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The Lagrange method and SAO with bounds

on the dual variables1
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Abstract: We consider the minimization of f0(x), x∈Rn, subject to fj(x) = 0,
1≤j≤m′, fj(x)≤0, m′+1≤j≤m and x∈X , where X is compact. For any λ∈Rm,
let x(λ) be a minimizer of the Lagrange function L(x, λ) = f0(x)+Σm

j=1λjfj(x),
x∈X , and let φ be the dual function φ(λ)=L(x(λ), λ), λ∈Rm. Assuming only
that the functions fj are continuous, it has been proved that, if x(λ) is unique,
then φ has the derivatives dφ(λ)/dλj =fj(x(λ)), 1≤j≤m. Thus we deduce that,
if φ(λ∗) is the greatest value of φ(λ), λ∈Rm, subject to λj ≥ 0, m′+1≤ j ≤m,
and if x(λ∗) is unique, then x=x(λ∗) is the solution of the given problem. These
properties are illustrated by an example with n = 2 and m′ = m = 1. The given
problem may have no feasible point, however, and then φ may not be bounded
above. Therefore the bounded dual method adds the condition ‖λ‖∞≤Λ for some
prescribed Λ>0, and we let λ∗ be the new maximizer of φ. We find that, if x(λ∗)
is unique, then now it minimizes the function Ψ(x), x ∈ X , which is f0(x) plus
Λ times the sum of moduli of constraint violations at x. The term SAO stands for
Sequential Approximate Optimization. An outermost iteration makes quadratic
approximations to the functions fj , 0≤ j ≤m, with first order accuracy at x(k),
say, where k is the iteration number. Then, using the approximations instead
of the original functions, the bounded dual method is applied, giving a new λ∗

and a unique x(λ∗). The choice of x(k+1) can depend on Ψ(x(k)) and on the new
Ψ(x(λ∗)). Thus our theory suggests some useful developments of SAO.
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1. Introduction

We consider the minimization of f0(x), x∈Rn, subject to the constraints

fj(x) = 0, j =1, 2, . . . ,m′,

fj(x) ≤ 0, j =m′+1, . . . ,m,

and x∈X .





(1.1)

We call this problem NLP. The integers m′ and m−m′ are nonnegative, the number
of equality and inequality constraints being zero in the cases m′ =0 and m′ =m,
respectively. The objective and constraint functions are assumed to be continuous.
The set X is required to be bounded and closed. Thus, for every vector λ in Rm,
the Lagrange function

L(x, λ) = f0(x) +
∑m

j=1 λj fj(x), x∈X , (1.2)

attains its least value at a point in X , say x = x(λ), which need not be unique.
We employ the notation

φ(λ) = L(x(λ), λ) = min {L(x, λ) : x∈X}, λ∈Rm, (1.3)

for the “dual function” of NLP.
Let x∗ be a solution of NLP, and let J ∗ be the set of indices of the constraints

that are active at x∗, which means that the integer j from [1,m] is in J ∗ if and
only if fj(x

∗) is zero. It is well known that, if x∗ is an interior point of X , if
the given functions are continuously differentiable, and if the gradients ∇fj(x

∗),
j ∈J ∗, are linearly independent, then there exist unique multipliers λ∗

j , j ∈J ∗,
such that the equation

∇f0(x
∗) +

∑
j∈J ∗ λ∗

j ∇fj(x
∗) = ∇f0(x

∗) +
∑m

j=1 λ∗
j ∇fj(x

∗) = 0 (1.4)

holds, the numbers λ∗
j , j ∈ [1,m]\J ∗ being set to zero. Hence the definition

(1.2) implies that L(x, λ∗), x ∈ X , is stationary at x = x∗. Furthermore, if the
given functions are twice continuously differentiable, and if conditions for second
order sufficiency are satisfied at x∗, then x∗ can become a strict local minimum of
L(x, λ∗), x∈X , by modifying f0 if necessary. The modification adds sufficiently
large multiples of squares of the functions fj, j∈J ∗, to f0. Hence, as described in
Fletcher (1987) and in Nocedal and Wright (1999), for instance, the augmented
Lagrangian method attempts to calculate a solution of NLP by minimizing the
function L(x, λ), x ∈ X , for a sequence of vectors λ ∈ Rm that is designed to
converge to λ∗.

The convergence of λ to λ∗ may be achieved by seeking the greatest value
of the dual function (1.3). Justifying this statement is straightforward in the
case m′ =m, after the augmentation of the previous paragraph has provided the
property x∗=x(λ∗). Indeed, the definition (1.3) supplies the upper bound

φ(λ) = L(x(λ), λ) ≤ L(x∗, λ) = L(x∗, λ∗) = φ(λ∗), λ∈Rm, (1.5)
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on the dual function, the equation L(x∗, λ) = L(x∗, λ∗) being due to fj(x
∗) = 0,

j =1, 2, . . . ,m. The concavity of φ(λ), λ∈Rm, is established in Bazaraa, Sherali
and Shetty (2006). It is also usual to seek the maximum of φ(λ) in the case
m′ < m, but now the multipliers λj, m′+1≤ j ≤m, of the inequality constraints
should be nonnegative, in accordance with first order conditions for optimality.

SAO methods employ the functions (1.2) and (1.3), the name being an acronym
for Sequential Approximate Optimization. They generate a sequence of NLPs,
where an outermost iteration adjusts the functions fj , j =0, 1, . . . ,m, and where
an optimization algorithm tries to find the solution of each NLP. Further, as in
Groenwold and Etman (2008) and in Groenwold, Etman and Wood (2010), a
technique crucial to efficiency is to require every fj, j = 0, 1, . . . ,m, to have the
separable form

fj(x) =
∑n

i=1 gji(xi), x∈Rn, (1.6)

each gji being a function of only one variable. Also the condition x∈X is restricted
to the simple bounds

ℓi ≤ xi ≤ ui, i=1, 2, . . . , n, (1.7)

the values of ℓi and ui being prescribed. Then x(λ) minimizes the Lagrange
function (1.2) if and only if its components xi(λ), i = 1, 2, . . . , n, minimize the
functions of one variable

g0i(x) +
∑m

j=1 λj gji(x), ℓi ≤ x ≤ ui, i=1, 2, . . . , n. (1.8)

Thus the calculation of x(λ) becomes much easier than usual, which allows n to
be very large. A recent review of these techniques is given by Etman, Groenwold
and Rooda (2011).

