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Abstract. We propose a PDE-constrained optimization approach for the determination of noise
distribution in total variation (TV) image denoising. An optimization problem for the determination
of the weights correspondent to different types of noise distributions is stated and existence of an
optimal solution is proved. A tailored regularization approach for the approximation of the optimal
parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability
of the solution operator is proved and an optimality system characterizing the optimal solutions of
each regularized problem is derived. The optimal parameter values are numerically computed by
using a quasi-Newton method, together with semismooth Newton type algorithms for the solution
of the TV-subproblems.
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1. Introduction. Let f ∈ Lp(Ω), p = 1 or 2 with Ω ⊂ R2, be a given noisy
image. Depending on the application at hand the type of noise, i.e., the noise dis-
tribution, changes [5]. Examples for noise distributions are Gaussian noise, which
typically appears in, e.g. MRI (Magnetic Resonance Tomography), Poisson noise
in, e.g. radar measurements or PET (Positron Emission Tomography), and impulse
noise usually due to transmission errors or malfunctioning pixel elements in camera
sensors. To remove the noise a total variation (TV) regularization is frequently con-
sidered [3, 11, 12, 13, 20, 37] that amounts to reconstruct a denoised version u of f
as a minimiser of the generic functional

J (u) = |Du|(Ω) + λφ(u, f), (1.1)

with

|Du|(Ω) = sup
g∈C∞

0 (Ω;R2),‖g‖∞≤1

∫
Ω

u ∇ · g dx (1.2)

the total variation of u in Ω, λ a positive parameter and φ a suitable distance function
called the data fidelity term. The latter depends on the statistics of the data f , which
can be either estimated or approximated by a noise model known from the physics
behind the acquisition of f . For normally distributed f , i.e. the interferences in f are
Gaussian noise, this distance function is the squared L2 norm of u − f . If a Poisson
noise distribution is present, φ(u, f) =

∫
Ω
λ (u−f log u) dx, which corresponds to the

Kullback-Leibler distance between u and f [29, 33]. In the presence of impulse noise,
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(juan.delosreyes@epn.edu.ec)
†Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cam-

bridge (C.B.Schoenlieb@damtp.cam.ac.uk)
‡Research partially supported by the Alexander von Humboldt Foundation. Moreover, CBS

acknowledges the financial support provided by the Cambridge Centre for Analysis (CCA) and
the Royal Society International Exchanges Award IE110314 for the project High-order Compressed
Sensing for Medical Imaging. Further, this publication is based on work supported by Award No.
KUK-I1-007-43 , made by King Abdullah University of Science and Technology (KAUST).

Date: 14. July 2012

1



the correct data fidelity term turns out to be the L1 norm of u−f [32, 21]. Other noise
models have been considered as well, cf. e.g. [2]. The size of the parameter λ depends
on the strength of the noise, i.e. it models the trade-off between regularisation and
fidelity to the measured datum f .

A key issue in total variation denoising is an adequate choice of the correct noise model,
i.e. the choice of φ, and of the size of the parameter λ. Depending on this choice,
different results are obtained. The term φ is usually modelled from the physics behind
the acquisition process. Several strategies, both heuristic and statistically grounded,
have been considered for choosing the weight λ, cf. e.g. [11, 22, 23, 24, 25, 35]. In this
paper we propose an optimal control strategy for choosing both φ and λ. To do so we
extend model (1.1) to a more general model, that allows for mixed noise distributions
in the data. Namely, instead of (1.1) we consider

min
u

(
|Du|(Ω) +

d∑
i=1

∫
Ω

λi φi(u, f) dx

)
. (1.3)

where φi, i = 1, . . . , d, are convex differentiable functions in u, and λi are posi-
tive parameters. The functions φi model different choices of data fidelities. In the
case of mixed Gaussian and impulse noise d = 2, φ1(u, f) = ‖u − f‖2L2(Ω) and

φ2(u, f) = ‖u − f‖L1(Ω). The parameters λi weight the different noise models φi
and the regularising term against each other. As such, the choice of these parameters
depends on the amount and strength of noise of different distributions in f . Typically,
the λi are chosen to be real parameters. However, in some applications, it may be
more favourable to choose them to be spatially dependent functions λi : Ω→ R+, cf.
e.g. [1, 4, 23, 25, 35].

We propose a PDE-constrained optimization approach to determine the weights λi
of the noise distribution and, in that manner, learn the noise distribution present in
the measured datum f for both d = 1 and mixed noise models d > 1. To do so, we
treat (1.3) as a constraint and state an optimization problem governed by (1.3) for
the optimal determination of weights. When possible, we replace the optimization
problem by a necessary and sufficient optimality condition (in form of a variational
inequality (VI)) as a constraint.

Schematically, we proceed in the following way:

1. We consider a training set of pairs (fk, uk), k = 1, 2, . . . , N . Here, fk’s
are noisy images, which have been measured with a fixed device with
fixed settings, and the images uk represent the ground truth or images
that approximate the ground truth within a desirable tolerance.

2. We determine the optimal choice of functions λi by solving the following
problem for k = 1, 2, . . . , N

min
λi≥0, i=1,...,d

‖ũ− uk‖2L2(Ω) + β

d∑
i=1

‖λi‖2X , (1.4)

where ũ solves the minimization problem (1.3) for a given fk, X corre-
sponds to R in the case of scalar parameters or to, e.g., L2(Ω) in the case
of distributed functions, and 0 < β � 1 is a given weight.
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The reasonability of assuming to have a such a training set is motivated by certain
applications, where the accuracy and as such the noise level in the measurements can
be tuned to a certain extent. In MRI or PET, for example, the accuracy of the mea-
surements depends on the setup of the experiment, e.g., the acquisition time. Hence,
such a training set can be provided by a series of measurements using phantoms.
Then, the uk’s are measured with the maximal accuracy practically possible and the
fk’s are measured within a usual clinical setup. For instance, dictionary based image
reconstruction methods are already used in the medical imaging community. There,
good quality measurements or template shapes are used as priors for reconstructing
ũ, cf. e.g. [36], or for image segmentation, cf. e.g. [34] and references therein.

Up to our knowledge this paper is the first one to approach the estimation of the
noise distribution as an optimal control problem. By incorporating more than one φi
into the model (1.3) our approach automatically chooses the correct one(s) through
an optimal choice of the weights λi in terms of (1.4).

