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Three stories of high oscillation

Arieh Iserles (University of Cambridge)

1 Think globally, act globally!

Numerical analysis — indeed, mathematical analysis — is in
large measure a story of the local. Sufficiently smooth func-
tions are approximated very well in a small neighbourhood by
polynomials, indeed even by linear functions. A case in point
is the granddaddy of all discretisation methods for differential
equations, the Euler method: given the ordinary differential
system y’ = f(t,y) and having already found y, ~ y(z,), we
approximate y(t,+1), where t,.1 =y, +h, by y, +hf(t,,y,). In
other words, we progress from #, to f,,.; assuming that locally
the solution is linear, uniquely determined from its value and
its slope at #,. As long as f is twice smoothly differentiable,
the error is O(hz) and it can be made sufficiently small by
choosing small step-size & > 0. Of course, in place of lin-
ear functions, we can use polynomials, say, or rational func-
tions of increasing degree of sophistication and intricacy but
the same principle applies: we zoom on a sufficiently small
neighbourhood. Reductio ad absurdum of numerical analysis
would leave us with a single phrase, “the Taylor theorem".

As long as functions are ‘nice’, the Taylor theorem is a
reasonable foundation stone to numerical algorithms. It is dif-
ficult to imagine the modern world without scientific comput-
ing and its many achievements: acting locally to think glob-
ally is the right strategy most of the time. Yet, important ex-
ceptions abound and they come in two flavours. Some func-
tions are not sufficiently smooth to be approximated well by,
say, polynomials, calling for more subtle forms of discretisa-
tion. Other functions might be misleadingly ‘nice’, yet their
derivatives are large, rendering their local approximation with
the Taylor theorem very poor indeed. This is in particular the
case with highly oscillating functions because, once Taylor
series are truncated, the error scales like a (high) derivative
but, each time we differentiate, the amplitude is multiplied by
frequency.

An accessible example is provided by the Airy equation
y" + ty = 0. The solution behaves for large ¢ as y(r) ~
ct™'*sin(3£/?) — it oscillates increasingly fast as 7 grows [13].
It is easy to confirm that y™(r) ~ "7+ sin(3£/%), m > 0,
and the amplitude of derivatives increases rapidly for # > 1.
This is demonstrated in Fig. 1.1. Thus, as ¢ grows, y(?) is
poorly approximated by polynomials and increasing the poly-
nomial degree actually makes things worse!

High oscillation is present in a very wide range of phe-
nomena and numerical modelling of high-frequency phenom-
ena is vital. Yet, the Taylor theorem alone is inadequate for
this purpose, calling for an entirely new breed of discretisa-
tion methods. One such type of methods endeavours to bring
together numerical analysis and asymptotic expansions, mar-
rying local behaviour with global features of the solution.
Three such scenarios are described in this paper: the com-
putation of highly oscillatory integrals, the discretisation of
ordinary differential equations with highly oscillatory forcing
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Figure 1.1. The solution of y” + 1y = 0, y(0) = 1, y’(0) = 0 and its
first, second and third derivatives. The thick black line depicts
the envelope +0.917"/271/4,

terms and the computation of the linear Schrodinger equa-
tion. In none of the cases have we tried to achieve the greatest
possible generality or sophistication, opting instead for acces-
sible examples of numerical methods where global behaviour
informs computation.

2 Story 1: Highly oscillatory quadrature

Computing integrals is an art as old as integration itself and
the oldest quadrature method is due to Sir Isaac Newton (al-
though, in fairness to Archimedes, he used something very
much like quadrature to calculate the area of a disc). This is
the lore of undergraduate numerical analysis courses: given a
weight function w(x) > 0, not identically zero, and assuming
that everything in sight is smooth,

[ remear s otr1= Y busten.
a- m=1

where the nodes cy,...,c, are distinct numbers in [a_, a,],
while by, ..., b, are the quadrature weights. Other things be-
ing equal, the best nodes are the zeros of the v-degree orthogo-
nal polynomial with respect to the L, inner product generated
by the weight function w and the outcome, Gaussian quadra-
ture, is exact for all polynomials f of degree < 2v — 1.

