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Abstract We consider Sundman and Poincaré transformations for the long-time
numerical integration of Hamiltonian systems whose evolution occurs at different
time scales. The transformed systems are numerically integrated using explicit
symplectic methods. The schemes we consider are explicit symplectic methods
with adaptive time steps and they generalise other methods from the literature,
while exhibiting a high performance. The Sundman transformation can also be
used on non-Hamiltonian systems while the Poincaré transformation can be used,
in some cases, with more efficient symplectic integrators. The performance of both
transformations with different symplectic methods is analysed on several numerical
examples.
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1 Introduction

We consider the long-time numerical integration of dynamical systems whose evo-
lution is governed by the Hamiltonian function

H =
1

2
p>p + V (q), (1)
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with q,p ∈ Rd, and such that the system evolves at different time scales. Effec-
tive long-time numerical integration requires to use adaptive time steps, conse-
quently we wish to implement symplectic methods with adaptive time steps. To
this purpose, we consider both the Sundman and the Poincaré transformations.
The schemes proposed generalise other methods from the literature and allow us
to build new explicit adaptive symplectic schemes exhibiting a high performance.

Numerical solution of Hamiltonian systems is frequently carried out by sym-
plectic integrators (SIs) due to their good performance in moderate and long-
time integration Hairer et al (2006); Iserles (2008); Leimkuhler and Reich (2004);
McLachlan and Quispel (2002); Sanz-Serna and Calvo (1994). SIs belong to the
family of Geometric Numerical Integrators (methods which preserve important qual-
itative and geometric properties of the underlying differential system) and are ar-
guably the most popular methods in this class. Certain qualitative properties of
the evolution, like symplecticity, are preserved and, in general, they exhibit smaller
error growth along the numerical trajectory.

Splitting methods applied to separable Hamiltonian systems are the most fre-
quently used symplectic integrators. Denoting by ΦH

t the t-flow of the system,
z(t) = ΦH

t (z(0)), with z = (q,p)>, the exact flow for one time step, h, can be ap-

proximated by a composition of the flows associated to the kinetic energy Φ
[T ]
h and

potential energy, Φ
[V ]
h . The second order V TV leap-frog/Störmer/Verlet method

is given by the composition

Ψh ≡ Φ
[V ]

h/2
◦ Φ

[T ]
h ◦ Φ

[V ]

h/2
:





pn+1/2 = pn − h

2
∇qV (qn)

qn+1 = qn + hpn+1/2

pn+1 = pn+1/2 −
h

2
∇qV (qn+1)

. (2)

(Analogously, one can also take the TV T version.)
More accurate results can be obtained by using higher order methods. Splitting

symplectic methods exist for a range of problems with different structure, lead-
ing to high-performance numerical schemes. For instance, splitting Runge–Kutta–
Nyström (RKN) methods are tailored for Hamiltonian systems with quadratic
kinetic energy, and there are also splitting methods tailored for perturbed systems
where the Hamiltonian takes the form

H = H0(p,q) + εHI(q) =

(
1

2
p>p + V0(q)

)
+ εVI(q), (3)

where H0 is exactly solvable and 0 < |ε| ¿ 1, an important such case being
perturbed Kepler problems. We can then adapt the Verlet method (2) to the
composition

Ψ
[2]
h ≡ Φ

[HI ]

h/2
◦ Φ

[H0]
h ◦ Φ

[HI ]

h/2
= ΦH

h +O(εh3) (4)

to gain a factor ε in the accuracy Kinoshita et al (1991); Wisdom and Holman
(1991).

A systematic procedure to build higher-order methods was introduced in Creutz
and Gocksch (1989); Suzuki (1990); Yoshida (1990), and since then considerable
effort has been expanded in order to construct new symplectic integrators with
smaller local errors at a given computational cost. A significant number of new
split symplectic integrators have been published for a wide number of problems
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with different structures like RKN methods or methods for near-integrable sys-
tems (see Blanes et al (2008); Hairer et al (2006); Laskar and Robutel (2001);
Leimkuhler and Reich (2004); McLachlan (1995a); McLachlan and Quispel (2002,
2006); Sanz-Serna and Calvo (1994) and references therein).

Unfortunately, the high performance of symplectic integrators is typically asso-
ciated with the use of constant time steps. In contrast, adaptive variable time-step
methods are often superior to fixed time-step methods when applied to problems
with varying evolutionary time scales, since they lead to more regular problems
with reduced local errors.

Once standard techniques for changing the time step are included in a symplec-
tic integrator, several of the favourable properties of symplectic methods are lost
Calvo and Sanz-Serna (1993); Gladman et al (1991); Skeel (1993). This procedure
to change the time step does not destroy the symplectic structure but, roughly
speaking, it can be considered as the exact solution of a perturbed time-dependent
Hamiltonian, H(q,p) + δH̃(q,p, t). (In the constant-step scenario H̃ is indepen-
dent of t.) Unless the time step is changed properly, secular error terms appear in
the perturbed Hamiltonian and the errors in energy and position grow similarly
to standard non-symplectic integrators: the advantages of symplecticity are thus
lost.

Integrators with variable time step and non-secular error terms have been
proposed in the literature. They consist of a regularisation of the time

dt

dτ
= g(q,p) (5)

with g a positive-definite function, whereby one integrates with a constant time
step in the fictive time, τ Blanes and Budd (2005); Bond and Leimkuhler (1998);
Calvo et al (1998); Hairer (1997); Hairer and Söderlind (2005); Holder et al (2001);
Huang and Leimkuhler (1997); Mikkola (1997); Mikkola and Aarseth (2002); Mikkola
and Tanikawa (1999); Preto and Tremaine (1999). The Levi–Civita or Kustaanheimo–
Stiefel regularizations for solving the Kepler problem consider of a time transfor-
mation of this kind, which is then combined with a canonical transformation, and
they have been successfully used for many years in celestial mechanics Blanes and
Budd (2004); Stiefel and Scheifel (1971).