Organisation of the paper:. We continue with the analysis of the optimization
problem (2.4)–(2.4b) in Section 2. After proving existence of an optimal solution and
convergence of the Huber-regularized minimisers to a minimiser of the original total
variation problem, the optimization problem is transferred to a Hilbert space setting
where the rest of our analysis takes place in Section 3. This further smoothing of the
regularizer turns out to be necessary in order to prove continuity of the solution map
in a strong enough topology and to verify convergence of our procedure. Moreover,
differentiability of the regularized solution operator is thereafter proved, which leads
to a first order optimality system characterization of the regularized minimisers. The
paper ends with three detailed numerical experiments where the suitability of our
approach is computationally verified.

2. Optimization problem in BV (Ω). We are interested in the solution of the
following bilevel optimization problem

min
λi≥0, i=1,...,d

g(ũ) + β

d∑
i=1

‖λi‖2X (2.1a)

subject to

ũ = argminu∈BV ∩A

{
J (u) = |Du|(Ω) +

d∑
i=1

∫
Ω

λiφi(u, f) dx

}
, (2.1b)

where the space X corresponds to R in the case of scalar parameters or to a function
space such that X ↪→ L2(Ω) (where ↪→ stands for continuous injection) in the case of
distributed functions, g : L2(Ω) 7→ R is a C1 functional to be minimised and β > 0.
The admissible set of functions A is chosen according to the data fidelities φi. In
particular, BV (Ω) ∩ A restricts the set of BV functions on Ω to those for which the
φi’s are well defined, cf. examples below. Moreover, we assume that the functions φi
are differentiable and convex in u, are bounded from below, and fulfil the following
coercivity assumption∫

Ω

φi(u, f) dx ≥ C1‖u‖pLp − C2, ∀u ∈ Lp(Ω) ∩ A (2.2)

for nonnegative constants C1, C2 and at least one p = 1 or p = 2. Examples of φi’s
that fulfill these assumptions and that are considered in the paper are
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• The Gaussian noise model, where
∫

Ω
φ(u, f) dx = ‖u − f‖2L2(Ω) fulfills the

coercivity constraint for p = 2 and the admissible set A = L2(Ω).
• The Poisson noise model, where φ(u, f) = u−f log u andA = {u ∈ L1(Ω)| u ≥

0}. This φ is convex and differentiable and fulfils the coercivity condition for
p = 1. More precisely, we have for u ≥ 0∫

Ω

(u− f log u) dx ≥ ‖u‖L1(Ω) − ‖f‖L∞(Ω) · log ‖u‖L1(Ω),

where we have used Jensen’s inequality, i.e., for u ≥ 0

log

(∫
Ω

u dx

)
≥
∫

Ω

log u dx.

• The impulse noise model, where
∫

Ω
φ(u, f) dx = ‖u − f‖L1(Ω) fulfills the

coercivity constraint for p = 1.

For the numerical solution of (1.3) we want to use derivative-based iterative methods.
To do so, the gradient of the total variation denoising model has to be uniquely
defined. That is, a minimiser of (1.3) is uniquely characterised by the solution of the
corresponding Euler-Lagrange equation. Since the total variation regulariser is not
differentiable but its ”derivative” can be only characterised by a set of subgradients
(the subdifferential), we (from now on) shall use a regularised version of the total
variation. More precisely, we consider for γ � 1 the Huber-type regularisation of the
total variation with

|∇u|γ =

{
|∇u| − 1

2γ if |∇u| ≥ 1
γ

|∇u|2 γ2 if |∇u| < 1
γ

(2.3)

and the following regularised version of (2.1)-(2.1b)

min
λi≥0, i=1,...,d

g(ũ) + β

d∑
i=1

‖λi‖2X (2.4a)

subject to

ũ = argminu∈W 1,1∩A

{
J γ(u) =

∫
Ω

|∇u|γ dx+

d∑
i=1

∫
Ω

λiφi(u, f) dx

}
, (2.4b)

where the space X, g, φi’s and β > 0 are defined as before. The admissible set of
functions A is assumed to be convex and closed subset of W 1,1(Ω) and is chosen
according to the data fidelities φi, cf. examples above. The existence of an optimal
solution for (2.4b) is proven by the method of relaxation. To do so we extend the
definition of J γ to BV (Ω) as

J γext(u) =

{
J γ(u) u ∈W 1,1(Ω) ∩ A
+∞ u ∈ BV (Ω) \ (W 1,1 ∩ A)

and prove the existence of a minimiser for the lower-semicontinuous envelope of J γext
as follows. We have the following existence result.
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Theorem 2.1. Let f ∈ L2(Ω) and λi ≥ 0 fixed. Then there exists a unique solution
u ∈ BV (Ω) ∩ A of the minimisation problem

min
u∈BV (Ω)∩A

J γrelax(u),

where

J γrelax(u) =

∫
Ω

|∇u|γ dx+ C

∫
Ω

|Dsu|+
d∑
i=1

∫
Ω

λiφi(u, f) dx. (2.5)

is the relaxed functional of J γext on BV − w∗.
Remark 2.1. Note that

J γrelax(u) ≤ J γext(u), u ∈ BV (Ω)

and J γrelax(u) = J γext(u) for u ∈ W 1,1(Ω) ∩ A. Moreover, the relaxation result from
Theorem 2.1 means that

J γrelax(u) = inf
{

lim inf
n
J γext(un) : un ∈ BV (Ω), un → u in BV − w∗

}
,

i.e. J γrelax is the greatest BV −w∗ lower semicontinuous functional less than or equal
to J γext.
Proof. Let un be a minimising sequence for J γrelax. We start by stating the fact that
| · |γ is coercive and at most linear. That is

For |x| ≥ 1

γ
: A|x| −B ≤ |x|γ = |x| − 1

2γ
≤ |x|+ 1

For |x| < 1

γ
< 1 : A|x| −B ≤= |x|γ = |x|2 γ

2
< |x|γ

2
.

Hence,

|Dun|(Ω) =

∫
Ω

|∇un| dx+

∫
Ω

|Dsu| ≤
∫

Ω

|∇u|γ dx+C

∫
Ω

|Dsu| ≤M, ∀n ≥ 1.

