 [X, [X, Y ]]− 1
12 [Y, [X, Y ]],

Z4 = − 1
24 [X, [Y, [X, Y ]]], Z5 = 1

720 ([Y, [Y, [Y, [X, Y ]]]]− [X, [X, [X, [X, Y ]]]])
+ 1

360 ([Y, [X, [X, [X, Y ]]]]− [X, [Y, [Y, [X, Y ]]]]) + 1
120 ([Y, [Y, [X, [X, Y ]]]]

− [X, [X, [Y, [X, Y ]]]])

and so on – this is the famous Baker–Campbell–Hausdorff (BCH) formula (Iserles et
al. 2000, Suzuki 1977).

For our purposes, however, it is useful to replace the BCH formula (2.1) by sym-
metric BCH,

etXetY etX = esBCH(tX,tY ), sBCH(tX, tY ) =
∞∑

m=0

Wm(X, Y )t2m+1, (2.2)

where

W0 = 2X + Y,

W1 = − 1
6 [Y, [X, Y ]]− 1

6 [X, [X, Y ]],
W2 = 7

360 [X, [X, [X, [X, Y ]]]] + 1
360 [Y, [Y, [Y, [X, Y ]]]]− 1

90 [X, [Y, [Y, [X, Y ]]]]
+ 1

45 [Y, [X, [X, [X, Y ]]]] + 1
60 [X, [X, [Y, [X, Y ]]]] + 1

30 [Y, [Y, [X, [X, Y ]]]]

and so on.
Using either (2.1) or (2.2), it is possible to obtain splittings which, for the same

order, require less exponentials than (1.6), at the cost of allowing commutators to
feature in the argument: a familiar splitting of the kind is Yošida’s second method
(Yošida 1990), often used in symplectic approximation of Hamiltonian problems with
partitioned Hamiltonian function. More examples can be found in (McLachlan &
Quispel 2002). Yet, as we have already mentioned, methods for the solution of (1.2)
avoid commutators. The reason is as follows. The matrix A scales like O(1) for ω � 1,
while ωB = O(ω). Therefore, a naive estimate is

‖[
r times︷ ︸︸ ︷

ωB, [ωB, [ωB, . . . , [ωB,A] · · · ]]]‖ ≤ (2ω)r‖B‖r‖A‖ = O(ωr) (2.3)

Assuming that this upper bound is realistic, this seems to indicate that al least some
commutators grow very rapidly with r. The only means at our disposal to counteract
this rapid growth in the size of the commutators is using suitably small time step
τ = ∆t and this analysis seems to indicate the need for τ = O

(
ω−1

)
. This stability

restriction is clearly unacceptable in realistic algorithms, hence the imperative to avoid
commutators.

The main message of this paper is that the above reasoning is flawed, at least for
some semi-discretization methods.

2.2 A simple example

Let N be a sufficiently large natural number. We impose in [−1, 1] an equidistant
mesh on [−1, 1] with spacing ∆x = 1/(N + 1

2 ) and mesh points xk = k/(N + 1
2 ),
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k = −N,−N + 1, . . . , N . We semi-discretize (1.2)–(1.4) on this grid and this yields
the ODEs (1.5), where

u(t) =


u−N (t)

u−N+1(t)
...

uN−1(t)
uN (t)

 ≈


u(x−N , t)
u(x−N+1, t)

...
u(xN−1, t)
u(xN , t)

, φ =


φ(x−N )
φ(x−N )

...
φ(xN−1)
φ(xN )

 .

Both A and B are (2N +1)×(2N +1) matrices. A approximates the second derivative
operator, while B is diagonal, with the values of the periodic function φ at the grid
points along its diagonal,

B =


V−N 0 · · · · · · 0

0 V−N+1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 VN−1 0
0 · · · · · · 0 VN

 (2.4)

where Vk = V (xk).
The simplest example of this state of affairs is the familiar symmetric discretization

of the second derivative,

uxx(x, t) =
1

(∆x)2
[u(x−∆x, t)− 2u(x, t) + u(x + ∆x, t)] +O

(
(∆x)2

)
.

Since (∆x)−2 = (N + 1
2 )2, This results in the circulant

A =



−2 1 0 · · · 1

1 −2 1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . 1

1 · · · 0 1 −2


. (2.5)

Note in passing that iA, iB ∈ su(2N +1), the set of (2N +1)×(2N +1) skew-Hermitian
matrices. Since su(2N +1) is a Lie algebra, a linear space closed under commutation,
we deduce that all their commutators (and their linear combinations) are also skew-
Hermitian. Consequently, as we have already commented by the end of Section 1,
eτ(cA+ωB), all the exponentials in our splittings and all their products are all unitary
matrices.

Note further that, as we have already mentioned, A scales like O(1) for N,ω � 1.
Of greater interest is the constant c = 1/(2mω(∆x)2). We choose N so that c = O(1)
for ω � 1 – this compels us to select N = O

(
ω1/2

)
(i.e., ∆x = O

(
ω−1/2

)
), a choice

which is maintained in the sequel.
According to (2.3), the commutator [ωB,A] should be large since so is ωB. In our

case, however, the upper bound in (2.3) is a gross overestimate: direct computation
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confirms that

([B,A])k,` =


Vk − Vk+1, ` = k + 1 (mod 2N + 1),

Vk+1 − Vk, k = ` + 1 (mod 2N + 1),

0, otherwise

≈


−(∆x)V ′(xk), ` = k + 1 (mod 2N + 1),

(∆x)V ′(xk), k = ` + 1 (mod 2N + 1),

0, otherwise.

Therefore, bearing in mind that ∆x = O
(
ω−1/2

)
, ‖[ωB,A]‖ = O

(
ω1/2

)
. Moreover,

each additional commutation with ωB scales like O
(
ω1/2

)
and, in place of the upper

bound (2.3), we have the estimate

‖[
r times︷ ︸︸ ︷

ωB, [ωB, [ωB, . . . , [ωB,A] · · · ]]]‖ = O
(
ωr/2

)
(2.6)

– the order of magnitude is roughly the square root of what would have been the
size of nested commutators in a general case. This is a crucial observation because
each nested commutator is ultimately multiplied by a power of the time step τ , itself
a small parameter, and this renders commutators small and manageable in practical
computations.

2.3 General finite difference schemes

Is the estimate (2.6) specific to the simple matrix (2.5) or does it extend to other finite
difference schemes?

Let us consider the ODE (1.5), where the matrix B is given by (2.4), while the
elements of A obey

N∑
`=−N

Ak,` =
N∑

`=−N

(`− k)Ak,` =
N∑

`=−N

(`− k)3Ak,` = 0,

N∑
`=−N

(`− k)2Ak,` = 2 (2.7)

for k = −N, . . . , N . (Note that all these conditions are trivially satisfied for A given
by (2.5).) Let v ∈ C3[−1, 1] be periodic and vk = v(xk), k = −N, . . . , N . We thus
have

N−1∑
`=0

Ak,`v` =
N−1∑
`=0

Ak,`[v(xk) + (`− k)∆xv′(xk) + 1
2 (`− k)2(∆x)2v′′(xk)

+ 1
6 (`− k)3(∆x)3v′′′(xk) +O

(
(∆x)4

)
] = v′′(xk) +O

(
(∆x)2

)
,

hence Av approximates v′′ on the grid. Likewise,
N∑

`=−N

(`− k)ηAk,`v` = 2(∆x)v′(xk) +O(∆x) ,

N∑
`=−N

(`− k)2ηAk,`v` = 2v(xk) +O(∆x) .
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Sacrificing spurious generality, we observe that, with periodic boundary conditions,
it makes sense to use the same discretization scheme at every point, ‘wrapping round’
the boundary. In other words, a sensible choice of the matrix A is as a symmetric
circulant,

Ak,` = aN,k−`, (k − `) mod N, k, ` = −N, . . . , N

where aN,−k = aN,k. Thus, for example, for N = 2,

A =


a2,0 a2,1 a2,2 a2,2 a2,1

a2,1 a2,0 a2,1 a2,2 a2,2

a2,2 a2,1 a2,0 a2,1 a2,2

a2,2 a2,2 a2,1 a2,0 a2,1

a2,1 a2,2 a2,2 a2,1 a2,0

 .

