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Abstract
In this paper we study the problem of computing wavelet coefficients of compactly supported

functions from their Fourier samples. For this, we use the recently introduced framework of gener-
alized sampling. Our first result demonstrates that using generalized sampling one obtains a stable
and accurate reconstruction, provided the number of Fourier samples grows linearly in the number
of wavelet coefficients recovered. For the class of Daubechies wavelets we derive the exact constant
of proportionality.

Our second result concerns the optimality of generalized sampling for this problem. Under some
mild assumptions we show that generalized sampling cannot be outperformed in terms of approxima-
tion quality by more than a constant factor. Moreover, for the class of so-called perfect methods, any
attempt to lower the sampling ratio below a certain critical threshold necessarily results in exponen-
tial ill-conditioning. Thus generalized sampling provides a nearly-optimal solution to this problem.
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1 Introduction
One of the most fundamental problems in sampling theory is the issue of how to recover an object – an
image or signal, for example – from a finite, and typically fixed, collection of its measurements. This
problem lies at the heart of countless algorithms, with applications ranging from medical imaging to
astronomy.

An important instance of this problem is that of Magnetic Resonance Imaging (MRI). Mathematically,
this can be modelled as the recovery of a function (the image) from a collection of pointwise samples of
its Fourier transform. The classical approach in MRI is to recover f by computing a discrete Fourier
transform (DFT) of the given data. However, this approach suffers from a number of drawbacks, including
the sensitivity to motion and the presence of unpleasant Gibbs ringing [27, 46]. Such phenomena present
serious problems in MRI.

1.1 Wavelets in MRI
It is known that typical images can be much more efficiently represented using wavelets than by their
Fourier series. Images may be sparse in wavelets, or their coefficients may have improved decay prop-
erties. Representing an MR image in this way also has several other benefits over the classical Fourier
representation. These include better compressibility, improved feature detection (see [42, 43] and refer-
ences therein), and easier and more effective denoising [33, 35, 45]. For these reasons, the use of wavelets
in biomedical imaging applications has been a significant area of research for several decades [33, 42, 43].
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Seeking to exploit these beneficial properties, an approach to recover wavelet coefficients directly was
introduced in 1992 by Weaver et al [27, 46] (see also [25, 33, 37] and references therein). This is known as
wavelet-encoded MRI. In this technique, the MR scanner itself is modified to sample wavelet coefficients
along one dimension, with Fourier sampling, followed by a one-dimensional DFT, applied in the other.
The resulting reconstructed image suffers less from Gibbs ringing, has fewer motion artefacts, and can
in principle be acquired more rapidly [36, 37]. For a medical perspective on wavelet encoding, and a
discussion on how it can be combined with other imaging techniques such as parallel MRI, see [32].

Unfortunately, there are a number of disadvantages to wavelet encoding, which limit its applicability.
These include low signal-to-noise ratio [36, 46], and the extra complications encountered in the acquisition
process due to having to modify the MR scanner [33]. Moreover, the state-of-the-art wavelet encoding
allows only for reconstructions of wavelet coefficients of a 2D image in one direction, and thus does not
permit one to take full advantage of general wavelets.

Nonetheless, the intensity of work on wavelets in MRI, and in particular on wavelet encoding tech-
niques, indicates the importance of the problem of computing wavelet coefficients of biomedical imaging.
It also serves to highlight the fact that this problem remains largely unsolved.

With this in mind, the purpose of this paper is to introduce and analyse a different solution to this
problem, known as generalized sampling. Unlike wavelet encoding, which is primarily an engineering
exercise in which the scanner itself is modified to produce different samples, we take the mathematical
viewpoint and consider the samples as being fixed Fourier samples, and then seek to reconstruct wavelet
coefficients directly via a post-processing algorithm. Our main conclusion is that one can perform wavelet
encoding in MRI with generalized sampling without altering the scanner at all. This allows for the use
of arbitrary wavelets and removes any hardware restrictions.

Remark 1.1. The reader may wonder at this stage why wavelet encoding is necessary. Why could one
not simply recover wavelet coefficients from standard MRI data by applying the DFT and DWT (discrete
wavelet transform) in turn? There are two reasons. First, the use of DFT yields a discrete (pixel-based)
version of the truncated Fourier series. Hence, by applying the DWT one (at best) obtains the wavelet
coefficients of the truncated Fourier series and not the actual wavelet coefficients of the image itself.
Second, the recovery algorithm using DFT and DWT would be as follows. The "wavelet coefficients" are
obtained by

x = DWT ·DFT−1y,

where y is a vector of the Fourier samples. However, when mapping these coefficients back to the pixel
domain, one gets

x̃ = DWT−1x = DFT−1y,

which is exactly what we would get in the first place using DFT. In particular, nothing is gained here
in terms of the quality of the reconstructed image. By contrast, wavelet encoding techniques seek to
reconstruct the true wavelet coefficients directly. This yields a different reconstruction with qualities
determined by the wavelet used, and not by the original Fourier series.

1.2 Generalized sampling
In sampling theory, the mathematical problem of recovering the coefficients of a signal or image in a
particular basis from samples taken with respect to another basis has been studied for several decades
[40]. Motivating this is the fact that many images and signals can be better represented in terms of
a different basis (e.g. splines [39] or the aforementioned wavelets) than the basis in which they are
sampled (e.g. the Fourier basis). Some of the earliest work on this problem in its abstract form was
carried out by Unser & Aldroubi, who introduced a mathematical reconstruction framework known as
consistent reconstructions for shift-invariant sampling and reconstruction spaces [41] (see also [44]). This
was later considered by Eldar et al, who extended this framework to frames in arbitrary Hilbert spaces
[15, 16, 17, 21]. Further developments to more general types of signal models were introduced in [34]
(see also [7, 18]).

Whilst consistent reconstructions are quite popular in engineering applications, there are a number
of issues. As discussed in [2, 3, 19, 29], consistent reconstructions have the significant drawback of being,
in general, neither numerically stable or convergent as the number of samples is increased. Hence, when
applied to the important problem of recovering wavelet coefficients of MR images, they can result in
severe amplification of noise and round-off error.
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Nonetheless, it transpires that these issues can be overcome completely by using a different approach,
known as generalized sampling. Introduced by Adcock & Hansen in [3, 4], based on elements from [26],
this framework allows one to recover a signal f modelled as an element of a separable Hilbert space H in
terms of any Riesz basis {ϕj}∞j=1 from samples {〈f, sj〉}∞j=1 taken with respect to any other Riesz basis
{sj}∞j=1 of H. The resulting reconstruction is both convergent and numerically stable, and therefore
an obvious candidate for the wavelet recovery problem. The extension of this framework to frames, as
opposed to bases, was presented in [5]. See also [6].

Keeping this in mind, the aim of this paper is to show that generalized sampling effectively solves
the longstanding problem of recovering wavelet coefficients from Fourier samples. Our main results are
explained in more detail in the next section.

1.3 Main results
Generalized sampling obtains a reconstruction by performing a simple least-squares procedure. The
fundamental principle which gives this method its stability and accuracy (as opposed to a consistent
reconstruction) is that the number of computed coefficients N in the reconstruction basis {ϕj}∞j=1 (i.e.
the wavelet basis) should be allowed to differ from the number M of acquired samples {〈f, sj〉}Mj=1

(i.e. Fourier samples). In [6], this was posed in terms of the so-called stable sampling rate Θ(N ; θ).
Given N coefficients to be recovered, sampling at a rate M ≥ Θ(N ; θ) ensures a numerically stable and
quasi-optimal reconstruction of f (see Section 2 for definitions), with the stability and quasi-optimality
constants depending on the fixed parameter θ.

Understanding the behaviour of Θ(N ; θ) is critically important from a practical standpoint. In the
problem we consider in this paper, for example, it allows one to determine a priori how many Fourier
samples are required to compute N wavelet coefficients in a manner that is stable and accurate (i.e.
the computed wavelet coefficients closely approximate the exact wavelet coefficients). Clearly, it is both
wasteful and time-consuming to acquire more samples than necessary. Hence a good estimate of the
stable sampling rate is vital.

To this end, the first result we prove in this paper is that the stable sampling rate is linear for any
compactly supported wavelet basis. Thus, if N wavelet coefficients are required, one only needs O(N)
Fourier samples of f to apply generalized sampling. In this sense, wavelets give rise to ideal bases
for the Fourier samples reconstruction problem: up to a constant factor, there is a one-to-one ratio
correspondence between Fourier samples and wavelet coefficients. Hence generalized sampling not only
solves the long-standing problem of how to recover wavelet coefficients from MR data, but it also does
so in a way that is, up to a constant factor, optimal.

This result suggests that little can be gained in terms of reconstruction quality by altering the MR
scanner, as is done in wavelet encoding techniques. The problem of recovering wavelet coefficients can
be readily solved without altering the scanner by post-processing of the standard Fourier-encoded MR
data with generalized sampling. We remark that this conclusion is due completely to the linear scaling
of Θ(N ; θ). Had the scaling been more severe, as can be the case for other reconstruction bases –
orthogonal polynomials, for example, have quadratic stable sampling rates, Θ(N ; θ) = O(N2) (a result
due originally to Hrycak & Gröchenig [30], see also [4]) – then generalized sampling may well not be as
good an approach to the problem as alternatives based on modifying the sampling process.

Given that wavelets have linear stable sampling rates, it is natural to ask how large the ratio η(θ) =
M/N , which we henceforth refer to as the stable sampling ratio, is required to be. Specifically, is it
possible to have the optimal ratio η(θ) = 1 for some moderate value of θ, and thus get a stable, accurate
reconstruction using an equal number of wavelets as Fourier samples? Our second result shows that in
general this is not the case. Indeed, every pair of Fourier and wavelet bases is associated with a critical
threshold η∗ below which the reconstruction becomes exponentially unstable. On the other hand, for
certain wavelet bases, such as Daubechies wavelets, a ratio of at least η∗ will ensure complete stability.

The third issue we address in this paper is the question of optimality of generalized sampling: that
is, whether or not it can be outperformed by a different method. This question is equivalent to asking
whether the stable sampling rate is a quantity intrinsic to generalized sampling, or whether it is in fact
universal. In other words, does the stable sampling rate place a fundamental limit on the number of
Fourier samples required to recover N wavelet coefficients in a stable, accurate manner, regardless of the
method used?
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Optimality of generalized sampling was first discussed in [6]. Using a general result proved therein,
we show that the stable sampling rate is indeed universal for all so-called perfect methods (i.e. methods
which recover finite sums of wavelets in a reasonable way; see Section 2 for a definition). As a result
of this, we show that for wavelet reconstructions, any perfect method with ratio less than η∗ must be
exponentially unstable. Hence, there is always a limit to the amount of improvement over generalized
sampling that any perfect method can offer.

