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Abstract

The theme of this paper is the construction of finite-difference approxima-
tions to the first derivative in the presence of Dirichlet boundary conditions. Sta-
ble implementation of splitting-based discretisation methods for the convection-
diffusion equation requires the underlying matrix to be skew symmetric and this
turns out to be a surprisingly restrictive condition. We prove that no skew-
symmetric approximation on an equidistant grid may exceed order two. Once
non-equidistant grid is allowed, this barrier can be breached.

1 Introduction

The theory of finite-difference methods for discretised partial differential equations is
mature and well-understood, the mainstay of numerous computational algorithms for
the past century. It is a sobering fact however that, even in its basic linear setting,
this theory is incomplete. The theme of this paper is an interesting lacuna in the
classical theory.

A good starting point is the convection-diffusion equation (Bejan 2004, Morton
1996) in a univariate setting,

∂u

∂t
=
∂2u

∂x2
+ v(x)

∂u

∂x
, t ≥ 0, x ∈ [−1, 1], (1.1)

accompanied by an initial condition for t = 0 and Dirichlet boundary conditions at
x = 0 and x = 1, where the average transport velocity v is a given smooth function.
The equation (1.1) is important because its multivariate generalisation,

∂u

∂t
= ∇2u+ v(x) ·∇u, t ≥ 0, x ∈ [0, 1]d,

is a model for transport phenomena combining diffusive and convective processes.
A powerful means to solve (1.1), easily extended to a multivariate setting, is

through an exponential splitting method (McLachlan & Quispel 2002). Its simplest
manifestation, the Strang splitting, approximates (1.1) by the time-stepping scheme

un+1 = e
1
2 (∆t)Ce(∆t)D2e

1
2 (∆t)Cun + fn, n ≥ 0, (1.2)

where unm ≈ u(m∆x, n∆t), D2 is a second differentiation matrix (that is, an approx-
imation to the second derivative using a linear combination of grid points), while C
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is the outcome of multiplying each mth row of the first differentiation matrix D1,
say, by v(m∆x). The inhomogeneous vector fn consists of boundary contributions
(Hochbruck & Ostermann 2010, Iserles 1992) and we note that fn ≡ 0 when the
Dirichlet boundary conditions are zero. Since

e
1
2 (∆t)Ce(∆t)D2e

1
2 (∆t)C = e(∆t)(D2+C) +O

(
(∆t)3

)
,

the method is second order in time, therefore it makes sense to discretise in space to
a similar order – this is the case with the familiar differentiation matrices

D1 =
1

∆x



0 1
2 0 · · · 0

− 1
2 0 1

2

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

2
0 · · · 0 − 1

2 0


, D2 =

1

(∆x)2



−2 1 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 · · · 0 1 −2


.

We do not consider in this paper the practicalities of computing the exponentials in
(1.2), whether exactly or by some sort of approximation.

Inasmuch as higher-order splitting methods are available, mostly in the context
of symplectic integration and the solution of hyperbolic PDEs (Hairer, Lubich &
Wanner 2006, McLachlan & Quispel 2002), the Strang splitting is widely accepted
as the best of its kind insofar as parabolic PDEs are concerned, because a theorem
of Sheng (1989) indicates that no stable splitting for such equations may exceed or-
der 2. However, the universality of the Sheng barrier has been recently challenged
from three different quarters. Firstly, a new breed of ODE solvers, exponential in-
tegrators, have been methodically applied to semidiscretised PDEs, allowing for the
use of high-order time discretisation, combined with the use of exponential functions
(Hochbruck & Ostermann 2010). Secondly, (Hansen & Ostermann 2009) have demon-
strated that using complex-valued time it is possible to breach the Sheng barrier.
Thirdly, work in progress demonstrates that the recent methodology of Zassenhaus
splittings (Bader, Iserles, Kropielnicka & Singh 2012) can be transplanted into the
setting of the convection–diffusion equation (1.1) in a stable manner, while allowing
for the use of higher-order splittings incorporating commutators and thereby being
outside the terms of the Sheng Theorem.

All this motivates our interest in higher-order differentiation matrices. Specifically,
we wish to approximate the first derivative to a higher order by a matrix D1. Yet,
the constraint is that the matrix C, which we form from D1 multiplying each mth
row by v(m∆x), results in a stable exponential. In other words, we wish for ‖en(∆t)C‖
to be uniformly bounded for n∆t in a compact interval, while ∆x,∆t → 0 and the
Courant number µ = ∆t/∆x is constant (Iserles 2008, Richtmyer & Morton 1967). In
Section 2 we demonstrate that, subject to mild side conditions, a necessary and suffi-
cient condition for stability is that the matrix D1 is skew symmetric. This condition is
clearly satisfied by the matrix D1 that we have considered above but this, as turns out
in Section 3, is an exception: there exist no third-order (or higher) skew-symmetric
differentiation matrices!