Moreover, un is uniformly bounded in Lp(Ω) for p = 1 or p = 2 because of the
coercivity assumption (2.2) on φi and therefore un is uniformly bounded in BV (Ω).
Because BV (Ω) can be compactly embedded in L1(Ω) this gives that un converges
weak ∗ to a function u in BV (Ω) and (by passing to another subsequence) strongly
converges in L1(Ω). From the convergence in L1(Ω), Ω bounded, we get that un (up
to a subsequence) converges pointwise a.e. in Ω. Moreover, since φi is continuous, also
φi(un, f) converges pointwise to φi(u, f). Then, lower-semicontinuity of R(|Du|) =∫

Ω
|∇u|γ dx + C

∫
Ω
|Dsu| w.r.t. strong convergence in L1 [19] and Fatou’s lemma

together with pointwise convergence applied to
∫

Ω
φi(un, f) dx gives that

J γrelax(u) =

∫
Ω

|∇u|γ dx+ C

∫
Ω

|Dsu|+
d∑
i=1

∫
Ω

λiφi(u, f) dx

≤ lim inf
n
J γrelax(un) = lim inf

n

(∫
Ω

|∇un|γ dx+ C

∫
Ω

|Dsun|+
d∑
i=1

∫
Ω

λiφi(un, f) dx

)
.
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To see that the minimiser lies in the admissible set A it is enough to observe that
the set A is a convex and closed subset of BV (Ω) and hence it is weakly closed by
Mazur’s Theorem. This gives that u ∈ A. To see that in fact J γrelax is the greatest
lower-semicontinuous envelope of J γext see [19, 7, 8, 9, 6].

Theorem 2.2. There exists an optimal solution to

min
λi≥0, i=1,...,d

g(ũ) + β

d∑
i=1

‖λi‖2X (2.6a)

subject to

ũ = argminu∈BV (Ω)∩AJ
γ
relax(u). (2.6b)

Proof. Since the cost functional is bounded from below, there exists a minimizing
sequence {λn} = {λn(un)} ⊂ Xd. Due to the Tikhonov term in the cost functional,
we get that {λn} is bounded inXd. Let un be a minimiser of J γrelax for a corresponding
λn. Such a minimiser exists because of Theorem 2.1. Hence,

J γrelax(un) ≤ J γrelax(0)∫
Ω

|∇un|γ dx+ C

∫
Ω

|Dsun|+
d∑
i=1

∫
Ω

(λi)n φi(un, f) dx ≤
d∑
i=1

∫
Ω

(λi)n φi(0, f) dx

As before, from the coercivity condition on f and the uniform bound on λn, we deduce
that

C|Dun|(Ω) ≤ C|Dun|(Ω) +

d∑
i=1

∫
Ω

(λi)n φi(un, f) dx ≤
d∑
i=1

∫
Ω

(λi)n φi(0, f) dx

≤ 1

2

(
d∑
i=1

‖(λi)n‖X + ‖φi(0, f)‖2L2

)
≤ C.

Moreover, from the coercivity of φi in un we get with a similar calculation that un is
uniformly bounded in Lp for p = 1 or 2, and hence in particular in L1. In sum, un is
uniformly bounded in BV (Ω) and hence, converges weakly ∗ in BV (Ω) and strongly in
L1(Ω). The latter also gives pointwise convergence of un and consequently φi(un, f)
a.e. and hence we have

J γrelax(û, λ̂)

:=

∫
Ω

|∇û|γ dx+ C

∫
Ω

|Dsû|+
d∑
i=1

∫
Ω

λ̂iφi(û, f) dx

≤ lim inf
n

(∫
Ω

|∇un|γ dx+ C

∫
Ω

|Dsun|+
d∑
i=1

∫
Ω

(λi)n φi(un, f) dx

)
= lim inf

n
J γrelax(un, λn).
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Since the cost functional is w.l.s.c., it follows, together with the fact that {λ : λ ≥ 0}
is weakly closed, that (λ̂, û) ∈ (X ∩ {λi ≥ 0} × (BV (Ω) ∩ A) is optimal for (2.4).

Theorem 2.3. The sequence of functionals J γrelax in (2.5) converges in the Γ- sense
to the functional

Jrelax(u) =

{∫
Ω
|∇u|+

∑d
i=1

∫
Ω
λiφi(u) dx u ∈W 1,1(Ω) ∩ A

+∞ u ∈ BV (Ω) \ (W 1,1(Ω) ∩ A)

as γ → ∞. Therefore, the unique minimiser of J γrelax converges to the unique min-
imiser of Jrelax as γ goes to infinity.

Proof. The proof is a standard result that follows from the fact that a decreasing
point wise converging sequence of functionals Γ- converges to the lower semicontinuous
envelope of the point wise limit [16, Propostion 5.7]. In fact,

∫
Ω
|∇u|γ + 1

2γ decreases

in γ and converges pointwise to
∫

Ω
|∇u|. Then, for u ∈ BV (Ω) the functional J γrelax

(being the lower-semicontinuous envelope of J γext) Γ- converges to the functional Jrelax
in Theorem 2.3. The latter is the lower-semicontinous envelope of the functional in
(1.3).

Although Theorem 2.3 provides a convergence result for the regularized TV subprob-
lems, it is not sufficient to conclude convergence of the optimal regularized weights.
For this we need the continuity of the solution map λ → u(λ). Up to our knowl-
edge, no sufficient continuity results for the control-to-state map in the case of a total
variation minimiser as the state are known. There are various contributions in this
directions [14, 31, 38, 39] which are – as they stand – not strong enough to prove the
desired result in our case. Indeed, this is a matter of future research.

3. Optimization problem in H1
0 (Ω). In order to obtain continuity of the solu-

tion map and, hence, convergence of the regularized optimal parameters, we proceed
in an alternative way and move, from now on, to a Hilbert space setting. Specifically,
we replace the minimisation problem (1.3) by the following elliptic-regularized version
of it:

min
u

(
ε

2
‖Du‖2L2 + |Du|(Ω) +

d∑
i=1

∫
Ω

λi φi(u) dx

)
. (3.1)

where 0 < ε� 1 is an artificial diffusion parameter.