Note that, bearing in mind the periodicity of v, each product Av is thus a discrete
convolution and can be computed by FFT in O(N log N) operations. This is im-
portant because, ultimately, the computational expense in forming Krylov subspace
approximations of the matrix exponential reduces to products of the form Av and Bv
and the latter costs just O(N) operations.

The symbol of the Toeplitz matrix A is

aN (z) =
N∑

`=−N

aN,`z
`, z ∈ C.

We have
N∑

`=−N

(`− k)sAk,` =
N∑

`=−N

`saN,`, s ∈ Z+,

and it is a simple to confirm that

N∑
`=−N

aN,` = aN (1),
N∑

`=−N

`aN,` = a′N (1),
N∑

`=−N

`2aN,` = a′N (1) + a′′N (1),

N∑
`=−N

`3aN,` = 2a′N (1) + 3a′′N (1) + a′′′N (1).

Therefore, we can rewrite (2.7) in the form

aN (1) = a′N (1) = 0, a′′N (1) = 2, a′′′N (1) = −6. (2.8)

Lemma 1 Let A and B be (2N +1)× (2N +1) matrices, such that A is a symmetric
circulant, B = diag V and conditions (2.7) (alternatively, (2.8)) are satisfied for every
N � 1. Then

lim
∆x→0

[cA,B]v =
1

2mω
[∂2

x, V ·]v, (2.9)

where V · is the operation of multiplying a function by V .
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Proof By straightforward differentiation, the action of the exact Lie bracket is

[∂2
x, V ·]v = ∂2

x(V v)− V ∂2
xv = V ′′v + 2V ′v′.

On the other hand, given k = −N, . . . , N and bearing in mind our assumption that
c = O(1),

[A,B]k,` = (V` − Vk)aN,k−`, k, ` = −N, . . . , N. (2.10)

Therefore, expanding functions about xk, letting V
(i)
k = V (i)(xk) etc. and using con-

ditions (2.7),

N∑
`=−N

[(∆x)−2A,B]k,`v` =
1

(∆x)2

N∑
`=−N

aN,`Vk−`vk−` −
1

(∆x)2
Vk

N∑
`=−N

aN,`vk−`

=
1

(∆x)2

N∑
`=−N

aN,`[Vk − (∆x)`V ′
k + 1

2 (∆x)2`2V ′′
k − 1

6 (∆x)3`3V ′′′
k ]

× [vk − (∆x)`v′k + 1
2 (∆x)2`2v′′k − 1

6 (∆x)3`3V ′′′
k ]

− 1
(∆x)2

Vk

N∑
`=−N

aN,`[vk − (∆x)`v′k + 1
2 (∆x)2`2v′′k − 1

6 (∆x)3`3V ′′′
k ]

+O
(
(∆x)2

)
= V ′′

k vk + 2V ′
kv′k +O

(
(∆x)2

)
= [∂2

x, V ·]v
x=xk

+O
(
(∆x)2

)
.

This completes the proof. 2

How large is the commutator [B,A]? Here we must distinguish between two strate-
gies, a thread that will run through the sequel of this paper. The first, which we call
semi-finite (SF), is that there exists some s ∈ N so that aN,k = 0 for |k| ≥ s + 1 and
every N – in other words, A is a banded circulant and the bandwidth is bounded as
ω and N become infinite. The second, termed by us the full matrix (FM) strategy, is
when no such finite bandwidth is imposed: typically in that case, the matrix A is full.

In the SF case it follows at once from (2.10) that

|[A,B]k,`| ≤ c̃(∆x), (2.11)

where c̃ = s(∆x)‖V ′‖∞ max|k|≤s |aN,k|/2.
In the FM case, e.g. for pseudospectral methods (Fornberg 1998), we assume addi-

tionally that for every fixed k ∈ N

lim
N→∞

aN,k = ak, such that lim
k→∞

ak = 0. (2.12)

(Recall that aN,−k = aN,k.) Given δ > 0, can can just choose K(δ) so that

|aN,k| ≤
δ

2
, |k| ≥ K(δ), N ≥ |k|.
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In that case, (2.10) and ‖V ‖∞ = 1 imply that

|[A,B]k,`| ≤

{
1
2K(δ)|aN,k−`|‖V ′‖∞∆x, |k − `| ≤ K(δ)− 1,

δ, |k − `| ≥ K(δ),
k, ` = −N, . . . , N.

(2.13)
We will demonstrate in the sequel that the highest-order finite difference choice of

aN,k, as well as the spectral collocation approach of Section 3, result in ak = O
(
k−2

)
in (2.12), therefore K(δ) = dδ−1/2e. Thus, taking δ = (∆x)2/3 results in (2.13) in the
upper bound

|[A,B]|k,`| ≤ c̃(∆x)2/3, k, ` = −N, . . . , N, (2.14)

for some c̃ > 0. Note the difference between (2.11) and (2.14): the price of considerably
higher spatial accuracy is that the commutator is larger – but still considerably smaller
than the naive bound of O(1).

The bounds (2.11) and (2.14) generalize immediately to any nested commutator.

Lemma 2 Let C be a nested commutator in the free Lie algebra generated by A and
B, with r−q occurrences of A and q of ωB, q, r ≥ 1. Then, assuming ∆x = O

(
ω−1/2

)
,

it is true that
‖C‖ ≤ ĉωµq, ω � 1, (2.15)

for some ĉ > 0, where µ = 1/2 and µ = 2/3 in for SF and FM strategies, respectively.

Proof By a trivial extension of our analysis, each A ‘contributes’ O(1), while
each commutation with B ‘contributes’ O((∆x)µ). (2.15) follows at once. 2

2.4 The highest-order scheme

Given any s ∈ N, we wish to approximate the second derivative of f at x by a linear
combination of f(x + k∆x), k = −s, . . . , s.

Proposition 3 The highest-order equispaced approximation to the second derivative
using 2s + 1 function values is

f ′′(x) =
1

(∆x)2

s∑
k=−s

as,kf(x + k∆x) +O
(
(∆x)2s

)
,

where

as,k =


2(−1)k−1s!2

k2(s− k)!(s + k)!
, k 6= 0,

−
∑
` 6=0

as,`, k = 0.
(2.16)

Proof Using the terminology of (Iserles 2008), we wish to find as,k, k = −s, . . . , s,
such that

1
(∆x)2

s∑
k=−s

as,kEk = D2 +O
(
(∆x)2s

)
=

(log E)2

(∆x)2
+O

(
(∆x)2s

)
,
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where D and E are the differential and shift operators, E = e(∆x)D. Since E =
I +O(∆x), this is equivalent to

s∑
k=−s

as,kzk = (log z)2 +O
(
|z − 1|2s+2

)
, z → 1.