We consider the Sundman and the Poincaré transformations in a general form
which include most of the existing methods as particular cases and improve their
performance for most problems. That performance – their accuracy and computa-
tional cost alike – depends on the choice of the regularisation function, g, as well
as in the way the system is split for its numerical integration.

In section 2 we review the Sundman transformation and present new tech-
niques to construct efficient explicit methods. In section 3 we review the Poincaré
transformation and present new splitting methods to solve efficiently the evolution
for perturbed Hamiltonian systems or with quadratic kinetic energy. In section 4
we present several numerical examples to illustrate how the new methods apply
as well as to illustrate their relative performance.
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2 Explicit adaptive SIs using the Sundman transformation

The Sundman transformation takes the real time as a new coordinate and intro-
duces a fictitious time, τ in the following manner,

d

dτ





q

p

t



 =





g(q,p)p
−g(q,p)∇V (q)

g(q,p)



 . (6)

This equation loses the symplectic structure and, in addition, most explicit meth-
ods available in the literature for the numerical integration of the Hamiltonian (1)
cannot be used or are highly inefficient in this setting. It has been shown, how-
ever, that if a reversible time-symmetric method is used, many good properties
for long-time integrations are retained. Note that if the regularisation function g

is frozen at each step (or at each stage inside a step) then we can use an explicit
symplectic integrator and the coordinates (q,p) will evolve through a symplectic
transformation. Thus, it is only necessary to look for an appropriate procedure to
freeze the function g in a manner which renders the whole numerical integration re-
versible and time-symmetric, leading to an adaptive symplectic and time-reversible
integrator.

We introduce an auxiliary scalar variable, z, and a positive-definite and in-
vertible function, G(z), such that G(z) = g(z). To avoid some instabilities, we
differentiate this equation so, the system to be solved is

d

dτ





q

p

t

z





=





G(z)p
−G(z)∇V (q)

G(z)(
G(g(q,p))−1

)′
G(z)

(
∇g(q,p) · f

)





(7)

where f ≡ J∇H(q,p) and J denotes the standard (2d)× (2d) symplectic matrix.
Numerical integration of this problem has been considered in the literature for

different choices of the function G(z), the monitor function, g(q,p) and by splitting
the system in different ways. Since G(z)/g(q,p) = 1 is a first integral of the system,
it has been usual to substitute G(z) by g(q,p) in different places on the right-hand
side of the equation, and in particular in the equation for dz/dτ . For example,
Huang and Leimkuhler (1997); Leimkuhler and Reich (2004) employs the choice
G(z) = z while Hairer and Söderlind (2005); Mikkola and Aarseth (2002) (see also
(Hairer et al, 2006, Sec. VIII.3.2)) use G(z) = 1/z. These are two particular cases
of the more general function G(z) = zα, where the choice α = 0 corresponds to no
regularisation. As we will see, the choice of G(z) plays an important role in the
performance of the algorithm.

The monitor function g is also very important in constructing efficient algo-
rithms Blanes and Budd (2005). For the system (1), fast evolutions usually occur
close to the singularities of the potential. Thus, it makes sense to consider a func-
tion depending only on the coordinates, say, g(q). However, other choices are also
valid and the main differences impacts on the complexity when computing the
equation for z′ (where the prime denotes the derivative with respect to τ).

Finally, one has to decide how to split the system in order to use a time-
symmetric splitting method which preserves symplecticity for the coordinates q,p.
For example, in Hairer and Söderlind (2005) (see also (Hairer et al, 2006, Sec.
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VIII.3.2)), where G(z) = 1/z, g(q) = (q>q)γ (for problems where the singularity
of the potential is at the origin), the function G(z) is replaced by g(q) in the
equation of z′, and the system is split as follows

d

dτ





q

p

t

z





=





1

z
p

−1

z
∇V (q)

1

z
0





︸ ︷︷ ︸
fA

+





0

0

0

−γ
q>p

q>q





︸ ︷︷ ︸
fB

. (8)

The system is then solved using the composition

Ψh = Φ
(B)

h/2
◦ Φ

(A)
h ◦ Φ

(B)

h/2
(9)

with h ≡ δτ . Here, Φ
(B)

h/2
is used only to change the time step for the real time.

Consequently, one can replace Φ
(A)
h by the desired symplectic integrator to advance

q,p and t. This is a second-order approximation in the auxiliary variable z, which
is not relevant to the accuracy of the method. The practical order of accuracy

follows from the order of the method used to approximate Φ
(A)
h .

This is a simple time-reversible explicit symplectic integrator and it is perhaps
the most efficient algorithm for low to moderate accuracies. However, if accurate
results are desired, high-order methods are necessary. High-order methods usually
require many evaluations per step and demonstrate their superior performance
when relatively large time steps are used in lieu of the extra per-step cost. However,

this scheme changes the time step only when the flow Φ
(B)
h is computed, hence to

use a relatively large time step can be dangerous when the system moves close to
the singularities because the scheme has no opportunity to adapt the time step.