Let

1
I1fl(w) = f e d @1

Once w becomes large, the integrand in (2.1) oscillates at an
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increasingly faster pace. In Fig. 2.2 we display the magnitude
of the error once Gaussian quadrature is applied to /[ f](w) for
0 < w < 50. The pattern is plain to see. For small w Gaussian
quadrature performs very well and delivers remarkable accu-
racy: the larger v, the better. However, once w grows, roughly
when wv > 1, accuracy drops sharply and, after a short while,
(2.1) fails to deliver even a single significant digit!

The reason is plain to see: the integrand in (2.1) is very
poorly approximated by polynomials of reasonable degree.
We are precisely in the regime where the Taylor theorem is
of little use! Thus, we turn to asymptotics for help. It is easy
to prove that

o

1 - A
I[f]((x)) ~ = Z 7[f(”)(l)e‘“’_f(")(_l)e—lw]’

1 n+1
— (—iw)

and this indicates the asymptotic method

w>1,

s
AN == ﬁ[ﬂ")me‘“ D] 22)
[9]. Note that the error, O(w"s‘z), improves for increasing w!

Fig. 2.3 on the left displays the error (in a format iden-
tical to Fig. 2.2) incurred by (2.2) for s = 0, 1,2, 3, except
that we have taken a much larger range of w. The comparison
with Gaussian quadrature is striking: for large w we require
much less information, yet obtain a surprisingly precise an-
swer. The quid pro quo is that, having committed all our as-
sets to recover ‘large w’ behaviour, we can hardly complain
that the asymptotic method is useless for small w > 0. In
a sense, Gaussian quadrature and the asymptotic method are
complementary.

Which brings us to the right side of Fig. 2.3. We see
there for large w behaviour somewhat better than (2.2) but
careful examination of the neighbourhood of the origin indi-
cates that the mystery method performs well also for small
w. Since the extra expense of the mystery method, compared
with (2.2), is marginal, we indeed enjoy the best of all worlds:
an asymptotic—numerical method.

So, what is the mystery method? Given the nodes ¢; =

-1 < ¢ < < ¢ < ¢ =1, each ¢, with a multi-
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Figure 2.2. The number of significant digits, —log,, |0, [f1-1[f]l,

for f(x) = 2+x)7',v=2(c1), 4 (c2), 8 (c3), 16 (c4) and 32 (cs) for
increasing w.
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Figure 2.3. The number of significant digits once we use highly
oscillatory quadrature. At the top the asymptotic method A;[f]
for s = 0 (cy),1(c2),2 (c3) and 3 (c,). At the bottom the Filon-type
method F,,[f] with ¢ = [-1,1], m = [1,1] (¢1), ¢ = [-1,0,1],
m=12,1,2] (c), ¢ = [-1,-1/V3,0,1/ V3,11, m = [3,1,1,1,3]
(c3)and ¢ = [-1,—-+/3/11,0, V3/11,1],m = [4,1,1, 1,4] (cs).

plicity my > 1, there exists a unique Hermite interpolating
polynomial p of degree Y. my — 1 such that p@(c;) = fO(cy),
i=0,....,m—1,k=1,...,v. A Filon-type method consists
of replacing f by p in the integral,

Femlfl(w) = Ipl(w). (2.3)
Let s = min{m;, m,}. Itis trivial, substituting F¢ [ f]1-I[f] =
I[p — f] into (2.2), to verify that the error is O(w““z) [9]:
for large w the behaviour is determined by asymptotics. On
the other hand, once w — 0, (2.3) collapses into a quadrature

method (using both the values of f and of its derivatives) of
the classical kind.