Our first conclusion is that
∑s

k=−s as,k = 0, confirming the formula for as,0 in (2.16).
Differentiation and multiplication by z yield

s∑
k=−s

kas,kzk = 2 log z +O
(
|z − 1|2s+1

)
.

Differentiating again and multiplying by zs+1 results in

2s∑
k=0

(k − s)2as,k−sz
k − 2zs = O

(
|z − 1|2s

)
.

We have an (2s)-degree polynomial in z on the left and it can be O
(
|z − 1|2s

)
only if

it is a constant multiple of (1− z)2s,

2s∑
k=0

(k − s)2as,k−sz
k = 2zs + d(z − 1)2s.

Using as,−k = as,k, it is easy, though, to rewrite the left-hand side as

s∑
k=1

k2as,k(zs−k + zs+k),

while the right-hand side is

2zs + d(−1)s

(
2s

s

)
zs + d

2s∑
k=0

(−1)k

(
2s

k

)
zk

= 2zs + d(−1)s

(
2s

s

)
zs + d

s∑
k=1

(−1)s−k

(
2s

s− k

)
(zs−k + zs+k).

Comparing coefficients, we have d = (−1)s−1s!2/(2s)! and (2.16) follows for k 6= 0.
2

Using the Sterling formula, it is trivial to prove that for any fixed k ∈ Z \ {0}

lim
s→∞

2(−1)k−1s!2

k2(s− k)!(s + k)!
=

2(−1)k−1

k2
.

Therefore the bound (2.14) holds in this case.
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Figure 2.1: Finite differences: −θ2 (thick solid line) and as(eiθ) for s = 5, 10, 15
(dash-dot, dash and dot lines, respectively) for θ ∈ [−π, π].

Employing (2.16), we obtain a matrix A with the symbol

as(z) =
∑

k=−s
k 6=0

2(−1)k−1s!2

k2(s− k)!(s + k)!
zk −

∑
k=−s
k 6=0

2(−1)k−1s!2

k2(s− k)!(s + k)!
,

while it follows at once from the order conditions that
s∑

k=−s

as,k cos kθ = −θ2 +O
(
θ2s+2

)
, θ → 0.

Fig. 2.1 displays how well as(eiθ) approximates −θ2 for different values of s ≥ 1,
demonstrating how the increasing order at the origin translates into approximation in
the entire interval [−π, π].

Consequently,

as(eiθ) =
s∑

k=−s

as,k[1− 1
2k2θ2 +O

(
θ4

)
] = −θ2 +O

(
θ2s+2

)
, θ → 0

and it is easy to confirm that (2.8) holds.
In Fig. 2.2 we display the error committed once we approximate the second deriva-

tive of a periodic function by the Nth finite difference scheme (2.16) (i.e., taking
s = N) for three different values of N and for two functions: u(x) = (2 + sinπx)−1

and u(x) = ecos πx. Note that the second function is entire, while the first is meromor-
phic: this explains why the precision is so much higher in the bottom row. However,
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Figure 2.2: The error committed in approximating the second derivative of u(x) =
(2 + sinπx)−1 (top row) and of u(x) = ecos πx by finite differences, using s = N = 10
(left column), s = N = 20 (central column) and s = N = 30 (right column).

the remarkable observation is that in both cases, using just a small number of grid
points, we obtain very good accuracy.

Fig. 2.1 seems to indicate that lims→∞ as(eiθ) = −θ2. To prove this is indeed true,
we recall that as,k

s→∞−→ (−1)k−1/k2 for k 6= 0, therefore

as(eiθ) s→∞−→ F (θ) := 4
∞∑

k=1

(−1)k−1

k2
cos kθ − 4

∞∑
k=1

(−1)k−1

k2

= 4
∞∑

k=1

(−1)k−1

k2
cos kθ − π2

3
.

Note that F (0) = 0. Moreover,

F ′(θ) = 4
∞∑

k=1

(−1)k

k
sin kθ = −4 arctan

sin θ

1 + cos θ
= −2θ.

Therefore indeed F (θ) = −θ2, confirming the observation from Fig. 2.1. Moreover,
since the Euclidean norm of an infinite Toeplitz matrix is the maximum of the modulus
of its symbol over the unit circle, we deduce that for s � 1 it is true that ‖A‖ ≈ π2.
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3 Spectral collocation method

3.1 The method

As we have already mentioned, a spectral method is the most popular means of semi-
discretizing (1.2) (Jin et al. 2011). This results in a diagonal matrix A with Ak,k =
−k2π2/(N + 1

2 )2 and a dense matrix B. Consequently, there is absolutely no reason
for commutators to be small. Fortunately, this is not the case with spectral collocation
(Fornberg 1998). Like in Section 2, we impose in [−1, 1] the grid {xk}N

k=−N and inter-
polate periodic functions there by trigonometric polynomials 1, cos πx, . . . , cos πNx.
It is elementary that the scaled Dirichlet kernel

KN (x) =
1

2N + 1

N∑
k=−N

cos kπx =
sin((N + 1

2 )πx)
(2N + 1) sin( 1

2πx)
(3.1)

obeys

KN (x`) =
{

1, ` = 0,
0, ` 6= 0,

therefore KN (x − xr) is the cardinal function of interpolation at xr and the requi-
site interpolating trigonometric polynomial to a periodic function f is the discrete
convolution

∑N
k=−N f(xk)KN (x − xk). It follows, differentiating (3.1) twice, that

Ak,` = aN,`−k, where

aN,m =
K ′′

N (xm)
(N + 1

2 )2
=


−π2N(N + 1)

2(N + 1
2 )2

, m = 0,

(−1)m+1
π2 cos πm

2N+1

2(N + 1
2 )2 sin2 πm

2N+1

, 1 ≤ |m| ≤ N.

(3.2)

It is trivial to verify that, similarly to the finite-difference case limm→∞ aN,m =
2(−1)m+1/(m2) and ‖A‖ = O(1).

We again define aN (z) =
∑N

k=−N aN,kzk, the symbol of A. A number of symbols,
acting on the unit disc, are displayed in Fig. 3.2 and it can be seen that they also seem
to approximate −θ2. Comparison with Fig. 2.1 is instructive: it seems that, while for
finite differences, aN (eiθ) always lives between the real axis and −θ2, for spectral
collocation it is always underneath −θ2. We do not pursue further this observation in
the current paper, since it is of no relevance to its argument.

It is easy to see that
∑N

`=−N `2s+1aN,` = 0 for every s ∈ Z+ and it is possible to
prove, at considerably greater difficulty, that

∑N
`=−N aN,` = 0. However, computer

simulation indicates that
∑N

`=−N `2aN,` 6= 2, although the difference decays rapidly
with growing N . Therefore we cannot Lemma 1 to argue that, as N →∞, we obtain
the correct Lie bracket. Fortunately, a direct proof of this fact follows from properties
of Dirichlet kernels.

Lemma 4 Let matrices A = (aN,`−k) and B = diag(V (xk)) originate in spectral
collocation, while vk = v(xk) for a periodic v ∈ C2[−1, 1]. Then

lim
∆x→0

[(∆x)−2A,B]v = [∂2
x, V ·]v. (3.3)
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Figure 3.1: The cardinal function K10 and its second derivative K ′′
10, respectively.