We then propose to split the system as follows,

d

dτ





q

p

t

z





=





G(z)p
0

G(z)
0





︸ ︷︷ ︸
fA

+





0

0

0(
G(g)−1

)′
G(z)(∇g · f)





︸ ︷︷ ︸
fB

+





0

−G(z)∇V

0
0





︸ ︷︷ ︸
fC

. (10)

The right hand side of the equation for dt/dτ could be put into any of the three
vector fields and each part would be still exactly solvable but it is advantageous
to keep it in either fA or fC .

We propose to use the following symmetric second order composition

S
[2]
h = Φ

(A)

h/2
◦ Φ

(B)

h/2
◦ Φ

(C)
h ◦ Φ

(B)

h/2
◦ Φ

(A)

h/2
. (11)

Other sequences of the maps are also valid. Next, to reach high accuracy one can
use this method as the basic method to build higher order methods by composition,
i.e.

S
[2p]
h = S

[2]
αmh ◦ · · · ◦ S

[2]
α1h
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where the coefficients αi are chosen appropriately to build efficient methods of
order 2p in the time step h Hairer et al (2006); McLachlan (1995b); McLachlan and
Quispel (2002); Sophroniou and Spaletta (2005). Notice that in this approach the
time step is adjusted along the internal stages of the method instead of adjusting
the time step by the end of the step.

Constructing methods of order four or six, it is usually more efficient to consider

a composition of a first order method, say, Φh = Φ
(A)
h ◦Φ

(B)
h ◦Φ

(C)
h and its adjoint

Φ∗h = Φ
(C)
h ◦ Φ

(B)
h ◦ Φ

(A)
h in an appropriate sequence Blanes and Moan (2002).

The choice of the monitor function We have to remark that the choice of the monitor
function g is essential in constructing efficient methods Blanes and Budd (2005);
Budd et al (2001); Calvo et al (1998); Hairer (1997); Hairer et al (2006). The
numerical accuracy of a given scheme can be similar for different choices of g while
its computational cost can change drastically. Then, one has to choose the most
appropriate monitor function which must also satisfy the required conditions (e.g.
preserving scaling invariance of the system or any reversing symmetry) and this
has to be done in tandem with the choice of the function G(z) in order to obtain
simple and easy to compute expression for z′. For example, if the potential function
is given by V (r) with r = (q>q)1/2 then it seems appropriate to choose g = g(r)
because then, replacing G(z) by g(r), the equation for z′ becomes z′ = F (r)(q>p),
with F (r) a given scalar function. Another important property to be analysed
is how the choice of the function G(z) affects the performance of the numerical
methods.

To sum up, the Sundman transformation allows us to build explicit time re-
versible adaptive integrators to high order. However, RKN methods or methods
tailored for near integrable systems can not be used, unless the system is split as
in (8), which has some limitations as previously mentioned. To circumvent this
problem, we will consider the Poincaré transformation.

2.1 Some other particular cases

The scheme that we have proposed generalises other schemes used to numerically
solve the system (6) which have appeared in the literature.

In Leimkuhler and Reich (2004) an algorithm (previously obtained in Huang
and Leimkuhler (1997)) is presented which corresponds to G(z) = z, considering
z = g in the equation of z′, and employing the splitting

d

dτ





q

p

t

z





=





zp

0

z

0





︸ ︷︷ ︸
fA

+





0

−z∇V

0
g(∇g · f)





︸ ︷︷ ︸
fB

(12)

where we let g(q,p) = ‖f‖. With this splitting and the choice of g, the final
algorithm has to be necessarily implicit. In Leimkuhler and Reich (2004) the h-
flow ΦB

h is approximated by the first order explicit Euler method, Φ̃B
h , and its
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implicit adjoint method, Φ̃∗Bh , and constructs the following implicit symmetric
second order method

Sh = Φ̃B
h/2 ◦ ΦA

h ◦ Φ̃∗Bh/2. (13)

This method requires the computation of the Hessian of the potential and for this
reason it can be computationally costly for many problems.

In Mikkola and Aarseth (2002), the authors consider a monitor function de-
pending only on the coordinates, g(q), let G(z) = 1/z (although the method is
presented in terms of the function Ω(q) = 1/g(q)) so that z′ = −(∇qg · p)/g and
the algorithm proposed is basically equivalent to considering the splitting

d

dτ





q

p

t

z





=





1

z
p

0
1

z
0





︸ ︷︷ ︸
fA

+





0

−g∇V

0

−1

g
(∇qg · p)





︸ ︷︷ ︸
fB

. (14)

Note that the equation for fB is exactly solvable because the equation for z′ is linear
in p. With this splitting, in Mikkola and Aarseth (2002) the authors construct the
scheme

Sh = ΦA
h/2 ◦ ΦB

h ◦ ΦA
h/2 (15)

which is then taken as the basic method to be used with the Gragg–Bulirsch–Stoer
extrapolation method. However, an extrapolation method based on a symmet-
ric second order symplectic integrator is not appropriate because it loses sym-
plecticity and its benefits for long-time integration. One can obtain, however,
pseudo-symplectic integrators by extrapolation if the basic method is of higher
order Blanes et al (1999); Chan and Murua (2000) and qualitative properties are
preserved up to higher order than the order of the method. We recommend his
procedure only when high accuracy is desired, say, to nearly round-off level and
relatively short time integrations.

Alternatively, one can solve the system (14) by standard splitting methods for
separable systems. Here, both q and p evolve through symplectic maps only if
g∇V is the gradient of a potential, and this deserves further investigation.