Unfortunately, perfect methods represent only a subclass of all possible reconstruction techniques.
Hence it cannot be claimed that the stable sampling rate is truly universal. Indeed, perfectness of a
method implies that it recovers all functions in a particular class rather well. This leads to the following
question: is it possible to devise a different method which outperforms generalized sampling for a single
function f? Using our results on the linear scaling of the stable sampling rate, we show under a mild
assumption that such a method can at best give a reconstruction whose approximation error is a constant
factor smaller than that of generalized sampling. Thus, although it is possible to outperform generalized
sampling in terms of approximation error, only the constant can be improved and not the asymptotic
rate. In this sense, generalized sampling is, up to a constant factor, an oracle for the problem.

1.4 Outline
The outline for the remainder of this paper is as follows. In Section 2, we recap the generalized sampling
framework of [3, 4, 6]. The main results of the paper are presented and discussed in Section 3, and proofs
are given in Sections 4–6. In Section 7, we provide numerical results.

2 Generalized sampling

2.1 Generalized sampling
In this section, we recap the main details of generalized sampling from [3, 4], and in particular [6]. Let
H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Suppose that S and T are closed
subspaces of H satisfying the subspace condition

T ∩ S⊥ = {0} and T + S⊥ is closed in H. (1)

Let {sj}∞j=1 be an orthonormal basis for S, and for f ∈ H, let

f̂j = 〈f, sj〉 , j ∈ N,

be the samples of f . The reconstruction problem is to recover f with an element f̃ ∈ T from its samples
{f̂j}∞j=1.

In practice, one does not have access to the whole set {f̂j}∞j=1 of samples, nor can one process infinite
amounts of information. Hence, in computations we consider the problem of recovering f from its first
M samples

f̂1, . . . , f̂M .

Also, it is usual to assume that there exists a sequence {TN}∞N=1 of finite-dimensional subspaces of T
satisfying

T1 ⊆ T2 ⊆ · · · ⊆ T ,
∞⋃
N=1

TN = T . (2)

For example, if {ϕj}∞j=1 is a frame or a Riesz basis for T , then one typically has

TN = span {ϕ1, . . . , ϕN} .

The reconstruction problem is now formulated as follows: given N ∈ N, compute a reconstruction
f̃N,M ∈ TN of f from the samples {f̂j}Mj=1.

In order to formulate what constitutes a ‘good’ reconstruction, we consider the following two defini-
tions [6]:
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Definition 2.1. Let FN,M : H → TN . The quasi-optimality constant µ = µ(FN,M ) is the least constant
such that

‖f − FN,M (f)‖ ≤ µ‖f −QNf‖, ∀f ∈ H,
where QN : H → TN is the orthogonal projection onto TN . If no such constant exists, we write µ = ∞.
We say that FN,M is quasi-optimal if µ(FN,M ) is small.

Note that QNf is the best approximation in norm to f from TN . So quasi-optimality means that
the difference in norm between f and FN,M (f) is at most a constant factor µ of the difference between
f and its best approximation in the subspace TN .

We also define the condition number of a reconstruction:

Definition 2.2. Let FN,M : H → TN be a mapping such that, for each f ∈ H, FN,M (f) depends only
on the samples samples {f̂j}Mj=1. The condition number of κ(FN,M ) is given by

κ(FN,M ) = sup
f∈H

lim
ε→0+

sup
g∈H

0<‖ĝ‖l2≤ε

‖FN,M (f + g)− FN,M (f)‖
‖ĝ‖l2

,

where ĝ = {ĝj}Mj=1 ∈ CM . The mapping FN,M is well-conditioned if κ(FN,M ) is small and ill-conditioned
otherwise.

We say that the reconstruction FN,M is ‘good’ if it is stable and quasi-optimal. In other words, if the
reconstruction constant

C(FN,M ) = max{κ(FN,M ), µ(FN,M )},
is small.

As we shall explain in a moment, the key to obtaining a good reconstruction is to allow the parameter
M , the number of samples, to vary independently from N . To this end, suppose now we write PM : H →
SM for the orthogonal projection onto the subspace SM = span {s1, . . . , sM}, i.e.

PMg =
M∑
j=1

〈g, sj〉 sj , g ∈ H.

The method of tackling the reconstruction problem proposed in [3] is to let f̃N,M = FN,M (f) ∈ TN be
defined by 〈

PM f̃N,M , ϕj

〉
= 〈PMf, ϕj〉 , j = 1, . . . , N. (3)

Note that solving (3) is equivalent to finding α[N,M ] =
{
α

[N,M ]
1 , . . . , α

[N,M ]
N

}
∈ CN as the least-squares

solution to the problem
U [N,M ]α[N,M ] = f̂ [M ],

where f̂ [M ] = {〈f, s1〉 , . . . , 〈f, sM 〉} and U [N,M ] is the M by N matrix whose (i, j)th entry is 〈ϕj , si〉.
The reconstruction f̃N,M is then given by

∑N
j=1 α

[N,M ]
j ϕj .

In [6], it was established that the reconstruction constant C(FN,M ) of generalized sampling satisfies

C(FN,M ) = κ(FN,M ) = µ(FN,M ) =
1

CN,M
,

where
CN,M =

√
inf
ϕ∈TN
‖ϕ‖=1

〈PMϕ,ϕ〉,

is the subspace angle between TN and SM . Moreover, since PM → P strongly on H as M →∞ (where
P : H → H is the projection onto S), one has, via (1) and (2), that

CN,M → 1, M →∞,
for fixed N ∈ N. Thus, one obtains a good reconstruction by allowing M to be sufficiently large in
comparison to N .

To quantify how large M is required to be, the concept of the stable sampling rate was introduced in
[6]:

5



Definition 2.3. For N ∈ N and θ ∈ (1,∞), the stable sampling rate is given by

Θ(N ; θ) = min
{
M ∈ N :

1
CN,M

< θ

}
.

This notion of the stable sampling rate is important as it determines the number of samples required
for guaranteed, quasi-optimal and numerically stable reconstructions. In particular, for allM ≥ Θ(N ; θ),
we have that f̃N,M is quasi-optimal to f from TN with constant a most θ, and the condition number
κ(FN,M ) is at worst θ.

2.2 Optimality of generalized sampling
In [6] the question of optimality of generalized sampling was also discussed. We now recap the main
results proved, since they will be of use later. We first recall the definition of a perfect method:

Definition 2.4. Let GN,M : H → TN be a mapping such that, for each f ∈ H, GN,M (f) depends only
on the samples {f̂j}Mj=1. If GN,M (f) = f for all f ∈ TN , then GN,M is said to be perfect.

Observe that the notion of perfectness is strictly weaker than quasi-optimality. Also, we remark that
generalized sampling is a perfect method, as can be seen from (3).

The first result of [6] concerns such methods:

Theorem 2.5. For M ≥ N let GN,M : H → TN be a perfect reconstruction method such that, for each
f ∈ H, GN,M (f) depends only on the samples {f̂j}Mj=1. Then the condition number

κ(GN,M ) ≥ κ(FN,M ),

where FN,M is the generalized sampling reconstruction.

This result implies the following: for any perfect reconstruction method, one must sample at a
rate higher than that of generalized sampling – namely, the stable sampling rate – to obtain a stable
reconstruction. In other words, generalized sampling cannot be improved upon in terms of its stability
(at least for perfect methods).

The case of non-perfect methods was also studied in [6]. The following result was proved:

Theorem 2.6. Suppose that the stable sampling rate Θ(N ; θ) is linear in N for a particular sampling
and reconstruction problem. Let f ∈ H be fixed, and suppose that there exists a sequence of mappings

GM : {f̂j}Mj=1 7→ GM (f) ∈ TΨf (M),

where Ψf : N → N with Ψf (M) ≤ M . Suppose also that there exist constants c1(f), c2(f), αf > 0 such
that

c1(f)N−αf ≤ ‖f −QNf‖ ≤ c2(f)N−αf , ∀N ∈ N. (4)

Then, given θ ∈ (1,∞), there exist constants c(θ) ∈ (0, 1) and cf (θ) > 0 such that

‖f − Fc(θ)M,M (f)‖ ≤ cf (θ)‖f −GM (f)‖, ∀M ∈ N, (5)

where FN,M is the generalized sampling reconstruction.

This theorem demonstrates that for problems with linear stable sampling rates, even if one is allowed
to design a method that depends on f in a completely non-trivial way, it is still not possible to obtain
a faster asymptotic rate of convergence than that of generalized sampling. As we explain Section 3, the
stable sampling rate is linear for wavelets, making this theorem directly applicable.

Observe that a consequence of this theorem is that generalized sampling is, up to a constant, an
oracle for the wavelet coefficient reconstruction problem. Suppose there was some method that, for a
particular f satisfying (4), could recover the first N = M wavelet coefficients of f exactly (i.e. with
no error) from M Fourier samples. The conclusion of the above corollary is that generalized sampling
commits an error that is at worst a constant factor larger than that of this method.
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2.3 The wavelet reconstruction and Fourier sampling spaces
In the remainder of this paper we focus on the problem of recovering wavelet coefficients from Fourier
samples. To this end, we now specify the corresponding sampling space S, with its corresponding
sampling vectors {sj}j∈N, as well as the reconstruction space T with the reconstruction vectors {ϕj}j∈N.
Throughout we let H = L2(R) with its usual inner product and will consider the recovery of functions in
H that are compactly supported on [0, a] for some a ≥ 1. Moreover, given f ∈ H, its Fourier Transform
is defined as

f̂(ω) =
∫

R
f(x)e−iωx dx, ω ∈ R.

2.3.1 The wavelet reconstruction space

Suppose that the reconstruction space T is generated by a mother wavelet ψ and a scaling function
φ such that supp(ψ) = supp(φ) = [0, a]. Then the only wavelets of interest are those whose support
intersects [0, a]. In particular, for

φj,k = 2j/2φ(2j · −k), j, k ∈ Z,

ψj,k = 2j/2ψ(2j · −k), j, k ∈ Z,

the wavelets of interest are

Ωa = {φ0,k : |k| = 0, 1, . . . , dae − 1} ∪
{
ψj,k : j ∈ Z+, k ∈ Z,−dae+ 1 ≤ k ≤ 2j dae − 1

}
.

