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Definition

The development of practical algorithms to obtain approximate solutions of mathe-
matical problems and the validation of these solutions through their mathematical
analysis.

Overview

Mathematics typically investigates concepts in their qualitative setting: existence,
uniqueness and a wide range of analytic, topological, geometric and algebraic fea-
tures. It is often important, however, to flesh out the numbers, accompany qualitative
insight with computation. This is vital in applications of mathematics in science
and engineering – it is not enough to prove that the trajectory of a spacecraft obeys
dynamical features or geometric invariants, it is also indispensable to know where
the spacecraft will be at any given instant. It is, moreover, increasingly important
in mathematical research, because computation affords us the means to investigate
mathematical phenomena, to gain insight and form conjectures that ultimately lead
to theorems.

Numerical analysis has a distinct character from the rest of mathematical analysis
in that it is concerned also with accuracy, speed and computational efficiency. The
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question, thus, is not just whether a numerical method converges to the exact solution
but also what is the rate of convergence and the computational cost.

Numerical analysis should not be confused with algorithmic aspects of discrete
mathematics or with symbolic computation. For example, a symbolic package can be
used to find the indefinite integral of a given function, provided that it can be obtained
from known tables using basic principles, while a numerical package computes an
approximate integral by quadrature.

The fundamental origin of the tension between much of mathematical research
and computation is that analytic concepts and structures are central to mathematical
discourse, while computation is an algebraic process, consisting of a discrete and finite
sequence of algebraic operations on finite quantities. This is implicit in the very nature
of digital electronic computers.

The process of discretization, a feature of many numerical algorithms, does not
take the problem outside the scope of mathematics. A discretized problem can still be
addressed in mathematical terms and with rigour – indeed, typically, once discretized,
a mathematical problem is likely to become more difficult. Its redeeming virtue (and a
basic requirement of any numerical method) is that it can be rendered in an algorithmic
manner, suitable for computation.

Many familiar differential equations of mathematical physics originated as limits of
discretizations, for example the diffusion equation and Kepler’s laws (Wanner 2010).
This illustrates the important issue that discretizations and numerical algorithms are
not just an attempt to associate numbers with mathematical concepts but a major
tool in extending our understanding of these concepts.

Inasmuch as contemporary numerical analysis is inconceivable without the avail-
ability of powerful computational platforms, fundamental concepts of mathematical
computation with real numbers have exercised mathematicians since the dawn of the
discipline. Major concepts and ideas of numerical analysis can be traced to some of the
most illustrious names in the history of mathematics, from Archimedes to Johannes
Kepler, Sir Isaac Newton, Leonhard Euler and Carl Friedrich Gauss.

The basic tools

Two core methodologies form the broad foundation of numerical analysis: numerical
linear algebra and approximation theory.

Numerical linear algebra

No matter which mathematical problem we seek to compute, whether a differential or
integral equation or a nonlinear system of algebraic equations, typically the algorithmic
task ultimately reduces to linear algebraic computations. Reliability, efficiency and
cost of such computations are thus central to any numerical analysis algorithm.

The basic numerical linear algebra problem is the solution of a linear system Ax =
b, where A is an n × n nonsingular matrix and b is a column vector of length n.
This can be done by direct methods, basically variants of Gaussian elimination, for
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systems of moderate size but a powerful approach for large matrices is to employ
iterative methods. Paradoxically, converting a finite problem to an infinite one – in
other words, replacing an algebraic by an analytic problem – turns out to be very
useful indeed and it allows for efficient solution of very large algebraic systems (Golub
& Van Loan 1996). An important tool in the design of iterative algorithms is the
concept of a Krylov subspace Km(B,v) = Span{v, Bv, . . . , Bm−1v}. Many successful
iterative algorithms, not least the method of conjugate gradients and its many variants
and generalisations, evolve the solution vector in the space Km(B,v) for appropriate
choices of a matrix B and a vector v.

Another major numerical linear algebra problem is least squares computation.
Thus, A is an n ×m matrix, b is a column vector of length n and we seek a column
vector x of length m that minimises ‖Ax− b‖ in the Euclidean norm (Björck 1996).