Let a search for the maximum of φ(λ) yield a sequence of vectors λ, either in
the augmented Lagrangian or in an SAO method. If the corresponding vectors
x(λ) fail to have a limit that satisfies the constraints of NLP, then the augmented
Lagrangian method adds more multiples of squares of constraint functions to f0,
which may be combined with the adjustment of λ. In the SAO method mentioned
above, however, such additions are unacceptable, because f0 would lose the sepa-
rability property (1.6). Instead the outermost iteration makes suitable changes to
the functions fj, j =0, 1, . . . ,m. For example, when these functions are quadratic
with diagonal second derivative matrices, the diagonal elements of ∇2f0 may be
increased.

Good reasons for studying the dual function (1.3) have been mentioned, but
there may be no multipliers λ∗∈Rm such that x(λ∗) is a solution of NLP. Because
a search for the greatest value of φ(λ) may cause λ to become unbounded, the
“bounded dual” method of Wood, Groenwold and Etman (2011) confines λ to the
set L, where λ∈Rm is in L if and only if its components satisfy the conditions

−Λ ≤ λj ≤ Λ, j =1, 2, . . . ,m′,

0 ≤ λj ≤ Λ, j =m′+1, . . . ,m,

}

(1.9)
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the number Λ being a prescribed positive constant. Usually the maximization of
φ(λ), λ∈L, supplies a vector x(λ) that is useful for the adjustment of the functions
fj , j = 0, 1, . . . ,m, on each outermost iteration of SAO. Therefore the author
investigated properties of x(λ), λ ∈ L, and φ(λ), λ ∈ L, during a very pleasant
visit to the University of Stellenbosch early in 2011, where he was introduced to
SAO methods by Albert Groenwold.

In the theoretical analysis at Stellenbosch, the author assumed differentiablity
of the functions fj , j =0, 1, . . . ,m, but instead he found later that is is sufficient
to assume only that these functions are continuous. By removing the unnecessary
assumptions, his proofs became much shorter than before. Discussions of this
work with some experts in optimization suggested that the shorter proofs may be
new, so they were included in a submission to the journal Optimization Methods
and Software, which captured the attention of Oleg Burdakov, who recommended
a study of Chapter 6 of the book by Bazaara et al (2006).

That chapter includes proofs of the concavity and the differentiability of the
dual function that are the same as the shorter proofs of the author. The differ-
entiability result is that, if λ∈Rm is such that x(λ) is unique in equation (1.3),
then the dual function has the derivatives

dφ(λ) / dλj = fj(x(λ)), j =1, 2, . . . ,m. (1.10)

After addressing the continuity of φ(λ), λ ∈ Rm, these properties are stated as
theorems in Section 2, the author’s proofs being replaced by references to Bazaraa
et al (2006). We note too in Section 2 that, if λ∗ is a λ that maximizes φ(λ),
λ∈Rm, subject to λj ≥ 0, j =m′+1, . . . ,m, and if x(λ∗) is unique, then x(λ∗) is
the unique solution of NLP. One advantage of the generality of the compact set
X in NLP is that it allows integer constraints on the variables.

The bounds (1.9) provide the setting of Section 3. We let λ† be a vector that
maximizes φ(λ), λ∈L. It is proved that, if x(λ†) is unique, then x(λ†) is also the
unique vector in X that minimizes the function

Ψ(x) = f0(x) + Λ
m′∑

j=1

| fj(x) | + Λ
m∑

j=m′+1

max [ 0, fj(x) ], x∈X . (1.11)

Gill and Robinson (2010) establish a similar relation between the “bounded dual”
method and the treatment of general constraints by penalty terms, when the
functions fj, j =0, 1, . . . ,m, are differentiable. These properties are useful not only
when moderate or small values of Λ are of interest but also when the constraints
(1.1) of NLP are inconsistent.

Section 4 presents an example, which illustrates the theory of Section 2, and
which demonstrates that every x(λ) may be far from a solution of NLP. It is
explained in Section 5, however, that a solution to the example of Section 4 can
be calculated by seeking local minima of L(x, λ), x∈X , instead of global minima.
Also in Section 5, we address briefly some details of “bounded dual” SAO methods
when first derivatives are available, giving particular attention to the usefulness
of the function (1.11).
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2. The continuity, concavity and differentiability of the dual function

The continuity, concavity and differentiability of φ(λ), λ∈Rm, are addressed in
Theorems 1, 2 and 3 below, without any restrictions on the signs of the components
of λ. The constraints λj ≥0, m′+1≤j≤m, are required in Corollary 1, however,
which establishes the relation, stated in Section 1, between the maximization of
φ(λ) and the solution of NLP. It is assumed that the functions fj, j =0, 1, . . . ,m,
of NLP are continuous.

Theorem 1 The dual function φ(λ), λ∈Rm, is continuous.

Proof Let λ and µ be any two vectors in Rm. The definitions (1.3) and (1.2)
supply the inequality

φ(λ) − φ(µ) = L(x(λ), λ) − L(x(µ), µ) ≤ L(x(µ), λ) − L(x(µ), µ)

=
∑m

j=1 (λj− µj) fj(x(µ)), (2.1)

which is equivalent to the condition

φ(µ) − φ(λ) ≤
∑m

j=1 (µj− λj) fj(x(λ)), λ∈Rm, µ∈Rm. (2.2)

Furthermore, we let cmax be the least constant that satisfies the bound

| fj(x) | ≤ cmax, x∈X , j =1, 2, . . . ,m, (2.3)

which exists because of the compactness of X and the continuity of the functions
of NLP. Thus we deduce the property

|φ(λ) − φ(µ) | ≤ cmax ‖λ−µ‖1, λ∈Rm, µ∈Rm, (2.4)

which confirms that φ is continuous. qed

Theorem 2 The dual function φ(λ), λ∈Rm, is concave.

Proof See Theorem 6.3.1 of Bazaraa et al (2006).

Theorem 3 Let λ∞ be any vector in Rm such that only one vector x(λ∞)
minimizes L(x, λ∞), x ∈ X . Then the dual function (1.3) is differentiable at
λ=λ∞, its gradient having the components

dφ(λ∞) / dλj = fj(x(λ∞)), j =1, 2, . . . ,m. (2.5)

Proof See Lemma 6.3.2 and Theorem 6.3.3 of Bazaraa et al (2006).