Beyond Filon-type methods.

to integrals of the kind
f F0e ) dx,

provided that g’ # 0 in [a_, a,]. More effort is required to deal with
the case of stationary points & € [a_, a,] where g'(£) = 0. In that case
we need to interpolate to f and a suitable number of derivatives at

It is easy to extend the Filon method
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stationary points to recover the asymptotic behaviour of the ‘plain’
Filon-type method [9]. All this extends to a multivariate setting [10].

However, Filon-type methods are just one of the new breed of
highly oscillatory quadrature methods, alongside Levin methods [12,
14] and the numerical stationary phase method [8]. The last word is
a methodology which combines an insight from both Filon-type and
stationary phase approaches in a true tour de force of asymptotics-
cum-numerics [7].

3 Story 2: A highly oscillatory forcing term

A good starting point is the differential equation for a non-
linear, frictionless pendulum which, in dimensionless form,
reads y” + siny = 0, y(0) = yo, y'(0) = y(. This is a Hamil-
tonian system in a single variable and its dynamics is as sim-
ple as they come: the origin is a centre, surrounded in the
phase plane by stable periodic orbits. Suppose, however, that
we impart rapid oscillations to the base of the pendulum: the
outcome is the non-autonomous equation

Yy +siny=ccoswt, >0, y0)=yo,

¥'(0) =y,

34
where w > 1. What can we expect from the solutions of
(3.4)? Fig. 3.4 displays a trajectory corresponding to yg = 2,
¥, = 0and ¢ = 1 in the phase plane for w = 5,10 and 20. We
can discern a black curve in the background: this is the corre-
sponding trajectory of the nonlinear pendulum y” + siny = 0
and it is evident that the trajectory of the forced equation
winds round and round the periodic trajectory of the unforced
equation. Surprisingly, the amplitude of this winding motion
decreases with w. (This is the reason why we have used in
Fig. 3.4 such modest values of w: with much greater values
the winding motion would have been invisible to the naked
eye.)

This effect of growing w is important: rapid oscillation of
the forcing term leads to an increasingly smaller perturbation
and it stabilises the motion. By the same token, slowing down
the oscillation destabilises the motion: try the same compu-
tation with w = 2. There is an important lesson here: high
oscillation is good for dynamics while, at the same time, be-
ing lethal for naive numerics. True to our paradigm, instead
of relying on the (local) Taylor series, we seek an asymptotic
expansion.

It is convenient to consider a broader framework: follow-
ing [3], we examine the equation

oo

VRO = Y an@®e™, 120, y0)=yo, Y(0) =y

m=—oo

3.5)

where f and a,,, m € Z, are analytic functions and },,, |a,,(1)| <

o0, t > 0. Our claim is that we can expand the solution in the
form

YO~ oo+ )7 = 7 P,
r=2

m=—co

t>0, (3.6)
where the functions p,,, which are independent of w, can be
obtained explicitly in a recursive manner.

In principle, we need to expand everything in (3.5) in
asymptotic series. This is fairly easy for y”’(f) but much more
challenging (and messy) for f(y(¢)) and, at the conclusion of
all this algebra galore, we have an expansion in two scales: or-
ders of magnitude w™" and oscillators ™. We commence by
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Figure 3.4. A phase-plane trajectory of the solution of y” +siny =
cos wt, y(0) = 3, y'(0) = 0, with w = 5, 10, 20. The black curve is
the corresponding periodic trajectory of y” + siny = 0.

separating the expansion into orders of magnitude. For » = 0
we have

)

[ee)
pao _ Z m2p2,meimwt+f(p0,0) — Z ameimwt

m=—o00 m=—o00
and, separating oscillators, we have
Poo + f(Poo) =0, 120, poo0) =yo, ppo(0) =y,
a,
Dom =— —y;, m # 0.
m

3.7

Note that we have imposed on pgp the same initial condi-
tions as on y; this means that we need to impose },,, p,.n(0) =
2om Pr.m(0) = 0 in the sequel.