3 The Poincaré transformation

Given a Hamiltonian H(q,p), the Poincaré transformation introduces the following
new Hamiltonian in the extended phase space,

H̄(q,p, qt, pt) = g(q,p)(H(q,p) + pt) (16)

where qt ≡ t and pt is its conjugate momentum. Note that H is autonomous,
therefore H̄ does not depend on qt, and pt is a constant of motion whose value is
usually taken as pt = −H0 with H0 ≡ H(q(0),q(0)), consequently H̄ = 0 along the
solution. The structure of the Hamiltonian H̄ differs in general from the structure
of H, i.e. if H is separable in solvable parts, in general, H̄ will not be separable in
solvable parts.
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The Poincaré transformation applied to (1) corresponds to solving the evolution
for the Hamiltonian (16), which we split

H̄(q,p, qt, pt) = g(q,p)

(
1

2
p>p + pt

)
+ g(q,p)V (q). (17)

Taking the monitor function

g(q,p) =

(
1

2
p>p + pt

)γ−1

and considering 1
2p>p + pt = −V (q), the Hamiltonian being solved becomes sep-

arable,

H̄(q,p, qt, pt) =

(
1

2
p>p + pt

)γ

− (−V (q))
γ

. (18)

This is equivalent to the Hamiltonian used in Preto and Tremaine (1999), where
it was taken with the monitor function

g =
f(1

2p>p + pt)− f(−V (q))

H(q,p) + pt
(19)

and it was assumed that f(u) = uγ for some γ 6= 0. The particular case f(u) =
log u was previously considered in Mikkola (1997); Mikkola and Tanikawa (1999).
f(u) must be an analytic function, where the apparent singularity at H = −pt is
removable: take the Taylor series of f about the point −V (q) and use 1

2p>p+pt =

H(q,p)+pt−V (q). Since numerically 1
2p>p+pt ' −V (q), we have g ' f ′(−V (q)),

where f(u) must be a function such that f ′(u) > 0, with no singularities in the
domain of interest. The system is still separable, but it is no longer quadratic in
the kinetic energy and RKN methods cannot be used.

In practice, we have observed in some numerical examples that 1
2p>p + pt (or

−V (q)) can be negative along the trajectory and the algorithm breaks down. We
can circumvent this problem if we consider instead the splitting

H̄(q,p, qt, pt) =

(
1

2
p>p

)γ

−
(
−V (q)− pt

)γ
. (20)

Separable Hamiltonian with kinetic energy quadratic in momenta If we consider the
Hamiltonian (1) and a monitor function depending only on the coordinates, g(q),
the Poincaré transformation leads to the following enlarged Hamiltonian system
which we split as follows

H̄ = K1(q,p) + K2(q, pt) =
1

2
g(q)p>p + g(q)(V (q) + pt). (21)

Now, K2(q, pt) is exactly solvable and K1(q,p) is, in general, not solvable but
it is a product of solvable parts. On the other hand, it is important to notice
that K1 is quadratic in momenta. If {K1, K2} denotes the Poisson bracket of
the functions K1, K2, it is easy to see that {K2, {K2, {K2, K1}}} = 0, displaying
an algebraic structure similar to Nyström problems. Thus, symplectic splitting
Nyström methods can be used, and this is usually more accurate and stable for
these problems than general symplectic integrators.
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For this purpose, we need an algorithm to approximate efficiently and accu-
rately the evolution for the Hamiltonian

K1 =
1

2
g(q)p>p.

In Blanes and Budd (2005) it is shown that in some cases one can find a
canonical transformation, (q,p) → (Q,P) where q = Φ(Q), Φ′(Q)T p = q, such
that K1 depends only on the new momenta. Unfortunately, this occurs rarely
and we look for an alternative procedure. This can be done in different ways,
and the most appropriate one will depend on the particular problem. If g(q) is
cheap to compute function e.g. the singularity of the potential involves only few
contributions (i.e. if it involves only two bodies in a N-body problem) we can
numerically solve efficiently the equations for K1 to roundoff accuracy at each
stage.

For instance, we can use a logarithmic method. Notice that the evolution for
one time step ∆τ of K1 = 1

2g(q)p>p is equivalent to the evolution for one time
step ∆δ = E1∆τ with E1 = K1 of the Hamiltonian

KL = KL,1 + KL,2 = log(g(q)) + log(p>p), (22)

(during this evolution K1 is kept constant) as is immediate to see from the Hamil-
tonian equations. At near collisions, 1

2p>p and g take large and small values,
respectively, but logarithmic functions reduce these large values and maintain the
effectiveness of the splitting. The Hamilton equations for KL,1 and KL,2 are:





dq

dτ
= 0,

dp

dτ
= −1

g
∇qg,





dq

dτ
= 2

p

p>p
,

dp

dτ
= 0.

(23)

In general, we can take g in a very simple form, just by considering the singularities
of the potential. If the system is scaling invariant (or close to it) as happens for
most practical potentials with singularities or strong interactions, the optimal
regularisation function g is closely related with the choice which preserves this
scaling invariance Blanes and Budd (2004, 2005); Budd et al (2001). Then, if we
take

g = (q>q)γ/2 (24)

for an appropriate choice of γ, we have

1

g
∇qg = γ

q

q>q

rendering both parts of (23) trivial to compute with simple and cheap arithmetic
operations, so the evolution for K1 can be easily computed to roundoff accuracy
with marginal extra cost.