So,
T = span {ϕ : ϕ ∈ Ωa},

and for sufficiently large T1 and T2, namely, T1 ≥ dae − 1 and T2 ≥ 2 dae − 1:

L2[0, a] ⊂ T ⊂ L2[−T1, T2]. (6)

Elements of Ωa are ordered as follows:

{ϕj}j∈N = {φ0,−dae+1, φ0,−dae+2, . . . , φ0,dae−1, ψ0,−dae+1, . . . , ψ0,dae−1, ψ1,−dae+1, . . . , ψ1,2jdae−1, . . .},
(7)

and thus
TN = span {ϕj : j = 1, . . . , N} . (8)

Although one can in principle consider arbitrary values of N ∈ N, it is natural instead to consider only
those N for which TN contains all wavelets up to a certain scale. To this end, we now write

NR = 2R dae+ (R+ 1)(dae − 1), R ∈ N. (9)

We will verify in Lemma 4.1 that the subspace TNR consists of all wavelets ψj,k of scale 0 ≤ j ≤ R− 1.

2.3.2 The Fourier sampling space

Given [−T1, T2] (the support of T ), we let ε ≤ 1/(T1+T2) be the sampling density (or sampling distance).
Note that 1/(T1 + T2) is the corresponding Nyquist criterion for functions supported on [−T1, T2]. We
now define the sampling vectors by

sεl =
√
εe2πilε·χ[−T1/(ε(T1+T2)),T2/(ε(T1+T2))],

the sampling space by

Sε = span {sεl ∈ Z} =
{
f ∈ L2(R) : supp(f) ⊆ [−T1/(ε(T1 + T2)), T2/(ε(T1 + T2))]

}
,

and the space spanned by the first M sampling vectors by

SεM = span
{
sεl : −

⌊
M

2

⌋
≤ l ≤

⌈
M

2

⌉
− 1
}
. (10)

Moreover, P ε and P εM will denote the orthogonal projections fromH onto Sε and SεM respectively. Where
there is no ambiguity about the value of the sampling density, we will drop the ε notation and simply
write S, SM , P and PM instead.
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Remark 2.7. Observe that for all ε ≤ 1/(T1 + T2), T ⊂ Sε. So, T + (Sε)⊥ is a closed subspace of H
and T ∩ (Sε)⊥ = {0}. Thus, the subspace condition (1) of generalized sampling is satisfied.

3 Main results
We now state the main results of this paper. Proofs are provided in Sections 4 and 5.

3.1 Linearity of the stable sampling rate
The first result of this paper is that the stable sampling rate for wavelet reconstructions from Fourier
samples is linear for any compactly supported wavelet basis. In other words, up to a constant factor
there is a one-to-one correspondence between Fourier samples and wavelet coefficients. In particular, all
information about a function that can be retrieved from its wavelet coefficients can still be retrieved even
in the situation where only Fourier samples are available (and not the wavelet coefficients themselves).

More formally, we have the following theorem:

Theorem 3.1. Let S and T be the sampling and reconstruction spaces defined in Section 2.3 and recall
NR from (9). Let N ≤ NR for R ∈ N. Then for all θ ∈ (1,∞) there exists Sθ ∈ N, independent of R,
such that for

M =
⌈
Sθ2R+1

ε

⌉
,

we have
CN,M ≥

1
θ
.

In particular,

Θ(N, θ) ≤
⌈

2SθN
εdae

⌉
.

Hence, Θ(N, θ) = O(N) for any θ ∈ (1,∞).

Since the stable sampling rate is linear for wavelets, it makes sense to introduce the notion of a stable
sampling ratio. We define

η(θ) = lim sup
N→∞

Θ(N ; θ)
N

, θ ∈ (1,∞). (11)

Note the difference between Θ(N ; θ), which determines how many samples are required for each N , and
η(θ), which stipulates asymptotically how many are required as N →∞. We will also discuss sampling
ratios in the context of other methods. To this end, suppose that an arbitrary method G uses ΘG(N) ∈ N
samples to reconstruct the first N wavelet coefficients. We define the sampling ratio for that method as

ηG = lim sup
N→∞

Θ(N)
N

.

Since the stable sampling rate is linear, we shall only consider methods G for which ηG is defined (all
other methods necessarily give worse reconstructions asymptotically as N →∞).

3.2 Universality of the stable sampling rate
The second collection of results concerns the universality of the stable sampling rate, or equivalently, the
optimality of generalized sampling amongst all methods which recoverN wavelet coefficients fromM ≥ N
Fourier samples. Our first result is simply a corollary of Theorem 2.5 for the wavelet reconstruction
problem from Fourier samples:

Corollary 3.2. For N ∈ N, let GN be a sequence of perfect reconstruction methods with sampling ratio
ηG ≥ 1. If ηG is such that κ(GN ) ≤ θ for some θ ∈ (1,∞) and all sufficiently large N , then ηG ≥ η(θ),
where η(θ) is the stable sampling ratio for generalized sampling.
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This corollary states that, for any perfect method, the stable sampling ratio η(θ) cannot be lowered.
In particular, any perfect method requires at least the same number of Fourier samples to achieve as
stable a reconstruction as that of generalized sampling.

Despite this result, in some cases it might seemingly be acceptable to forgo complete stability to obtain
a better reconstruction. Our next theorem, which is specific to the wavelet reconstruction problem, shows
that this cannot be done in practice:

Theorem 3.3. Let GN be as in Corollary 3.2 with sampling rate ηG ≥ 1. If ηG < 1
εdae , where ε is as in

Section 2.3, then κ(GN ) is unbounded and κ(GNR) becomes exponentially large as NR →∞, where NR
is as defined in (9).

This theorem demonstrates that any attempt to improve upon generalized sampling by lowering the
sampling rate will result in extremely poor stability, and consequently extreme sensitivity to noise and
round-off error. Prior to this result, one may have hoped that sampling below the critical threshold
η = 1

εdae might only result in mildly growing condition numbers. This theorem demonstrates that this
is not the case: stability rapidly declines dramatically once η < 1

εdae .
Corollary 3.2 and Theorem 3.3 establish the universality of the stable sampling rate, and the pitfalls

of trying to circumvent the stability barrier η ≥ 1
εdae . However, they are valid only for perfect methods.

Recall that the question of non-perfect methods was addressed by Theorem 2.6. In terms of the sampling
ratio, this implies that any non-perfect method which has a lower sampling ratio for a particular function
f satisfying (4) can only outperform generalized sampling by a constant factor. Note that the problem of
recovering wavelet coefficients from Fourier samples certainly satisfies the assumptions of Theorem 2.6:
as we prove, the stable sampling rate is linear, and for typical functions f , it is usually the case that the
wavelet coefficients decay algebraically (which implies (4)).

3.3 Sharp results for the Daubechies wavelets
Although Theorem 3.1 establishes linearity of the stable sampling rate for any compactly supported
wavelet basis, it does not provide the precise constant of proportionality. Nor is it straightforward to
determine an upper bound, since the quantity Sθ is not given explicitly. Although one can in theory
estimate Sθ by carefully following the steps of the proof, we shall not do this. Instead, in this section we
show that for the important case of Daubechies wavelets the constant can be determined exactly.

Remark 3.4. The fact that the constant may not be known in general does not necessary prohibit
implementation of generalized sampling. As discussed in [6], the stable sampling rate is explicitly com-
putable, and thus the constant can actually be determined a priori for each particular case through
numerical means.

Our main result is as follows:

Theorem 3.5. Let S and T be the sampling and reconstruction spaces defined in Section 2.3, where T
is generated by a Daubechies wavelet, and recall NR from (9). Then, there exists θ ∈ (1,∞) and R0 ∈ N
such that for all R ≥ R0,

Θ(NR, θ) =
⌈
2R/ε

⌉
.

In particular, when 1/ε ∈ Z it suffices to let

θ >

(
inf

ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣)−1

.

Moreover, in addition to this, for Haar wavelets, where a = 1, we have that Θ(NR, θ) ≤
⌈
2R/ε

⌉
for all

R ∈ N.

Remark 3.6. Note also that for such values of θ and R in Theorem 3.5, if N is such that NR−1 + 1 ≤
N ≤ NR, then

Θ(N, θ) ≤
⌈

2R

ε

⌉
.

9



Therefore, we have that
1

εdae
≤ η(θ) ≤ lim

R→∞

⌈
2R/ε

⌉
NR−1 + 1

=
2

εdae
.

However, our numerical results in Section 7 suggest that the optimal ratio is (εdae)−1 and is attained
only when N = NR.

4 Proof of Theorem 3.1
The proof of Theorem 3.1 requires a series of lemmas and propositions that will be presented below. The
actual proof can be found at the very end of this section.

4.1 Expressing wavelets in terms of the scaling function
It is known that any compactly supported orthonormal wavelet is a Multiresolution Analysis (MRA)
wavelet [28]. Hence, as we will demonstrate in this section, given any N ∈ N, all basis elements of TN
may be expressed as a linear combination of finitely many basis elements of {φR,k : k ∈ Z} for some
R ∈ N. Let therefore, for j ∈ Z+,

Vj = span {φj,k : k ∈ Z},

Wj = span {ψj,k : k ∈ Z},

V
(a)
0 = span {φ0,k : k ∈ Z, |k| ≤ dae − 1} ,

W
(a)
j = span

{
ψj,k : k ∈ Z,−dae+ 1 ≤ k ≤ 2j dae − 1

}
.

The following lemma relates TN to the two latter types of subspaces.

Lemma 4.1. For R ∈ N, let

AR,1 = −(2R + 1) dae+ 2R + 1,

AR,2 = 2R+1 dae − 2R − 1,
VR,a = span {φR,k : AR,1 ≤ k ≤ AR,2} .

(12)

Then, the following holds:

(i)

V
(a)
0 ⊕

(
R−1
⊕
j=0

W
(a)
j

)
⊂ VR,a. (13)

(ii) Let N = NR, as defined in (9). Then

TN = V
(a)
0 ⊕W (a)

0 ⊕ · · · ⊕W (a)
R−1 ⊂ VR,a,

where TN is defined in (7) and (8). Moreover, if ‖φ‖∞ and ‖ψ‖∞ exist, then given any ϕ ∈ TN
such that ‖ϕ‖ = 1 and R ≥ log2(dae − 1), the following holds:

ϕ =
AR,2∑
j=AR,1

αjφR,j ,

AR,2∑
j=AR,1

|αj |2 = 1

and
AR,2∑

j=AR,2−dae+1

|αj |2 ≤
(‖φ‖∞ + ‖ψ‖∞)2 dae(dae+ 1)

2R+1
.

(iii)
φR,k ∈ V (a)

0 ⊕W (a)
0 ⊕ · · · ⊕W (a)

R−1 whenever 0 ≤ k ≤ (2R − 1) dae (14)

10



Proof. To prove (i) we start by observing that in MRA, we have that, for R ∈ N

VR = V0 ⊕
(
R−1
⊕
l=0

Wl,

)
so

VR ⊃ V (a)
0 ⊕

(
R−1
⊕
l=0

W
(a)
l

)
.