Corollary 1 Let λ∞ be a vector λ that maximizes the dual function (1.3), subject
to λj ≥0, m′+1≤ j≤m. If x(λ∞) is unique, as in Theorem 3, then x(λ∞) is the
unique solution of NLP.
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Proof We write x∞ instead of x(λ∞). Theorem 3 supplies the derivatives (2.5),
and the definition of a derivative provides the property

φ(λ∞+ αej) = φ(λ∞) + αfj(x∞) + o(α), j =1, 2, . . . ,m, (2.6)

where ej is the j-th coordinate vector in Rn, and where o(α) denotes a term that
tends to zero faster than α as α→0. The given constraints on λ allow changes to
(λ∞)j of either sign if j∈ [1,m′], and they allow increases in (λ∞)j if j∈ [m′+1,m],
where (λ∞)j is the j-th component of λ∞. Thus, because φ(λ∞) is the greatest
value of φ(λ) subject to λj ≥0, m′+1≤j≤m, we deduce fj(x∞)=0 or fj(x∞)≤0
when j is the index of an equality or inequality constraint, respectively. In other
words, the constraints of NLP are satisfied at x=x∞, the property x∞∈X being
part of the definition (1.3) of x(λ∞).

Furthermore, if (λ∞)j is positive, then the constraints on λ allow sufficiently
small changes to (λ∞)j of either sign, which, with the conclusion of the previous
paragraph, gives the complementarity conditions

(λ∞)j fj(x∞) = 0, j =1, 2, . . . ,m. (2.7)

Let x = x∗ be any vector in Rn that satisfies the constraints (1.1). Then all
the products (λ∞)j fj(x

∗), j = 1, 2, . . . ,m, are zero or negative, so the definition
(1.2) of the Lagrange function gives L(x∗, λ∞)≤f0(x

∗), while the conditions (2.7)
imply L(x∞, λ∞) = f0(x∞). Moreover, L(x∞, λ∞) is the least value of L(x, λ∞),
x∈X . These remarks yield the relations

f0(x∞) = L(x∞, λ∞) ≤ L(x∗, λ∞) ≤ f0(x
∗). (2.8)

Because x∗ is any feasible point, it follows that x∞ is a solution of NLP.
If x∗ is also a solution of NLP, then the inequalities of expression (2.8) become

equations. In particular, L(x∞, λ∞) = L(x∗, λ∞) holds. Therefore, because x∞

is the unique minimizer of L(x, λ∞), x∈X , we have x∗ = x∞. The proof of the
corollary is complete. qed

3. A property of the bounded dual method

Let L ⊂ Rm contain the vectors λ whose components satisfy the conditions (1.9),
where Λ is a prescribed positive constant, and where the integers m and m′,
introduced in the constraints (1.1), are taken from NLP. We recall from Section
1 that the bounded dual method seeks the greatest value of the function

φ(λ) = L(x(λ), λ) = min {L(x, λ) : x∈X}, λ∈L, (3.1)

where L is the Lagrange function (1.2). The advantage of confining λ to the
compact set L is that there exists λ† in L such that φ(λ†) is the maximum value
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of φ(λ), λ∈L, the continuity of φ being proved in Theorem 1. We are interested
in relations between the vector x(λ†) in X that minimizes L(x, λ†), x∈X , and the
solution of NLP, but the relations are hardly ever helpful unless x(λ†) is unique.
We assume uniqueness throughout this section, which may require a modification
to NLP, such as a reduction in the range of X . The case when the constraints
(1.1) do not have a feasible point is particularly relevant to SAO methods. Then,
instead of trying to solve NLP, one can seek the least value of the function

Ψ(x) = f0(x) + Λ
m′∑

j=1

| fj(x) | + Λ
m∑

j=m′+1

max [ 0, fj(x) ], x∈X , (3.2)

for a sufficiently large value of the constant Λ, as mentioned in the penultimate
paragraph of Section 1. Several implementations of this technique have been
proposed, including Fletcher (1981). The following theorem explains why Λ in
expression (3.2) is taken from the summary of the bounded dual method given
above. Its proof has much in common with the proof of Corollary 1.

Theorem 4 Let λ†∈L be a vector that maximizes φ(λ), λ∈L, in the bounded
dual method. If there is only one vector x(λ†) in X that minimizes L(x, λ†), x∈X ,
then x(λ†) is also the unique vector that minimizes the function (3.2).

Proof We write x† instead of x(λ†). Theorem 3 states that the dual function
has the gradient ∇φ(λ†)=f(x†). Therefore, because φ(λ†) is the greatest value of

φ(λ), λ∈L, the conditions (1.9) on L imply that the components of λ† have the
properties

λ†
j = −Λ if fj(x

†) < 0 and j ∈ [1,m′],

λ†
j = 0 if fj(x

†) < 0 and j ∈ [m′+1,m],

λ†
j = Λ if fj(x

†) > 0.





(3.3)

They provide the equations

λ†
j fj(x

†) = Λ |fj(x
†)| if j ∈ [1,m′],

λ†
j fj(x

†) = Λ max [ 0, fj(x
†) ] if j ∈ [m′+1,m],




 (3.4)

including the case when fj(x
†) is zero. Thus the definitions (1.2) and (3.2) supply

the identity
L(x†, λ†) = Ψ(x†). (3.5)

For general x∈X , however, the condition λ†∈L gives the bounds

λ†
j fj(x) ≤ Λ |fj(x)| if j ∈ [1,m′],

λ†
j fj(x) ≤ Λ max [ 0, fj(x) ] if j ∈ [m′+1,m],




 (3.6)

which imply L(x, λ†) ≤ Ψ(x), x ∈ X . Moreover, equation (1.3) and x† = x(λ†)
show that L(x†, λ†) is the least value of L(x, λ†), x∈X . These remarks, including
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equation (3.5), yield the inequality

Ψ(x†) = L(x†, λ†) ≤ L(x, λ†) ≤ Ψ(x), x∈X . (3.7)

We see that Ψ(x†) is the least value of Ψ(x), x∈X , as required.
Let x∞ be any vector in X that minimizes Ψ(x), x∈X , which is the condition

Ψ(x∞)=Ψ(x†), due to the conclusion of the previous paragraph. Then the choice
x=x∞ in the relation (3.7) provides the equation L(x†, λ†)=L(x∞, λ†). It follows
from the uniqueness of x† =x(λ†) that x† and x∞ are the same, which completes
the proof. qed

4. An example

In an attempt to illustrate some features of the theory by a simple numerical
example, we consider the minimization of the distance to the origin squared in
only two dimensions, when the vector of variables is subject to a quadratic equality
constraint. Letting x and y be the components of x∈R2, we pick f0(x)=x2+y2,
x ∈ R2, we pick m′ = m = 1, and we try to let f1 be a quadratic such that the
technique of maximizing the dual function (1.3) exposes some behaviour that is
interesting and typical. The equation f1(x)=0 defines a curve in R2, which has
one or more closest points to the origin. We let there be two such points, x̂ and x̌,
say, and we let X have the form {x : ‖x‖≤M}, where the constant M is so large
that x̂ and x̌ are well inside X . By construction ‖x̂‖=‖x̌‖ and f1(x̂)= f1(x̌)=0
hold, so, if the choice of λ∈R causes L(x̂, λ) to be the least value of the Lagrange
function

L(x, λ) = x2 + y2 + λ f1(x), x∈R2, (4.1)

then x̌ minimizes this function too. It follows that L is a quadratic that satisfies
∇L(x̂) = ∇L(x̌) = 0, which implies that the second derivative matrix ∇2L is
singular. Thus examples of this kind are not simple, due to degeneracies in the
Lagrange function.