Next, overtor = 1,

>, @imp},, = mp3)e™ = 0

m=—o0o
and, separating scales,

2 2

Pam =" Py = —$a:n, m# 0. (3.8)

Likewise, r = 2 results in

Z (P/zl,m_zimp’s,m—m2P4,m)eimwt+f "(Po,o) Z pame™ =0,

m=—0o m=—0o
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Figure 3.5. The error — log,, [y*!(t) - y(#)| for the forced nonlinear
pendulum (3.4): w = 25 at the top and w = 50 at the bottom,
s = 2in gray and s = 4 in black.

therefore
Pyo+ f (poo)p2o=0, t=0,
Z p2m(0) = Z Phm(0) =0,
m=—00 m=—oo

1 .
Pam = ﬁ[ﬂé’,m = 2imp5,, + f'(Po.0)p2.ml,

m# 0.
(3.9

A general rule emerges: for each order of magnitude r we
obtain p,( solving a differential equation and p,42,,, m # 0,
by recursion. These differential equations need to be solved
numerically but this is not a problem since they are all non-
oscillatory: the solution becomes oscillatory only once we as-
semble it into an appropriately truncated expansion (3.6),

s oo
1 .
[S] t) = 1)+ — rm t elmwtv t> 0
Y = poo() rE:Zwr E Pran() >

m=—oo

All relevant equations can be derived explicitly [3].
Specialising to the forced nonlinear pendulum (3.4), we
use (3.4-6) and, for good measure, consider also r = 3,4. We
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have p3,» =0,
Poo +sinpoo =0, >0,
100(0) =2, pye(0) =0,
Pao +(cospoo)pao =0, 120,
p20(0) =1, p),(0) =0,

Pl + (cos poo)pao = $(1+2p ) sin poo.

pao(0) =cos2, p,,(0) =0,

and

1

Y2 = poo(t) + — [p2,0(1) — cos wrl,
w
1

(@) = poot) + — [p2.0(t) = cos wi]
w

1
+ —[pao(t) — cos wi cos poo(n)].
w

Fig. 3.5 displays the number of significant digits recovered
by yP! and y™, respectively, for w = 25 and w = 50. All is in
line with the theory and if the accuracy is insufficient for you
— well, just take larger w ...

Beyond highly oscillatory forced ODEs. Equation (3.5) is but
one example of ordinary differential equations with highly oscilla-
tory forcing which can be expanded by this synthesis of asymptotic
and numerical reasoning. With greater generality, it is possible to
extend this analysis to ODE systems

oo

Y =)+ D anne™, 120,

m=—co

¥(0) =y,

[4, 15] and beyond. Equations of this kind are important in many
applications, e.g., in electronics, where oscillation is generated by
high-frequency input.

A more general framework is provided by the heterogeneous
multi scale method [1] and it allows not just highly oscillatory forc-
ing terms but also highly oscillatory coeflicients, but the quid pro quo
is that expansions can be practically generated up to O(w™") only for
fairly modest values of r > 1.

4 Story 3: The linear Schrodinger equation

The linear Schrodinger equation

du = iedu +ig” ' V(x)u, >0, -1<x<1, (4.10)

where both the initial value u( -, 0) and the interaction poten-
tial V(x) are smooth and periodic, describes the quantum state
of a single particle: essentially, it is the equivalent of Newton’s
law in a quantum setting. The parameter € > 0 is very small,
rendering the solution of this deceptively simple linear PDE
fairly knotty.