Like any ‘impossibility result’, the order restriction on skew-symmetric differenti-
ation matrices does not mean that it is impossible to use finite difference methods in
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this setting. All it means is that we must change some of our underlying assumptions.
In Section 4 we show that, once the assumption that the grid points are equidistant
is lifted, it is possible to breach the barrier and obtain a skew-symmetric matrix D1

corresponding to a third-order method.
It is important to emphasise that the absence of high-order skew-symmetric dif-

ferentiation matrices is purely an artefact of Dirichlet boundary conditions. Once we
consider periodic boundary conditions and are allowed to ‘wrap around’ the matrix
D1, we can easily generate skew-symmetric matrices of any order! For example,

u′m ≈
1

∆x
( 1

12um−2 − 2
3um−1 + 2

3um+1 − 1
12um+2), m = 1, . . . ,M,

where ∆x = 1/M , represents a fourth-order scheme. Once we wrap around bound-
aries, i.e. identify m with m mod M , the outcome is the skew-symmetric banded cir-
culant

D1 =
1

∆x



0 2
3 − 1

12 0 0 · · · 1
12 − 2

3

− 2
3 0 2

3 − 1
12 0 · · · 0 1

12
1
12 − 2

3 0 2
3 − 1

12 0 · · · 0

0
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 0

0 · · · 0 1
12 − 2

3 0 2
3 − 1

12

− 1
12 0 · · · 0 1

12 − 2
3 0 2

3
2
3 − 1

12 0 · · · 0 1
12 − 2

3 0



. (1.3)

An obvious (and often superior) alternative to finite differences are spectral meth-
ods. Here, again, periodic boundary conditions lead to skew-Hermitian matrices but
the problem, once we consider Dirichlet boundary conditions, is if at all even more
acute. The standard approach in that case is to use Chebyshev expansions (Hesthaven,
Gottlieb & Gottlieb 2007) but in that case – indeed, in the case of any polynomial ba-
sis – the differentiation matrix is necessarily lower triangular: as far away from skew
symmetry as one can get. Given that generalising the non-equidistant approach of
Section 4 to high orders is far from simple, it seems that no methodology to construct
high order skew-symmetric differentiation matrices D1 is presently available.

2 On stability and skew symmetry

Let u be a smooth function for x ∈ [0, 1], set um = u(m∆x), u′m = u′(m∆x) for
m = 0, 1, . . . ,M + 1, where ∆x = 1/(M + 1) and consider the approximation

u′m ≈
1

∆x

M+1∑
k=0

bm,kuk, m = 1, 2, . . . ,M. (2.1)
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The underlying differentiation matrix1 D1 excludes boundary conditions, thereby is
of the form

D1 =
1

∆x
B, where B =


b1,1 b1,2 · · · b1,M
b2,1 b2,2 · · · b2,M

...
...

...
bM,1 bM,2 · · · bM,M

.
The coefficients bm,k may themselves depend on M but, in the interests of clarity, we
suppress this dependence in our notation.

The semidiscretisation (2.1) is stable (in the sense of Lax) if, assuming zero Dirich-
let boundary conditions u0, uM+1 ≡ 0, it produces a solution vector u(t) which is
uniformly bounded in the `2 norm in every compact time interval. As is well known,
stability is equivalent to the statement that

‖e(∆t)/(∆x)B‖ ≤ 1 + α∆t (2.2)

for some α ≥ 0, uniformly for ∆t,∆x → 0, provided that ∆t/∆x is bounded away
from zero and infinity (Iserles 2008).

It is important to recall that, unless B is a normal matrix, (2.2) is not a statement
on its eigenvalues: specifically, it is not sufficient for all the eigenvalues of B to reside
in a shifted complex left half plane. We must instead consider its logarithmic norm
(Söderlind 2006) µ[B], namely the largest eigenvalue of the symmetric matrix B̃ =
1
2 (B +B>). It is well known that

‖etB‖ ≤ etµ[B], t ≥ 0,

and that µ[B] is the least constant consistent with this inequality. Therefore, (2.2)
is equivalent to the statement that µ[(∆t/(∆x)B] ≤ α∆t, therefore µ[B] ≤ α∆x, for
some α ≥ 0.

Clearly, if B is skew symmetric then µ[B] = 0 and stability is assured. Suppose
however that for every M we have µ[B] = κM , κM > 0, and that lim supM→∞ κM > 0.
Then (2.1) is unstable. As an example, consider amending the differentiation matrix
from (1.3) by replacing its first and last row by

u′1 ≈
1

∆x
(− 1

4u0 − 5
6u1 + 3

2u2 − 1
2u3 + 1

12u4),

u′M ≈
1

(∆x
(− 1

12uM−3 + 1
2uM−2 − 3

2uM−1 + 5
6uM + 1

4uM+1)

respectively – note that order 4 is retained. (Because we are considering Dirichlet
boundary conditions, ∆x = 1/(M + 1).) We have

B̃ =

 B̃1 O O
O O O

O O B̃2

,
1The phrase “differentiation matrix” originates in spectral methods, where it denotes an exact

linear relationship between basis functions and their derivatives. By rights, we should have called D1

an “approximate differentiation matrix” but we sacrifice nitpicking on the altar of brevity.