Instead we let f1 be a piecewise quadratic function with continuous first deriva-
tives. Specifically, we consider the minimization of f0(x)=x2+y2, x∈R2, subject
to the constraint f1(x)=0, where f1 is the function

f1(x) =






−3
4
x2− 1

4
xy − 1

3
y2− 1

2
x + 4

3
y + 8

3
, y ≤ −1

2
,

−3
4
x2− 1

4
xy − 4

3
y2− 1

2
x + 1

3
y + 29

12
, |y| ≤ 1

2
,

−3
4
x2− 1

4
xy − y2− 1

2
x + 5

2
, y ≥ 1

2
,

x∈R2. (4.2)

The closed curve in Figure 1 is the graph f1(x)=0, x∈R2. It includes the points
x̂=(1,−1) and x̌=(1, 1), which are the only points on the closed curve that are
nearest to the origin. Let M be a positive constant such that all of Figure 1 is
inside the set X± = {x : ‖x‖ ≤ M}, and let X− and X+ contain the points of
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(0, 0)
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â ĉ
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Figure 1: The paths of x(λ) in the example of Section 4

X± that satisfy y≤ 1
2
x and y≥ 1

2
x, respectively. For each of the choices X =X−,

X =X+ and X =X±, we seek the greatest value of the dual function

φ(λ) = L(x(λ), λ) = min {L(x, λ) : x∈X}, λ∈R, (4.3)

where L is the function (4.1). The sign of f1 has been chosen so that the optimal
value of λ is positive for each of the sets X−, X+ and X±.

When X =X−, the value of λ that maximizes φ(λ) in this problem is λ=8/7,
and then x(λ) is the vector x̂ = (1,−1) as required, which is shown in Figure 1.
The thick curve in the lower half of this figure is the path of x(λ) as λ increases
from zero until x(λ) leaves the figure at ĉ. The middle line of expression (4.2) is
relevant for sufficiently small λ. Then the components of x(λ) take the values

x(λ) =
48λ − 68λ2

192 − 400λ + 189λ2
and y(λ) =

−32λ + 30λ2

192 − 400λ + 189λ2
, (4.4)

because they provide the unconstrained minimum of the quadratic function

x2 + y2 + λ {−3
4
x2− 1

4
xy − 4

3
y2− 1

2
x + 1

3
y + 29

12
}, x∈R2. (4.5)

This minimum is in X− as required, and also it is in the strip S = {x : |y| ≤ 1
2
}

until λ reaches the value λ̂=0.620229. The points x(λ), 0≤λ≤ λ̂, define the path
from (0, 0) to â in Figure 1, â=x(λ̂) being on the boundary of S. For λ= λ̂, the
zero gradient of the quadratic (4.5) at x= â is inherited by the function

x2 + y2 + λ {−3
4
x2− 1

4
xy − 1

3
y2− 1

2
x + 4

3
y + 8

3
}, x∈R2, (4.6)

because expression (4.2) has continuous first derivatives. Moreover, the quadratic
(4.6) is strictly convex for every λ that is relevant to Figure 1. Thus its minimum
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in the case λ = λ̂ also occurs at â. Further, for λ ≥ λ̂, the minimizer of the
quadratic (4.6) has the components

x(λ) =
48λ − 32λ2

192 − 208λ + 45λ2
and y(λ) =

−128λ + 102λ2

192 − 208λ + 45λ2
. (4.7)

They provide the thick curve from â to ĉ in the figure, including x(λ)= x̂=(1,−1)
at λ=8/7. The value of λ at ĉ is defined by x(λ)=3, which gives λ=1.238060.

When X is X+ and when λ > 0 is sufficiently small, the Lagrange function
is also the quadratic (4.5), but the components (4.4) fail to satisfy the condition
y ≥ 1

2
x that defines points of X+. Instead x(λ) is the point on the boundary of

X+ where the quadratic (4.5) is least, which has the components

x(λ) =
4λ

30 − 29λ
and y(λ) =

2λ

30 − 29λ
. (4.8)

The gradient of L(x, λ), x ∈ R2, at this point is orthogonal to the line y = 1
2
x,

being the vector (−1, 2) multiplied by (7λ−8λ2)/(30 − 29λ). This factor has to
be nonnegative, because otherwise a move from x(λ) into the interior of X =X+

would supply a first order reduction in L(·, λ). It follows that, as λ increases from
zero, the vector x(λ) that minimizes L(x, λ), x∈X+, leaves the boundary of X+

at λ = λ̌, say, where λ̌ is at most 7/8. The path x(λ), 0 < λ < λ̌, is the straight
line from (0, 0) to ǎ in Figure 1. Because formula (4.8) provides y(7/8)=14/37,
the point ǎ is well inside the strip S. We find λ̌ = 0.858835 later, so ǎ has the
coordinates (0.67442, 0.33721).

The second derivative matrix of the quadratic (4.5) is positive definite as λ
increases from zero until it becomes singular at λ = 0.735840. Hence, for λ = λ̌,
the Lagrange function L(x, λ), x∈X+∩ S, has a direction of negative curvature.
Therefore, when x(λ) leaves the boundary of X+ at λ = λ̌, as mentioned above,
it jumps to a point b̌, say, that is on or beyond the y = 1

2
boundary of S. We

deduce from the continuity of expression (4.2) that the function L(·, λ) at b̌ is the
quadratic

x2 + y2 + λ {−3
4
x2− 1

4
xy − y2− 1

2
x + 5

2
}, x∈R2, (4.9)

which is strictly convex for 0<λ<0.950772. Its unconstrained minimizer has the
components

x(λ) =
16λ − 16λ2

64 − 112λ + 47λ2
and y(λ) =

2λ2

64 − 112λ + 47λ2
. (4.10)

They have the properties x(λ) > 0 and y(λ) ≥ 1
2

for 0.846607 ≤ λ < 0.950772.