A necessary and sufficient optimality condition for (3.1) is given by the following
elliptic variational inequality:

ε(Du,D(v − u))L2 +

d∑
i=1

∫
Ω

λiφ
′
i(u)(v − u) dx

+

∫
Ω

|Dv| dx−
∫

Ω

|Du| dx ≥ 0 for all v ∈ H1
0 (Ω). (3.2)

Note that by adding the coercive term, we implicitely impose the solution space H1
0 (Ω)

(see [26]).
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Our aim is to determine the optimal choice of parameters λi, i = 1, ..., d, by solving
the following optimization problem:

min
λi≥0, i=1,...,d

g(u) + β

d∑
i=1

‖λi‖2X (3.3a)

subject to

ε(Du,D(v − u))L2 +

d∑
i=1

∫
Ω

λi φ
′
i(u)(v − u) dx

+

∫
Ω

|Dv| dx−
∫

Ω

|Du| dx ≥ 0 for all v ∈ H1
0 (Ω), (3.3b)

where the space X corresponds to R in the case of scalar parameters or to a Hilbert
function space in the case of distributed functions. Problem 3.3 corresponds to an
optimization problem governed by a variational inequality of the second kind (see [17]
and the references therein).

Next, we perform the analysis of the optimization problem (3.3). After proving exis-
tence of an optimal solution, a regularization approach will be also proposed in this
context. We will prove the continuity of the control-to-state map and, based on it,
convergence of the regularized images and the optimal regularized parameters. In the
case of a smoother regularization of the TV term, also differentiablity of the solution
operator will be verified, which will lead us afterwards to a first order optimality
system characterizing the optimal solution to (3.3).

We start with the following existence theorem.

Theorem 3.1. There exists an optimal solution for problem (3.3).

Proof. Let {λn} ⊂ Xd be a minimizing sequence. Due to the Tikhonov term in the
cost functional, we get that {λn} is bounded in Xd. From (3.3b) we additionally get
that the sequence of images {un} satisfy

ε‖un‖2H1
0

+

d∑
i=1

∫
Ω

λni [φ′i(un)− φ′i(0)]un dx

+

∫
Ω

|Dun| dx ≤ −
d∑
i=1

∫
Ω

λni φ
′
i(0)un dx, (3.4)

which, due to the monotonicity of the operators on the left hand side, implies that

ε‖un‖2H1
0
≤

d∑
i=1

‖λni‖X‖φ′i(0)‖Lr‖un‖Lp , (3.5)

for 2 < p < +∞ and r = 2p
p−2 . Thanks to the embedding H1

0 (Ω) ↪→ Lp(Ω), for all
1 ≤ p < +∞, we get that

‖un‖H1
0
≤ C

d∑
i=1

‖λni‖X‖φ′i(0)‖Lr , (3.6)
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for some constant C > 0. Consequently,

{un} is uniformly bounded in H1
0 (Ω). (3.7)

Therefore, there exists a subsequence {(un, λn)} which converges weakly in H1
0 (Ω)×

Xd to a limit point (û, λ̂). Moreover, un → û strongly in Lp(Ω) and, thanks to the
continuity of φ′, also

φ′(un)un ⇀ φ′(û)û strongly in L
p
2 (Ω) (3.8)

Consequently, thanks to the continuity of φ′ and the properties of a(·, ·), we get

a(û, û) +

d∑
i=1

∫
Ω

λ̂iφ
′
i(û)û+

∫
Ω

|Dû|

≤ lim inf a(un, un) +

d∑
i=1

∫
Ω

λniφ
′
i(un)un +

∫
Ω

|Dun|

≤ lim inf a(un, v) +

d∑
i=1

∫
Ω

λniφ
′
i(un)v +

∫
Ω

|Dv|

= a(û, v) +

d∑
i=1

∫
Ω

λ̂iφ
′
i(û)v +

∫
Ω

|Dv|.

Since the cost functional is w.l.s.c., it follows, together with the fact that {λ : λ ≥ 0}
is weakly closed, that (λ̂, û) is optimal for (3.3).

Next, we consider the following family of regularized problems:

ε(Duγ , Dv) + (hγ(Duγ), Dv) +

d∑
i=1

∫
Ω

λi φ
′
i(uγ)v = 0,∀v ∈ H1

0 (Ω), (3.9)

where hγ(Duγ) corresponds to an active-inactive-set approximation of the subdiffer-
ential of |Duγ |, i.e., hγ coincides with an element of the subdifferential up to a small
neighborhood of 0. The most natural choice is the function

hγ(z) =
γz

max(1, γ|z|)
, (3.10)

which corresponds to the derivative of the Huber function defined in (2.3). An alter-
native regularization is given by the C1 function

hγ(z) =


g z
|z| if γ|z| ≥ g + 1

2γ
z
|z| (g −

γ
2 (g − γ|z|+ 1

2γ )2) if g − 1
2γ ≤ γ|z| ≤ g + 1

2γ

γz if γ|z| ≤ g − 1
2γ ,

(3.11)

where g is a positive parameter. The latter smoothing for the total variation is going
to be used in Proposition 3.4 where differentiability of the regulariser is needed.

Remark 3.1. For a fixed λ, it can be verified that (3.9) has a unique solution.
Moreover, the sequence of regularized solutions {uγ} converges strongly in H1

0 (Ω) to
the solution of (3.2) (cf. [17]).
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Based on the regularized problems (3.9), we now focus on the following optimization
problem:

min
λi≥0, i=1,...,d

g(u) + β

d∑
i=1

‖λi‖2X (3.12a)

subject to

ε(Duγ , Dv) + (hγ(Duγ), Dv) +

d∑
i=1

∫
Ω

λi φ
′
i(uγ)v = 0,∀v ∈ H1

0 (Ω), (3.12b)

where 0 < ε� 1. In this setting we can prove the following continuity and convergence
results.

Proposition 3.2. Let {λn} be a sequence in Xd such that λn ⇀ λ̂ weakly in Xd as
n → ∞. Further, let un := uγ(λn) denote the solution to (3.12b) associated with λn
and û := uγ(λ̂). Then

un → û strongly in H1
0 (Ω).

Proof. Since λn ⇀ λ̂ weakly in X, it follows, by the principle of uniform boundedness,
that {λn} is bounded in X. From (3.12b) we additionally get that

ε‖un‖2H1
0

+

d∑
i=1

∫
Ω

λni [φ′i(un)− φ′i(0)]un dx

+ (hγ(Dun), Dun) ≤ −
d∑
i=1

∫
Ω

λni φ
′
i(0)un dx, (3.13)

which, proceeding as in the proof of Theorem 3.1, implies that

‖un‖H1
0
≤ C

d∑
i=1

‖λni‖X‖φ′i(0)‖Lr , (3.14)

for some constant C > 0. Hence, {un} is uniformly bounded in H1
0 (Ω).

Consequently, there exists a subsequence (denoted the same) and a limit û such that

un ⇀ û in H1
0 (Ω) and un → û in Lp(Ω), 1 ≤ p < +∞.