It is important to bear in mind that, solving K in (22), the value of E1 changes
from one stage to the next for the entire method. As we have already mentioned,
to change the Hamiltonian at each step from information originating in the previ-
ous step introduces, in general, secular errors. To diminish these errors to nearly
roundoff, the system has to be numerically solved to a very high accuracy, so these
errors can be sufficiently diminished for practical purposes. This can be achieved,
e.g. using a high order composition.
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A nearly-integrable Hamiltonian Let us now consider the perturbed Hamiltonian

H(q,p) = H0(q,p) + εH1(q), (25)

where H0 is exactly solvable and 0 < |ε| ¿ 1, but occasionally the perturbation
can approach a singularity and it can take large values. For this problem it is
convenient to split the Hamiltonian into the dominant part and the perturbation
because the error of numerical methods reduces considerably, but we need to adapt
the time step when the perturbation is more relevant. This is the case, for instance,
with the N-body problem in the solar system, where the Hamiltonian can be split
into pure Kepler problems and weak interactions between planets. In some cases,
however, close approaches between the planets or asteroids can occur and, in spite
of ε being a small parameter, the Hamiltonian H1(q) can be nearly singular. In
this case it is convenient to introduce adaptivity.

There are two natural choices for the regularisation function: g(H0 + pt) and
g(q). In the first case, the Hamiltonian to solve is (considering that H0+pt = −εH1)

H̄ = g(H0 + pt)(H0 + pt) + εg(−εH1)H1. (26)

The Hamiltonian g(H0 + pt)(H0 + pt) exhibits the same difficulty as H0, and it
is also exactly solvable. However, for the choice g(u)u = uγ we have found in
several problems that H0+pt takes negative values. In that case, one can integrate,
backward in time, the Hamiltonian, −H, in order to keep both parts positive.

The evolution of a Hamiltonian system is unaltered by adding an arbitrary
constant so, we can introduce a constant δ such that

εH1 + δ < 0,

consequently H0 + pt > 0, and the new Hamiltonian to consider is

H̄ = g(H0 + pt)(H0 + pt)− g(−εH1 − δ)(−εH1 − δ), (27)

which has lost the structure of a perturbed system: the performance of the splitting
methods tailored for perturbed systems is then seriously degraded.

However, if we take e.g. g(q) = (q>q)γ , the Hamiltonian becomes

H̄ = (q>q)γ(H0 + pt) + ε(q>q)γH1(q), (28)

which retains the near integrable structure, but we need to solve accurately and
efficiently the Hamiltonian

K1 = (q>q)γ(H0 + pt). (29)

We can use the logarithmic method as previously, the main trouble being that
H0 + pt must be positive definite (if not, we can take K1 = −(q>q)γ(−H0 − pt)
and integrate backward in time the Hamiltonian (q>q)γ(−H0 − pt)) and each
stage would need to evaluate the Hamiltonian H0 several times. If this part is
not computationally costly and the perturbation H1 is the most costly part of the
algorithm, this splitting might be useful because it benefits from the perturbed
structure. We conclude with an interesting open problem, efficient time-reversible
SIs for Hamiltonians of the form H = H1(q,p)H2(q,p), where H1 and H2 are
exactly solvable Hamiltonian functions.
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4 Numerical Examples

We consider the integration of several examples by considering both the Sundman
and the Poincaré transformations jointly with appropriate splitting and composi-

tion methods. Given a symmetric second order (implicit or explicit) method, S
[2]
h ,

we consider m-stage symmetric compositions of order n as follows

Smn ≡ S
[2]
α1h ◦ S

[2]
α2h · · ·S

[2]
αkh ◦ S

[2]
αk+1h ◦ S

[2]
αkh · · ·S

[2]
α2h ◦ ◦S

[2]
α1h

with m = 2k + 1. The following composition methods are chosen for that purpose

– S54: the 5-stage fourth-order composition,
– S96: the 9-stage sixth-order composition,
– S178: the 17-stage eighth-order composition,

and whose coefficients can be found in Hairer et al (2006). In Sophroniou and
Spaletta (2005) more elaborated compositions with additional extra stages are
obtained with slightly improved performance.

The following splitting methods are considered for problems where RKN meth-
ods or methods for near-integrable systems can be used

– RKN64: the 6-stage fourth-order BAB method from Blanes and Moan (2002),
– RKN116: the 11-stage sixth-order BAB method from Blanes and Moan (2002),
– M84: the 5-stage (8,4) BAB method from McLachlan (1995a) for perturbed

systems.

4.1 The one-dimensional Kepler problem

Let us consider the Kepler problem, which possesses periodic orbits with close
approaches. Such an orbit has a radial coordinate q with associated momentum p

which evolves according to the Hamiltonian

H =
1

2
p2 − 1

q
+

ε

q2
, (30)

where
√

ε is the angular momentum. In numerical tests we take the initial condi-
tions (q0, p0) = (1, 0) and ε = 0.001 (which allows for very close approaches).

We first study the performance of different algorithms when using the Sundman
transformation. We take G(z) = 1/z, integrate until t = 100 and measure the
average relative error in energy when considering the splitting shown in (8)–(9)
or when considering (10)–(11). In the first case, The compositions are used to

approximate Φ
(A)
h in (9) as composition of the leapfrog scheme as the basic method,

or they are used as compositions of the second-order scheme (11). The time step is
adjusted in all cases such that the final time is reached using approximately 50000
evaluations of the potential. Fig. 1 displays the results obtained when considering
the regularisation function g = qγ for different values of γ. It is clear from the
results that adjusting the time step through the variable z along the internal
stages of the method allows us to greatly improve the performance of the methods
once high-order methods are used to reach high accuracy.