In particular, the components of b̌ take the values x(λ̌) = 0.782945 and y(λ̌) =
0.595420. The thick curve from b̌ to č in Figure 1 is the path (4.10) as λ increases
from λ̌ to λ=0.916165, the last value being defined by y(λ)=2. We see that the
path includes the solution x̌ of NLP, which occurs at λ=8/9.
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Figure 2: Graphs of φ(λ), λ∈R, when X =X− and X =X+

When X = X−, the value of φ(λ) is the function (4.5) with the components
(4.4) or the function (4.6) with the components (4.7), which gives the formula

φ(λ) =





(1856λ − 3936λ2 + 1915λ3) / (768 − 1600λ + 756λ2), 0≤λ≤ λ̂,

(512λ − 652λ2 + 196λ3) / (192 − 208λ + 45λ2), λ̂≤λ≤ µ̂,
(4.11)

where µ̂ is set to 1.271843, because this value provides φ(µ̂)=−1. Similarly, when
X =X+, expressions (4.5), (4.8), (4.9) and (4.10) supply the formula

φ(λ) =

{
(290λ − 283λ2) / (120 − 116λ), 0≤λ≤ λ̌,

(320λ − 568λ2 + 243λ3) / (128 − 224λ + 94λ2), λ̌≤λ≤ µ̌,
(4.12)

where µ̌ = 0.948348 is defined by φ(µ̌) = −1. Plots of the functions (4.11) and
(4.12) are displayed in Figure 2, the thicker and thinner curves being for the
cases X = X− and X = X+, respectively. Both functions have the derivative
φ ′(0) = 29/12, which agrees with Theorem 3, because equation (4.1) shows that
the least value of L(x, 0), x ∈ R2, is at the origin, and the constraint function
(4.2) takes the value f1(0) = 29/12. The thinner curve in the figure is above the
thicker one for sufficiently small λ. Indeed, for 0≤λ≤ λ̌, the value (4.11) is the
minimum of L(x, λ), x∈X−, but the value (4.12) is the minimum of L(x, λ) on the
boundary of X−, the boundaries of X− and X+ being the same. We see that both
functions in Figure 2 are continuous and concave, as stated in Theorems 1 and
2. Further, although the direction of the lower path in Figure 1 is discontinuous
at â=x(λ̂), the thick curve of Figure 2 has a continuous first derivative at λ̂, in
accordance with Theorem 3. The jump from ǎ to b̌ in Figure 1, however, reduces
the gradient of the thin curve of Figure 2 from 1.6423 to 1.1777 at λ = λ̌. The
dotted line in the figure helps to expose this reduction, because it is the tangent
to the thin curve φ(λ), λ≥ λ̌, at λ= λ̌. We find the value λ̌=0.858853 by solving
a quartic polynomial equation, given by the remark that λ̌ is the unique number
in the interval (0, µ̌) such that the function (4.12) is continuous.
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The arrow in Figure 2 indicates the value of λ where the thick and the thin
curves cross. This value, λ = λ± say, is defined by the property that the second
parts of expressions (4.11) and (4.12) are the same, so the solution of another
polynomial equation gives λ± = 0.927829. Moreover, when X = X± = X−∪X+,
equation (4.3) can be written in the form

φ(λ) = min
{
min{L(x, λ) : x∈X−}, min{L(x, λ) : x∈X+}

}
, λ∈R. (4.13)

It follows that the graph of this function in Figure 2 is the thick curve or the
thin curve when λ is in the interval [0, λ±] or [λ±, µ̌], respectively. We see that
this function is continuous and concave, with a first derivative discontinuity at
λ=λ±. Further, every point x(λ), 0≤λ≤ µ̌, is unique, except that, when λ=λ±,
equation (4.13) allows x(λ) to be taken from either X− or X+. We call these
two points ŝ ∈ X+ and š ∈ X−. They have the coordinates ŝ = (0.450,−0.820)
and š = (1.970, 3.166), which are derived by substituting λ = λ± = 0.927829 into
expressions (4.7) and (4.10). Hence the path x(λ), 0≤λ≤λ± in Figure 1 is now
the thick line from (0, 0) to ŝ through â, but at λ = λ± the path jumps to š,
which is outside the figure beyond č. We see that, when X = X±, none of the
points x(λ) comes close to the locus of the equality constraint. On the other hand,
in the cases X = X− and X = X+, the maximization of the concave function φ
provides φ ′(λ) = f1(x(λ)) = 0, so x(λ) satisfies the constraints of NLP. Further,
the minimization of the Lagrange function (4.1) takes up the remaining freedom
in x(λ) automatically by minimizing the objective function of NLP.

5. Final remarks

We have assumed so far that, for each choice of λ ∈ Rm, a vector x(λ) that
minimizes L(x, λ), x∈X , can be calculated, as shown in equation (1.3). We are
going to address now, however, the more usual situation when an algorithm for
local minimization is applied to L(x, λ), x∈X . We let x(λ∞) be generated in this
way for some λ∞ in Rm, this notation being used for the dual variables in order to
apply Theorem 3. The point x(λ∞) is a strict local minimizer of L(·, λ∞) if there
exists a neighbourhood N of x(λ∞) such that x(λ∞) is the unique global minimizer
of the function L(x, λ∞), x∈X ∩N . Then we replace X by X ∩N temporarily,
in order to satisfy the conditions of Theorem 3. Thus ∇φ(λ) at λ = λ∞ has the
components (2.5) for the temporary choice of X . Therefore, because we are trying
to maximize the dual function φ(λ)=L(x(λ), λ), λ∈Rm, it is suitable to give the
next trial vector of dual variables, λnew, say, the ascent property

(λnew− λ∞)T ∇φ(λ∞) = (λnew− λ∞)T f(x(λ∞)) > 0, (5.1)

where f(x(λ∞)) has the components fj(x(λ∞)), j = 1, 2, . . . ,m. We also require
the dual variables of any inequality constraints to be nonnegative, this restriction
being imposed on both λ∞ and λnew. It is straightforward to satisfy all these
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conditions on λnew if one (or more) of the fj constraints in expression (1.1) is
violated at x = x∞. Thus Theorem 3 may be useful to the adjustment of the
dual variables when each x(λ) is found by an algorithm for local minimization.
Furthermore, if ‖λnew−λ∞‖ is not too large, the vector x(λ∞) is likely to be a
good starting point for the local minimization of L(x, λnew), x∈X .