Thus, since {φR,k : k ∈ Z} is an orthonormal basis for the closed subspace VR, it follows that, given l ∈ Z
such that |l| ≤ dae − 1,

φ0,l =
∑
k∈Z

βkφR,k, βk =
∫

R
φ0,l(x)φR,k(x)dx.

Note that φ has compact support, so finitely many βk’s are non-zero. In particular, βk = 0 if k is such
that measure (supp(φ0,l) ∩ supp(φR,k)) = 0. So, βk 6= 0 only if

2Rl − dae+ 1 ≤ k ≤ 2R(dae+ 1)− 1

and this is only if

−(2R + 1) dae+ 2R + 1 ≤ k ≤ 2R+1 dae − 2R − 1. (15)

Similarly, given j, l ∈ Z such that 0 ≤ j ≤ R− 1 and −dae+ 1 ≤ l ≤ 2j dae − 1,

ψj,l =
∑
k∈Z

γkφR,k, γk =
∫

R
ψj,l(x)φR,k(x)dx.

Note that γk = 0 if k is such that measure (supp(ψj,l) ∩ supp(φR,k)) = 0. Thus, γk 6= 0 only if

2R
(
l

2j

)
− dae+ 1 ≤ k ≤ 2R

(
l + dae

2j

)
− 1.

Hence, γk 6= 0 only if k satisfies

−(2R−j + 1) dae+ 2R−j + 1 ≤ k ≤ (2R + 2R−j) dae − 2R−j − 1. (16)

Since we have shown that βk and γk are non-zero only if (15) and (16) are satisfied, we have demonstrated
that all elements in V (a)

0 ⊕W (a)
0 ⊕ · · · ⊕W (a)

R−1 may be represented as a linear combination of elements
in VR,a, and we have proved (13).

To prove (ii), note that W (a)
j has (2j + 1) dae − 1 basis elements. So, V (a)

0 ⊕W (a)
0 ⊕ · · · ⊕W (a)

R−1 has
precisely

2 dae − 1 +
R−1∑
j=0

(
(2j + 1) dae − 1

)
= 2R dae+ (R+ 1)(dae − 1)

basis elements. Thus whenever N = 2R dae+ (R+ 1)(dae − 1), it follows by the ordering in (7), that

TN = V
(a)
0 ⊕W (a)

0 ⊕ · · · ⊕W (a)
R−1.

Hence, ϕ ∈ TN and ‖ϕ‖ = 1 implies that

ϕ =
∑

|l|≤dae−1

blφ0,l +
R−1∑
j=0

2jdae−1∑
l=−dae+1

cj,lψj,l

=
AR,2∑
k=AR,1

αkφR,k

11



for some complex numbers {αk}, {bl} and {cj,l}, where

∑
|l|≤dae−1

|bl|2 +
R−1∑
j=0

2jdae−1∑
l=−dae+1

|cj,l|2 =
AR,2∑
j=AR,1

|αj |2 = 1

by the orthonormality of the scaling functions and wavelets.
By a similar argument to the proof of (i), it is straightforward to verify that when 2R ≥ dae − 1,

span {φ0,l, ψ0,l : l = −dae+ 1, . . . , dae − 2} ⊕
R−1⊕
j=1

W
(a)
j

⊂ span {φR,k : AR,1 ≤ k ≤ AR,2 − dae} .

Thus, it follow that for k = AR,2 − dae+ 1, . . . , AR,2,

αk = bdae−1

〈
φ0,dae−1, φR,k

〉
+ c0,dae−1

〈
ψ0,dae−1, φR,k

〉
.

Let Bk = bdae−1

〈
φ0,dae−1, φR,k

〉
and Ck = c0,dae−1

〈
ψ0,dae−1, φR,k

〉
and suppose that both ‖φ‖∞ and

‖ψ‖∞ exist.
Then, for j = 0, . . . , dae − 1, ∣∣BAR,2−j∣∣ ≤ ∥∥φR,AR,2−j∥∥∥∥φ0,dae−1χIj

∥∥
≤ ‖φ‖∞

√
j + 1
2R

where Ij = suppφR,AR,2−j ∩ suppφ0,dae−1 ⊂
[
2dae − 1− (j + 1)/2R, 2dae − 1

]
. Thus

dae−1∑
j=0

∣∣BAR,2−j∣∣2 ≤ ‖φ‖2∞ dae(dae+ 1)
2R+1

. (17)

Similarly, for j = 0, . . . , dae − 1,

∣∣CAR,2−j∣∣ ≤ ‖ψ‖∞
√
j + 1
2R

and
dae−1∑
j=0

∣∣CAR,2−j∣∣2 ≤ ‖ψ‖2∞ dae(dae+ 1)
2R+1

. (18)

Hence, if R ≥ log2(dae − 1) and both ‖φ‖∞ and ‖ψ‖∞ exist, then by Cauchy Schwarz, and estimates
(17), (18),

AR,2∑
k=AR,2−dae+1

|αk|2 =
AR,2∑

k=AR,2−dae+1

|Bk + Ck|2

≤
AR,2∑

k=AR,2−dae+1

(
|Bk|2 + |Ck|2

)
+ 2

√√√√√ AR,2∑
k=AR,2−dae+1

|Bk|2

√√√√√ AR,2∑
k=AR,2−dae+1

|Ck|2

=
(‖φ‖∞ + ‖ψ‖∞)2 dae(dae+ 1)

2R+1

and this completes the proof of (ii).
Finally, to prove (iii) and (14), note that

φR,k =
∑
l∈Z

αlφ0,l +
R−1∑
j=0

∑
l∈Z

βj,lψj,l

12



where αl = 〈φR,k, φ0,l〉 and βj,l = 〈φR,k, ψj,l〉. If 0 ≤ k ≤ (2R − 1) dae, then

supp(φR,k) ⊂ [0, dae] .

So, if φ0,l 6∈ V (a)
0 , then measure (supp(φ0,l) ∩ [0, dae]) = 0 and αl = 0. Similarly, if ψj,l 6∈ W (a)

j , then
measure (supp(ψj,l) ∩ [0, dae]) = 0 and βj,l = 0. Hence,

φR,k ∈ V (a)
0 ⊕W (a)

0 ⊕ · · · ⊕W (a)
R−1,

as required.

4.2 Useful results with trigonometric polynomials
Our proof hinges on some precise estimates on the behaviour of trigonometric polynomials. These
estimates are presented below.

Lemma 4.2. Let A1, A2 ∈ Z be such that A1 ≤ A2 and consider the trigonometric polynomial Φ(z) =∑A2
j=A1

αje
2πijz. If L ∈ N is such that 2L ≥ A2 −A1 + 1, then

2L−1∑
j=0

1
2L

∣∣∣∣Φ( j

2L

)∣∣∣∣2 = ‖Φ‖2L2([0,1]) =
A2∑
j=A1

|αj |2 .

Proof. Given N ∈ N, x = (x0, . . . , xN−1) ∈ ZN , the Discrete Fourier Transform of x is defined by
x̂ = (x̂0, . . . , x̂N−1), where

x̂k =
1√
N

N−1∑
j=0

xje
− 2πikj

N .

Recall that x 7→ x̂ is a unitary operator on l2(ZN ) with ‖x‖l2(ZN ) = ‖x̂‖l2(ZN ), where

‖x‖l2(ZN ) =

√√√√N−1∑
j=0

|xj |2.

The proof of this lemma is a direct application of the Discrete Fourier Transform, with N = 2L.
Define x = (x0, . . . , xN−1) ∈ Z2L as follows:

xj+L =

{
αj+A1+L −L ≤ j ≤ −L+A2 −A1

0 otherwise

Then:

x̂k =
1√
2L

2L−1∑
j=0

xje
− 2πikj

2L

=
1√
2L

L−1∑
j=−L

xj+Le
− 2πik(j+L)

2L

=
e
πikA1
L

√
2L

A2∑
j=A1

αje
2πikj
2L

=
e−

πikA1
L

√
2L

Φ
(
k

2L

)
.

So,
2L−1∑
k=0

1
2L

∣∣∣∣Φ( k

2L

)∣∣∣∣2 =
2L−1∑
k=0

|x̂k|2 =
2L−1∑
k=0

|xk|2 =
∑
|k|≤A

|αk|2 .
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The following theorem is a reworking of a result from [23, Proposition 1]:

Theorem 4.3. Let D ∈ N, A ∈ R, A ≤ x1 < . . . < xr < A+ 1 and suppose that

δ = max
j=1,...,r

xj+1 − xj <
1

2D

where xr+1 = x1 + 1. If Φ(x) =
∑D2
j=D1

αje
2πijx and D2 −D1 ≤ 2D, then

(1− 2δD) ‖Φ‖L2[A,A+1) ≤

 r∑
j=1

νj |Φ(xj)|2
 1

2

≤ (1 + 2δD) ‖Φ‖L2[A,A+1)

where νj =
1
2

(xj+1 − xj−1) and x0 = xr − 1.

4.3 Bounding the stable sampling rate
We are now ready to prove the linearity of the stable sampling rate. However, before we can present the
final proof we need a couple of technical lemmas and propositions. The following lemma is an adaptation
of [13, Theorem 6.3.1], the proof has simply been included for clarity:

Lemma 4.4. Let φ be a compactly supported scaling function of some MRA. Let I be any closed interval
of length 2π. Then, for each γ ∈ (0, 1), there exists N such that for all ξ ∈ I,∑

|l|≤N

∣∣∣φ̂(ξ + 2πl)
∣∣∣2 ≥ γ.

Proof. First note that the orthonormality of {φ(· − l) : l ∈ Z} is equivalent to∑
l∈Z

∣∣∣φ̂(ξ + 2πl)
∣∣∣2 = 1

for all ξ ∈ R. In particular, for all ξ ∈ I, there exists Nξ such that for some γ̃ ∈ (γ, 1),∑
|l|≤Nξ

∣∣∣φ̂(ξ + 2πl)
∣∣∣2 ≥ γ̃.

Since φ̂ is continuous, it follows that

x 7→
∑
|l|≤Nξ

∣∣∣φ̂(x+ 2πl)
∣∣∣2

is also continuous. Hence, there exists some δξ such that∑
|l|≤Nξ

∣∣∣φ̂(η + 2πl)
∣∣∣2 ≥ γ, ∀ η ∈ (ξ − δξ, ξ + δξ) =: Uξ.