Thanks to the structure of the regularized VI (3.12b) it also follows (as in the proof

of Theorem 3.1) that û is solution of the regularized VI associated with λ̂. Since the
solution to (3.12b) is unique, it additionally follows that the whole sequence {un}
converges weakly towards û.

To verify strong convergence, we take the difference of the variational equations sat-
isfied by un and û and obtain that

ε(Dun −Dû,Dv) + (hγ(Dun)− hγ(Dû), Dv)

=

∫
Ω

[
λ̂ φ′(û)− λn φ′(un)

]
v dx, ∀v ∈ H1

0 (Ω).

10



Adding the term −λn φ′(û) on both sides of the latter yields

ε(Dun −Dû,Dv) + (hγ(Dun)− hγ(Dû), Dv)∫
Ω

[λn φ
′(un)− λn φ′(û)] v dx =

∫
Ω

[
λ̂ φ′(û)− λn φ′(û)

]
v dx, ∀v ∈ H1

0 (Ω).

Choosing v = un− û and thanks to the monotonicity of the operator on the left hand
side, we then obtain that

ε‖Dun −Dû‖2 ≤
∣∣∣∣∫

Ω

[
λ̂ φ′(û)− λn φ′(û)

]
(un − û) dx

∣∣∣∣ ,
which thanks to the strong convergence un → û in Lp(Ω), 1 ≤ p < +∞, and the
regularity φ′(û) ∈ L

p
2 (Ω), implies the result.

Theorem 3.3. There exists an optimal solution for each regularized problem (3.12).
Moreover, the sequence {λγ} of regularized optimal parameters is bounded in Xd and
every weakly convergent subsequence converges towards an optimal solution of (3.3).

Proof. Let {λn} be a minimizing sequence. From the structure of the cost functional
and the properties of (3.12b) it follows that the sequence is bounded. Consequently,
there exists a subsequence (denoted the same) and a limit λ∗ such that λn ⇀ λ∗

weakly in Xd. From Proposition 3.2 and the weakly lower semicontinuity of the cost
functional, optimality of λ∗ follows, and, therefore, existence of an optimal solution.

Let now {λγ}γ>0 be a sequence of optimal solutions to (3.12). Since (0, 0) ∈ H1
0 (Ω)×

Xd is feasible for each γ > 0, it follows that

J(uγ(λγ), λγ) ≤ J(uγ(0), 0) = J(0, 0).

Thanks to the Tikhonov term in the cost functional it then follows that {λγ}γ>0 is
bounded.

Let λ̂ be the limit point of a weakly convergent subsequence (also denoted by {λγ}).
From Remark 3.1 and Proposition 3.2 it follows, by using the triangle inequality, that

uγ(λγ)→ û strongly in H1
0 (Ω) as γ →∞,

where û denotes the solution to (3.2) associated with λ̂.

From the weakly lower semicontinuity of the cost functional, we finally get that

J(û, λ̂) ≤ lim inf
γ→∞

J(uγ(λγ), λγ) ≤ lim inf
γ→∞

J(uγ(λ̄), λ̄) = J(ū, λ̄),

where λ̄ is an optimal solution to (3.12).

The next proposition is concerned with the differentiability of the solution opera-
tor. This result will lead us thereafter (see Theorem 3.5) to get an expression for
the gradient of the cost functional and also to obtain an optimality system for the
characterization of the optimal solutions to (3.3).

Proposition 3.4. Let Gγ : Xd 7→ H1
0 (Ω) be the solution operator, which assigns

to each parameter λ the corresponding solution to the regularized VI (3.9), with the
function hγ given by (3.11). Then the operator Gγ is Gâteaux differentiable and its

11



derivative at λ̄, in direction ξ, is given by the unique solution z ∈ H1
0 (Ω) of the

following linearized equation:

ε(Dz,Dv) + (h′γ(Dū)Dz,Dv) +

d∑
i=1

∫
Ω

λi φ
′′
i (ū) z v dx

+

d∑
i=1

∫
Ω

ξi φ
′
i(ū) v dx = 0, for all v ∈ H1

0 (Ω). (3.15)

Proof. Existence and uniqueness of a solution to (3.15) follows from Lax-Milgram
theorem by making use of the monotonicity properties of hγ and φ′i.

Let ξ ∈ Xd, and let yt and y be the unique solutions to (3.9) correspondent to λ+ tξ
and λ, respectively. By taking the difference between both equations, it follows that

ε(D(ut − u), D(ut − u)) + (hγ(Dut)− hγ(Du), D(ut − u))

+ λt(φ
′(ut)− φ′(u), ut − u) = −t(ξφ′(u), ut − u), (3.16)

which, by the monotonicity of hγ and φ′ yields that

κ‖ut − u‖2H1
0
≤ t ‖ξ‖Xd‖φ′(u)‖Lr‖ut − u‖Lp . (3.17)

Therefore, the sequence {zt}t>0, with zt := yt−y
t , is bounded and there exists a

subsequence (denoted the same) such that zt ⇀ z weakly in H1
0 (Ω).

Using the mean value theorem in integral form we get that

a(zt, w) +
1

t
(hγ(Dut)− hγ(Du), Dw) +

1

t
(λt(φ

′(ut)− φ′(u)), w) (3.18)

= a(zt, w) +

∫
Ω

〈
h′γ(ϑt)Dzt , Dw

〉
dx+

∫
Ω

λtφ
′′(ζt)w dx (3.19)

= −(ξφ′(u), w), for all w ∈ V, (3.20)

where ϑt(x) = Du(x) + ρt(x)(Dut(x) − Du(x)), with 0 ≤ ρt(x) ≤ 1, and ζt(x) =
u(x) + %t(x)(ut(x)− u(x)), with 0 ≤ %t(x) ≤ 1.

From the continuity of the bilinear form it follows that a(zt, w) → a(z, w), for all
w ∈ V . Additionally, from the consistency of the regularization (see Remark 3.1),
ut → u strongly in H1

0 (Ω) and, therefore, ϑt → Du strongly in L2(Ω) and ζt → u
strongly in H1

0 (Ω).