We next repeat the experiment for G(z) = zα and different values of α. We
measure the accuracy of S178 when the monitor function g = qγ is used with its
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Fig. 1 Average error in energy for the numerical integration of the Hamiltonian (30) using
the Sundman transformation with the splitting from (10)-(11) (left panel) or when considering
(8)-(9) (right panel). The following methods are compared: the leap-frog S12 (dotted lines),
S54 (dashed lines), S96 (dotted-dashed lines) and S178 (solid lines).

optimal value γ = 1.6 and the most accurate splitting (10)–(11). Figure 2 shows
the results obtained when solving the equation for z′ in two different ways:

z′ =
( γ

α
qγ/α−1p

)
zα (31)

where q, p are taken constants along its integration which has exact solution (bro-
ken lines) or, once we replace zα by qγ ,

z′ = γ

α
qγ+γ/α−1p (32)

(solid lines). We observe that the two choices lead to considerably different re-
sults and it is clear that the choice of the function G(z) can be relevant to the
performance of the methods. The usual choice G = 1/z is very close to optimal if
one considers z = 1/qγ (it corresponds to taking α = −1 in (32)) as it has been
frequently done in the literature, and it is clearly better than the choice z = qγ

(i.e. to take α = 1 in (32)). We have repeated the numerical experiments for the
more general one-dimensional potential, V = 1/rβ − ε/r2β , for different choices of
β and ε and the choice G = 1/z was laways very close to optimal one.
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Fig. 2 Same as Fig. 1 for g = qγ and γ = 1.6 when considering the splitting shown in (10)-(11)
and the eighth-order method S178. We take G(z) = zα for different values of α. Solid lines
show the results when the equation (31) is used and broken lines show the results when the
equation (32) is used.

Let us now integrate the system using the Poincaré transformation and the
regularisation function g = qγ . In that case (21) takes the form

K = T (q, p) + V (q, qt) =
1

2
qγp2 + qγ

(
−1

q
+

ε

q2
+ pt

)
. (33)

We take the same initial conditions (so, pt = −(1
2p2

0 − 1
q0

+ ε
q2
0
) = 1 − ε) and

γ = 1.35, which is roughly the optimal value for this type of methods Blanes and
Budd (2005), and integrate until t = 1000. We integrate this system using the
method RKN116 as follows

Φ
[6]
h =

12∏

i=1

Φ
[T,n]
aih

◦ Φ
[V ]
bih

(34)

where a12 = 0 and the last map in one step is reused in the following step (in
practice, the cost corresponds to 11 stages), and where

Φ
[V ]
bih

:





qn+1 = qn,

pn+1 = pn − bihV ′q ,

tn+1 = tn + bihqγ .

(35)

We compare its performance versus the S96 and S178 schemes which use the fol-
lowing generalization of the leapfrog method,

Φ
[2]
h = Φ

[V ]

h/2
◦ Φ

[T,n]
h ◦ Φ

[V ]

h/2
(36)
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Fig. 3 Error in energy (averaged every 100 steps) for different methods and using all of them
approximately the same number of evaluations. The logarithmic Hamiltonian is solved using
the S96 method (top figure) and the S178 method (bottom figure).

as the basic method to build the higher order ones. In both cases, Φ
[T,n]
h denotes

a nth-order approximation to the evolution associated to T (q, p). Here, T (q, p)
is a product of a small and a large term near the collision. This evolution is
approximated using the splitting of symmetric and symplectic integrators of order
n for the logarithmic Hamiltonian

H̄ = γ log(q) + 2 log(p) (37)

with a time step E1h. The exact solution is equivalent to the evolution associated to
T (q, p). We use S96 and S178 with the leapfrog as the basic method to approximate

Φ
[T,n]
h .

Fig. 3 exhibits the error in energy (the average error every 100 steps because the
error oscillates). Each method is used with the fictive time step δτ = 40

9×11×17 m,
where m is the number of stages of each method, hence all methods need approx-
imately the same number of evaluations to reach the final real time. In the top
figure we show the results when the logarithmic Hamiltonian is solved using the
S96 method. After some time, a linear error growth in energy is observed. We
repeated the experiments but solving the logarithmic Hamiltonian with the S178
method (bottom figure) and the error growth has disappeared in the interval of in-
terest. This scheme can be considered as a pseudo-symplectic integrator (a method



Explicit Adaptive Symplectic Integrators for solving Hamiltonian Systems 15

which preserves simplecticity at a higher order than the order of the method) and
it is clear how important it is to solve this part accurately.

We have observed a good behaviour in the numerical experiments for long-time
integration as well as the good performance of the RKN methods for problems with
quadratic kinetic energy, and for this reason it makes good sense to consider this
technique for other families of problems.

4.2 A perturbed Kepler problem

We consider in this subsection the two-dimensional perturbed Kepler problem

H =
1

2
(p2

1 + p2
2)− 1

r
+

ε

r3
, (38)

r =
√

q2
1 + q2

2 , which inter alia describes in first approximation the dynamics of a

satellite moving into the gravitational field produced by a slightly oblate planet.
We take as initial conditions q1 = 1 − e, q2 = 0, p1 = 0, p2 =

√
(1 + e)/(1− e)

which, for the unperturbed problem, would correspond to an orbit of period 2π,
eccentricity e and energy −1

2 . We integrate until the final real time t = 1000 for
e = 0.8, ε = 10−3 and measure the average relative error in energy versus the
number of force evaluations for different choices of fictitious time steps.

We compare the performance of the methods when using the Sundman and the
Poincaré transformation. For this problem we take the monitor function g = rγ

for γ = 3
2 , which is close to optimal in both cases.

In the Sundman transformation we take G(z) = 1/z and the splitting

d

dτ





q

p

t

z





=





1

z
p

0

0
0





︸ ︷︷ ︸
fA

+





0

0

0

−γ
q>p

q>q





︸ ︷︷ ︸
fB

+





0

−1

z
∇V (q)

1

z
0





︸ ︷︷ ︸
fC

(39)

and we consider the S96 and the S178 methods as a composition of the symmetric
second order (11).