Unlike the solution of a linear system or a least squares problem, eigenvalues
and singular values of a matrix are not in general available in a finite and explicit
form. Their computation belongs in the realm of numerical linear algebra although,
strictly speaking, the label ‘algebra’ refers to the algebraic origin of the problem rather
than to the computational methodology, which requires approximation and iterative
algorithms (Golub & Van Loan 1996).

Two structural features of algebraic problems impact heavily on the difficulty of
their computation: normalcy and sparsity. A matrix is normal if it has a basis of
unitary eigenvectors – in particular, symmetric matrices are normal. Heavily non-
normal matrices often present substantive computational challenge, due to their bad
conditioning.

The entries of a sparse matrices are mostly zero. This can be exploited to a very
good effect in their calculation and brings very large algebraic systems and eigenvalue
problems within the realm of efficient computation.

Approximation theory

The focus here is on approximating functions using a finite set of simpler functions.
Given a function f , a familiar problem is to approximate it as a linear combination
of elements from a Banach space B. One instance is interpolation, when we seek a
function in B that coincides with given function values at a finite set of points. Another
is when, given a function f , we seek f̃ ∈ B that minimises ‖f − f̃‖ across B. Familiar
Banach spaces used in approximation theory consist of polynomials, trigonometric
polynomials, wavelets, splines or translates of a given ‘master function’. They are
often subspaces of Lp or of a Sobolev space Wm

p for some p ∈ [1,∞] and m > 0
(Cheney & Light 2000, Powell 1981).

The issues addressed by approximation theory are both the design of efficient and
robust algorithms for such problems and an investigation of their features. At a
more fundamental level, the theory investigates approximation properties of underly-
ing function spaces (DeVore & Lorentz 1993). Thus, suppose that a function f from
the infinite-dimensional Banach space V is approximated from the n-dimensional sub-
space Bn ⊂ V. What is the least error, as measured in the underlying norm? Does it
go to zero – and how fast – as n→∞?

This basic framework is often generalised. The underlying problem might not
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reduce easily to finding the best linear combination from an n-dimensional linear
space when, for example, we approximate with spline functions while optimising the
location of their knots, or with rational functions, or seek a convex approximation to a
convex function. Likewise, instead of a Banach space we may consider a more general
metric space once we wish to approximate functions or data residing on manifolds.

Approximation theory uses a wide range of techniques from functional analysis,
theory of orthogonal polynomials, analytic function theory, differential geometry and,
increasingly, harmonic analysis.

Main subject areas of numerical analysis

The concerns of numerical analysis span a large swathe of mathematical problems in
addition to those that can be formulated primarily within the framework of linear
algebra or approximation theory.

Nonlinear equations

Finding the solution of a nonlinear algebraic system of equations, f(x) = 0, or equiv-
alently determining a fixed point g(x) = x, is one of the oldest problems of numerical
analysis. Univariate methods like bisection and regula falsi, as well as the Newton–
Raphson iteration

xn+1 = xn −
[
∂f(xn)

∂x

]−1

f(xn), n = 0, 1, . . . , x0 given,

applicable in the multivariate setting, have been known for centuries.
Provided that the Jacobian matrix can be calculated easily and affordably, the

Newton–Raphson method and its derivatives are effective for systems with moderate
number of variables. However, most modern methods aim for greater generality (the
Jacobian is not computed, indeed the differentiability of f need not be assumed) and for
systems with very large number of variables. Such methods can be roughly classified
into two groups: one reformulates the underlying problem as an optimisation of a
given objective function (e.g., of ‖f(x)‖2 in Euclidean norm), the other uses homotopy
algorithms.

Quadrature and cubature

The standard paradigm of univariate quadrature is to approximate∫ b

a

f(x)w(x)dx ≈
s∑

m=1

bmf(cm),

where the weights bm and the nodes cm depend upon the weight function w, but
are independent of the function f (Davis & Rabinowitz 1975). Well-known formalæ
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include Gauss–Christoffel quadrature, which selects weights and nodes to maximise
the accuracy for polynomial functions f , and Clenshaw–Curtis quadrature, whereby
weights and nodes are chosen to allow for rapid calculation with the Fast Fourier
Transform.