Introducing the function

χγ(x) :=


g if γ|x| ≥ g + 1

2γ ,

g − γ
2 (g − γ|x|+ 1

2γ )2 if |γ|x| − g| ≤ 1
2γ ,

γ|x| if γ|x| ≤ g − 1
2γ ,

the regularizing function may be written as hγ(x) = x
|x| χγ(x) and the second term

12



in (3.19) can be expressed as∫
Ω

〈
h′γ(ϑt)Dzt , Dw

〉
dx =

∫
Ω

χγ(ϑt)

〈
Dw

|ϑt|
− 〈ϑt , Dw〉

|ϑt|2
ϑt
|ϑt|

, Dzt

〉
dx

+

∫
Ω

χ′γ(ϑt)[Dw]

〈
ϑt
|ϑt|

, Dzt

〉
dx.

Let Φ : R2 7→ R2 be the operator defined by

Φ(ξ) := χγ(ξ)
w

|ξ|
− 〈ξ , w〉
|ξ|2

ξ

|ξ|
+ χ′γ(ξ)[w]

ξ

|ξ|
, (3.21)

with w ∈ R2. When considered from Lq(Ω) to Lq(Ω), Φ is a continuous superposi-
tion operator. Therefore, since ϑt → Du strongly in L2(Ω) and thanks to the weak
convergence of zt and continuity of φ′′, we may pass to the limit in (3.19)-(3.20) and
obtain that

a(z, w) +

∫
Ω

〈
h′γ(Du)Dz ,Dw

〉
dx

= −
∫
Ω

λφ′′(ζ)w dx−
∫
Ω

ξφ′(u) w dx, for all w ∈ H1
0 (Ω). (3.22)

Consequently, z ∈ H1
0 (Ω) corresponds to the unique solution of the linearized equa-

tion.

Using again the function χγ , the operator on the left hand side of equation (3.22)
may be written as ∫

Ω

DwTM(x)Dz dx,

where

M(x) := 2µI +
χγ(Dy)

|Dy|
I − χγ(Dy)

|Dy|3
[
Dy(x)Dy(x)T

]
+ χSγ

γ2

|Dy|2
(g − γ|Dy|+ 1

2γ
)
[
Dy(x)Dy(x)T

]
+ χIγ

γ

|Dy|2
[
Dy(x)Dy(x)T

]
, (3.23)

where χSγ and χIγ correspond to the indicator functions of the sets Sγ := {x ∈ Ω :
|γ|Dy| − g| < 1

2γ } and Iγ := {x ∈ Ω : γ|Dy| ≤ g − 1
2γ }, respectively.

Similarly, by replacing Dy with ϑt in (3.23) a matrix denoted by Mt is obtained. Both
matrices M and Mt are symmetric and positive definite. Using Cholesky decomposi-
tion we obtain lower triangular matrices Lt and L such that

Mt(x) = Lt(x) LTt (x) and M(x) = L(x) LT (x).

Proceeding as in [10, pp. 30-31] (see also [17, Thm. 6.1]), strong convergence of zt → z
in H1

0 (Ω) is obtained, and, thus, also Gâteaux differentiability of Gγ .
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Theorem 3.5 (Optimality system). Let (λ̄, ū) be an optimal solution to problem
(3.12) with Xd = Rd. There exist Lagrange multipliers (p, µ) ∈ H1

0 (Ω)×Rd such that
the following optimality system holds:

ε(Dū,Dv) + (hγ(Dū), Dv) +

d∑
i=1

∫
Ω

λ̄i φ
′
i(ū)v dx = 0,∀v ∈ H1

0 (Ω), (3.24a)

ε(Dp,Dv) + (h′γ(Dū)∗Dp,Dv)

+

d∑
i=1

∫
Ω

λi φ
′′
i (ū) p v dx = −(g′(ū), v),∀v ∈ H1

0 (Ω), (3.24b)

µi = 2βλ̄i +

∫
Ω

pφ′i(ū) dx, i = 1, ..., d, (3.24c)

µi ≥ 0, λi ≥ 0, µiλi = 0, i = 1, ..., d. (3.24d)

Proof. Consider the reduced cost functional

f(λ) = g(Gγ(λ)) + β‖λ‖2Rd . (3.25)

Thanks to the optimality of λ̄ and the differentiability of both Gγ and g it follows
that

∇f(λ̄)T (ξ − λ̄) ≥ 0, for all ξ ≥ 0. (3.26)

Let p ∈ H1
0 (Ω) be the unique solution to the adjoint equation:

ε(Dp,Dv) + (h′γ(Dū)∗Dp,Dv)

+

d∑
i=1

∫
Ω

λi φ
′′
i (ū) p v dx = −(g′(ū), v),∀v ∈ H1

0 (Ω). (3.27)

Indeed, existence and uniqueness of a solution to (3.27) follows from the Lax-Milgram
theorem, similarly as for the linearized equation.

Using the adjoint equation it follows that

∇f(λ̄)T ξ = (g′(ū), G′γ(ū)ξ) + 2βλ̄T ξ

= 2βλ̄T ξ − ε(Dp,Dv)− (h′γ(Dū)∗Dp,Dv)−
d∑
i=1

∫
Ω

λi φ
′′
i (ū) p v dx,

which, utilizing the linearized equation (3.15), yields that

∇f(λ̄)T ξ = 2βλ̄T ξ +

d∑
i=1

∫
Ω

φ′i(ū)p ξi. (3.28)
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Let µi := 2βλ̄i +
∫

Ω
φ′i(ū)p, i = 1, ..., d. From (3.26) and (3.28) it then follows that

µT (ξ − λ̄) ≥ 0, for all ξ ≥ 0,

which is equivalent to the complementarity system (3.24d).

Remark 3.2. In the case of a general parameter Hilbert space Xd, an optimality
system constituted by equations (3.24a), (3.24b) and the variational inequality

2β(λ̄, ξ − λ̄)Xd + (φ′(ū)p, ξ − λ̄)L2 ≥ 0, for all ξ ∈ Xd : ξ ≥ 0 a.e.

is obtained.

4. Numerical solution of the optimization problem. In this section we fo-
cus on the numerical solution of the optimization problem (3.3). For the determination
of the optimal parameter values we consider a projected BFGS (Broyden-Fletcher-
Goldfarb-Shanno) method. In each computational experiment, the state equation is
solved by means of a Newton type algorithm (specified in each case), while a for-
ward finite differences quotient is used for the evaluation of the gradient of the cost
functional. Due to the high computational cost of solving the state equation, a fixed
line search parameter value α = 0.5 was considered in combination with the BFGS
method. The linear systems in each Newton iteration are solved exactly by using a
LU decomposition for band matrices.