Note that I ⊂ ∪ξ∈IUξ and I is compact, hence, I = ∪ξ∈JUξ for some finite subset J ⊂ I. Let
N = max {Nξ : ξ ∈ J}. Then for all ξ ∈ I,∑

|l|≤N

∣∣∣φ̂(ξ + 2πl)
∣∣∣2 ≥ γ.
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Proposition 4.5. For R, l ∈ Z, let the vectors φR,l, sl and the finite rank operator PM be defined as in
2.3. Suppose that N1, N2 ∈ Z and ϕ =

∑N2
l=N1

αlφR,l, with αl ∈ C, such that ϕ is compactly supported
in [−T1, T2]. Then, for all j ∈ Z,

〈ϕ, sj〉 =
√
ε√

2R
Φ
(
εj

2R

)
φ̂

(
−2πεj

2R

)
where

Φ(z) =
N2∑
l=N1

αle
2πilz.

In particular,

‖PMϕ‖2 =
dM2 e−1∑
j=−bM2 c

|〈ϕ, sj〉|2

=
dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)
φ̂

(
−2πεj

2R

)∣∣∣∣2 .
Proof. Note that ε ≤ 1

T1 + T2
and sj =

√
εe2πijε·χh

− T1
ε(T1+T2) ,

T2
ε(T1+T2)

i, so, by the assumption on the

support of ϕ,

〈ϕ, sj〉 =
√
ε

∫ T2
ε(T1+T2)

− T1
ε(T1+T2)

ϕ(x)e2πiεjx

=
√
εϕ̂(−2πεj)

=
√
ε

N2∑
l=N1

αlφ̂R,l(−2πεj)

=
√
ε√

2R

N2∑
l=N1

αle
2πiεjl

2R φ̂

(
−2πεj

2R

)

=
√
ε√

2R
Φ
(
εj

2R

)
φ̂

(
−2πεj

2R

)
.

Proposition 4.6. Given γ ∈ (0, 1) and ε1, ε2 ∈ (0, 1/(T1 + T2)], choose δ(γ) ∈ (0, 1) and C(γ) > 1 such
that √

δ(γ)2 − 4
π2(C(γ)− 1)

−
√

1− δ(γ)2 > γ. (19)

Suppose that there exists M1 such that

inf
ϕ∈TN ,‖ϕ‖=1

∥∥P ε1M1
ϕ
∥∥ ≥ δ(γ), N ∈ N. (20)

Then, the following holds:
inf

ϕ∈TN ,‖ϕ‖=1

∥∥P ε2M2
ϕ
∥∥ ≥ γ, N ∈ N, (21)

whenever
M2 =

⌈
C(γ)M1ε1

ε2

⌉
. (22)
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Proof. Without loss of generality, in this proof, M1 and M2 will be even. Also, It is easy to see that δ(γ)
and C(γ) always exist. Observe now that for any M2 ∈ N,

inf
ϕ∈TN ,‖ϕ‖=1

∥∥P ε2M2
ϕ
∥∥ ≥ inf

ϕ∈TN ,‖ϕ‖=1

(∥∥P ε2M2
P ε1M1

ϕ
∥∥− ∥∥P ε2M2

(P ε1M1
)⊥ϕ

∥∥)
≥ inf
ϕ∈TN ,‖ϕ‖=1

∥∥P ε2M2
P ε1M1

ϕ
∥∥−√1− δ(γ)2,

where the last inequality follows from (20). Hence, to prove the proposition, it suffices to determine M2

such that
inf

ϕ∈TN ,‖ϕ‖=1

∥∥P ε2M2
P ε1M1

ϕ
∥∥−√1− δ(γ)2 ≥ γ.

In order to understand why M2 exists, first note that P ε2n → P ε2 strongly as n → ∞ and since B =
P ε1M1

({ϕ ∈ TN : ‖ϕ‖ = 1}) is finite dimensional, P ε2n → P ε2 uniformly on B as n → ∞. Also, T ⊂
Sε1 ∩ Sε2 , P ε2P ε1ϕ = ϕ for all ϕ ∈ TN . So, for all ξ > 0, there exists M2 such that

inf
ϕ∈TN ,‖ϕ‖=1

∥∥P ε2M2
P ε1M1

ϕ
∥∥ ≥ 1− sup

ϕ∈TN ,‖ϕ‖=1

(∥∥P ε2M2
P ε1M1

ϕ− P ε2P ε1M1
ϕ
∥∥+

∥∥P ε2P ε1M1
ϕ− ϕ

∥∥)
≥ 1− ξ −

√
1− δ(γ)2 ≥ γ

Thus, by the choice of δ(γ), for sufficiently small ξ and so sufficiently large M2,

inf
ϕ∈TN ,‖ϕ‖=1

∥∥P ε2M2
P ε1M1

ϕ
∥∥ ≥ γ.

Having established the existence of M2 we now demonstrate that (21) follows when M2 takes the
value in (22). We begin by letting

BM2 =
{
l ∈ Z : l ≥ M2

2
or l ≤ −M2

2
− 1
}
.

Then

∥∥∥(P ε2M2

)⊥
P ε1M1

ϕ
∥∥∥2

=

∥∥∥∥∥∥
∑
l∈BM2

〈
P ε1M1

ϕ, sε2l
〉
sε2l

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
∑
l∈BM2

〈 M1
2 −1∑

j=−M1
2

〈
ϕ, sε1j

〉
sε1j , s

ε2
l

〉
sε2l

∥∥∥∥∥∥∥
2

=
∑
l∈BM2

∣∣∣∣∣∣∣
M1
2 −1∑

j=−M1
2

〈
ϕ, sε1j

〉 〈
sε1j , s

ε2
l

〉∣∣∣∣∣∣∣
2

≤
∑
l∈BM2


M1
2 −1∑

j=−M1
2

∣∣〈ϕ, sε1j 〉∣∣2
M1
2 −1∑

j=−M1
2

∣∣〈sε1j , sε2l 〉∣∣2


≤
∑
l∈BM2

M1
2 −1∑

j=−M1
2

∣∣〈sε1j , sε2l 〉∣∣2 .

(23)
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Let ε+ = max {ε1, ε2}, and note that

∣∣〈sε1j , sε2l 〉∣∣ =

∣∣∣∣∣√ε1ε2
∫ 1

2ε+

− 1
2ε+

e2πiε1jxe−2πiε2lxdx

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
√
ε1ε2

exp
(
πi(ε1j − ε2l)

ε+

)
− exp

(
−πi(ε1j − ε2l)

ε+

)
2πi(ε1j − ε2l)

∣∣∣∣∣∣∣∣
=
√
ε1ε2

∣∣∣∣∣∣∣∣
sin
(
π(ε1j − ε2l)

ε+

)
π(ε1j − ε2l)

∣∣∣∣∣∣∣∣ .
(24)

So, by substituting (24) into (23), we have that

∥∥∥(P ε2M2

)⊥
P ε1M1

ϕ
∥∥∥2

≤
∑
l∈BM2

M1
2 −1∑

j=−M1
2

ε1ε2

∣∣∣∣∣∣∣∣
sin
(
π(ε1j − ε2l)

ε+

)
π(ε1j − ε2l)

∣∣∣∣∣∣∣∣
2

≤ ε1ε2
π2

∑
l∈BM2

M1
2 −1∑

j=−M1
2

1
|ε1j − ε2l|2

.

Suppose that M2 = dC(γ)M1ε1/ε2e where C(γ) stems from (19), then∥∥∥(P ε2M2

)⊥
P ε1M1

ϕ
∥∥∥2

≤ ε1ε2
π2

M1

∑
l>

M2
2

2∣∣ε1M1
2 − ε2l

∣∣2
≤ ε1ε2

π2
M1

4
ε2 (−ε1M1 + ε2M2)

≤ ε1
π2
M1

4
(ε1M1(C(γ)− 1))

≤ 4
π2(C(γ)− 1)

.

Therefore, ∥∥P ε2M2
P ε1M1

ϕ
∥∥2 =

∥∥P ε1M1
ϕ
∥∥2 −

∥∥∥(P ε2M2

)⊥
P ε1M1

ϕ
∥∥∥2

≥ δ(γ)2 − 4
π2(C(γ)− 1)

.

whenever
M2 =

⌈
C(γ)M1ε1

ε2

⌉
.

Hence,

inf
ϕ∈TN ,‖ϕ‖=1

∥∥P ε2M2
ϕ
∥∥ ≥√δ(γ)2 − 4

π2(C(γ)− 1)
−
√

1− δ(γ)2 > γ

by the choice of δ(γ) and C(γ) in (19).

4.4 The proof
We are now ready to present the proof of Theorem 3.1.
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Proof of Theorem 3.1. Recall that the reconstruction space S is defined for sampling distances ε ∈
(0, 1/(T1 + T2)]. Fix ε = 1/(T1 + T2 + dae) and let N ≤ NR, with R ∈ N.

Suppose it is known that for all θ ∈ (1,∞), there exists Sθ ∈ N, independent of R, such that for

Mθ =
Sθ2R+1

ε
,

we have that
inf

ϕ∈TN ,‖ϕ‖=1

∥∥P εMθ
ϕ
∥∥ ≥ 1

θ
.

Then, by Proposition 4.6, given θ ∈ (1,∞) and any sampling distance ε1 ∈ (0, 1/(T1 + T2)], if C(θ) and
δ(θ) satisfy √

δ(θ)2 − 4
π2(C(θ)− 1)

−
√

1− δ(θ)2 >
1
θ
,

then we have that

inf
ϕ∈TN ,‖ϕ‖=1

‖P ε1Mϕ‖ ≥
1
θ

whenever M =
⌈
C(θ)εMδ(θ)

ε1

⌉
=

⌈
C(θ)Sδ(θ)2R+1

ε1

⌉
.