While this paradigm can be generalised to the multivariate setting by tensor prod-
ucts and bespoke quadrature rules have been introduced for specific multivariate do-
mains, efficiency deteriorates rapidly as the number of variables increases. In that
instance there is an advantage in using cubature methods based upon probabilistic
concepts, e.g. Monte Carlo and quasi-Monte Carlo techniques, because they are resis-
tant to this “curse of dimensionality”.

Ordinary differential equations

Given the ordinary differential (ODE) system y′ = f(t,y), where f is suitably regular,
accompanied by the initial condition y(t0) = y0, it is usual to compute the numerical
solution in a time-stepping manner. Thus, having already computed yk ≈ y(tk),
where tk = tk−1 + hk−1, k = 1, . . . , n, we compute a new approximation yn+1 at
tn+1 = tn + hn (Hairer, Nørsett & Wanner 1993). The two most popular types of
time-stepping algorithms are multistep methods

s∑
m=0

ρmyn−s+m+1 = h

s∑
m=0

σmf(tn−s+m+1,yn−s+m+1), ρs = 1

(here we assume that hk ≡ h) and Runge–Kutta methods

km = f(tn + cmhn,yn + hn

ν∑
j=1

am,jkj), m = 1, . . . , ν,

yn+1 = yn + hn

ν∑
m=1

bmkm.

Note that practical computation by these methods often requires the solution of an
algebraic system of equations at each step.

Convergence is a necessary requirement of a method for ODEs: given a compact
interval [t0, t

∗], the numerical solution must tend uniformly to the exact solution when
maxhn → 0. This global concept is closely associated with consistency , the numerical
solution locally matching the exact solution to the ODE up to O(hp+1

n ) for some
p ≥ 1. While consistency suffices for the convergence of a Runge–Kutta method, an
additional condition (the root condition on

∑s
m=0 ρmw

m, also known as zero-stability)
is required for multistep methods.

Particular difficulty arises when the ODE models phenomena that, while decaying
over time, proceed at vastly different rates. Typically for such stiff ODEs, the Jacobian
∂f(t,y)/∂y has eigenvalues with negative real parts, yet different orders of magnitude.
Successful solution of stiff ODEs requires the method to possess an appropriate level
of stability, e.g. A-stability (Hairer & Wanner 1996).
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This general area also includes numerical study of two-point boundary value prob-
lems, whereby boundary conditions are given at the endpoints, as well as Differential-
Algebraic Equations f(t,y,y′) = 0, where the Jacobian ∂f/∂y′ is singular.

Partial differential equations

The breadth of the discipline of theoretical Partial Differential Equations (PDEs) and
the extent of their applications are mirrored by the wide range of different method-
ologies employed in their discretization.

Finite difference methods impose a grid upon the underlying domain and approx-
imate derivatives by algebraic relationships of the discretized solution at grid points
(Iserles 2008). For example, the diffusion equation ∂u/∂t = ∂2u/∂x2, where u(x, t)
is considered for x ∈ [0, 1] and t ≥ 0, with initial conditions for t = 0 and Dirichlet
boundary conditions at x = 0 and x = 1, can be discretized by

un+1
m − unm

∆t
=
unm−1 − 2unm + unm+1

(∆x)2
, m = 1, . . . , N,

where N is the number of internal grid points, ∆x = 1/(N + 1), ∆t > 0 and unm ≈
u(m∆x, n∆t).

An alternative approach seeks a weak solution uN to the PDE Lu = f in an
N -dimensional subspace HN of the underlying Hilbert space H (typically, a Sobolev
space), whether directly, by requiring that 〈LuN − f, v〉 = 0 for all v ∈ HN (the
Galerkin method) or by reformulating the PDE first as a variational problem (the Ritz
method). This leads to an algebraic system, sometimes through an intermediate stage
of solving ODEs. The considerations underlying the choice of a basis for HN lead to
two major families of methods. Once we wish to have a sparse algebraic system, it
is natural to choose basis functions with small overlapping supports, resulting in the
finite element method (Brenner & Scott 2002). Alternatively, the goal of minimising
the number of variables N of the algebraic system requires fast-convergent bases,
giving raise to spectral methods (Trefethen 2000).

