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presence of a high-frequency forcing 

function 
 
M. Condon, A. Deaño and A. Iserles 

 

 
The letter is concerned with the simulation of MEMRISTORS when 
they are subject to high-frequency forcing functions.  A novel 

asymptotic-numeric simulation method is applied.  For systems 

involving high-frequency signals or forcing functions, the superiority of 

the proposed method in terms of accuracy and efficiency when 

compared to standard simulation techniques shall be illustrated.  

Relevant dynamical properties in relation to the method shall also be 

considered.  

 

 

Introduction: Leon O. Chua postulated the memristor as the fourth 

circuit element in 1971 [1].  However, it was not until its solid-state 

fabrication in 2008 [2] that it attracted significant interest in view of its 

many potential applications ranging from secure communications [3] to 

a low-cost technology for non-volatile memories [4].  In this letter, we 

examine the simulation and analysis of a chaotic memristor-based 

circuit when it is subject to a high-frequency forcing function.  The 

behaviour of the circuit is governed by a nonlinear differential equation 

system.  However, the presence of the high-frequency forcing function 

renders solution by standard quadrature techniques expensive and 

inefficient.  To this end, this letter proposes a novel simulation 

technique that unlike traditional quadrature techniques improves as 

frequency increases. 

 

Memristor Circuit: The memristor circuit considered is shown in Fig. 1 

and the circuit values are taken from [5]. 
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Fig. 1 Memristor Circuit 

 

The equations governing the circuit behaviour are: 
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)(t  is the magnetic flux between the memristor terminals and 

))(( tW   is termed the memductance. tVtv cos)(  is the high-

frequency forcing function.  For the current work, the memductance is 

selected as a quadratic function [5] of the magnetic flux 

23))((  tW    (2) 

where  and  are constants. )(tiL is the current flowing in the 

inductor L. )(1 tv  and )(2 tv  are voltages across the capacitors, 1C  

and 2C . 

 

Asymptotic-Numeric Method: Equation (1) is of the general form 
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s(t) is the forcing function.   

The proposed simulation method involves expanding the solution to (3) 

in inverse powers of 
1 as follows: 
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The series in (4) is substituted into the differential equation (3).  

The coefficients are then equated on two levels – in powers of 
1 and frequency terms (values of m). This results in a series of 

ordinary differential equations (ODEs) and recursive relations: 
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)( 0,01 pf  is the Jacobian of f evaluated at )(0,0 tp .  gr and hr are 

functions of )()( ,0,0 tptp mr  determined from Taylor series 

expansion of the nonlinearity about )(0,0 tp .  The important point to 

note with the expressions in (5) is that they are independent of the high-

frequency, .  Consequently, the step size employed for solution of the 

ODEs in (1) or (3) is not governed by this frequency.  Hence, a much 

larger time step can be employed resulting in considerable gains in 

efficiency. 

 

Numerical Results:  As in [5], time-scaling is employed to yield realistic 

voltage values.  The circuit parameter values are 

mHL 181  nFC 8.61  nFC 682   and  2000R . The 

forcing function is selected of amplitude V=10  and its frequency is 

varied to illustrate that the superiority of the asymptotic-numerical 

method improves with rising frequency.   The results are computed with 

rmax=2 in the series in (4).  They are compared to the result computed 

using the ode45 solver in matlab with a relative tolerance of 10
-12

 and an 

absolute tolerance of 10
-12

.  Fig. 2 shows the voltage )(2 tv  when the 

input frequency is 
710 .   Fig. 3 shows the same voltage when the 

forcing frequency is 
910 .  In the first case, the error is ~10

-7
 while 

in the second case the error is 10
-11

.  These error values are as expected 

as the value of the frequencies when considered in the time-scaled 

version of the equations are ~350 and 35000, respectively.  The result in 

the first case requires approximately the same computing time. 

However, in the second case, the result is computed >10 times as fast 
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emphasising the increasing efficiency and accuracy of the method for 

the same number of levels with increasing frequency. 
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Fig. 2 v2(t) – Comparison between the result obtained from a standard 

ODE solver(solid)and the result from the proposed asymptotic 

method(*) when ω=10
7
. 
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Fig. 3 v2(t) – Comparison between the result obtained from a standard 

ODE solver(solid)and the result from the proposed asymptotic 

method(*) when ω=10
9
. 

 
Comments on dynamical behaviour: The differential equation for 

)(0,0 tp is identical to the unforced version of equation (1) (when 

00 a ).  Consequently, the Lyapunov exponents are the same as 

obtained in [5] using the Wolf method [6], (0,0.061,~0,1.79).  The 

positive exponent and the negative sum of the Lyapunov exponents 

indicate the presence of chaos.  The equations for )(0, tpr  are linear 

time-varying in nature.  The Lyapunov exponents for the circuit in the 

presence of the forcing function of frequency ω=10
7
 are  

(0,0.057,~0,1.77,0).  When ω=10
9
, the exponents are 

(0,0.048,~0,1.81,0).  Again, the results indicate the presence of chaos. 

 

Conclusions:  The letter has applied a novel asymptotic-numeric 

method for the simulation of a forced Memristor chaotic circuit.  The 

method is such that its accuracy and efficiency improve with rising 

frequency. 
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