4



where

B̃1 =


− 5

6
5
12 − 5

24
1
24

5
12 0 0 0

− 5
24 0 0 0
1
24 0 0 0

, B̃2 =


0 0 0 − 1

24

0 0 0 5
24

0 0 0 − 5
12

− 1
24

5
24 − 5

12
5
6 .

.
Thus, B̃ departs from zero in just eight columns: actually, it is a rank-4 matrix whose

nonzero eigenvalues are ± 5
12 ±

√
226
24 , κM ≡ µ[B] = 5

12 +
√

226
24 ≈ 0.886 and the matrix

corresponds to an unstable method.
Our discussion helps to exclude non-skew symmetric matrices B from further dis-

cussion yet, even if B is skew symmetric, we are not done yet! Recall that the purpose
of the exercise is to discretise v(x)∂/∂x, rather then merely ∂/∂x. Thus, we assume
that v is a given smooth function, let vm = v(m∆x) and approximate vmu

′
m by multi-

plying the right-hand side of (2.1) by vm, m = 1, . . . ,M . In other words, our interest
is in the stability (for all ‘nice’ functions v) of the matrix C such that cm,k = vmbm,k,
m, k = 1, . . . ,M . Skew symmetry of B is still necessary, of course, because of the
trivial case v ≡ 1, but we cannot take for granted that it is sufficient for all functions
v of interest.

Theorem 1 Let the matrix B be skew symmetric and banded, that is bm,k = 0 for
|m− k| ≥ r+ 1 for some r ≥ 1, and let its coefficients be independent of M . Then the
matrix C is stable.

Proof Because of bandedness and skew symmetry of B, we have

c̃m,k =

{
0, m = k or |m− k| ≥ r + 1,
1
2 (vm − vk)bm,k, 1 ≤ |m− k| ≤ r.

where C̃ = 1
2 (C + C>). We recall the Gerschgorin Theorem: The eigenvalues of the

M ×M matrix A reside in the union of the discs

Sm[A] = {z ∈ C : |z − am,m| ≤
∑
k 6=m

|am,k|}, m = 1, . . . ,M.

Therefore, C̃ being symmetric

µ[C] ≤ max{x ∈ R ∩ Sm[C̃] : m = 1, . . . ,M} = max
m=1,...,M

∑
k 6=m

|c̃m,k|.

However, since |v(x)− v(y)| ≤ ‖v′‖∞|x− y|,∑
k 6=m

|c̃m,k| ≤ 1
2

∑
|m−k|≤r

|vm − vk||bm,k| ≤ 1
2‖v
′‖∞(∆x)

∑
|m−k|≤r

|m− k| · |bm,k|

≤ r∆xmax
m,k
|bm,k|.

We deduce that there exists β ≥ 0 such that µ[C] ≤ β∆x, therefore ‖en(∆t)/(∆x)C‖
is uniformly bounded for any n∆t in a compact interval for ∆x → 0 and the matrix
corresponds to a stable method. 2
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Remark We have assumed in the proof of the theorem that the Courant number is
∆t/∆x, this being the natural choice once we approximate v(x)∂/∂x. In the context of
solving the convection-diffusion equation (1.1) the right choice of the Courant number
is governed by the imperative to discretise ∂2/∂x2 and is ∆t/(∆x)2. This, however,
makes absolutely no difference to the proof.

We have proved that, subject to mild conditions, we need skew-symmetry of the
differentiation matrix and that skew symmetry is sufficient for stability. These extra
conditions are important. In principle, we might be able to forego skew symmetry
of B, provided that the κM s tend to zero (effectively, that B approaches a skew-
symmetric matrix as M → ∞ in an appropriate norm). Likewise, Theorem 1 need
not be true once B is not banded. However, all said and done, it is fair to require
skew symmetry of the differentiation matrix while constructing effective splitting-type
methods for equations like (1.1). This turns out to be a surprisingly difficult problem.

3 An order barrier for skew-symmetric
differentiation matrices

Imposing skew symmetry on (2.1) results in

u′m ≈
1

∆x

(
amu0 −

m−1∑
k=1

bk,muk +

M∑
k=m+1

bm,kuk + cmuM+1

)
, m = 1, 2, . . . ,M,

(3.1)
where we set am = bm,0, cm = bm,M+1 to emphasise the distinct role of boundary
conditions. Order p conditions are clearly

am0s −
m−1∑
k=1

ksbk,m +

M∑
k=m+1

ksbm,k + (M + 1)scm = sms−1, s = 0, . . . , p, (3.2)

for m = 1, . . . ,M . We utilise the boundary coefficients {am} and {bm} to satisfy (3.2)
for s = 0, 1. Thus, s = 0 yields

am =

m−1∑
k=1

bk,m −
M∑

k=m+1

bm,k − cm, m = 1, . . . ,M,

while s = 1 results in

cm =
1

M + 1
+

1

M + 1

m−1∑
k=1

kbk,m −
1

M + 1

M∑
k=m+1

kbm,k, m = 1, . . . ,M. (3.3)