We apply this procedure to the example of Section 4. Again we write λ instead
of λ, because there is only one fj constraint in NLP, namely f1(x)=0. The ascent
condition (5.1) states that λnew−λ∞ shall be positive or negative if f1(x(λ∞)) is
positive or negative, respectively. In other words, the current value of the dual
variable is increased or decreased if x(λ∞) is inside or outside the closed curve of
Figure 1. We consider each of the three choices of X in Section 4. We set λ∞ to
zero initially, which gives x(λ∞) = (0, 0). The dual variable λ is increased until
the calculated local minimizer x(λ) reaches or goes beyond the boundary of the
constraint f1(x)=0.

In the case X =X−, when λ is increased gradually from λ=0, the vectors x(λ)
follow the path in Figure 1 from (0, 0) through â and ŝ to x̂ = x(8/7), because
each calculated local minimum is also the global minimum of L(x, λ), x ∈ X .
The situation λ∞ <8/7 and λnew >8/7 may occur, and then the sign of f1(x(λ))
changes from positive to negative, which indicates that the required value of λ is
in the interval (λ∞, λnew). Thus the updating of λ can be regarded as solving the
nonlinear equation f1(x(λ))=0.

We show next that the case X = X± is the same as the case X = X− when
local minima of L(·, λ) are calculated. The points x(λ) on the path from (0, 0) to
ŝ in Figure 1 are the unique global minimizers of the function L(x, λ), x∈R2, for
0 ≤ λ < λ±, the value λ± = 0.927829 being introduced in Figure 2. Further, the
points on the continuation of this path from ŝ to ĉ are the unique global minimizers
of the function L(x, λ), x∈X−, as λ increases from λ± to 1.238060, and they are
interior points of X−. Thus all of these points are local minimizers of the function
L(x, λ), x∈X±, which allows them to be generated by local minimization when
λ is increased gradually. Thus the solution x̂ of NLP can be calculated, although
it is shown in Section 4 that global minimization causes every vector x(λ) to be
far from the locus of the equality constraint.

In the case X = X+, both global and local minimization of L(x, λ), x ∈ X ,
provide points x(λ) on the y = 1

2
x boundary of X+ for sufficiently small λ ≥ 0.

Then, as stated in Section 4, x(λ) has the components (4.8), and ∇L(x(λ), λ)
is the vector (1,−2) multiplied by (7λ−8λ2)/(30−29λ). This x(λ) is a local
minimizer of L(·, λ) when λ satisfies 0≤λ<7/8, but we have found already that
it is a global minimizer only for 0≤λ≤ λ̌=0.858835. It follows that, when λ is in
the interval (λ̌, 7/8), the global minimizers are on the path from b̌ to č in Figure
1, but the local minimizers x(λ) can remain on the boundary of X+, between
ǎ=(0.67442, 0.33721) and x(7/8)=(28/37, 14/37)=x0, say. To discover the fate
of the local minimizers for λ>7/8, we begin a local minimization of the Lagrange
function L(x, 7/8), x ∈ X+, at the point x0. We see above that the gradient
∇L(x0, 7/8) is zero, and λ=7/8 gives the Lagrange function (4.5) some negative
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curvature. Therefore a single line search from x0 for the least value of L(·, 7/8) on
the line can cross the y= 1

2
boundary of the strip S. Thus the Lagrange function

becomes the strictly convex quadratic (4.9), whose minimizer is unique and has
the components (4.10) with λ = 7/8. Hence the search for the local minimum
of L(x, 7/8), x∈X+, supplies the point (112/127, 98/127), which is on the path
from b̌ to x̌ in Figure 1. The situation where local minimization is the same as
global minimization has been restored, so increases in λ from 7/8 to 8/9, with
local minimization of L(·, λ), lead to the solution of NLP at x̌.

We give further attention to differences between local and global minimization
of L(x, λ), x ∈ X+, in the previous paragraph. Local minimization can provide
points x(λ) that are close to x0 =(28/37, 14/37) or to (112/127, 98/127)=x1, say,
when λ is slightly less than or slightly greater than 7/8, respectively. Further, the
Lagrange function (4.1) takes the values

L(x0, 7/8) = 2373
1184

= 2.004223 and L(x1, 7/8) = 4053
2032

= 1.994587. (5.2)

It follows that local minimization causes a discontinuity in φ(λ) when x(λ) jumps
from the boundary of X+ to the path between b̌ and x̌ in Figure 1. On the other
hand, when each x(λ) is generated by global minimization, then Theorem 1 states
that the dual function (1.3) is continuous.

In the original version of the example of Section 4, the boundary between
the regions X− and X+ was the line y = 0 instead of the line y = 1

2
x. The

change was made because the purpose of the example is to demonstrate some
typical properties of the Lagrangian method, but the original version has the
following unexpected degeneracy. We retain the equations (4.1) and (4.2) that
define L(x, λ), x∈R2, λ∈R, and we retain the definition X± = {x : ‖x‖≤M},
where M is a large positive constant, but now we let X+ ⊂ R2 be the region
X±∩{x : y ≥ 0}. The global minimizer x(λ) of L(x, λ), x∈X+, is on the y = 0
boundary of X+ for sufficiently small λ≥0. Expression (4.5) is still the Lagrange
function on the strip S = {x : |y| ≤ 1

2
}, which reduces to the function of one

variable
ℓ(x, λ) = x2 + λ

{
−3

4
x2− 1

2
x + 29

12

}
, x∈R, (5.3)

when y is zero. Hence x(λ) has the components

x(λ) = λ / (4 − 3λ) and y(λ) = 0 (5.4)

for sufficiently small λ. In particular, at λ = 8/9 we find x(λ) = 2/3 and φ(λ) =
ℓ(2/3, 8/9) = 2. Now the global minimizer x(λ) of L(·, λ) jumps from the y = 0
boundary of X+ across the y = 1

2
boundary of S when λ increases through the

value λ0, say, this jump being analogous to the one from ǎ to b̌ in Figure 1. As
before, λ=λ0 can be calculated by solving the polynomial equation that makes the
value of the function (4.5) at the point (5.4) the same as the value of the function
(4.9) at the point (4.10). It has been noted already, however, that at λ=8/9 the
components (4.10) provide the solution x̌=(1, 1) of NLP, and there the value of
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the function (4.1) is 2, because f1(x̌) is zero. This value of the Lagrange function
is the same as ℓ(2/3, 8/9)=2, given above, which implies λ0 =8/9. Therefore the
degeneracy of the original version of our example is that, when x(λ) leaves the
y=0 boundary of X+, which happens at x(λ)=(2/3, 0), it jumps directly to x̌.