Proof Since x`−k = x` − xk and KN is an even function, by direct computation,
for every k = −N, . . . , N ,

[(AB −BA)v]k
(∆x)2

= −
N∑

`=−N

[V (x`)− V (xk)]K ′′
N (xk−`)v(xk)

= − 1
N + 1

2

∫ 1

−1

K ′′
N (xk − x)V (x)v(x) dx

+
V (xk)
N + 1

2

∫ 1

−1

K ′′
N (xk − x)v(x) dx +O(∆x)

= −
∫ 1

−1

D′′N (xk − x)V (x)v(x) dx + V (xk)
∫ 1

−1

D′′N (xk − x)v(x) dx

+O(∆x) ,

where DN = KN/(N + 1
2 ) is the Dirichlet kernel. Integrating by parts, it is immediate

that for any periodic g ∈ C2[−1, 1]∫ 1

−1

D′′N (y − x)g(x) dx =
∫ 1

−1

DN (y − x)g′′(x) dx, y ∈ [−1, 1],

while it is an elementary feature of Dirichlet kernels that

lim
N→∞

∫ 1

−1

DN (y − x)g(x) dx = g(y).
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Figure 3.2: Spectral collocation: −θ2 (thick solid line) and as(eiθ) for s = 5, 10, 15
(dash-dot, dash and dot lines, respectively) for θ ∈ [−π, π].

Therefore
lim

∆x→0
(∆x)−2[A,B]v = −(V v)′′ + V v′′ = [∂2

x, V ·]v.

2

In Fig. 3.3 we display the error of spectral collocation for the same two cases (and
with the same number of grid points) as in Fig. 2.2. The degree of improvement
once we replace finite differences by spectral collocation is startling but should not be
surprising. Large as the order of the finite-difference method (2.16) with s = N might
be, ultimately it cannot compete with spectral convergence!

But how does spectral collocation compare with the ‘real deal’ spectral method?
The latter is nothing but standard Fourier expansion, truncated for modes ≥ |N |+ 1
and differentiated twice, and its error is reported in Fig. 3.4. Remarkably, both errors
are very similar – spectral collocation is somewhat smaller, but this is a fluke. This
is not surprising. The loose phrase ‘accuracy’ refers to L∞[−1, 1] error. A truncated
Fourier expansion is an L2[−1, 1] projection. It is quite good L∞ projection: according
to the Lozinski–Khakskiladze Theorem (Lozinski 1948), a truncated Fourier operator is
the best L∞ linear projection. Specifically, the Lebesgue constant of truncated Fourier
expansion is (2/π) log N + c1, where c1 ∈ R (Fejér 1910). However, the Lebesgue
constant of trigonometric interpolation at equally-spaced points (i.e., of spectral col-
location) is almost as good: it is (2/π)2 log N + c2 for some c2 (Galkin 1971). To all
intents and purposes, spectral collocation is just as good as a conventional spectral
method.

However, once we consider the size of commutators, spectral collocation enjoys
great advantage. Sinc the matrix B is diagonal, with values of V along its diagonal,
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Figure 3.3: The error committed in approximating the second derivative of u(x) =
(2+sin πx)−1 (top row) and of u(x) = ecos πx by spectral collocation using s = N = 10
(left column), s = N = 20 (central column) and s = N = 30 (right column).

Lemma 2 remains valid and the bound (2.15) holds with µ = 2
3 .

4 Multiscale exponential splittings

4.1 Symmetric Zassenhaus splitting

Our point of departure is the linear ODE (1.5), where we assume that ∆x = O
(
ω−1/2

)
and wish to express its solution by approximating eτ(cA+ωB) as a product of simpler
exponentials. However, our definition of ‘simple’ is at odds with the splitting (1.6):
we are perfectly willing to accept arguments which are linear combinations of commu-
tators but insist that each argument scales like a non-negative power of ω. In other
words, we approximate

eτ(cA+ωB) ≈ eωs1U1(τ ;cA,B)eωs2U2(τ ;cA,B) · · · eωsM UM (τ ;cA,B) (4.1)

where τ = i∆t is of small magnitude, for some M ≥ 3 and s1, . . . , sM ∈ Z+. We
further stipulate that (4.1) is symmetric: UM+1−i = Ui for i = 1, 2, . . . ,M .

We commence from the Zassenhaus splitting

eτ(X+Y ) = eτXeτY eτ2V2(X,Y )eτ3V3(X,Y )eτ4V4(X,Y ) · · · , (4.2)



18 A. Iserles & K. Kropielnicka

Figure 3.4: The error committed in approximating the second derivative of u(x) =
(2 + sinπx)−1 (top row) and of u(x) = ecos πx by Fourier series using s = N = 10 (left
column), s = N = 20 (central column) and s = N = 30 (right column).

where

V2(X, Y ) = − 1
2 [X, Y ],

V3(X, Y ) = 1
3 [Y, [X, Y ]] + 1

6 [X, [X, Y ]],
V4(X, Y ) = − 1

24 [X, [X, [X, Y ]]]− 1
8 [Y, [X, [X, Y ]]]− 1

8 [Y, [Y, [X, Y ]]]

(Oteo 1991). However, we make two crucial changes to the splitting (4.2): firstly, we
wish to expand in powers of ω, rather than τ . Secondly, we wish the splitting to be
symmetric. Specifically, given s ∈ N, we seek functions Ri(τ ; cA,B), i = 0, . . . , s − 1
and Qs(τ ; cA,B) such that

eτ(cA+ωB) = eR0(τ ;cA,B)eωR1(τ ;cA,B) · · · eωs−1Rs−1(τ ;cA,B)eωsQs(τ ;cA,B) (4.3)

× eωs−1Rs−1(τ ;cA,B) · · · eωR1(τ ;cA,B)eR0(τ ;cA,B).

This results in the approximate sth symmetric Zassenhaus splitting

eR0(τ ;cA,B)eωR1(τ ;cA,B) · · · eωs−2Rs−2(τ ;cA,B)e2ωs−1Rs−1(τ ;cA,B)eωs−2Rs−2(τ ;cA,B) (4.4)
× · · · eωR1(τ ;cA,B)eR0(τ ;cA,B).

Our next step is an explicit construction of the splitting (4.3).
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4.2 A recursive algorithm

We set
Q0(τ ;A,B) = τcA + τωB.

Given ` ∈ Z+, suppose that we have already obtained Ri(τ ;A,B) for i = 0, . . . , `− 1,
as well as

Q`(τ ;A,B) =
∞∑

m=`

ωmW [`]
m (τ ;A,B)

– thus, W [0]
0 = τcA, W [0]

1 = τB and W [0]
m = O for m ≥ 2. We set

X = − 1
2ω`W [`]

` , Y = Q`

– note that 2X + Y =
∑∞

m=`+1 ωmW [`]
m = O

(
ω`+1

)
.