The remaining 1
2 (M −1)M coefficients of the matrix B can be in principle used to

obey (3.2) for higher values of s and, naively counting degrees of freedom, we might
expect that attaining high order with a skew-symmetric matrix B should be possible.
We will demonstrate in this section that this hope has no justification, indeed that
(3.2) cannot be satisfied for p = 3.
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We commence from s = 2. (3.2) results in

−
m−1∑
k=1

k2bk,m +

M∑
k=m+1

k2bm,k + (M + 1)2cm = 2m, m = 1, . . . ,M,

and substituting the value of cm from (3.3) yields

m−1∑
k=1

k(M + 1− k)bk,m −
M∑

k=m+1

k(M + 1− k)bm,k = 2m−M − 1 (3.4)

for all m = 1, . . . ,M . We solve (3.4) for bm,M , m = 1, . . . ,M − 1, the outcome being

bm,M =
1

M

m−1∑
k=1

k(M +1−k)bk,m−
1

M

M−1∑
k=m+1

k(M +1−k)bm,k+
M + 1− 2m

M
. (3.5)

These values are substituted back into (3.4) for m = M . We obtain on the left-hand
side

M−1∑
k=1

k(M + 1− k)bk,M

=
1

M

M−1∑
k=1

k(M + 1− k)

[
k−1∑
`=1

`(M + 1− `)b`,k −
M−1∑
`=k+1

`(M + 1− `)bk,`

]

+
1

M

M−1∑
k=1

k(M + 1− k)(M + 1− 2k)

=
1

M

[
M−1∑
k=2

k−1∑
`=1

`(M + 1− `)k(M + 1− k)b`,k

−
M−1∑
`=2

`−1∑
k=1

k(M + 1− k)`(M + 1− `)bk,`

]
+M − 1 = M − 1,

because the sums in the square brackets match each other. We recover the right-hand
side of (3.4) and all is well: p = 2 is satisfied.

We proceed in an identical manner with s = 3, and this is the moment things turn
sour. The order condition (3.2) is now

−
m−1∑
k=1

k3bk,m +

M∑
k=m+1

bm,k + (M + 1)3cm = 3m2, ,m = 1, . . . ,M,

and substituting (3.3) results in

m−1∑
k=1

k[(M + 1)2 − k2]bk,m −
M∑

k=m+1

k[(M + 1)2 − k2]bm,k = 3m2 − (M + 1)2
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for m = 1, . . . ,M . Next, we substitute bm,M , m = 1, . . . ,M − 1, from (3.5). After
elementary algebra we obtain

−
m−1∑
k=1

k(M − k)(M + 1− k)bk,m +

M−1∑
k=m+1

k(M − k)(M + 1− k)bm,k (3.6)

= 3m2 − 2m(2M + 1) +M(M + 1), m = 1, . . . ,M.

For every m = 1, . . . ,M − 2 we solve (3.6) for bm,M−1,

bm,M−1 =
1

2(M − 1)

m−1∑
k=1

k(M − k)(M + 1− k)bk,m

− 1

2(M − 1)

M−2∑
k=m+1

k(M − k)(M + 1− k)bm,k

+
1

2(M − 1)
[3m2 − 2m(2M + 1) +M(M + 1)], m = 1, . . . ,M − 2.

Finally, we substitute this on the left-hand side of (3.6) for m = M − 1:

−
M−2∑
k=1

k(M − k)(M + 1− k)bk,M−1

= − 1

2(M − 1)

M−2∑
k=1

k−1∑
`=1

k(M − k)(M + 1− k)`(M − `)(M + 1− `)b`,k

+
1

2(M − 1)

M−2∑
k=1

M−2∑
`=m+1

k(M − k)(M + 1− k)`(M − `)(M + 1− `)bk,`

− 1

2(M − 1)

M−2∑
k=1

k(M − k)(M + 1− k)[3k2 − 2k(2M + 1) +M(M + 1)]

= − 1

2(M − 1)

M−2∑
k=2

k−1∑
`=1

k(M − k)(M + 1− k)`(M − `)(M + 1− `)b`,k

+
1

2(M − 1)

M−2∑
`=2

`−1∑
k=1

k(M − k)(M + 1− k)`(M − `)(M + 1− `)bk,`

+ 1
24M(M + 1)(M + 2).

The two sums above are identical once we swap indices, hence they cancel: the left-
hand side is thus 1

24M(M + 1)(M + 2). The right-hand side of (3.6) for m = M − 1
is however 5− 3M : it is easy to verify that they fail to match for all M ≥ 1.