4.1. Gaussian noise. As a first example we consider the determination of a
single regularization parameter, i.e., λ ∈ R. The optimization problem takes the
following form:

min
1

2
‖u− uo‖2L2 + βλ2 (4.1a)

subject to:

ε(Du,D(v − u))L2 +

∫
Ω

λ(u− un)(v − u) dx

+

∫
Ω

|Dv| dx−
∫

Ω

|Du| dx ≥ 0,∀v ∈ H1
0 (Ω), (4.1b)

where uo and un denote the original and noisy images respectively. The problem
consists therefore in the optimal choice of the TV regularization parameter, if the
original image is known in advance. This is a toy example for proof of concept only.
In practice this image would be replaced by a training set of images as motivated in
the Introduction.

For the numerical solution of the regularized variational inequality we utilize the
primal-dual algorithm developed in [28], which was proved to be globally as well as
locally superlinear convergent.

The results for the parameter values β = 1 × 10−10, ε = 1 × 10−12, γ = 100 and
h = 1/177 are shown in Figure 4.1 together with the noisy image distorted by Gaus-
sian noise with zero mean and variance 0.002. The computed optimal parameter for
this problem is λ∗ = 2980 For a noise of mean 0 and variance 0.02, and the same reg-
ularization parameters as in the previous experiment, the optimal image is obtained
with the weight λ∗ = 1770.9. The noisy and denoised images are given in Figure 4.1.
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Fig. 4.1. Noisy (left) and denoised (right) images. Noise variance: 0.002 (first row) and 0.02
(last row).

#pixels 60 65 70 75 80 85
λ∗ 674.6 742.9 788.9 855.0 885.8 933

Table 4.1
Optimal weight vs. mesh size; µ = 1e− 15, γ = 100, β = 1e− 10.

By increasing the variance in the noise, the optimal values of the weight differ signifi-
cantly. This is intuitively clear, since as the image becomes noisier there is less original
information that can be directly obtained. When that happens, the TV regularization
plays an increasingly important role.

The question of robustness of the optimal parameter value deserves also to be tested.
In Table 4.1 we compute the optimal weight for different sources of the noisy image
(different total number of pixels). The value of the optimal weight increases together
with the size of the image from which the information is obtained. The variation
remains however small, implying a robust behavior of the values.

4.2. Magnetic resonance imaging. Gaussian noise images typically arise within
the framework of magnetic resonance imaging (MRI). The challenge in this case con-
sists in training the machines so that a clearer image is obtained. The magnetic
resonance images seem to be the natural choice for our methodology, since a training
set of images is often at hand.

For such a training set we consider the solution of problem (4.1). In Figure 4.2
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Fig. 4.2. Image with 3% noise (upper left) and its correspondent optimal denoised one (upper
right); noisy image with 9% noise (lower left) and optimal denoised image (lower right)

the noisy images together with the final optimized ones for a brain scan are shown.
For this experiments a mesh step size of h = 1/250 was considered. The Tikhonov
regularization parameter took the value β = 10−10, while the Huber regularization
parameter was chosen as γ = 100. With this values, the optimal parameter value for
the MRI image with 3% of noise was λ∗ = 64.1448. When the noise in the image was
of 9%, the computed optimal weight was λ∗ = 26.7110.

4.3. Training objective- multiple parameters (Gauss+Poisson). The im-
portance of controlling the regularization in a denoising problem becomes clear once
two different noise distributions, modeled by fidelity terms weighted by non-negative
parameters λ1 and λ2, are present in an image. In particular, in the following exper-
iment we shall solve the optimization problem

min
λ≥0

1

2
‖u− uo‖2L2 + β

2∑
i=1

‖λi‖2

subject to:

min
u≥0

{
ε

2
‖Du‖2L2 + |Du|(Ω) +

λ1

2
‖u− un‖2L2 + λ2

∫
Ω

(u− un log u) dx

}
. (4.2)
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For the characterization of a minimizer of (4.2) we (formally) get the following Euler-
Lagrange equation

− ε∆u− div

(
γ∇u

max(γ|∇u|, 1)

)
+ λ1(u− un) + λ2(1− un

u
)− α = 0

α · u = 0,

with non-negative Lagrange multiplier α ∈ L2(Ω), cf. [27]. As in [33] we multiply the
first equation with u and get

u ·
(
−ε∆u− div

(
γ∇u

max(γ|∇u|, 1)

)
+ λ1(u− un)

)
+ λ2(u− un) = 0,

where we have used the complementarity condition α · u = 0. Next, the solution u is
computed iteratively by using a Newton type method.

For an appropriate initial guess u0, an iteration of the semismooth Newton method
consists in solving the system

δu (−ε∆u− divq + λ1(u− un)) + u (−ε∆δu − divδq + λ1δu) (4.3)

+λ2δu = −u (−ε∆u− divq + λ1(u− un))− λ2(u− un),

δq −
γ∇δu

max(1, γ|∇u|)
+ χAγγ

2 ∇uT∇δu
max(1, γ|∇u|)2

∇u
|∇u|

= −q +
γ∇u

max(1, γ|∇u|)
, (4.4)

for the increments δu and δq. In equation (4.4), χAγ stands for the indicator function
of the active set Aγ := {x ∈ Ω : γ|∇u(x)| ≥ 1}.
Similarly to [18], we consider a modification of the iteration based on the properties
of the solution to (4.2). Specifically, noting that q = ∇u

|∇u| on the final active set and

that |q| ≤ 1, we replace the term ∇u
|∇u| by q

max(1,γ|∇u|) on the left hand side of the

iteration system. The resulting iteration is then given by:

δu (−ε∆u− divq + λ1(u− un)) + u (−ε∆δu − divδq + λ1δu) (4.5)

+λ2δu = −u (−ε∆u− divq + λ1(u− un))− λ2(u− un),

δq −
γ∇δu

max(1, γ|∇u|)
+ χAγγ

2 ∇uT∇δu
max(1, γ|∇u|)2

q

max(1, |q|)
= −q +

γ∇u
max(1, γ|∇u|)

,

(4.6)

The resulting algorithm exhibits global and local superlinear convergence properties.
In Figure 4.3 the residuum of the algorithm in the last 4 iterations is depicted. The pa-
rameter values used are µ = 1e−4, γ = 50, β = 1e−10, h = 1/60, λ1 = 769.2199, λ2 =
30.6396. From the behavior of the residdum, local superlinear convergence is inferred.
In combination with the outer BFGS iteration, a competitive algorithm for the solu-
tion of the bilevel problem is obtained.