Hence, it is sufficient to prove this theorem for ε = 1/(T1 + T2 + dae).
Recall AR,1 and AR,2 from (12), then by the choice of N and Lemma 4.1,

TN ⊂ span {φR,k : AR,1 ≤ k ≤ AR,2} . (25)

Let ϕ ∈ TN such that ‖ϕ‖ = 1. Then, by (25), we have that

ϕ =
AR,2∑
l=AR,1

αlφR,l

and
AR,2∑
l=AR,1

|αl|2 = 1. (26)

Moreover, ϕ is compactly supported in [−T1, T2] since it is a linear combination of elements in Ωa. Thus,
by Proposition 4.5,

‖PMϕ‖2 =
dM2 e−1∑
j=−bM2 c

|〈ϕ, sj〉|2

=
dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)
φ̂

(
−2πεj

2R

)∣∣∣∣2
where

Φ(z) =
AR,2∑
l=AR,1

αle
2πilz. (27)

Let L = 2R/ε, then L is some even integer since 1/ε = T1 + T2 + dae = 4dae − 2 ∈ N. Furthermore,
suppose that M/2 = SL for some S ∈ N. Then:

‖PMϕ‖2 =
L−1∑
j=0

S−1∑
k=−S

ε

2R

∣∣∣Φ( ε

2R
(j + kL)

)∣∣∣2 ∣∣∣∣φ̂(−2πε
2R

(j + kL)
)∣∣∣∣2 (28)

=
L−1∑
j=0

1
L

∣∣∣∣Φ( jL
)∣∣∣∣2 S−1∑

k=−S

∣∣∣∣φ̂(−2πj
L
− 2πk

)∣∣∣∣2 . (29)
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By applying Lemma 4.4 to the interval [−2π, 0], given any θ ∈ (1,∞), there exists Sθ ∈ N such that
for all j = 0, . . . L− 1,

Sθ−1∑
k=−Sθ

∣∣∣∣φ̂(−2πj
L
− 2πk

)∣∣∣∣2 ≥ 1
θ2
.

Since

L =
2R

ε
= 2R(4 dae − 2) > 2R(3 dae − 2) + dae − 1 = AR,2 −AR,1 + 1,

Lemma 4.2 (via (26) and (27)) implies that

L−1∑
j=0

1
L

∣∣∣∣Φ( jL
)∣∣∣∣2 = 1.

Thus,

‖PMϕ‖2 ≥
1
θ2

L−1∑
j=0

1
L

∣∣∣∣Φ( jL
)∣∣∣∣2 =

1
θ2
.

Hence, for N ≤ NR and M = Sθ2R+1/ε, where Sθ depends only on the scaling function φ and θ,

CN,M = inf
ϕ∈TN ,‖ϕ‖=1

‖PMϕ‖ ≥
1
θ
,

and the theorem is proven.

5 Proof of Theorem 3.3
The proof of Theorem 3.3 hinges on the following proposition.

Proposition 5.1. Let N ≥ NR, and suppose M = c2R for c <
1
ε
, then CN,M → 0 exponentially as

N →∞.

With this result at hand the proof of Theorem 3.3 is straightforward.

Proof of Theorem 3.3. Suppose that ηG < 1
εdae . Then, by Corollary 3.2 and Proposition 5.1, κ(GN )

cannot be bounded. Moreover, from [6], for M = ΘG(NR), we have that

κ(GNR) ≥ κ(FNR,M ) ≥ 1
CNR,M

.

Hence, by Proposition 5.1, κ(GNR) becomes exponentially large as NR grows.

The rest of this section is devoted to the proof of Proposition 5.1, however, before we can state the
proof, we need the following results on trigonometric polynomials and Chebyshev polynomials from [22].

Proposition 5.2. Let ω ∈ [0, π] and consider the following function, defined over [−π, π]:

Qn,ω(z) = Q2n

(
sin(z/2)
sin(ω/2)

)
where Q2n(x) = cos(2n arccosx) for x ∈ [−1, 1] is the Chebyshev polynomial of degree 2n. Then the
following holds:

(i) Qn,ω is a trigonometric polynomial in z of degree n, i.e. Qn,ω(z) =
∑
|j|≤n αje

izj.

(ii) ‖Qn,ω‖L∞[−ω,ω] = 1.
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(iii) For ω ∈ [π/2, π), there exists constants c1, c2 > 0 such that

exp(c1n(π − ω)) ≤ ‖Qn,ω‖L∞[−π,π] = Qn,ω(π) ≤ exp(c2n(π − ω)).

Proof of Proposition 5.1. The goal is to use Proposition 5.2, and the first part of the proof is a setup for
that. In particular, let M = c2R for some c < 1/ε and R ≥ 1. By Lemma 4.1, if 0 ≤ l ≤ (2R − 1) dae,
then

φR,l ∈ V (a)
0 ⊕W (a)

0 ⊕ · · · ⊕W (a)
R−1.

Hence, for N ≥ NR and p = (2R−1 − 1) dae, it follows that

TN ⊃ V (a)
0 ⊕W (a)

0 ⊕ · · · ⊕W (a)
R−1 ⊃ {φR,l : 0 ≤ l ≤ 2p} .

Thus, we get that

(CN,M )2 = inf
‖ϕ‖=1

ϕ∈TN

‖PMϕ‖2 ≤ inf{‖PMϕ‖2 :
2p∑
l=0

|βl|2 = 1, ϕ =
2p∑
l=0

βlφR,l}.

Hence, by Proposition 4.5 and the choice of M = c2R, it follows that

(CN,M )2 ≤ inf


dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)
φ̂

(
−2πεj

2R

)∣∣∣∣2 : Φ(z) =
2p∑
l=0

βle
2πizl,

2p∑
l=0

|βl|2 = 1


≤
∥∥∥φ̂∥∥∥2

L∞[−πcε,πcε]
inf


dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 : Φ(z) =
2p∑
l=0

βle
2πizl, ‖Φ‖2L2[0,1] = 1


=
∥∥∥φ̂∥∥∥2

L∞[−πcε,πcε]
inf


dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 : Φ(z) =
∑
|l|≤p

βle
2πizl, ‖Φ‖2L2[0,1] = 1



(30)

The last equality above is a consequence of the following: For Φ(z) =
∑2p
l=0 βle

2πizl,

dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 =
dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣∣∣
∑
|l|≤p

βl+pe
2πiεjl/2Re2πiεjp/2R

∣∣∣∣∣∣
2

=
dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣∣∣
∑
|l|≤p

βl+pe
2πiεjl/2R

∣∣∣∣∣∣
2

.

Note that we have carried out this shift in indices in order to later show that the infimum is taken over
a set of functions which include those of the form Qn,ω defined in Proposition 5.2. From (30) it follows
easily that

(CN,M )2 ≤ cε
∥∥∥φ̂∥∥∥2

L∞[−πcε,πcε]
inf

‖Φ‖2L∞[−πcε,πcε] : Φ(z) =
∑
|l|≤p

βle
izl, ‖Φ‖2L2[−π,π] = 1

 ,

where we have again used that M = c2R. Also, by Cauchy Schwarz, for Φ(z) =
∑
|l|≤p βle

izl,

|Φ(z)|2 ≤ (2p+ 1)
∑
|l|≤p

|βl|2 = (2p+ 1) ‖Φ‖2L2[−π,π] .

So,
‖Φ‖2L∞[−π,π] = 2p+ 1 =⇒ ‖Φ‖2L2[−π,π] ≥ 1.
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Thus,

(CN,M )2 ≤ cε
∥∥∥φ̂∥∥∥2

L∞[−πcε,πcε]
inf

‖Φ‖2L∞[−πcε,πcε] : Φ(z) =
∑
|l|≤p

βle
izl, ‖Φ‖2L2[−π,π] ≥ 1


≤ DR inf

‖Φ‖2L∞[−πcε,πcε] : Φ(z) =
∑
|l|≤p

βle
izl, ‖Φ‖2L∞[−π,π] = 1

 ,

(31)

where
DR = (2p+ 1)cε

∥∥∥φ̂∥∥∥2

L∞[−πcε,πcε]
.

Having established (31) we can now make use of Proposition 5.2. Indeed, for ω ∈ [π/2, π), let

qω =
Qp,ω

‖Qp,ω‖L∞[−π,π]

,

where Qp,ω is defined in Proposition 5.2. Then, by Proposition 5.2,

qω ∈

Φ : Φ(z) =
∑
|l|≤p

βle
izl, ‖Φ‖2L∞[−π,π] = 1

 , (32)

and there exists some constant η > 0, independent of p, such that

‖qω‖L∞[−ω,ω] ≤
1

‖Qp,ω‖L∞[−π,π]

≤ exp(−ηp(π − ω)). (33)

We now split the proof into two cases, and we will show that CN,M → 0 exponentially as R→∞ when

Case 1: c ∈
[

1
2ε
,

1
ε

)
, Case 2: c ∈

(
0,

1
2ε

)
.

Case 1: By (31), (32) and (33) (and recalling the value of p = (2R−1 − 1) dae),

CN,M ≤ DR ‖qπcε‖2L∞[−πcε,πcε]

≤ (2R dae − 2 dae+ 1)cε
∥∥∥φ̂∥∥∥2

L∞[−πcε,πcε]
exp((−ηπ(1− cε)(2R dae − 2 dae)))

Thus, we have shown that CN,M decays exponentially as N →∞ in the first case scenario.
Case 2: Clearly, we still have exponential decay in CN,M , since, again by (31), (32) and (33),

CN,M ≤ DR

∥∥qπ/2∥∥2

L∞[−πcε,πcε]

≤ DR

∥∥qπ/2∥∥2

L∞[−π/2,π/2]

≤ (2R dae − 2 dae+ 1)cε
∥∥∥φ̂∥∥∥2

L∞[−πcε,πcε]
exp(−ηπ(2R−1 dae − dae)).

6 Proof of Theorem 3.5
We are now ready to present the proof of Theorem 3.5.

Remark 6.1. In the construction of Daubechies wavelets [13], the scaling function φ is defined such
that

φ̂(ξ) :=
∞∏
s=1

m0

(
ξ

2s

)
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where

m0(ξ) =
(

1 + e−iξ

2

)N
L(ξ)

for some N ∈ N and L is such that

|L(ξ)|2 =
N−1∑
k=0

(
N − 1 + k

k

)
sin2k

(
ξ

2

)
.

Note that in this case, |m0(ξ)| > 0 for all ξ ∈ (−π, π) and since φ̂(0) = 1, there exists K ∈ N such
that

∣∣∣φ̂ (ξ/2K)∣∣∣ > 0 for all ξ ∈ (−2π, 2π). Hence,

φ̂(ξ) = φ̂

(
ξ

2K

) K∏
s=1

m0

(
ξ

2s

)
6= 0 for all ξ ∈ (−2π, 2π). (34)

Proof of Theorem 3.5. Recall that ε ∈ (0, 1/(T1 + T2)] and from Proposition 5.1, for all c < 1/ε, CNR,M
will tend to 0 exponentially if M < 2R/ε. So, for each θ ∈ (1,∞), there exists R0 ∈ N such that for all
R ≥ R0,

Θ(NR, θ) ≥
⌈

2R

ε

⌉
.

Hence, if it is known that there exists R1 and θ ∈ (1,∞) such that for all R ≥ R1

Θ(NR, θ) ≤
⌈

2R

ε

⌉
. (35)

then for such θ and all R ≥ max {R0, R1}

Θ(NR, θ) =
⌈

2R

ε

⌉
.