We have proved that

Theorem 2 The highest order of the skew-symmetric differentiation matrix given by
(3.1) is two.
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4 A third-order skew-symmetric differentiation
matrix in a non-equidistant setting

The main purpose of ‘negative’ results like Theorem 2 is to spur an interest in alter-
native settings. The most obvious manner to escape the setting of that theorem is by
allowing a non-equidistant grid. Note that in that case, strictly speaking, we venture
outside the conditions of Theorem 1. However, the proof of the theorem can be easily
extended to non-equidistant grids and the statement that skew-symmetry, in tandem
with bandedness, leads to stability of the matrix C remains true.

Let us assume that the number of grid points is even, M = 2N , and consider a
mesh

0 = x0 < x1 < x2 < · · · < x2N < x2N+1 = 1.

The underlying problem is symmetric with respect to x = 1
2 , the centre of the interval,

and we impose similar symmetry on the mesh,

x2N+1−m = 1− xm, m = 0, 1, . . . , N.

The non-equidistant generalisation of (3.1) is

u′(xm) ≈ αmu(0)−
m−1∑
k=1

βk,mu(xm)+

2N−1∑
k=m+1

βm,ku(xk)+γmu(1), m = 1, . . . , 2N−1,

(4.1)
where the coefficients αm, βm,k and γm depend upon N . The differentiation matrix

D1 =


0 β1,2 β1,3 · · · β1,2N−1

−β1,2 0 β2,3 · · · β2,2N−1

...
. . .

. . .
. . .

...
−β1,2N−2 · · · −β2N−3,2N−2 0 β2N−2,2N−1

−β1,2N−1 · · · −β2N−3,2N−1 −β2N−2,2N−1 0


is skew symmetric by design. The order-p conditions, generalising (3.2), are

αm0s−
m−1∑
k=1

βk,mx
s
k +

2N−1∑
k=m+1

βm,kx
s
k +γm = sxs−1

m , s = 0, . . . , p, m = 1, . . . , 2N −1.

(4.2)
To complete our general setting, we wish the coefficients in (4.1) to reflect the

symmetry of the problem. Thus, we stipulate that

γm = −α2N−m, βm,k = β2N−k,2N−m, k = m+1, . . . , 2N−1, m = 1, . . . , 2N−1.
(4.3)
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For example, for N = 4 the compound matrix [α | D1 | γ] reads

α1 0 β1,2 β1,3 β1,4 β1,5 β1,6 β1,7 β1,8 −α8

α2 −β1,2 0 β2,3 β2,4 β2,5 β2,6 β2,7 β1,7 −α7

α3 −β1,3 −β2,3 0 β3,4 β3,5 β3,6 β2,6 β1,6 −α6

α4 −β1,4 −β2,4 −β3,4 0 β4,5 β3,5 β2,5 β1,5 −α5

α5 −β1,5 −β2,5 −β3,5 −β4,5 0 β3,4 β2,4 β1,4 −α4

α6 −β1,6 −β2,6 −β3,6 −β3,5 −β3,4 0 β2,3 β1,3 −α3

α7 −β1,7 −β2,7 −β2,6 −β2,5 −β2,4 −β2,3 0 β1,2 −α2

α8 −β1,8 −β1,7 −β1,6 −β1,5 −β1,4 −β1,3 −β1,2 0 −α1


.

In other words, in addition to the axis of skew-symmetry along the main diagonal, we
have an axis of symmetry along the par-diagonal of D1.

In this section we do not intend to explore general schemes of this kind, just to
provide a single example of a scheme of order p = 3, thereby demonstrating that the
barrier of Theorem 2 can be breached by allowing a non-equidistant grid. To this end
we choose a parameter ρ ∈ (0, 1/(2N)] and set

xm = mρ, x2N+1−m = 1−mρ, m = 0, . . . , N. (4.4)

In other words, the grid is equidistant except for a single interval, xN+1 − xN =
1 − 2Nρ. In addition, we consider a quindiagonal matrix D1, in other words require
that βm,k = 0 for k −m ≥ 3. Letting

δm = βm,m+1, m = 1, . . . , 2N − 1, ηm = βm,m+2, m = 1, . . . , 2N − 2,

we recall the symmetry conditions

δ2N−m = δm, m = 1, . . . , N, η2N−m−1 = ηm, m = 1, . . . , N − 1.

Revisiting the case N = 4, we have

α1 0 δ1 η1 0 0 0 0 0 −α8

α2 −δ1 0 δ2 η2 0 0 0 0 −α7

α3 −η1 −δ2 0 δ3 η3 0 0 0 −α6

α4 0 −η2 −δ3 0 δ4 η3 0 0 −α5

α5 0 0 −η3 −δ4 0 δ3 η2 0 −α4

α6 0 0 0 −η3 −δ3 0 δ2 η1 −α3

α7 0 0 0 0 −η2 −δ2 0 δ1 −α2

α8 0 0 0 0 0 −η1 −δ1 0 −α1


.