For the computational tests we consider the noisy zoomed image of a plane’s wing
(see Figure 4.4). Choosing the parameter values β = 1e−10, γ = 100 and ε = 1e−15,
the optimal weights λ∗1 = 1847.75 and λ∗2 = 73.45 were computed on a grid with mesh
size step h = 1/200. From Figure 4.3 also a good match between the original and the
denoised images can be observed. The noise appears to be succesfully removed with
the computed optimal weights.
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Fig. 4.3. SSN residuum in the last 4 iterations. µ = 1e− 4, γ = 50, β = 1e− 10, h = 1/60, u1 =
769.2199, u2 = 30.6396

Fig. 4.4. Noisy (left), denoised (center) and original (right) images

Further, we tested the stability of the optimal parameter values with respect to
changes in the source noisy image. This behavior is registered in Table 4.2. On
the first data column the optimal weights corresponding to a zoomed image displaced
by 10 grid points down and 10 grid points left is registered. The same kind of data is
registered in the second column for a displacement of 5 grid points down and 5 left.
In the fourth column the data corresponds to a displacement in the zoom by 5 grid
points right and 5 up. Similarly, in the fifth column for 10 grid points. From Table
4.2 a robust behavior of the parameter values can be inferred. Indeed, by changing
the source image by 10%, the optimal weights change less than 16%.

4.4. Impulse noise. For the last experiment we consider images with so-called
impulse noise. Specifically, we aim to solve the following parameter estimation prob-
lem:

min
1

2
‖u− uo‖2L2 + βλ2 (4.7)

subject to:

ε(Du,D(v − u))L2 + λ

∫
Ω

|v − un| dx− λ
∫

Ω

|u− un| dx

+

∫
Ω

|Dv| dx−
∫

Ω

|Du| dx ≥ 0,∀v ∈ H1
0 (Ω). (4.8)
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%Displacement -10 -5 0 5 10
% Sensitivity of λ∗ 15.56 0.3 0 0.15 8.26

λ∗1 1270.9 1103.4 1100.7 1099.8 1189.8
λ∗2 26.39 48.24 46.37 44.92 28.13

Table 4.2
Optimal weight sensitivity by moving the sample image along the diagonal; µ = 1e−12, γ = 50,

β = 1e− 10 h = 1/100.

Equation (4.8) corresponds to the necessary and sufficient optimality condition for
the optimization problem:

min
u

{
ε

2
‖Du‖2L2 + |Du|(Ω) + λ

∫
Ω

|u− un| dx
}
. (4.9)

The L1-norm is introduced to deal with the sparse impulse noise in the image. The
presence of this norm adds, however, an additional nondifferentiability to the opti-
mization problem.

For the numerical solution of the lower level problem we consider a Huber type reg-
ularization of both the TV term and the L1-norm. Using a common regularization
parameter γ, the resulting nonlinear PDE takes the following form:

−ε∆u− div

(
γ∇u

max(γ|∇u|, 1)

)
+ λ

γ(u− un)

max(1, γ|u− un|)
= 0, (4.10)

or, in primal-dual form,

−ε∆u− div q + λ p = 0, (4.11)

q =
γ∇u

max(γ|∇u|, 1)
, (4.12)

p =
γ(u− un)

max(1, γ|u− un|)
. (4.13)

The nonlinearities in equation (4.10) are present both in the quasilinear and the
semilinear terms. Both of them have to be be carefully treated in order to obtain a
convergent numerical method for the solution.

Proceeding in a similar manner as in Section 5.2, a semismooth Newton iteration for
the impulse noise lower level problem is given by

−ε∆δu − divδq + λδp =− (−ε∆u− divq + λp) , (4.14)

δq −
γ∇δu

max(1, γ|∇u|)
+χAγ

γ2∇uT∇δu
max(1, γ|∇u|)2

∇u
|∇u|

= −q +
γ∇u

max(1, γ|∇u|)
, (4.15)

δp −
γδu

max(1, γ|u− un|)
+ χSγ

γ2(u− un)δu
max(1, γ|u− un|)2

(u− un)

|u− un|

= −p+
γ(u− un)

max(1, γ|u− un|)
. (4.16)

Using a similar argumentation as for the Gauss+Poisson noise case, we consider the
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Iteration λ∗ Cost functional Residuum #SSN iterations
1 10.0015 0.0124 0.0015 15
2 16.7752 0.0124 0.0015 3
3 19.2223 0.0064 4.024e-4 14
4 10.0854 0.0048 5.496e-4 12
5 24.9562 0.0123 0.0014 17
6 26.2300 0.0018 1.124e-4 18
7 30.2286 0.0017 8.530e-5 10
8 45.8756 0.0013 6.794e-5 12
9 48.7340 7.83e-4 1.049e-5 13
10 73.2269 7.55e-4 9.397e-6 7
11 57.9833 8.12e-4 1.54e-5 12
12 58.2922 6.81e-4 3.20e-7 19

Table 4.3
Optimal weight sensitivity by moving the sample image along the diagonal; µ = 1e−12, γ = 50,

β = 1e− 10 h = 1/40.

modified system

−ε∆δu − divδq + λδp = − (−ε∆u− divq + λp) , (4.17)

δq −
γ∇δu

max(1, γ|∇u|)
+ χAγγ

2 ∇uT∇δu
max(1, γ|∇u|)2

q

max(1, |q|)

= −q +
γ∇u

max(1, γ|∇u|)
, (4.18)

δp −
γδu

max(1, γ|u− un|)
+ χSγ

γ2(u− un)δu
max(1, γ|u− un|)2

p

max(1, |p|)

= −p+
γ(u− un)

max(1, γ|u− un|)
. (4.19)

where we replaced the terms ∇u
|∇u| and (u−un)

|u−un| on the left hand side by q
max(1,|q|) and

p
max(1,|p|) , respectively.

The behavior of the resulting BFGS-SSN algortihm is registered in Table 4.3. For
the parameter values µ = 1e − 12, γ = 50, β = 1e − 10 h = 1/40 the algorithm
takes 12 iterations to converge. The number of iterations of the lower level algorithm,
given through (4.17)- (4.19), is registered in the last column, from which the fast
convergence of the method is experimentally verified.
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[7] Bouchitté G, Buttazzo G (1990) New lower semicontinuity results for nonconvex functionals
defined on measures. Nonlinear Anal TMA 15(7):679692 6.
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