Other important approaches to the discretization of PDEs include boundary meth-
ods, when differential equations are replaced by integral equations along the bound-
ary of the domain, thereby reducing the number of unknowns, particle methods, that
restrict the inhomogeneous term of the PDE to a discrete number of ‘particles’, ren-
dering the computational problem much easier, and finite volume methods, converting
divergence terms on a grid into volume integrals.

The analysis of all these methods shares a number of general organising principles,
although mathematical methodology and toolbox vary. Convergence is a necessary
requirement: as the discretization becomes finer (e.g. grid spacing tends to zero or
the dimension of HN tends to infinity), we wish the numerical solution to approach
the exact solution uniformly in compact domains. According to the Lax Equivalence
Theorem, for time-evolving problems this is equivalent to consistency and stability, the
latter referring to uniform well-posedness of the numerical scheme in compact time
intervals once the discretization becomes increasingly finer (Iserles 2008, Richtmyer &
Morton 1967).
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Discretization methods reduce the task to the solution of (possibly nonlinear) alge-
braic systems and a major objective in their implementation is to solve such systems
with great efficiency. This is assisted by the algorithms of numerical linear algebra,
fine-tuned to problems originating in the approximation of PDEs (an important ap-
proach is multigrid, exploiting a hierarchy of nested grids) and by the availability of
fast transforms, e.g. the FFT. An important technique often rendering the solution of
such algebraic systems easier is domain decomposition.

Integral equations

Fredholm equations can be approximated by a variety of techniques (Atkinson 1997).
Finite differences are a popular option: thus, for example,∫ 1

0

K(x, y)f(x)dx = g(y), y ∈ [0, 1].

where K ∈ C([0, 1]2), g ∈ C[0, 1] and f is the unknown, can be at its simplest
approximated by the linear algebraic system

1

N + 1

N∑
k=0

K( kN ,
m
N )fk = g(mN ), m = 0, 1, . . . , N,

where fk ≈ f(k/N). An alternative is presented by Galerkin methods, whereby the
solution is projected on a finite-dimensional subspace: like for PDEs, we have the
alternative of subspaces leading to sparse linear systems, e.g. by using spline functions,
or subspaces of rapidly convergent basis functions, similarly to spectral methods.

Another problem associated with Fredholm equations is the calculation of the
spectrum of the underlying integral operator. The problem can be discretized by
similar algorithms, except that the outcome is an algebraic eigenvalue problem, rather
than a linear algebraic system.

Similar techniques can be applied to Volterra equations but they lead to initial-
value problems, rather than algebraic equations, hence convergence and stability con-
siderations similar to those pertaining to initial-value ODEs become important (Brun-
ner 2004).

Computational dynamics

The main interest in dynamics is in the evolution of flows: continuous dynamical
systems whose behaviour depends on some parameters. In numerical analysis flows
are replaced by maps, discrete dynamical systems. In principle, this requires the same
discretization techniques as in the case of ODEs, PDEs and integral equations, except
that the range of interesting questions is different, centred upon the interplay between
the value of the parameters and (typically, long-term) behaviour of the underlying
system. In other words, as parameters vary and dynamical features of the system
undergo change, we wish to recover them faithfully under discretization (Stuart &
Humphries 1998).
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Another central challenge in dynamical systems is the computation of a bifurca-
tion diagram, namely the identification and classification of parameter values that
correspond to qualitative changes of the underlying system (Seydel 1994).

Research into nonlinear dynamical systems depends in large measure on the avail-
ability of excellent numerical software, not least the AUTO package (Computational
Mathematics and Visualization Laboratory (CMVL) 1996).