The points x(λ) that are calculated by local minimization of L(x, λ), x∈X+,
when X+ is the set X±∩{x : y ≥ 0} are interesting too. As before, they have
the components (5.4) for sufficiently small λ≥ 0, and at this point the gradient
∇L(x(λ), λ) is the vector (0, 1) multiplied by (4

3
λ− 5

4
λ2)/(4−3λ). Therefore x(λ)

is a local minimum for 0≤λ< 16/15. Then, at λ=16/15, the gradient becomes
zero, and also the Lagrange function (4.5) has directions of negative curvature.
Thus local minimization with λ=16/15 reduces L(·, λ) by moving from the y=0
boundary of X+ across the y = 1

2
boundary of S. The form of L(·, λ) changes

from the quadratic (4.5) to the function (4.9), which is another quadratic with
some negative curvature. It follows that local minimization takes x(16/15) to the
‖x‖ = M boundary of the region X+∩{x : y ≥ 1

2
}. Because this boundary is

well outside the f1(x) = 0 closed curve in Figure 1, the sign of f1(x(16/15)) is
negative. Therefore condition (5.1) causes λ to decrease gradually from 16/15,
until x(λ) reaches or crosses the f1(x)=0 curve, each new x(λ) being calculated
by local minimization. The point x(λ) cannot leave the ‖x‖=M boundary of X+

until the second derivative matrix of the Lagrange function (4.9) becomes positive
definite, which happens at λ=0.950772. Then x(λ) becomes the minimizer of this
function, which has the coordinates (4.10). Thus x(λ) is on an extension of the
path through b̌, x̌ and č in Figure 1, the extension being to the circle ‖x‖= M .
Local minimization for smaller values of λ≥ 0.858835 provides points x(λ) that
are also on this path, the number 0.858835 being the value of λ that supplies b̌.
Thus x(λ) can reach the solution x̌ of NLP at λ=8/9.

We now return to SAO algorithms that seek the solutions of a sequence of
NLPs. We let the main calculation be the minimization of f ∗

0 (x), x∈Rn, subject
to the constraints

f ∗
j (x) = 0, j =1, 2, . . . ,m′

f ∗
j (x) ≤ 0, j =m′+1, . . . ,m

and x∈X





, (5.5)

and we require the gradients ∇f ∗
j (x), x ∈ X , to be available. Each outermost

iteration chooses the functions fj, j = 0, 1, . . . ,m, for the next NLP, and then
applies the bounded dual version of the Lagrange method, the value of Λ in the
conditions (1.9) being a prescribed positive constant. The functions fj of the k-th
outermost iteration are quadratics that satisfy the conditions

fj(x
(k)) = f ∗

j (x(k)) and ∇fj(x
(k)) = ∇f ∗

j (x(k)), j =0, 1, . . . ,m, (5.6)

where x(k) ∈X is the best vector of variables so far at the beginning of the k-th
outermost iteration, x(1) being given. The second derivatives of the quadratic
functions fj, j = 0, 1, . . . ,m, have to provide the property that the minimizer of
L(x, λ), x∈X , is unique for each λ that occurs, which can be done by adding a
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sufficiently large multiple of ‖x−x(k)‖2, x∈Rn, to f0 if necessary, but we are not
assuming at present that the second derivative matrices are diagonal. Let λ(k)

∞ be
the vector that maximizes φ(λ), λ∈L, in the k-th outermost iteration, and let x(k)

∞

be the minimizer of L(x, λ(k)
∞ ), x∈X . If another outermost iteration is required,

then x(k+1) is set to either x(k) or x(k)
∞ .

Theorem 4 is highly valuable for making the choice between these alternatives.
Because we are applying the bounded dual method, it allows us to take the view
that the main calculation is the minimization of the function

Ψ∗(x) = f ∗
0 (x) + Λ

m′∑

j=1

| f ∗
j (x) | + Λ

m∑

j=m′+1

max [ 0, f ∗
j (x) ], x∈X . (5.7)

Therefore we set x(k+1) = x(k)
∞ or x(k+1) = x(k) if Ψ∗(x(k)

∞ ) < Ψ∗(x(k)) or Ψ∗(x(k)
∞ )≥

Ψ∗(x(k)) holds, respectively. Of course we require the calculation of x(k+1)
∞ from

x(k+1) to be different from the calculation of x(k)
∞ from x(k) in the case x(k+1) =x(k).

Trust region methods are helpful for achieving Ψ∗(x(k)
∞ )<Ψ∗(x(k)). Specifically,

we let the compact set X during the k-th outermost iteration be the intersection
X ∗∩{x : ‖x−x(k)‖≤ ρ(k)}, where X ∗ is the given set X of the main calculation
and where ρ(k) is a positive constant for each k. If Ψ∗(x(k)

∞ ) ≥ Ψ∗(x(k)) occurs,
causing x(k+1) to be set to x(k), then the choice ρ(k+1) = 1

2
‖x(k)

∞ −x(k)‖ would
ensure that x(k+1)

∞ is different from x(k)
∞ . Furthermore, smaller values of ρ(k) assist

Ψ∗(x(k)
∞ ) < Ψ∗(x(k)) to be inherited from the fact that Ψ(x(k)

∞ ) is the least value
of Ψ(x), x ∈ X , the reason being that the definitions (1.11) and (5.7), with the
interpolation equations (5.6), imply that the approximation Ψ(x)≈Ψ∗(x) has first
order accuracy when x is close to x(k). If X ∗ is given by the simple bounds (1.7),
it is convenient to employ the infinity vector norm in the trust region method,
because then x∈Rn is in the set X ∗∩{x : ‖x−x(k)‖≤ρ(k)} when its components
satisfy the constraints

max [ ℓi, x
(k)
i − ρ(k) ] ≤ xi ≤ min [ui, x

(k)
i + ρ(k) ], i=1, 2, . . . , n. (5.8)

We deduce from the last remark that the advantages of separability, mentioned
in Section 1, can be enjoyed by trust region methods. We let the second derivative
matrices of the quadratic functions fj, j =0, 1, . . . ,m, be diagonal, in order that
these functions take the form (1.6), we employ the infinity norm in the definition
{x : ‖x−x(k)‖≤ ρ(k)} of the trust region of the k-th outermost iteration, and we
require the given compact set X ∗ to be defined by the simple bounds (1.7). Then,
for every λ∈L, the components of x(λ) minimize the functions of one variable in
expression (1.8), after replacing ℓi≤xi≤ui by the constraints (5.8). We compare
this technique with another idea, which is to calculate x(k)

∞ from x(k) by minimizing
the function (1.11) directly, which eliminates the need for λ∈L. Unfortunately,
however, the separability that allows n to be huge is eliminated too. Therefore
it may be advantageous to employ SAO and the dual variables λ ∈ L in several
applications that require the vector x that minimizes a function of the form (5.7).