Recalling the symmetric BCH operator (2.2), we set

R`(τ,A, B) = 1
2ω`W [`]

` , Q`+1(τ ;A,B) = sBCH(X, Y ). (4.5)

Note that R` = O
(
ω`

)
, as required. Since (cf. (2.2))

Q`+1(τ ;A,B) = sBCH(− 1
2ω`W [`]

` , ω`W [`]
` +O

(
ω`+1

)
) = O

(
ω`+1

)
,

it follows that there exist W [`+1]
j , j ≥ ` + 1, such that

Q`+1(τ ;A,B) =
∞∑

j=`+1

ωjW [`+1]
j

and the definition of the recursive step is complete.
In a computation of this kind the devil is in the detail – and there is plenty of detail!

Fortunately, this computation needs be done just once, tabulated and subsequently
used in different implementations of our algorithm (with either finite differences or
spectral collocation). Our main resource is a tabulation of all the commutator terms
in symmetric BCH splitting up to order 19, written in the Hall basis (Murua 2010).
Recall that each term Wm in (2.2) is a linear combination of nested commutators in
the free Lie algebra F over the alphabet {A,B}.1

It is convenient to equip each nested commutator in F with a grade κ ∈ N, namely
the number of ‘letters’ A and B therein – once we replace A and B by τcA and τωB,
this is the same as saying that the term in question is O(τκ). Note that grade is
inherited through commutation: if Z1 and Z2 are of grades κ1 and κ2 respectively,
[Z1, Z2] is of grade κ1 + κ2. Likewise, we say that the girth σ ∈ Z+ of a term is
the number of times B occurs in the term in question. The girth propagates like a
grade, consistently with commutation, but there is a crucial difference. An important
observation, at the heart of many calculations in free Lie algebras (cf. for example
(Iserles et al. 2000)) is that the dimension dκ of the linear space of all grade-κ terms

1The reader will be well advised to bear in mind that, while in (2.2) we expand in powers of t,
our current concern is in an expansion in powers of ω.
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in F is quite small, for example d0 = 0, d1 = 2, d2 = 1, d3 = 2, d4 = 3, d5 = 6, d6 = 9
and d7 = 18. Such terms can be conveniently expressed in terms of a Hall basis, cf.
Table 1 in Appendix A. However, the number of distinct terms of girth ≥ 1 in the
basis is infinite: observe that

[

r times︷ ︸︸ ︷
A, [A, [A, . . . , A, B]]],

of grade r + 1, is of girth 1 for every r ∈ N.
The assembly of the W [`+1]

m is painstaking, yet routine. Essentially, we need to
identify all nested commutators of terms of the form ωjiW [`]

ji
so that the sum of the

jis is m. Thus, for example, for ` = 0 we use Table 1 to calculate

W [1]
1 = W [0]

1 + 1
24 [W [0]

0 , [W [0]
0 ,W [0]

1 ]] + 1
1920 [W [0]

0 , [W [0]
0 , [W [0]

0 , [W [0]
0 ,W [0]

1 ]]]] +O
(
τ7

)
,

W [1]
2 = 1

12 [W [0]
1 , [W [0]

0 ,W [0]
1 ]]− 1

1440 [W [0]
1 , [W [0]

0 , [W [0]
0 , [W [0]

0 ,W [0]
1 ]]]]

− 1
1440 [W [0]

0 , [W [0]
1 , [W [0]

0 , [W [0]
0 ,W [0]

1 ]]]]− 1
720 [W [0]

0 , [W [0]
0 , [W [0]

1 , [W [0]
0 ,W [0]

1 ]]]]

+O
(
τ7

)
,

W [1]
3 = 1

240 [W [0]
1 , [W [0]

1 , [W [0]
0 , [W [0]

0 ,W [0]
1 ]]]]− 1

720 [W [0]
0 , [W [0]

1 , [W [0]
1 , [W [0]

0 ,W [0]
1 ]]]]

− 1
720 [W [0]

0 , [W [0]
1 , [W [0]

1 , [W [0]
0 ,W [0]

1 ]]]]− 1
360 [[W [0]

0 ,W [0]
1 ], [W [0]

1 , [W [0]
0 ,W [0]

1 ]]

+O
(
τ7

)
,

W [1]
4 = − 1

720 [W [0]
1 , [W [0]

1 , [W [0]
1 , [W [0]

0 ,W [0]
1 ]]]] +O

(
τ7

)
,

W [1]
j = O

(
τ7

)
, j ≥ 5,

while for ` = 1,

W [2]
2 = W [1]

2 ,

W [2]
3 = W [1]

3 ,

W [2]
4 = W [1]

4 + 1
24 [[W [1]

2 ,W [1]
1 ],W [1]

1 ], (4.6)

W [2]
5 = W [1]

5 + 1
24 [[W [1]

3 ,W [1]
1 ],W [1]

1 ] + 1
12 [[W [1]

2 ,W [1]
1 ],W [1]

2 ],

W [2]
6 = W [1]

5 + 1
24 [[W [1]

3 ,W [1]
1 ],W [1]

1 ] + 1
12 [[W [1]

2 ,W [1]
1 ],W [1]

2 ]

and so on. Unfortunately, this is not all, because this procedure generates terms which
do not belong to the Hall basis. In that case we express them as linear combinations
of terms in the basis, a fairly straightforward procedure, and we are done.

We present in Appendix B the formulæ for W [`]
j , ` ∈ Z+, given up to O

(
τ9

)
. Note

that, although we have derived the formulæ there by hand, it is perfectly possible to
do so, to an arbitrary odd power of τ , using symbolic algebra.

4.3 The structure of the W [`]
m s

As can be observed from Appendix B, the leading term of each W [`]
m , m ≥ `, scales

like ζ
[`]
m := ωmcr−mτ r, where m is the number of Bs in this term and r is its girth –
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the latter must be odd, because each term in (2.2), due to symmetry, always consist
of an odd number of letters.

Since the leading term, having the least power of τ , is the one of least girth, it is
easy to see that, for ` ≥ 2, it is the same as the girth of the leading term in W [`−1]

m :
this can be seen at once from (4.6) and trivially generalised to all ` ≥ 2, because
the least-girth term is inherited from W [`−1]

m . This implies that ζ
[`]
m = ζ

[`−1]
m and it is

enough to determine ζ
[1]
m .

The leading term in W [1]
m is the least-girth term consisting of exactly m Bs. How-

ever, the only ‘building bricks’ are W [0]
0 = τcA and W [0]

1 = τB. Therefore, least-girth
term contain m occurrences of B and either a single or two occurrences of A, so
that r is odd. In principle, there can be several such terms, but for each we thus have
ζ
[1]
m = ωmcτm+1 when m is even and ζ

[1]
m = ωmc2τm+2 when it is odd. Since ζ

[`]
` = ζ

[1]
` ,

we deduce that for every ` ∈ N it is true that

R`(τ ;A,B) = O
(
ω`c

1
2 [3−(−1)`]τ2b(`+1)/2c+1

)
. (4.7)

The estimate (4.7) is valid regardless of what are the matrices A and B, as long
as they are O(1) in the underlying parameters. However, each term in Q` has at least
` commutations with B, and we know from Subsection 2.3 that, within our setting
(either finite differences or spectral collocation) each such commutation scales the term
in question by ω−1/2 in the SF case and as ∆x → 0, ω−1/3 with the FM strategy.
Therefore, we may replace (4.7) by

R`(τ ; cA,B) =

 O
(
ω`/2c

1
2 [3−(−1)`]τ2b(`+1)/2c+1

)
, Semi-finite strategy,

O
(
ω2`/3c

1
2 [3−(−1)`]τ2b(`+1)/2c+1

)
, Full matrix strategy.