Next, we consider the Poincaré transformation

H̄ = rγ 1

2
(p2

1 + p2
2) + rγ

(
−1

r
+ +

ε

r3
+ pt

)
. (40)

We integrate the Hamiltonian rγ 1
2 (p2

1 + p2
2) through the integration of the loga-

rithmic Hamiltonian

K =
γ

2
log(q2

1 + q2
2) + log

(
1

2
(p2

1 + p2
2)

)
(41)

using a scaled time. Numerical integration of this part requires very simple and
fast evaluations and we neglect its cost in the results we present (we have solved
this part using the S178 method, but for this problem similar results were obtained
using the S96 method). We solve the separable system (40) using the RKN64 and
the RKN116 methods.
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Fig. 4 Average error in energy in the numerical integration of (38) (for ε = 10−3, e = 0.8
and integrated up to t = 1000). The results for the following schemes are shown: S178 with
the Sundman transformation (dash-dotted line) and for the logarithmic Hamiltonian (42) (line
with circles), the Poincaré transformation for the Hamiltonian (41) using the RKN methods of
order four (dashed line) and of order six (solid line), and the sixth-order RKN method when
no regulariozation is considered (γ = 0) (line with squares).

Finally, we consider the logarithmic method Mikkola and Tanikawa (1999);
Preto and Tremaine (1999) corresponding to the integration of the Hamiltonian

K = log

(
1

2
(p2

1 + p2
2) + pt

)
− log

(
1

r
− ε

r3

)
. (42)

This is an efficient method for perturbed Kepler problems because it exactly solves
the pure Kepler problem Preto and Tremaine (1999). Since the Hamiltonian has
no kinetic energy quadratic in momenta, we integrate the system using S96 and
S178 (we carried out numerical experiments of this method in the previous one-
dimensional problem, which resulted in very low performance).

Fig. 4 shows the most relevant results: S178 with the Sundman transformation
(dash-dotted line) and for the logarithmic Hamiltonian (42) (line with circles),
the Poincaré transformation for the Hamiltonian (41) using the RKN methods of
order four (dashed line) and of order six (solid line). As an illustration, we show
the results of the sixth-order RKN method when no regulariozation is considered
(γ = 0) (line with squares).

We have observed in numerical examples not reported here that both the Sund-
man and the Poincaré transformations exhibit very similar accuracies when used
with the appropriate regularization function (and function G(z) in the first case)
and when they are integrated using the same splitting method. The main difference
occurs when different splitting methods can be used with each formulation. We
have not considered the computational cost of both choices since might be prob-
lem dependent. The Sundman transformation is more general and can be used
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for solving other non Hamiltonian problems while the Poincaré transformation al-
lows in some cases to use more efficient splitting methods, but is constrained to
Hamiltonian systems.

The logarithmic Hamiltonian (42) can provide efficient algorithms for per-
turbed Kepler problems, but its performance with other problems is not so clear.

4.2.1 Adaptive methods for near-integrable systems

Finally, we analyse the performance of the Poincaré transformation for perturbed
Hamiltonians while employing the monitor function given in (27). In particular,
we consider

H̄ =

(
1

2
(p2

1 + p2
2)− 1

r
+ pt

)γ

−
(
− ε

r3

)γ
. (43)

Here, 1
2 (p2

1 + p2
2)− 1

r + pt is a positive function only if − ε
r3 is a positive function.

If ε > 0, the Hamiltonian to be integrated would be

H̄ = −
(
−1

2
(p2

1 + p2
2) +

1

r
− pt

)γ

+
( ε

r3

)γ
. (44)

In the following we will only consider this problem with negative values of ε.
The Hamiltonian is separable into solvable parts. The case γ = 1 corresponds to

the nonregurlarized case and has exactly the same complexity and computational
cost as for different values of γ if one considers that the evolution of a Hamiltonian
H1 is the same as the evolution of H2 = F (H1) with a scaled time F ′(H1).

This splitting for nonregularised problems (γ = 1) is convenient for a small
value of ε and low eccentricities, and this can be further improved by using splitting
methods tailored for perturbed problems Laskar and Robutel (2001); McLachlan
(1995a). We consider ε = −10−3 and different values for the eccentricities (for the
unperturbed problem), e = 0.2, e = 0.5 and e = 0.8. We use the following fourth-
order splitting methods: S54 and M84. Figure 5 shows the results obtained when
no regularization is considered (γ = 1) (left figure). The convenience in using a
splitting method tailored for perturbed problems is clear. We have repeated the
experiment taking the regularization with γ = 0.4 (this is close to the optimal
value we have observed for this problem and high eccentricities) (right figure). We
observe that for e > 0.2 it is always more efficient to use regularization. Now, S54
shows similar or even superior performance than M84. This is due to the fact that
the regularization makes both parts relatively small and of similar size, and it is
not advantageous to use methods tailored for perturbed problems. In the following,
when this regularization is considered, we will only use Smn methods.