The “majorization” technique, which is also known as “conservatism”, may
be applied in SAO if there are no equality constraints (m′ = 0), and if the given
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functions f ∗
j , j =0, 1, . . . ,m, have bounded second derivatives. Then the functions

fj of the k-th outermost iteration, besides satisfying the equations (5.6), are given
the property

fj(x) ≥ f ∗
j (x), x∈X , j =0, 1, . . . ,m, (5.9)

which can be done by making the diagonal elements of the second derivative
matrices ∇2fj, j = 0, 1, . . . ,m, sufficiently large. Then the definitions (1.11) and
(5.7) imply Ψ(x) ≥ Ψ∗(x), x ∈ X . Therefore, in the usual case when Ψ(x(k))
is not the least value of Ψ(x), x ∈ X , the calculations of the k-th outermost
iteration provide the strict inequality Ψ(x(k))>Ψ(x(k)

∞ )≥Ψ∗(x(k)
∞ ). It follows from

Ψ(x(k)) = Ψ∗(x(k)) and x(k+1) = x(k)
∞ that the sequence Ψ∗(x(k)), k = 1, 2, 3, . . .,

decreases strictly monotonically, except that x(k)
∞ = x(k) may occur, which is a

suitable condition for terminating the sequence of outermost iterations.
A disadvantage of majorization is that high curvature in the functions fj,

j = 0, 1, . . . ,m, causes fast second order growth in Ψ(x), x ∈ X , when x moves
away from a small neighbourhood of x(k), where we are retaining m′ =0 and the
equations (1.11) and (5.6). Hence the vector x(k)

∞ that minimizes Φ(·) is close to
x(k). Instead of these small distances ‖x(k)

∞ −x(k)‖, better efficiency is likely if the
chosen second derivatives are designed to make fj(x

(k)
∞ ) close to f ∗

j (x(k)
∞ ) for every

index j in [0,m]. We accept not only violations of the inequalities (5.9) at x=x(k)
∞

but also the possibility Φ∗(x(k)
∞ ) > Φ(x(k)

∞ ), because the k-th outermost iteration
is successful if the difference Φ∗(x(k))−Φ∗(x(k)

∞ ) captures most of the predicted
reduction Φ(x(k))−Φ(x(k)

∞ ). Otherwise, if Φ∗(x(k))−Φ∗(x(k)
∞ ) compares unfavourably

with Φ(x(k))−Φ(x(k)
∞ ), we try to improve the accuracy of the approximations

fj(x
(k)
∞ )≈ f ∗

j (x(k)
∞ ), when the diagonal elements of the second derivative matrices

∇2fj, j =0, 1, . . . ,m, are chosen on the next outermost iteration.
The author is not trying to specify a particular version of the SAO method,

because he has not run any numerical experiments himself that investigate possible
options. Instead, the main purpose of the comments above is to support the claim
that Theorem 4 is likely to be very helpful in practice. Groenwold and Etman
(2010), however, present numerical results for four implementations of SAO. They
investigate not only practical versions of majorization but also the use of the filter
method (Fletcher and Leyffer, 2002), that balances reductions in the objective
function with gains in feasibility.

Theorem 3 is also helpful, partly because the functions fj, j =0, 1, . . . ,m, do
not have to be differentiable, and the generality of the compact set X is welcome
too. This theorem shows the importance of the uniqueness of x(λ) for the current
λ, which is illustrated by the example of Section 4. The uniqueness is unnecessary,
however, when x(λ) is a strict local minimum that is calculated by local minimiza-
tion. Then we can apply again the technique that replaces X temporarily by the
intersection X ∩{x : ‖x−x(λ)‖≤ ρ}, where ρ > 0 is such that x(λ) becomes the
global minimizer of L(x, λ), x∈X . Thus Theorem 3 provides the gradient ∇φ(λ)
for the temporary choice of X , which can be regarded as a gradient that is suitable
for local calculations, after restoring the original X .
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Although local calculations provide solutions to the three test problems of
Section 4, the different problems being generated by different choices of X , the
Lagrange method with local minimization is inadequate for finding local solutions
of many NLPs. In particular, let f0 be a quadratic function with some negative
curvature, let all the constraint functions fj, j = 1, 2, . . . ,m, be linear, and let
X0 be the set of vectors x in Rn that satisfy the fj constraints of expression
(1.1). Further, let X0 be nonempty and bounded, and let X be so large that every
point of X0 is an interior point of X . This setting implies that NLP has at least
one solution, all of them being in X0. The linear constraints, however, give the
property ∇2L(x, λ) = ∇2f0(x) for every λ ∈Rm, so the negative curvature of f0

causes every x(λ) to be on the boundary of X . Thus, although X0 is nonempty,
every calculated x(λ) violates at least one constraint by an amount that is bounded
away from zero.

A major difficulty of this quadratic programming problem is that, if ∇2f0 has
many negative eigenvalues, then the number of local minima can be huge. It is
usually possible to calculate one or a few of them after applying a version of the
augmented Lagrangian method to modify f0, as mentioned in Section 1. If the
original f0 is retained, however, then again we may replace X temporarily by the
intersection of the original X with a trust region. Furthermore, a new violation of a
constraint can be avoided by including the constraint explicitly in the definition of
the current X . Such changes may also be permanent. For example, the condition
fm(x) ≤ 0 can be removed from expression (1.1) by replacing the original X by
the compact set X∩{x : fm(x)≤0}.

Another approach is to apply SAO to the original NLP, choosing the quadratic
approximations to the original functions within each outermost iteration so that
the Lagrange function L(x, λ), x ∈Rn, has positive curvature for every λ. The
given theory and remarks are highly relevant to this technique. Therefore they
may assist greatly the construction of new algorithms for constrained optimization,
especially if bounds are imposed on the dual variables.
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