(4.8)
In the SF case R` = O

(
ω`/2τ `+1

)
when ` is even, O

(
ω`/2τ `+2

)
otherwise. There-

fore, we may use ∆t = O
(
ω−1/2

)
, of the same order of magnitude as ∆x. In the

FM case we have R` = O
(
ω2`/3τ `+1

)
and R` = O

(
ω2`/3τ `+2

)
for even and odd `,

respectively. Therefore, the restriction on the time step is somewhat more stringent,
∆t = O

(
ω−2/3

)
= O

(
(∆x)4/3

)
.

5 Conclusions

We have considered in this paper two families of spatial discretizations of the linear
Schrödinger equation which share the feature that the commutators of the matrices
corresponding to the ‘derivative’ and ‘function multiplication’ operators are small.
Such schemes can be applied in either the SF strategy, which keeps the spatial order
bounded as ∆x → 0 or the FM strategy, whereby the order may become infinite or
even the convergence might proceed at spectral speed.

The relatively modest size of the commutators allows for the use of splittings
that incorporate commutators, and this motivated our introduction of the symmetric
Zassenhaus splitting. It allowed us to separate scales, since each argument in the
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splitting scales like a power of ω. Practical implementation of this splitting requires
∆t ∼ ∆x in the SF case and ∆t ∼ (∆x)4/3 in the FM case.

This is a preliminary study into this subject matter and the authors are fully aware
that this paper opens just as many questions as it purports to answer. In particular,
the following issues are of an interest:

1. SF or FM? Most numerical analysts, other things being equal, would prefer
the FM strategy, in particular in the case of spectral collocation, since it leads
to spectral convergence. (Note that the cost of underlying linear algebra, as
long as we compute exponentials with Krylov subspace methods, is essentially
the same, once we use FFT.) However, things are not equal! The SF strategy
allowed for larger time step and, given that the time discretization is invariably
of restricted order, arguably this offsets the improved spatial accuracy of FM.
This, however, is an issue that can be completely resolved only upon extensive
numerical experimentation.

2. How to implement the Zassenhaus splitting? The standard means to compute
eCv, where v ∈ C2N+1 and C ∈ su(2N + 1) is a Krylov subspace method
(Hochbruck & Lubich 1997). To this end we need to compute recursively
w1 := Cv, w2 := C2v = Cw1 etc. In our case each C is a linear combina-
tion of nested commutators of A and B, hence each product can be reduced to
FFTs (multiplying the circulant A by a vector), at the expense of O(N log N)
operations, and to products of a diagonal matrix B by a vector, at the cost
of O(N) operations. It is easy to observe, though, that some operations are
repeated and the task here is to group them together so as to minimize the cost.

As an example, consider the first few terms of W [1]
1 and W [1]

2 . On the face of it,
we need 33 matrix-vector products to evaluate(

τB +
1
24

τ3c2[[B,A], A]
)

v and
1
12

τ3c[[B,A], B]v.

However, let

zA = Av, zB = Bv, zAA = AzA, zBA = BzA, zAB = AzB

etc. Then(
τB +

1
24

τ3c2[[B,A], A]
)

v = zB +
τ3c2

24
(zBAA − 2zABA + zAAB),

1
12

τ3c[[B,A], B]v = −τ3c

12
(zABB − 2zBAB + zBBA),

at the cost of just 12 matrix-vector products. Further economies might be possi-
ble by aggregating terms, similarly to the design of optimal Magnus integrators
in (Blanes, Casas & Ros 2002).

Another issue for future exploration is an efficient choice of dimensions for Krylov
subspace methods. Such methods approximate a product of a matrix exponential
and a vector by projecting it into a finite-dimensional subspace of C2N+1. In
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the case of exponentials originating in the symmetric Zassenhaus splitting (4.4),
different exponentials are multiplied by different powers of the large parameter ω.
Given that the arguments are skew-Hermitian, this means that the exponentials
rotate at different speeds: essentially, (4.4) separates scales. This has clear
implications to the choice of dimension of the finite-dimensional space onto which
we should project these exponentials. Clearly, good choice of dimension is ω-
dependent but precise dependency is unknown.

3. Nonlinear Schrödinger and other equations. The phenomenon of small commu-
tators persists once (1.1) is replaced by

ih̄ut = − h̄2

2m
uxx − V (x, u), t ≥ 0, x ∈ [−1, 1], (5.1)

with appropriate initial and periodic boundary conditions and with potential
V ( · , u) of period 2 – the nonlinear Schrödinger equation (NLS). On the face
of it, our methodology can be extended to this setting with nonlinear algebraic
equations solved in the usual way, by iteration. However, although much re-
mains to be done to understand the analytic structure of NLS, enough is known
to impose a raft of additional requirements on the numerical solution (Jin et al.
2011). Such requirements depend on the potential, but also on different possi-
ble applications of (5.1). Serious investigation of our methodology in the NLS
context must address these highly nontrivial issues.

With greater generality, our approach makes sense for a raft of equations of the
form

ut = Lu + ωf(x, t, u) or utt = Lu + ωf(x, t, u),

where L is a spatial linear differential operator and ω � 1, e.g. the nonlinear
Klein–Gordon equation

utt = ∇2u + ωf(u).

However, again, much further analysis is necessary.
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Table 1:

j Nested commutator χj girth grade

1 A 1 0 1
2 B 1 1 1
3 [B,A] 0 1 2
4 [[B,A], A] − 1

24 1 3
5 [[B,A], B] − 1

12 2 3
6 [[[B,A], A], A] 0 1 4
7 [[[B,A], A], B] 0 2 4
8 [[[B,A], B], B] 0 3 4
9 [[[[B,A], A], A], A] 7

5760 1 5
10 [[[[B,A], A], A], B] 7

1440 2 5
11 [[[[B,A], A], B], B] 1

180 3 5
12 [[[[B,A], B], B], B] 1

720 4 5
13 [[[B,A], A], [B,A]] 1

480 2 5
14 [[[B,A], B], [B,A]] − 1

360 3 5
15 [[[[[B,A], A], A], A], A] 0 1 6
16 [[[[[B,A], A], A], A], B] 0 2 6
17 [[[[[B,A], A], A], B], B] 0 3 6
18 [[[[[B,A], A], B], B], B] 0 4 6
19 [[[[[B,A], B], B], B], B] 0 5 6
20 [[[[B,A], A], A], [B,A]] 0 2 6
21 [[[[B,A], A], B], [B,A]] 0 3 6
22 [[[[B,A], B], B], [B,A]] 0 4 6
23 [[[B,A], B], [[B,A], A]] 0 3 6
24 [[[[[[B,A], A], A], A], A], A] − 31