It is now possible to produce explicitly coefficients αm, δm, ηm and the parameter
ρ such that the method is of order 3 and verify this by their direct substitution into
the order conditions (4.2) for p = 3. We endeavour to avoid this ‘rabbit out of a hat’
approach and instead present a constructive means of deriving the order-3 coefficients
step by step. Note that, by virtue of symmetry, it is sufficient to verify the order
conditions in the first half of the range, m = 1, . . . , N . Letting δ0, η−1, η0 = 0, the
order conditions (4.2) for s = 0 are

αm − ηm−2 − δm−1 + δm + ηm − α2N+1−m = 0, m = 1, . . . , N.
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Therefore

αm = ηm−2 + δm−1 − δm − ηm − α2N+1−m, m = 1, . . . , N − 1, (4.5)

while for m = N , because ηN = ηN−1, we have

αN = ηN−2 + δN−1 − δN − ηN−1 − αN+1. (4.6)

The s = 1 condition is

α2N+1−m = −1− ηm−2xm−2 − δm−1xm−1 + δmxm+1 + ηmxm+2, m = 1, . . . , N,
(4.7)

and, substituting the grid points (4.4) and distinguishing between different cases, we
have

α2N+1−m = −1− (m− 2)ρηm−2 − (m− 1)ρδm−1 + (m+ 1)ρδm + (m+ 2)ρηm,

m = 1, . . . , N − 2, (4.8)

αN+2 = −1− (N − 3)ρηN−3 − (N − 2)ρδN−2 +NρδN−1 + (1−Nρ)ηN−1,

αN+1 = −1− (N − 2)ρηN−2 − (N − 1)ρδN−1 + (1−Nρ)δN

+ [1− (N − 1)ρ]ηN−1.

The s = 2 condition being

−ηm−2x
2
m−2− δm−1x

2
m−1 + δmx

2
m+1 +ηmx

2
m+2−α2N+1−m = 2xm, m = 1, . . . , N,

substitution of α2N+1−m from (4.7) gives, after some beautification,

xm−2(1− xm−2)ηm−2 + xm−1(1− xm−1)δm−1 − xm+1(1− xm+1)δm

− xm+2(1− xm+2)ηm = 2xm − 1, m = 1, . . . , N

and (4.4) yields, after straightforward algebra,

(m+ 1)ρ[1− (m+ 1)ρ]δm = 1− 2mρ+ (m− 2)ρ[1− (m− 2)ρ]ηm−2

− (m+ 2)ρ[1− (m+ 2)ρ]ηm + (m− 1)ρ[1− (m− 1)ρ]δm−1,

m = 1, . . . , N − 2,

Nρ(1−Nρ)δN−1 = 1− 2(N − 1)ρ+ (N − 3)ρ[1− (N − 3)ρ]ηN−3

−Nρ(1−Nρ)ηN−1 + (N − 2)ρ[1− (N − 2)ρ]δN−2,

Nρ(1−Nρ)δN = 1−Nρ+ (N − 2)ρ[1− (N − 2)ρ]ηN−2

− (N − 1)ρ[1− (N − 1)ρ]ηN−1 + (N − 1)ρ[1− (N − 1)ρ]δN−1.

This recursion for the δms can be resolved explicitly and the following can be easily
verified by substitution,

δm =
1

2ρ
− m− 1

m
· 1− (m− 1)ρ

1−mρ
ηm−1 −

m+ 2

m+ 1
· 1− (m+ 2)ρ

1− (m+ 1)ρ
ηm,

m = 1, . . . , N − 2, (4.9)

δN−1 =
1

2ρ
− N − 2

N − 1
· 1− (N − 2)ρ

1− (N − 1)ρ
ηN−2 − ηN−1,

δN =
1

2ρ

N + 1

N
· 1− (N + 1)ρ

1−Nρ
− 2

N − 1

N
· 1− (N − 1)ρ

1−Nρ
ηN−1.
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Finally, we let s = 3 in (4.2) and use (4.7) to eliminate the α2N+1−ms, the outcome
being

xm−2(1− x2
m−2)ηm−2 + xm−1(1− x2

m−1)δm−1 − xm+1(1− x2
m+1)δm

− xm+2(1− x2
m+2)ηm = 3x2

m − 1, m = 1, . . . , N.

Substituting the δms from (4.9) results, after an elementary algebra, in the recurrences

−(m− 2)[1− (m− 2)ρ]ηm−2 + 2
m2 − 1

m
· [1− (m− 1)ρ][1− (m+ 1)ρ]

1−mρ
ηm

− (m+ 2)[1− (m+ 2)ρ]ηm + 1 = 0, m = 1, . . . , N − 2,

−(N − 3)[1− (N − 3)ρ]ηN−3 + 2
(N − 2)N

N − 1
· [1− (N − 2)ρ](1−Nρ)

1− (N − 1)ρ
ηN−2

− N

ρ
(1−Nρ)(1− 2Nρ)ηN−1 + 1 = 0,

−(N − 2)[1− (N − 2)ρ]ηN−2 −
N − 1

ρ
[1− (N − 1)ρ](1− 2Nρ)ηN−1

− 1

ρ2
[(N + 1)− (N + 1)(3N + 2)ρ+ (2N3 + 5N2 + 4N − 1)ρ2] = 0.