Optimization

The problem of unconstrained optimisation is to determine the (local or global) min-
imum of a continuous, multivariate objective function f : Rm → R. In constrained
optimisation we seek to minimise f subject to x residing in a closed set Ω ⊂ Rm.

Most modern algorithms for unconstrained optimisation are iterative (Fletcher
2001), in particular Newton-type methods, conjugate gradient methods and the Levenberg–
Marquardt method. The underlying idea is to decrease the value of the objective func-
tion in each iteration until an optimum is reached. Special attention is afforded to
problems with a very large number of variables and to structured objective functions
and most algorithms require of f very low regularity conditions.

The most ubiquitous constrained optimisation problem is linear programming ,
whereby one minimises f(x) = c>x subject to Ax ≤ b and x ≥ 0. The optimum
resides at a vertex of the set of constraints, a convex polytope. The simplex algorithm
allows to jump from a vertex to one of its neighbours while reducing the value of f ,
hence it terminates at the minimum in a finite number of steps. Since its introduction
by George Dantzig, the simplex algorithm has been instrumental in a wide range of
practical computations. Lately, however, increasing prominence is afforded in con-
strained optimisation to interior-point methods, which approach the minimum while
moving across a path inside a convex set of constraints.

Stochastic computations

Many mathematical phenomena in need of discretization possess stochastic character.
Perhaps the most important are stochastic differential equations (SDEs), e.g.

dy = f(t,y)dt+ g(t,y)dW (t), t ≥ t0, y(t0) = y0,

where W is a Wiener process. There are two general approaches to the discretization
of SDEs. The first seeks to compute deterministic functionals like the expectation
and variance of the solution and its probability density function: the latter is de-
scribed by the (deterministic) Fokker–Planck equation. The second computes solution
trajectories at grid points, the random process being modelled by a random number
generator (itself a computational problem). This results in numerical schemes simi-
lar to the more familiar ODE and PDE time stepping methods, e.g. in place of the
Euler method yn+1 = yn + hnf(tn,yn) for the ODE y′ = f(t,y), we may use the
Euler–Maruyama method

yn+1 = yn + hnf(tn,yn) + g(tn,yn)[W (tn+1)−W (tn)]

8



for the above SDE. However, this similarity is deceptive, since the design of effective
SDE solvers requires different qualitative attributes.

Other numerical calculations with significant stochastic components are the com-
putation of Markov chains and generation of random numbers. Moreover, the com-
putation of deterministic problems can be often done more efficiently by introducing
stochasticity, an important case in point being Monte Carlo methods for the compu-
tation of multivariate integrals.

Organising principles of numerical analysis

Computer arithmetic

Numerical calculations are usually performed using floating point numbers, mostly
adhering to the IEEE 754-2008 standard of floating-point arithmetic (IEEE Standards
Association 2008). Effective estimation of true error in computations must reckon with
two sources: imprecisions due to discretization (truncation errors) and consequences
of working, in place of reals, with floating-point numbers (roundoff errors).

The interplay between truncation and roundoff errors varies across numerical anal-
ysis, although it is fair to state that truncation errors are far more important in
majority of situations. Roundoff errors might be perilous in ‘static’ algorithms, like
Gaussian elimination, while truncation errors tend to dominate in self-correcting it-
erative algorithms and in the computation of differential equations. Having said so,
it is important to bear in mind that the analysis of discretization errors and of con-
vergence of iterative processes is insufficient for practical implementation of numerical
algorithms, unless accompanied by valid reasons for their robustness with regard to
roundoff errors (Wilkinson 1988).

Stability and conditioning

The phrase ‘stability’ covers a wide range of desirable, often necessary features of
numerical algorithms. Informally, stability can assume one of two meanings: either a
dynamical system changes in a bounded manner in compact time intervals in response
to small changes in its initial value or other parameters (structural stability), or it
exhibits bounded and ‘nice’ asymptotic behaviour (dynamical stability). It is always
sound policy to verify the definition of stability in any specific setting because careless
use of this concept might be misleading. Thus, in the context of numerical ODEs, zero-
stability is structural, while A-stability is dynamical, while stability in the context of
numerical PDEs is structural.