967680 1 7
25 [[[[[[B,A], A], A], A], A], B] − 31

161280 2 7
26 [[[[[[B,A], A], A], A], B], B] − 13

30240 3 7
27 [[[[[[B,A], A], A], B], B], B] − 53

120960 4 7
28 [[[[[[B,A], A], B], B], B], B] − 1

5040 5 7
29 [[[[[[B,A], B], B], B], B], B] − 1

30240 6 7
30 [[[[[B,A], A], A], A], [B,A]] − 53

161280 2 7
31 [[[[[B,A], A], A], B], [B,A]] − 11

12096 3 7
32 [[[[[B,A], A], B], B], [B,A]] − 3

4480 4 7

A The Hall basis of F
We display in Table 1 the terms in the Hall basis of the free Lie algebra F up to grade
7, grouped by grade.
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Table 1 (contd)

j Nested commutator χj girth grade

33 [[[[[B,A], B], B], B], [B,A]] − 1
10080 5 7

34 [[[[B,A], A], [B,A]], [B,A]] − 1
4032 3 7

35 [[[[B,A], B], [B,A]], [B,A]] − 1
6720 4 7

36 [[[[B,A], A], A], [[B,A], A]] − 19
80640 2 7

37 [[[[B,A], A], B], [[B,A], A]] − 1
10080 3 7

38 [[[[B,A], B], B], [[B,A], A]] 17
40320 4 7

39 [[[[B,A], A], A], [[B,A], B]] − 53
60480 3 7

40 [[[[B,A], A], B], [[B,A], B]] − 19
13440 4 7

41 [[[[B,A], B], B], [[B,A], B]] − 1
5040 5 7

Here χj is the coefficient of the jth term in the symmetric BCH expansion (2.2) –
note that the coefficients of even-grade terms are nil, consistently with the expansion
being an odd function of τ .

B The coefficients W [`]
m

We tabulate the coefficients W [`]
m (τ, cA,B) which are required in the construction of

the symmetric Zassenhaus splitting (4.4). All the terms are presented up to an error
of O

(
τ9

)
. Note that, thanks to the symmetric BCH expansion (2.2) being odd in t,

only odd powers of t are present in the W [`]
m s.

B.1 ` = 0

W [0]
0 = τcA,

W [0]
1 = τB.

B.2 ` = 1

W [1]
1 = τB +

1
24

τ3c2[[B,A], A] +
1

1920
τ5c4[[[[B,A], A], A], A]

+
1

322560
τ7c6[[[[[[B,A], A], A], A], A], A] +O

(
τ9

)
,
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W [1]
2 =

1
12

τ3c[[B,A], B]− τ5c3

(
1

1440
[[[[B,A], A], A], B] +

1
1440

[[[[B,A], A], B], A]

+
1

720
[[[[B,A], B], A], A]

)
+ τ7c5

(
17

483840
[[[[[[B,A], A], A], A], A], B]

− 19
120960

[[[[[[B,A], A], A], A], B], A] +
11

40320
[[[[[[B,A], A], A], B, A], A]

− 1
6048

[[[[[[B,A], A], B], A], A], A] +
1

30240
[[[[[[B,A], B], A], A], A], A]

− 1
96768

[[[[[B,A], A], A], A], [B,A]] +
13

241920
[[[[B,A], A], A], [[B,A], A]]

)
+O

(
τ9

)
,

W [1]
3 = τ5c2

(
1

240
[[[[B,A], A], B], B]− 1

720
[[[[B,A], A], A], B]− 1

720
[[[[B,A], B], B], A]

− 1
360

[[[B,A], B], [B,A]]
)

+ τ7c4

(
− 19

120960
[[[[[[B,A], A], A], A], B], B]

+
11

40320
[[[[[[B,A], A], A], B], A], B] +

11
40320

[[[[[[B,A], A], A], B], B], A]

− 1
6048

[[[[[[B,A], A], B], A], A], B]− 1
6048

[[[[[[B,A], A], B], A], B], A]

− 1
6048

[[[[[[B,A], A], B], B], A], A] +
1

30240
[[[[[[B,A], B], A], A], A], B]

+
1

30240
[[[[[[B,A], B], A], A], B], A] +

1
30240

[[[[[[B,A], B], A], B], A], A]

− 41
120960

[[[[[B,A], A], A], B], [B,A]] +
23

40320
[[[[[B,A], A], A], A], [B,A]]

− 1
10080

[[[[[B,A], A], A], A], [B,A]] +
1

6720
[[[[B,A], A], [B,A]], [B,A]]

+
1

1440
[[[[B,A], A], B], [[B,A], A]]− 5

8064
[[[[B,A], A], A], [[B,A], A]]

+
41

120960
[[[[B,A], A], A], [[B,A], A]]

)
+O

(
τ9

)
,
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W [1]
4 = − 1

720
τ5c[[[[B,A], B], B], B] + τ7c3

(
11

40320
[[[[[[B,A], A], A], B], B], B]

− 1
6048

[[[[[[B,A], A], B], A], B], B]− 1
6048

[[[[[[B,A], A], B], B], A], A]

− 1
6048

[[[[[[B,A], A], B], B], B], A] +
1

30240
[[[[[[B,A], B], A], A], B], A]

+
1

30240
[[[[[[B,A], B], A], B], A], B] +

1
30240

[[[[[[B,A], B], A], B], B], A]

+
1

30240
[[[[[[B,A], B], B], A], A], B] +

1
30240

[[[[[[B,A], B], B], A], B], A]

+
1

30240
[[[[[[B,A], B], B], B], A], A] +

23
40320

[[[[[B,A], A], B], B], [B,A]]

− 1
10080

[[[[[B,A], B], A], B], [B,A]]− 1
10080

[[[[[B,A], B], B], A], [B,A]]

+
1

6720
[[[[B,A], B], [B,A]], [B,A]]− 17

40320
[[[[B,A], B], B], [[B,A], A]]

+
7

5760
[[[[B,A], A], B], [[B,A], B]]− 1

5040
[[[[B,A], B], A], [[B,A], B]]

)
+O

(
τ9

)
,

W [1]
5 = τ7c2

(
− 1

6048
[[[[[[B,A], A], B], B], B], B] +

1
30240

[[[[[[B,A], B], A], B], B], B]

+
1

30240
[[[[[[B,A], B], B], A], B], B] +

1
30240

[[[[[[B,A], B], B], B], A], B]

+
1

30240
[[[[[[B,A], B], B], B], B], A]− 1

10080
[[[[[B,A], B], B], B], [B,A]]

− 1
5040

[[[[B,A], B], B], [[B,A], B]]
)

+O
(
τ9

)
,

W [1]
6 =

1
30240

τ7c[[[[[[B,A], B], B], B], B], B] +O
(
τ9

)
,

W [1]
m = O

(
τ9

)
, m ≥ 7.
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B.3 ` = 2

W [2]
2 =

1
2
τ3c[[B,A], B] + τ5c3

(
− 1

1440
[[[[B,A], A], A], B]− 1

1440
[[[[B,A], A], B], A]

− 1
720

[[[[B,A], B], A], A]
)

+ τ7c5

(
17

483840
[[[[[[B,A], A], A], A], A], B]

− 19
120960

[[[[[[B,A], A], A], A], B], A] +
11

40320
[[[[[[B,A], A], A], B], A], A]

− 1
6048

[[[[[[B,A], A], B], A], A], A] +
1

30240
[[[[[[B,A], B], A], A], A], A]

− 1
96768

[[[[[B,A], A], A], A], [B,A]] +
13

241920
[[[[B,A], A], A], [[B,A], A]]

)
+O

(
τ9

)
;

W [2]
3 = τ5c2

(
1

240
[[[[B,A], A], B], B]− 1

720
[[[[B,A], A], A], B]− 1

720
[[[[B,A], B], B], A]

− 1
360

[[[B,A], B], [B,A]]
)

+ τ7c4

(
− 19

120960
[[[[[[B,A], A], A], A], B], B]