The explicit solution, which can be easily verified by direct substitution, is surprisingly
simple,

ηm =
m+ 1

12
· 2− (m+ 1)ρ

(1−mρ)[1− (m+ 2)ρ]
, m = 1, . . . , N − 2, (4.10)

while we have two expressions for ηN−1, one originating in m = N − 1 and the other
in m = N ,

ηN−1 =
1

12

(N + 1)ρ(2−Nρ)

[1− (N − 1)ρ](1−Nρ)(1− 2Nρ)
, (4.11)

=
1

12

(N+1)[6−12(2N+1)ρ+2(15N2+16N−1)ρ2−(12N3+19N2+N−2)ρ3]

(N − 1)ρ[1− (N − 1)ρ](1−Nρ)(1− 2Nρ)
.

Equating these expressions results in a cubic equation for the parameter ρ,

(2N + 1)(3N2 + 3N − 1)ρ3 − 15N(N + 1)ρ2 + 6(2N + 1)ρ− 3 = 0.

This equation has two complex conjugate roots which are of no further interest, as
well as a single real root whose asymptotic expansion can be easily verified by direct
substitution,

ρ =
1

2N
− 1

4N2
− 5

24N3
+

7

16N4
+ · · · , N � 1.

Note that it obeys the inequality ρ ≤ 1/(2N), as required, by a small margin, and we
have

xm+1 − xm = ρ ≈ 1

2N
− 1

4N2
+O

(
N−3

)
, m 6= N,

xN+1 − xN = 1− 2Nρ ≈ 1

2N
+

5

12N2
+O

(
N−3

)
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– the departure from an equidistant grid is just O
(
N−2

)
but, remarkably, it is sufficient

to overcome the barrier of Theorem 2.
Substituting (4.10) and (4.11) into (4.9), we obtain

δm =
1

6ρ
· [1− (2m+ 1)ρ][3− (2m+ 1)ρ]

(1−mρ)[1− (m+ 2)ρ]
, m = 1, . . . , N − 2, (4.12)

δN−1 =
1

12ρ
· 6− (26N − 10)ρ+ (35N2 − 31)Nρ2 − (14N2 − 19N + 3)Nρ3

[1− (N − 1)ρ](1−Nρ)(1− 2Nρ)
,

δN =
1

6Nρ
· 3− (3N + 12)ρ+ (15N2 + 7N + 2)ρ2 − (6N2 + 5N + 1)Nρ3

(1−Nρ)2(1− 2Nρ)
.

Next we go back to (4.7) to recover the α2N+1−ms for m = 1, . . . , N ,

an+1−m =
ρ2(1− ρ2)

[1− (m− 2)ρ][1− (m− 1)ρ](1−mρ)[1− (m+ 1)ρ][1− (m+ 2)ρ]
,

m = 1, . . . , N − 2, (4.13)

aN+2 =
ρ

12[1− (N − 3)ρ][1− (N − 2)ρ][1− (N − 1)ρ](1−Nρ)
[2(N + 1)

− (N − 2)(7N + 11)ρ+ (N + 1)(7N2 − 27N + 24)ρ2

− (N − 3)(N − 2)(2N + 1)ρ3],

aN+1 =
1

12ρN [1− (N − 2)ρ][1− (N − 1)ρ](1−Nρ)(1− 2Nρ)
[6(N + 1)

− 6(N + 1)(7N − 2)ρ+ 2(N + 1)(57N2 − 40N − 1)ρ2

−N(150N3 − 39N2 − 175N + 2)ρ3 + (96N5 − 90N4 − 135N3

+ 27N2 + 20N + 8)ρ4 − 2(N − 2)(N − 1)N(2N + 1)2(3N + 1)ρ5].

Finally, we substitute in (4.6) to derive αm, m = 1, . . . , N , in an explicit form and
complete the description of the method,

α1 = −1

6

3− ρ
ρ

,

α2 = − 1

12

2− ρ
1− 2ρ

,

αm = 0, m = 3, . . . , N − 2, (4.14)

αN−1 = − 1

12

(2−Nρ)[1− (2N + 1)ρ]

[1− (N − 1)ρ](−Nρ)
,

αN =
1

12ρ[1− (N − 1)ρ](1−Nρ)2(1− 2Nρ)
[6−(42N+4)ρ+ (114N2+19N−5)ρ2

− (150N3 + 33N2 + 22N + 3)ρ3[1− (N − 1)ρ](1−Nρ)2(1− 2Nρ)

+ (96N4 + 26N3 − 33N2 − 15N − 4)ρ4

− 2(N − 1)N(2N + 1)3(3N + 1)ρ5].
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Figure 4.1: The coefficients αm (for m = N − 1, . . . , 2N), δm, m = 1, . . . , 2N , and ηm,
m = 1, . . . , 2N − 1, for N = 100. (We did not plot the αms for m ≤ N − 2 because
they are all zero, except for α1 and α2.)