Finally, we compare the performance of different Smn splitting methods applied
to (43) versus the RKNmn methods applied to (40). The cost is very much problem
dependent, and we measure here the number of evaluations in lieu of the cost (this
value for the cost should be adjusted depending on the problem). Fig. 6 shows in
the left panel the results obtained for the choices e = 0.8 and ε = −10−3: solid
lines correspond to the RKN64 and RKN116 methods for the Hamiltonian (40)
and dashed lines correspond to the S54, S96 and S178 methods applied to (43) with
γ = 0.4. In this case the perturbation contributes strongly and the RKN methods
exhibit the best performance. We have repeated the numerical experiment for the
choices e = 0.5 and ε = −10−5, which correspond to a moderate eccentricity with a
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Fig. 5 Average error in energy in the numerical integration of (43) for ε = −10−3, for different
values of the eccentricity, e, and up to t = 1000. Two fourth-order splitting methods are used:
S54 for general separable systems (dashed lines) and the (8,4) 5-stage BAB given in McLachlan
(1995a) tailored for perturbed problems. The left figure corresponds to no regularization (γ =
1) and the right figure corresponds to the regularization with γ = 0.4.

very small perturbation (right panel). In this case, the methods for the perturbed
problem with regularisation show the best performance. For illustration, we include
the results for S178 when no regularisation is considered (γ = 1) (dotted line) (the
results for the M84 method remains very close to the RKN116 method, and for
clarity in the presentation it has not been shown in the figure).

From the numerical experiments we observe that both procedures for the
Poincaré transformation exhibit good performance. The best choice is bound to
depend on the problem. While the RKN methods applied to (40) need an efficient
algorithm to solve the part which mixes coordinates and momenta, the splitting
for the Hamiltonian (43) needs both parts to be positive definite. Were this not the
case, one could have considered the Hamiltonian (28) which requires an efficient
numerical integration of the Hamiltonian (29). This calls for further research.
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Fig. 6 Average error in energy in the numerical integration of (38) integrated using the
S54, S96 and S178 methods applied to (43) with γ = 0.4 (dashed lines), and the RKN64
and RKN116 methods applied to (40) with γ = 3/2 (solid lines). These methods can be
distinguished by the slope of the curves. Left panel: corresponds to the choice e = 0.8 and
ε = −10−3. Right panel: corresponds to the choice e = 0.5 and ε = −10−5. The results for
S178 when no regularisation is considered (γ = 1) is also shown (dotted line).

4.3 The two-fixed-centres problem

We finally consider the two-dimensional two-fixed-centres problem

H =
1

2
(p2

1 + p2
2)− 2µ

r1
− 2(1− µ)

r2
, (45)

with r1 =
√

(q1 − c)2 + q2
2 , r2 =

√
(q1 + c)2 + q2

2 . We take µ = 0.4, c = 1 and

initial conditions q1 = 1/2, q2 = 0, p1 = 0, p2 =
√

3 which has close approaches
to one of the singularities (see Figure 7).
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Fig. 7 Solution for the two-fixed-centres problem (45) for t ∈ [0, 1000] and parameters given
in the text .

For this problem we take the monitor function g = rγ
1 rγ

2 for γ = 3
2 , and we take

the Sundman transformation with G(z) = 1/z and the splitting

d

dτ





q

p

t

z





=





1

z
p

0

0
0





︸ ︷︷ ︸
fA

+





0

0

0

−γ

(
R1

r2
1

+
R2

r2
2

)





︸ ︷︷ ︸
fB

+





0

−g∇V (q)
1

z
0





︸ ︷︷ ︸
fC

(46)

with R1 = (q1− c)p1 + q2p2, R2 = (q1 + c)p1 + q2p2. This corresponds, basically, to
the split (14), as proposed in Mikkola and Aarseth (2002), but separated in three
parts for simplicity.

We consider the S178 method as a composition of the symmetric second order
(11) and we take a fictive time step such that the final real time, t = 1000, is
reached with approximately 50000 evaluations of the potential, and measure the
error in energy along the time integration.

We repeated the numerical experiment replacing the term −g∇V (q) in fC ,
which is not the gradient of a potential, by −(∇V (q))/z, which preserves sym-
plecticity. The results are shown in Fig. 8 where the highest performance of the
symplectic scheme is clear. As previously mentioned, this deserves further investi-
gation.

If one considers the Poincaré transformation then RKN symplectic methods can
be used if the Hamiltonian K1 = rγ

1 rγ
2 (p2

1 + p2
2)/2 is exactly solved, or numerically

solved up to high accuracy. For this problem it is clear that we can not use a
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Fig. 8 Error in energy along the time integration for the two-fixed-centres problem (45) for
the split (46) (left panel) and when the term −gV (q) in fC is replaced by −(∇V (q))/z (right
panel) .

canonical transformation to solve it, but the logarithmic method can be used very
easily to high accuracy and low computational cost.

5 Conclusions

We have considered the Sundman and the Poincaré transformation for the numer-
ical integration of separable Hamiltonian systems evolving at different time scales.
We have considered both transformation in their general form. This allowed us
to obtain, in a simple form, most algorithms proposed in the recent literature as
particular cases. We have also constructed new highly efficient methods, displaying
their best performance when a high accuracy is desired.

The numerical experiments suggest that, in general, both the Sundman and the
Poincaré transformations provide similar accuracy if an appropriate regularization
function is chosen (which can differ in each case) and the same splitting method
is used in both cases. The main difference remains in the fact that the Poincaré
transformation allows, in some cases, to retain the structure of the original Hamil-
tonian (e.g. quadratic in momenta or near-integrable) and one can use splitting
methods tailored for these problems. This requires the numerical integration of
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new Hamiltonian functions with a relatively simple and very particular structure
whose efficient integration allows to end up with highly efficient algorithms. The
Sundman transformation is, however, more general and can be easily used on non
Hamiltonian systems.

The results presented in this work easily extend to time-dependent potential
functions V (q, t) by considering the time as a new coordinate as well as to other
separable Hamiltonian functions.
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