So, it remains to show the existence of θ ∈ (1,∞) such that (35) holds. Let ϕ ∈ TNR such that ‖ϕ‖ = 1.
Then, by Lemma 4.1, we have that

ϕ =
AR,2∑
l=AR,1

αlφR,l,

AR,2∑
l=AR,1

|αl|2 = 1, (36)

where AR,1 and AR,2 are as defined in (12). Now, let M = d2R/εe. Then, by Proposition 4.5,

‖PMϕ‖2 =
dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)
φ̂

(
−2πεj

2R

)∣∣∣∣2 ≥ γ2
1

dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 (37)

where

Φ(z) =
AR,2∑
l=AR,1

αle
2πilz

and

γ1 = inf
ξ∈[−πεM2−R,πεM2−R]

∣∣∣φ̂(ξ)
∣∣∣ ≥ inf

ξ∈[−(1+ε2−R)π,(1+ε2−R)π]

∣∣∣φ̂(ξ)
∣∣∣ > 0.

Note that γ1 > 0 due to (34) and γ1 = infξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣ whenever 2R/ε ∈ Z. Hence, it remains to obtain

a positive lower bound for

dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 . (38)
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We will split the proof into several cases. The case of a = 1 is treated separately mainly for pedagogical
reasons as the proof is simpler in this case.

Case 1: a = 1 and 1/ε ∈ N.
Since a = 1, we have that 2R/ε ≥ 2R(3dae − 2) = AR,2 − AR,1 + 1 and for 1/ε ∈ N (in which case,

M = 2R/ε is even), Lemma 4.2 gives that

M
2 −1∑

j=−M2

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 = 1.

So, given any R ∈ N and

θ ≥
(

inf
ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣)−1

,

we have that
Θ(NR, θ) ≤ 2R/ε.

Case 2: a = 1 and 1/ε /∈ N.
In this case we must have ε < 1/(3dae− 2), and an application of Theorem 4.3 to Φ with r =

⌈
2R/ε

⌉
,

2D = 2R(3 dae − 2) ≥ AR,2 −AR,1, δ = ε/2R and

xj =
ε

2R

(
−
⌊
M

2

⌋
+ j − 1

)
, j = 1, . . . , r

gives that

dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 ≥ (1− ε(3 dae − 2))2
> 0.

So, given any R ∈ N and

θ ≥
(

(1− ε(3 dae − 2)) inf
ξ∈[−(1+ε)π,(1+ε)π]

∣∣∣φ̂(ξ)
∣∣∣)−1

,

we have that
Θ(NR, θ) ≤ 2R/ε.

Case 3: a > 1 and 2R/ε ∈ N for some R.
When a > 1, Lemma 4.2 and Theorem 4.3 cannot be applied directly because 2R/ε may be less than

AR,2−AR,1 + 1 = 2R(3dae− 2) + dae− 1 and so, we will first decompose Φ into two other trigonometric
polynomials for which we can obtain bounds.

We now let R ≥ log2(dae − 1). Since φ and ψ are continuous and compactly supported, ‖φ‖∞ and
‖ψ‖∞ exist. So, by Lemma 4.1 (ii) and Proposition 4.5,

dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ( εj2R

)∣∣∣∣2 =
dM2 e−1∑
j=−bM2 c

ε

2R

∣∣∣∣Φ1

(
εj

2R

)
+ Φ2

(
εj

2R

)∣∣∣∣2

where

Φ1(z) =
AR,2−dae∑
j=AR,1

αje
2πizj , Φ2(z) =

AR,2∑
j=AR,2−dae+1

αje
2πizj ,

and
AR,2∑

j=AR,2−dae+1

|αj |2 ≤
(‖φ‖∞ + ‖ψ‖∞)2 dae(dae+ 1)

2R+1
. (39)
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So, as argued in (37),
‖PMϕ‖2 ≥ γ2

1

(
C2

Φ1
+ C2

Φ2
− 2CΦ1CΦ2

)
where

CΦs =

√√√√√√ d
M
2 e−1∑

j=−bM2 c

ε

2R

∣∣∣∣Φs( εj2R

)∣∣∣∣2, s = 1, 2. (40)

If 2R/ε ∈ N for some R, then we may apply Lemma 4.2 to Φ1 since

(AR,2 −AR,1)− dae+ 1 = 2R(3dae − 2) ≤ 2R/ε,

and to Φ2 since
AR,2 − (AR,2 − dae+ 1) + 1 = dae ≤ 2R/ε.

We thus obtain,

C2
Φ1

=
AR,2−dae∑
j=AR,1

|αj |2

and

C2
Φ2

=
AR,2∑

j=AR,2−dae+1

|αj |2 .

Note that

C2
Φ1

+ C2
Φ2
− 2CΦ1CΦ2 =

AR,2∑
j=AR,1

|αj |2 − 2

AR,2−dae∑
j=AR,1

|αj |2
1/2 AR,2∑

j=AR,2−dae+1

|αj |2
1/2

≥ 1− 2
(

(‖φ‖∞ + ‖ψ‖∞) (dae+ 1)
2(R+1)/2

)
by (36) and (39). Hence, for all µ ∈ (0, 1), there exists R0 such that for all R ≥ R0,

‖PMϕ‖2 ≥ inf
ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣2(1−

(‖φ‖∞ + ‖ψ‖∞) (dae+ 1)
2(R−1)/2

)
> µ inf

ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣2 ,

and so given any

θ >

(
inf

ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣)−1

,

there exists R0 such that for all R ≥ R0,

Θ(NR, θ) ≤ 2R/ε.

Case 4: a > 1 and 2R/ε 6∈ N for all R ∈ N.
In this case, ε < 1/(3dae − 2) and as in Case 3, obtaining appropriate estimates for CΦ1 and CΦ2

defined in (40) will provide the required lower bound for (38).
In the case of CΦ1 , applying Theorem 4.3 to Φ1 with r =

⌈
2R/ε

⌉
, 2D = 2R(3 dae − 2) − 2 =

(AR,2 − dae)−AR,1, δ = ε/2R and

xj =
ε

2R

(
−
⌊
M

2

⌋
+ j − 1

)
, j = 1, . . . , r

gives that

(1− δ1)
AR,2−dae∑
j=AR,1

|αj |2 ≤

 r∑
j=1

νj |Φ1(xj)|2
 1

2

≤ (1 + δ1)
AR,2−dae∑
j=AR,1

|αj |2
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where δ1 = ε(3dae − 2 − 1/2R−1) < ε(3dae − 2) < 1, νj = (xj+1 − xj−1)/2 and x0 = xr − 1. Note that
ε/2R+1 ≤ νj ≤ 2R/ε. Hence, by (40),

(1− δ1)2

AR,2−dae∑
j=AR,1

|αj |2 ≤ C2
Φ1
≤ 2(1 + δ1)2

AR,2−dae∑
j=AR,1

|αj |2 .

In the case of CΦ2 , applying Theorem 4.3 to Φ2 with r =
⌈
2R/ε

⌉
, 2D = 2 d(dae − 1)/2e ≥ AR,2 −

(AR,2 − dae+ 1), δ = ε/2R and

xj =
ε

2R

(
−
⌊
M

2

⌋
+ j − 1

)
, j = 1, . . . , r

gives that

(1− δ2)
AR,2∑

j=AR,2−dae+1

|αj |2 ≤

 r∑
j=1

νj |Φ1(xj)|2
 1

2

≤ (1 + δ2)
AR,2∑

j=AR,2−dae+1

|αj |2

where δ2 ≤ ε(dae+ 1)/2R < 1, νj = (xj+1 − xj−1)/2 and x0 = xr − 1. Again, ε/2R+1 ≤ νj ≤ 2R/ε. So,

(1− δ2)2

AR,2∑
j=AR,2−dae+1

|αj |2 ≤ C2
Φ2
≤ 2(1 + δ2)2

AR,2∑
j=AR,2−dae+1

|αj |2 .

Hence,

‖PMϕ‖2 ≥ inf
ξ∈[−(1+ε2−R)π,(1+ε2−R)π]

∣∣∣φ̂(ξ)
∣∣∣2((1− δ1)2 − (1 + δ2)(1 + δ1)

(‖φ‖∞ + ‖ψ‖∞) (dae+ 1)
2(R−3)/2

)
→ (1− ε(3dae − 2))2 inf

ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣2 > 0 as R→∞.

So, for all µ ∈ (0, 1), there exists R0 such that for all R ≥ R0,

‖PMϕ‖2 ≥ µ(1− ε(3dae − 2))2 inf
ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣2 > 0.

and for all

θ >

(
(1− ε(3dae − 2)) inf

ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣)−1

,

there exists R0 such that for all R ≥ R0,

Θ(NR, θ) ≤ 2R/ε.

7 Numerical Examples
In this section we provide numerical examples to illustrate the behaviour of the stable sampling rate
as well as demonstrating sharpness of our estimates. We also show that, because of the linearity of
the stable sampling rate, any convergence properties of a series expansion of a function in a particular
wavelet basis will be inherited (up to a constant) by the generalized sampling reconstruction based on
Fourier samples. In other words, as discussed in Section 2.2, generalized sampling is, up to a constant,
an oracle for the wavelet reconstruction problem.
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Figure 1: The figure displays the stable sampling rate Θ(N, θ) in blue for the Haar wavelet with Fourier
samples for θ = π/2 at a sampling distance ε = 1 (left) and ε = 1/2 (right).

7.1 Sharpness of the stable sampling rate estimates
Before we demonstrate the sharpness of our estimates numerically, let us recall the result from Theorem
3.5. In particular, for NR = 2R dae+ (R+ 1)(dae − 1) and when 2R/ε ∈ Z, then for all sufficiently large
R

Θ(NR, θ) =
2R

ε
, (41)

where

θ >

(
inf

ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣)−1

, (42)

and φ is the scaling function of the wavelet. Recall also the asymptotic result

lim
R→∞

Θ(NR, θ)
NR

=
1

εdae
. (43)

In this section we demonstrate these sharp results numerically. We consider the Haar wavelet (supported
on [0, 1]), the Daubechies-4 wavelet (supported in [0, 3]), and the Daubechies-6 wavelet (supported in
[0, 5]).

For the Haar wavelet, the Fourier sampling distance must be ε ≤ 1. Since(
inf

ξ∈[−π,π]

∣∣∣φ̂(ξ)
∣∣∣)−1

=
π

2
,

in this case, from the proof of Theorem 3.5, we see that (41) applies whenever θ ≥ π
2 .