In general, stability is related to the robustness of numerical computation. If the
algorithm is structurally stable, small departures from the exact solution, originating
in either truncation or roundoff errors, are unlikely to cause breakdown. Likewise, once
the algorithm is dynamically stable, such errors are unlikely to accumulate across large
number of time steps or iterations.
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All this assumes, however, that the problem being computed does not itself exhibit
undue sensitivity to small perturbations. Otherwise, even the most stable computa-
tion might be unsafe. To rephrase, robust computation requires the confluence of a
stable problem and a stable algorithm. Structural stability of a problem can be often
quantified in terms of its condition number. For example, structural stability of the
linear equation Ax = b is measured by the condition number κ(A) = ‖A‖ · ‖A−1‖ –
in the Euclidean norm this is the ratio of the largest to the smallest singular value
of A. The larger κ(A), the more sensitive is the solution of the linear system to
perturbations.

An important tool in identifying the sensitivity of computations to instability is
backward error analysis (Wilkinson 1988): instead of asking “what is the error com-
mitted in a numerical calculation?”, we ask “what is the problem solved exactly by
our calculation and how far away is it from the original problem?”. Backward error
analysis is of major importance in linear algebra calculations but recently it became
increasingly relevant to the discretization of time-dependent ODEs (Hairer, Lubich &
Wanner 2006).

Divide and conquer

A popular strategy in the computation of large problems is to split them into a number
of smaller problems, subsequently assembling, perhaps in an iterative manner, the
solution of the original problem. This is often advantageous when the cost of an
algorithm is superlinear in the number of variables, since then solving several smaller
problems may cost less than solving one large problem. An important advantage of
this approach is that, once smaller problems are independent of each other, they can
be solved efficiently in a parallel manner.

An example is the divide-and-conquer strategy, popular in many computer-science
algorithms, but also in numerical calculations. For example, computing the eigenvalues
of a large matrix, it is often possible to devise an iterative, fast-convergent procedure,
computing in each iteration the eigenvalues of smaller matrices. Likewise, once a PDE
is solved in a large spatial domain, possibly with complicated geometry, it is possible,
in a procedure known as domain decomposition, to solve the problem iteratively in
subdomains (Chan & Mathew 1994).

While domain decomposition acts in spatial variables, operator splitting acts in
time. Thus, for example, given the initial-value problem ∂u/∂t = L1[u]+L2[u], where
Lk may be functions or differential operators, we can assemble approximate solution
by solving the (often much easier) problems ∂vk/∂t = Lk[vk], k = 1, 2 (McLachlan &
Quispel 2002).

The computation of many problems can be nested using the fast multipole algo-
rithm (Greengard & Rokhlin 1987). It is particularly effective for n-body problems
for very large value of n, e.g. in electromagnetics, since it often reduces the cost of
matrix/vector multiplication from O(n2) to O(n).

Perhaps the one divide-and-conquer technique with greatest impact is the Fast
Fourier Transform (FFT) for the computation of discrete Fourier transform of n
variables in O(n log n) operations. This is one of the most important algorithms ever,
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with long list of critical applications in engineering, computer science and numerical
analysis itself (Henrici 1979).

Homotopy

Suppose that we wish to solve a ‘difficult’ problem P1, say, while we can easily solve
another problem P0, of similar character. The homotopy (or continuation) methodol-
ogy considers a path of problems Pt, t ∈ [0, 1], all of the same kind as P0 and P1, which
continuously deform P0 into P1. The idea then is to commence from t = 0 and advance
in small steps along the path, the assumption being that, once we have determined
Pm∆t, it is fairly easy to compute P(m+1)∆t (Allgower & Georg 2003, Computational
Mathematics and Visualization Laboratory (CMVL) 1996).

For example, P1 might be determining the eigenvalues of an n× n real symmetric
matrix A, while the eigenvalues of an n× n symmetric matrix B corresponding to P0

are known. In that case we may let Pt be the eigenvalue problem for (1 − t)B + tA.
This approach lends itself to parallelism since we can advance in parallel along the n
homotopy paths linking individual eigenvalues of B and A (Li 1997).