+
11

40320
[[[[[[B,A], A], A], B], A], B] +

11
40320

[[[[[[B,A], A], A], B], B], A]

− 1
6048

[[[[[[B,A], A], B], A], A], B]− 1
6048

[[[[[[B,A], A], B], A], B], A]

− 1
6048

[[[[[[B,A], A], B], B], A], A] +
1

30240
[[[[[[B,A], B], A], A], A], B]

+
1

30240
[[[[[[B,A], B], A], A], B], A] +

1
30240

[[[[[[B,A], B], A], B], A], A]

− 41
120960

[[[[[B,A], A], A], B], [B,A]] +
23

40320
[[[[[B,A], A], A], A], [B,A]]

− 1
10080

[[[[[B,A], A], A], A], [B,A]] +
1

6720
[[[[B,A], A], [B,A]], [B,A]]

+
1

1440
[[[[B,A], A], B], [[B,A], A]]− 5

8064
[[[[B,A], A], A], [[B,A], A]]

+
41

120960
[[[[B,A], A], A], [[B,A], A]]

)
+O

(
τ9

)
,
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W [2]
4 =

1
480

τ5c[[[[B,A], B], B], B] + τ7c3

(
59

241920
[[[[[[B,A], A], A], B], B], B]

− 47
241920

[[[[[[B,A], A], B], A], B], B]− 1
6048

[[[[[[B,A], A]B], B], A], B]

− 1
6048

[[[[[[B,A], A], B], B], B], A]− 1
40320

[[[[[[B,A], B], A], A], B], B]

+
1

30240
[[[[[[B,A], B], A], B], A], B] +

1
30240

[[[[[[B,A], B], B], A], B], A]

+
1

30240
[[[[[[B,A], B], B], A], A], B] +

1
30240

[[[[[[B,A], B], B], A], B], A]

+
1

30240
[[[[[[B,A], B], B], B], A], A] +

23
40320

[[[[[B,A], A], B], B], [B,A]]

− 1
10080

[[[[[B,A], B], A], B], [B,A]]− 1
10080

[[[[[B,A], B], B], A], [B,A]]

+
1

6720
[[[[B,A], B], [B,A]], [B,A]]− 67

241920
[[[[B,A], B], B], [[B,A], A]]

− 13
5760

[[[[B,A], A], B], [[B,A], B]]− 1
5040

[[[[B,A], B], A], [[B,A], B]]
)

+O
(
τ9

)
;

W [2]
5 = τ7c2

(
1

120960
[[[[[[B,A], A], B], B], B], B]− 1

40320
[[[[[[B,A], B], A], B], B], B]

− 1
40320

[[[[[[B,A], B], B], A], B], B] +
1

30240
[[[[[[B,A], B], B], B], A], B]

+
1

30240
[[[[[[B,A], B], B], B], B], A]− 1

10080
[[[[[B,A], B], B], B], [B,A]]

+
23

60480
[[[[B,A], B], B], [[B,A], B]]− 1

8640
[[[[[B,A], B], [B,A]], B], B]

)
+O

(
τ9

)
;

W [2]
6 =

1
53760

τ7c[[[[[[B,A], B], B], B], B], B] +O
(
τ9

)
,

W [2]
m = O

(
τ9

)
, m ≥ 7.
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B.4 ` = 3

W [3]
3 = τ5c2

(
1

240
[[[[B,A], A], B], B]− 1

720
[[[[B,A], B], A], B]− 1

720
[[[[B,A], B], B], A]

− 1
360

[[[[B,A], B]], [B,A]]
)

+ τ7c4

(
− 19

120960
[[[[[[B,A], A], A], A], B], B]

+
11

40320
[[[[[[B,A], A], A], B], A], B] +

11
40320

[[[[[[B,A], A], A], B], B], A]

− 1
6048

[[[[[[B,A], A], B], A], A], B]− 1
6048

[[[[[[B,A], A], B], A], B], A]

− 1
6048

[[[[[[B,A], A], B], B], A], A] +
1

30240
[[[[[[B,A], B], A], A], A], B]

+
1

30240
[[[[[[B,A], B], A], A], B], A] +

1
30240

[[[[[[B,A], A], A], B], A], A]

+
1

30240
[[[[[[B,A], B], B], A], A], A]− 41

120960
[[[[[B,A], A], A], B], [B,A]]

+
23

40320
[[[[[B,A], A], B], A], [B,A]]− 1

10080
[[[[[B,A], B], A], A], [B,A]]

+
1

6720
[[[[B,A], A], [B,A]], [B,A]] +

1
1440

[[[[B,A], A], B], [[B,A], A]]

− 5
8064

[[[[B,A], B], A], [[B,A], A]] +
41

120960
[[[[B,A], A], A], [[B,A], B]]

)
+O

(
τ9

)
,

W [3]
4 =

τ5c

480
[[[[B,A], B], B], B] + τ7c3

(
59

241920
[[[[[[B,A], A], A], B], B], B]

− 47
241920

[[[[[[B,A], A], B], A], B], B]− 1
6048

[[[[[[B,A], A], B], B], A], B]

− 1
6048

[[[[[[B,A], A], B], B], B], A]− 1
40320

[[[[[[B,A], B], A], A], B], B]

+
1

30240
[[[[[[B,A], B], A], B], A], B] +

1
30240

[[[[[[B,A], B], A], B], B], A]

+
1

30240
[[[[[[B,A], B], B], A], A], B] +

1
30240

[[[[[[B,A], B], B], A], B], A]

+
1

30240
[[[[[[B,A], B], B], B], A], A] +

23
40320

[[[[[B,A], A], B], B], [B,A]]

− 1
10080

[[[[[B,A], B], A], B], [B,A]]− 1
10080

[[[[[B,A], B], B], A], [B,A]]

+
1

6720
[[[[B,A], B], [B,A]], [B,A]]− 67

241920
[[[[B,A], B], B], [[B,A], A]]

− 13
5760

[[[[B,A], A], B], [[B,A], B]]− 1
5040

[[[[B,A], B], A], [[B,A], B]]
)

+O
(
τ9

)
,
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W [3]
5 = τ7c2

(
1

120960
[[[[[[B,A], A], B], B], B], B]− 1

40320
[[[[[[B,A], B], A], B], B], B]

− 1
40320

[[[[[[B,A], B], B], A], B], B] +
1

30240
[[[[[[B,A], B], B], B], A], B]

+
1

30240
[[[[[[B,A], B], B], B], B], A]− 13

60480
[[[[[B,A], B], B], B], [B,A]]

+
1

3780
[[[[B,A], B], B], [[B,A], B]]

)
+O

(
τ9

)
.

W [3]
6 =

1
53760

τ7c[[[[[[B,A], B], B], B], B], B] +O
(
τ9

)
,

W [3]
m = O

(
τ9

)
, m ≥ 7.

B.5 ` ≥ 4

We now have

W [4]
m = W [3]

m +O
(
τ9

)
, m = 4, 5, 6, W [4]

m = O
(
τ9

)
, m ≥ 7,

W [5]
m = W [4]

m +O
(
τ9

)
, m = 5, 6, W [5]

m = O
(
τ9

)
, m ≥ 7,

W [6]
6 = W [5]

6 +O
(
τ9

)
, W [6]

m = O
(
τ9

)
, m ≥ 7

W [`]
m = O

(
τ9

)
, `, m ≥ 7.