Figure 1 shows the growth of Θ (N, π/2) for sampling distances ε = 1 and ε = 1/2 respectively. We
observe from the figure that

Θ (NR, π/2) = 2R, Θ (NR, π/2) = 2R+1, R ∈ N

respectively, exactly as suggested in (41). Moreover, by (43), we have that

Θ(NR, π/2) ∼ NR
1

εdae
,

which is verified in Figure 1 via the green line.
In the case of the DB4 and DB6 wavelets, the Fourier sampling space must be of sampling distance

ε ≤ 1/7 and ε ≤ 1/13 respectively . Computationally we may observe that

θ−1
1 = 0.684 < inf

x∈[−π,π]

∣∣∣φ̂DB4(x)
∣∣∣ , θ−1

2 = 0.698 < inf
x∈[−π,π]

∣∣∣φ̂DB6(x)
∣∣∣ ,
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Figure 2: The figure displays the stable sampling rate Θ(N, θ1) and Θ(N, θ2) in blue for the Daubechies-4
wavelet (left) and the Daubechies-6 wavelet (right) with Fourier samples at a sampling distance ε = 1/7
and ε = 1/13 respectively.

where φDB4 and φDB6 are the scaling function of the DB4 and DB6 wavelets respectively. So, again, as
displayed in Figure 2, we have

Θ (NR, θ1) = 7 · 2R, Θ (NR, θ2) = 13 · 2R, R ∈ N,

which confirms (41). Moreover, by (43), we have that

Θ(NR, θ1) ∼ NR
1
3ε
, Θ(NR, θ2) ∼ NR

1
5ε

which is verified in Figure 2 via the green line.

Remark 7.1. Note that

Θ(NR, θ) < Θ(N, θ) ≤ Θ(NR+1, θ), NR < N ≤ NR+1.

The staircase effect witnessed in the figures suggests that the upper bound is in fact an equality. Hence,
although the stable sampling rate is linear for all N , from the point of view of the stable sampling rate
at least, there is nothing to be gained from allowing N 6= NR.

7.2 Generalized sampling and function reconstruction
In this section we demonstrate the power of generalized sampling in practice. Given the result on the
stable sampling rate above we have now full control over how to balance the number of Fourier samples
versus the number of wavelet coefficients. In these experiments with Daubechies wavelets we will, in order
to get a stable and convergent reconstruction, use the predicted value from (43), namely, the number of
samples M should asymptotically satisfy

M =
N

ε dae
,

where N is the number of coefficients to be computed, ε is the sampling distance and a is the maximum
value of the support of the mother wavelet.

We will also demonstrate, as predicted by Theorem 3.3, that failure of satisfying the stable sampling
rate gives a completely unstable and even non-convergent reconstruction. In this case we will chose the
disastrous value

M = cN, c <
1

ε dae
,

which causes the condition number of the algorithm to blow up exponentially. It also makes the constant
in the error bound blow up at the same rate and thus one gets a non-convergent method.
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(M,N,α) ‖f − fM‖L2 ‖f − f̃N,M‖L2 − log ‖f−f̃N,M‖
log N

Wavelet

(260, 100, 2) 7.6× 10−3 2.4× 10−4 1.81 DB 6
(479, 184, 2) 3.1× 10−3 9.3× 10−5 1.78 DB 6
(905, 348, 2) 9.6× 10−4 9.7× 10−6 1.97 DB 6

(481, 206, 2.5) 7.9× 10−3 6.1× 10−6 2.25 DB 4
(934, 400, 2.5) 3.1× 10−3 9.1× 10−7 2.32 DB 4
(1834, 786, 2.5) 1.5× 10−3 8.6× 10−8 2.44 DB 4

(256, 256, 3) 2.1× 10−2 2.8× 10−7 2.72 Haar
(512, 512, 3) 1.2× 10−2 5.0× 10−8 2.69 Haar

(1024, 1024, 3) 9.6× 10−3 2.6× 10−9 2.85 Haar

Table 1: The table shows the error of the reconstructions based on classical Fourier series, fM , as well
as generalized sampling f̃N,M with different types of wavelets. Note that both fM and fN,M use exactly
the same samples.

(M,N,α) ‖f − fM‖L2 ‖f − f̃N,M‖L2 Noise Level ε Wavelet

(481, 206, 2.5) 9.5× 10−2 1.4× 10−1 1.0× 10−1 DB 4
(934, 400, 2.5) 7.4× 10−2 9.8× 10−2 7.2× 10−2 DB 4
(1834, 786, 2.5) 5.0× 10−3 7.0× 10−3 5.0× 10−3 DB 4

(256, 256, 3) 2.1× 10−2 6.4× 10−4 4.2× 10−4 Haar
(512, 512, 3) 1.2× 10−2 4.8× 10−5 3.1× 10−5 Haar

(1024, 1024, 3) 9.6× 10−3 3.8× 10−6 2.5× 10−6 Haar

Table 2: The table shows the error of the reconstructions based on classical Fourier series, fM , as well
as generalized sampling f̃N,M with different types of wavelets, where the samples are contaminated with
noise. Note that both fM and fN,M use exactly the same samples.

The test functions will be of the form

f =
∞∑
j=1

βjϕj , |βj | = O(j−α), α > 1, (44)

where the ϕjs are different types of Daubechies wavelets. We let f̃N,M denote the function that is
constructed with generalized sampling using M Fourier coefficients as samples and then reconstructing
by computing N approximate wavelet coefficients. In other words, f̃N,M is the solution to〈

PM f̃N,M , ϕj

〉
= 〈PMf, ϕj〉 , j = 1, . . . , N, (45)

where PM is the projection onto the sampling space SM , where SM is defined in (10). As a comparison
we will use the truncated Fourier series

fM = PMf =
M∑
j=1

〈f, sj〉sj .

We will sometimes assume that the samples 〈f, sj〉 are contaminated with noise and thus we observe

ξ = {〈f, s1〉, . . . , 〈f, sM 〉}+ v, ‖v‖ = ε,

for some noise level ε ≥ 0. Note that fM and f̃N,M use exactly the same information sampled.
The fact that

‖f − fM‖ = ‖P⊥Mf‖, ‖f − f̃N,M‖ ≤ θ‖Q⊥Nf‖,

together with (44) show that the reconstruction created by generalized sampling will asymptotically
outperform the reconstruction based on the truncated Fourier series on the types of functions described
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(M,α) ‖f − fM‖L2 ‖f − f̃M/c,M‖L2 ‖f − f̃M/c1,M‖L2 Noise Level ε Wavelet

(481, 3) 9.5× 10−2 2.3× 10−7 2.2× 10−2 0 DB 4
(934, 3) 1.6× 10−3 4.6× 10−8 2.4× 102 0 DB 4
(7220, 3) 5.1× 10−4 3.0× 10−10 3.5× 106 0 DB 4

(481, 3) 9.5× 10−2 9.3× 10−6 6.6× 101 1.0× 10−5 DB 4
(934, 3) 1.6× 10−3 9.3× 10−6 5.3× 105 1.0× 10−5 DB 4
(7220, 3) 5.1× 10−4 1.1× 10−5 1.0× 1011 1.0× 10−5 DB 4

Table 3: The table shows the error of the reconstructions based on classical Fourier series, fM , as well
as generalized sampling f̃N,M with N = M/c and N = M/c1, with noiseless and noisy data. Note that
fM and fN,M use exactly the same samples.

in (44). In particular, since f̃N,M is quasi-optimal, we have that

− log ‖f − f̃N,M‖
logN

≈ α

for large N . This is verified in Table 1.
Also, observe in Table 2 the predicted stability of generalized sampling. In particular, the condition

number of generalized sampling is equal to θ which in the case of this experiment is π/2 for the Haar
case and 1.46 for the DB4. In Table 3 we demonstrate that if the number of samplesM does not satisfies
the stable sampling rate we get an unstable and non-convergent method. In particular, we compare the
choices

M = cN, c =
1

ε dae
, M = c1N, c1 = 0.95c.

As verified in Table 3 the latter choice gives disastrous results.

8 Conclusions and future work
The aim of this paper has been to show that generalized sampling solves the problem of computing
wavelet coefficients in a stable and accurate manner from Fourier samples. In particular, we have proved
that the stable sampling rate is linear for all wavelets, and thus generalized sampling is, up to a constant
factor, an optimal method for this problem. Furthermore, we have shown that, for the class of perfect
reconstruction methods, any attempt to lower the stable sampling ratio necessarily results in exponential
ill-conditioning.

There are a number of directions for future work. First, we have not considered the efficient implemen-
tation of generalized sampling for this problem. The main issue herein is the complexity of computing the
reconstruction. As discussed in [4], this is O(NM) in general (i.e. O(N2) whenever the stable sampling
rate is linear, such as in the wavelet case), since one is required to solve a dense M ×N well-conditioned
least-squares problem. However, for wavelets at least, the corresponding matrix is extremely structured.
It is therefore likely that this value can be reduced to O(N(logN)2) or even O(N logN).

Another topic we have not addressed is that of sparsity. The generalized sampling framework studied
in this paper guarantees recovery of all signals in a wavelet basis from their Fourier samples. However,
suppose now that the signal to be recovered is in fact sparse in the wavelet domain, or compressible (i.e.
well approximated by a sparse signal). Can this property be exploited to reduce the number of Fourier
samples used in recovering the signal?

An abstract framework for sparsity-exploiting generalized sampling was recently developed in [1].
Note that this is intimately related to the field of compressed sensing [8, 20, 24]. However, unlike the
standard compressed sensing framework, which models signals as finite length vectors in vector spaces,
the framework developed in [1] models signals as elements of separable, infinite-dimensional Hilbert
spaces. As discussed in [1], the infinite-dimensional model can often be more faithful to the original
problem, leading to significant potential benefits. For example, in the MRI problem – which is best
modelled by the continuous, as opposed to the discrete, Fourier transform – it allows one to avoid the
issues raised in Remark 1.1.
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The aim of future work in this direction is to combine the results of this paper with the framework of
[1] so as to obtain a full theory for wavelet reconstructions of compressible signals from Fourier samples.
In particular, the analogue of the stable sampling rate in [1], known as the balancing property, must
be first analysed. Moreover, compressed sensing relies on so-called incoherence between sampling and
reconstruction bases. This must also be estimated.

Alongside this, there are several other extensions to be pursued. These include the generalization to
higher dimensions, as well as the extension to more exotic objects such as contourlets [14, 38], curvelets
[9, 10] and shearlets [11, 12, 31]. Another open problem involves the question of Fourier samples taken
non-uniformly. In this paper we have considered only Fourier samples taken on a regular lattice. However,
non-uniform sampling patterns are more common in applications. The question of generalized sampling
for non-uniform Fourier samples was considered previously in [6] within the setting of Fourier frames.
We believe that the key results proved herein regarding the behaviour of the stable sampling rate can be
extended to this case.
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