Multiscale

Numerous science and engineering models exhibit a range of processes operating at
widely differing scales. Pertinent qualitative features of the model are often described
in a fairly comprehensive manner by its slower-varying components. Unfortunately,
many standard numerical methods require sufficiently fine resolution to cater for the
fastest component – even when the amplitude of this component is, to all intents and
purposes, negligible. This behaviour is pervasive in the solution of time-dependent
differential equations and it requires great deal of care in the design and analysis of
computational algorithms.

Structure preservation

Although mathematical analysis usually falls short of solving exactly complicated
mathematical constructs, it often produces important information about their qual-
itative features, in particular about their dynamics (long-term behaviour) and ge-
ometry (integrals, symmetries and invariants). This information, which may reflect
crucial physical or mathematical features of the underlying problem, is often lost un-
der discretization. In the context of initial-value problems this motivates an approach,
sometimes termed geometric numerical integration, whereby numerical algorithms are
designed to preserve underlying structure (Hairer et al. 2006). For example, it might be
known that the exact solution evolves on a smooth manifoldM, in which case the aim
is to design a time-stepping algorithm that also evolves onM. Likewise, the underly-
ing system might be Hamiltonian, whereby one wishes to retain symplecticity under
discretization, or divergence free, when the effort is in designing volume-preserving
methods.
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Ranging beyond geometry, increasing attention is being paid to the preservation
of topological structure of differential equations under discretization, in particular by
finite element methods. This results in more stable and accurate methods (Arnold,
Falk & Winther 2010).

Retention of structure under discretization is often desirable, or even essential, in
the modelling of the underlying physical phenomenon. Moreover, it often leads to
more effective numerical methods – for example, symplectic methods for Hamiltonian
systems are known to accumulate error slower (Hairer et al. 2006).

Complexity and cost

Complexity is a feature of the underlying problem, quantifying the effort required to
solve it to given accuracy. Cost is a feature of a numerical algorithm, telling how
close it approaches the complexity of the problem. Confusingly, “complexity analysis”
usually refers to the analysis of both complexity and cost.

While the concept of complexity is fairly straightforward in the discrete setting of
combinatorial problems and theoretical computer science, it is much more complicated,
often ambiguous, in numerical analysis. Roughly, one can distinguish four distinct
approaches to complexity analysis: (a) Mirroring the discrete concept of complexity.
Thus, a yardstick measuring the number of operations (e.g. a “flop” – a shortcut for
“floating point operation”) is adopted and the performance of algorithms quantified
accordingly. (b) Information-based complexity. The goal here is to understand how
information, which is usually incomplete and often contaminated by error and noise,
can be used to deduce complexity and cost (Traub, Woźniakowski & Wasilkowski
1988). This leads to a formal framework, employing tools of functional analysis. (c)
The Blum–Shub–Smale model. Discrete complexity being based upon the Turing
machine, its real-number alternative is the BSS machine. It is a formal, algorithmic
construct and, at least in principle, a numerical algorithm is reducible to a set of
instructions on the BSS machine (Blum, Cucker, Shub & Smale 1998). This model
has had a number of genuine successes, not least in the computation of nonlinear
algebraic systems. (d) Smoothed complexity analysis. Many numerical methods, e.g.
the simplex algorithm and Gaussian elimination with partial pivoting, have high worst-
case cost but perform very well in practice. The main idea of smoothed analysis is to
provide an intermediate framework between worst-case and average-case scenarios and
it has already led to enhanced understanding of many popular algorithms (Spielman
& Teng 2001).

High performance computing

Much of large-scale contemporary computing combines numerical analysis algorithms
with sophisticated computing architectures, typically displaying massive parallelism.
These two activities are closely related, because what is good on a single processor
might be suboptimal in a parallel setting. In addition, while single-processor computa-
tion is usually quantified by means of floating-point operations, in parallel architecture
one must consider also communication costs – indeed, data passing among processors
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might be often more expensive than computation itself. This changes the definition
of what is a good algorithm and has fostered new computational approaches.