In Fig. 4.1 we display the coefficients, as given by (4.10–14), for N = 100 (in which
case ρ = 0.00497479). Note that their size varies fairly drastically: substituting the
asymptotic expansion of ρ, we have

α1 ≈ −
N

2
, α2 ≈ −

1

6
, αm = 0, m = 3, . . . , N − 2, αN−1, aN ≈

1

2N
,

αN+1 ≈ −
1

6N
, αN+2 ≈

65

2N2
, αm ≈

1

N2
, m = N + 3, . . . , 2N,

δ1, δ2N−1 ≈
N

2
, δm, δ2N−m ≈

1

2N
− m

3
, m = 2, . . . , N − 1,
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ηm, η2N−1−m ≈
m+ 1

6
, m = 1, . . . , N − 2.

The variation in size of the coefficients is hardly a cause for concern. In the equidistant
case the coefficients are scaled by 1/∆x = O(N) and we can expect the coefficients to
be of similar order of magnitude in the present case. Indeed, a pleasing feature of the
method is that the ‘boundary coefficients’ αm are either zero or very small except for
m = 1, 2, when the grid point where approximation takes place is near the relevant
boundary. Note further that the size of the coefficients along each diagonal of D1

changes fairly drastically as m varies: compare to the matrix (1.3) which is Toeplitz,
i.e. constant along diagonals! The tiny, O

(
N−2

)
departure from an equidistant setting,

the very departure that allows us to breach the order barrier of Theorem 2, has a huge
impact on the size of the coefficients!

What about higher orders? It is possible with significant extra effort to design a
fourth-order method with a skew-symmetric matrix by adding to D1 an extra diagonal,
κm = bm,m+3. In that case we are a single degree of freedom short of fulfilling fourth-
order conditions with the grid (4.4). Instead we may consider the grid xm = mρ,
m = 1, . . . ,K, xm = mσ, m = K + 1, . . . , N for some K ≤ N − 1. Not all values
of K result in a ‘proper’ grid, for which xm+1 − xm > 0 for all m = 0, . . . , 2N and,
in the absence of an overarching theory, we have just experimented with few values.
Fig. 4.2 displays the coefficients for K = 34, N = 100: in that case ρ ≈ 0.004974747,
σ ≈ 0.004971101 (again, the deviation from an equidistant setting is very minor indeed:
the exceptional intervals are xK+1−xK ≈ 0.005098723 and xN+1−xN ≈ 0.005050588).
Moreover, αm = 0 for m = 3, . . . ,K − 3. Note that all this is an outcome of a great
deal of numerical experimentation. The numbers (ρ, σ) are a solution of a bivariate
high-degree polynomial system and typically there are many real solutions, although
not all result in a proper grid. We have experimented with both K and the freedom
in choosing ρ and σ to minimise the deviation from an equidistant setting.

It is fair, however, to state that this sort of brute-force, hit-and-miss approach is
not an adequate methodology in designing higher-order skew-symmetric differentia-
tion matrices. Clearly, much better understanding of this fairly fundamental activity,
approximating a derivative on a non-equidistant grid, is required.

5 Conclusion

The implementation of modern, high-order splitting methods for the convection-diffus-
ion equation requires a suitably accurate approximation of the first derivative by a
skew-symmetric matrix. In this paper we have proved that no third-order method of
this kind is possible on an equidistant grid. Once non-equidistant grids are allowed,
finite-difference methods of modestly higher orders can be constructed. However, the
current state of the art leaves a great deal to be desired and considerably more effort is
required to obtain high-order finite-difference-based differentiation matrices in a form
amenable to efficient computation.

The temptation is to abandon finite differences altogether and seek a spectrally-
convergent basis with a skew-symmetric differentiation matrix. However, while for
periodic boundary conditions such matrices abound – although, to be fair to finite
differences, it is also trivial to construct skew-symmetric finite-difference differentiation
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Figure 4.2: The fourth-order method: The coefficients αm (for m = K − 2, . . . , 2N),
δm, ηm and κm for N = 100. (We did not plot the αms for m ≤ K − 3 because they
are all zero, except for α1, α2 and α3.)

matrices in the periodic-boundary case – this is no longer true once the boundary
conditions are Dirichlet. In that case ongoing research demonstrates that, while it is
possible to choose a basis for L2[−1, 1] which yields a skew-symmetric differentiation
matrix, it is not yet possible to compute fast and efficiently in that basis, thereby
inheriting the wider benefits of a spectral method. This clearly is an issue deserving
of much further research.
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