Applications of numerical analysis

The spread of numerical analysis mirrors the reach of mathematics across sciences,
engineering and medicine. It is important to realise that scientific computing at its
best is not just a matter for algorithmic dexterity and careful mathematical analysis.
Addressing difficult problems in application areas requires a dialogue between differ-
ent groups of experts and an incorporation of a wide range of ideas relevant to the
problem being modelled. Typically there are two sources of inevitable error in numer-
ical simulation: not just the error incurred by the algorithm, but the error already
implicit in the many simplifications and imperfections in the model being solved. Al-
though this is true in general, some application areas, because of their wide scope
and the challenge implicit in their computational problems, have led to genuinely new
disciplines, representing a synthesis between modelling and computation.

Computational engineering

Numerical simulation of the Navier–Stokes equations and their numerous simplifica-
tions (in particular, once viscosity terms are excised, the Euler equations) is central
to computational fluid dynamics (CFD). Such equations are typically in three space
dimensions, given in complicated geometries and their solutions might vary rapidly
and exhibit a range of turbulent and transient phenomena. No wonder, thus, that
successful CFD rests upon insight originating in fluid dynamics. Moreover, CFD has
led to interest in a range of algorithms which come into their own in this setting,
e.g. finite volume methods, vorticity methods, smoothed particle hydrodynamics and
lattice Bolzmann methods.

The importance of CFD to contemporary science and engineering based upon fluid
mechanics concepts, e.g. aerodynamics, weather forecasting and reservoir modelling,
can be hardly overstated. Computer models increasingly replace experiment: mod-
elling aircraft flight in a computer, instead of a wind tunnel, is not just considerably
more affordable and faster but allows testing at a much broader range of parameters.

Engineering computations range beyond CFD. Solid mechanics is a rich source
of challenging computational problems, in particular in the study of microstructures
and cracks. Electrical and electronic engineering presents a raft of computationally
demanding problems in circuit simulation and data transmission, many control engi-
neering problems are reducible to computation and optimisation of trajectories, bio-
engineering increasingly rests upon the computational modelling of biofluids, tissues
and entire organisms. . . Numerical computation is not simply one of the tools avail-
able to a modern engineer, it is at the very heart of what contemporary engineering
is all about.
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Computational physics

Computation plays a fundamental role in contemporary physics. Many computational
problems in physics are not very different from core concerns of numerical analysis, in
particular the discretization of differential equations. However, contemporary physics
research leads to a number of new and important computational challenges. One
example is the computation of spectra of Schrödinger operators and their distribution.
Another is the interaction of large number of particles, e.g. in plasma physics or in
molecular dynamics. Particle models incorporate a wide range of physical laws, from
classical to quantum mechanics, and often have substantive stochastic component.
Other major computational challenge in physics is calculations in lattice models, e.g.
in gauge theory, quantum field theory and quantum chromodynamics.

Mathematics of information

Modern technological society produces increasing reams of information which needs
collection, processing, transmission, classification and analysis. This is increasingly
leading to new computational challenges, e.g. in image processing, signal processing,
data mining, medical imaging, machine learning, computer vision, data compression
and cryptography. Such problems often share a number of common structural fea-
tures: they are concerned with a very large number of variables, incorporate noise
and stochastic components, bring together discrete and continuous data and model
data which is often intermediated by electromagnetic waves. This creates a common
agenda to numerical computation with harmonic analysis, combinatorics, theoretical
computer sciences and stochastic analysis.

An increasingly important organising principle in understanding very large data
sets is sparsity. Although the size of data might be very large indeed, the information
it contains is largely redundant and repetitive. Once the mathematical mechanism
underlying this redundancy is understood, it is possible to collect significantly smaller
amounts of data without impairing the information content, fill-in missing data and
understand better their structure in terms of a small number of variables. This has led
recently to new approaches to computation, e.g. compressed sensing, sparsity recovery
and greedy algorithms.
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