Standard numerical wisdom goes along the following lines:
we commence by discretising (4.10) in some M-dimensional
space, e.g., by replacing 3%u by a linear combination of func-
tion values along a grid (finite differences) or moving to
Fourier space and considering there an L, projection on Nth
degree trigonometric polynomials, M = 2N + 1 (a spectral
method). The outcome is a set of linear ODEs of the form

u =ik + &' Dy, w(0) =uy, (4.11)

where K and Dy are matrices corresponding to approximate
differentiation and multiplication by V, respectively. Solving

t>0,
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(4.11) should be easy in principle; after all an explicit solution
is available,

u(t) = exp (iz(s‘K + s_li)v)) uo, t>0,

except that the tiny & spoils the party. The dimension M is
large (and our real interest is in considering (4.10) in a mul-
tivariate setting: the dimension soon becomes really large!)
and the only realistic hope of computing the matrix exponen-
tial with reasonable accuracy is by Krylov subspace methods
[6]: we replace the computation of a ‘big’ exponential by a
(hopefully) small, m X m, one, at a cost of O(sz) opera-
tions. Except that our hope is in vain: once ¢ 1s very small,
m becomes large, m = O(M), and the overall cost, O(M3), is
unacceptably large.

The good news is that a ready alternative is available: an
exponential splitting. In its simplest manifestation, the Strang
splitting

SlEK+e7 D) o giteK gite™ Dy o giteK (4.12)
incurs an error of O(t3) and is easy to evaluate: e.g., once
we use a spectral method, K is a diagonal matrix and Dy a
circulant, whose exponential can be evaluated with two Fast
Fourier Transforms (FFT) [11]. Unfortunately, the error O(t3)
of the Strang splitting is unacceptably large.

It is possible to design higher-order splittings, e.g.

e%atBeatﬂe%(l—a)tBe(l—Za)t:}(e%(l—a)tBemﬂe%mB’ (4.13)
where 8 = ieX, A = ie”' Dy and @ = (2 — \35)’1 has er-
ror of O(IS). In general, we can get O(tz””) with 2- 3" + 1
terms but this is simply much too much for practical compu-
tation with large n, even though each individual exponential
is cheap. Moreover, note that all these are expansions in the
step size ¢ but we have two other small quantities, £ and M~
a good expansion should take them all into account.

By this stage of our narrative, a remedy should stare us in
the face: an asymptotic expansion! Following upon the ideas
in [2], we thus assume that ¢ ~ 0(81/2), M ~ O(s"/z) and
seek an expansion of the form

Ri ... eR‘eTS” e‘R‘ . Ri o Ro

Foe ceRig (4.14)

where Ry = O(a‘”z), R, = O(a”z), LRy = O(ss"/z) and
Ts = O(s”l/ 2): an asymptotic splitting.

An important observation with regard to (4.3-5) is that
they are all palindromic: the same whether we read them from
the left or from the right. This has a number of advantages.
This time symmetry is good in minimising the number of
terms because all expansions are in odd powers of the small
parameter. Moreover, since both i9? and multiplication by iV
are skew-Hermitian operators, the solution operator of (4.10)
is unitary and palindromy makes it easier to respect this fea-
ture under discretisation.

The right approach towards computing the asymptotic
splitting (4.14) is to abandon the semi-discretisation (4.11)
for the time being and split the formal solution operator,
exp (it(s@fc +s‘1\/))‘ Only once we have done so, we re-
place everything with a finite-dimensional approximation.
Our main weapon is the symmetric Baker—Campbell-Hausdor{f
(sBCH) formula

Ix v 1x

et¥Xelel sBCH(X.Y)

=€

22

where

sBCH(tX,tY) =t(X+Y) — t3(2'—4[[Y,X],X] + 11—2[[Y, XY
+ £ (g [IIIY, X1, X1, X1, X]
+ o LY, X1, X1, X1, Y]
+ 1 [[[[Y. X1, X1, Y], Y]
[[[[¥, X]. Y], Y], Y]
+ 751V, X1 X1 [Y. X1 + O(1).

1
+ 720

Note that the expansion is in odd powers of ¢, reaping a benefit
of palindromy!

We let T = iAt, where At is the time step. The algorithm
commences by setting 7y = 7&~' V+1£6? (the term we wish to
split) and Ry = %TE_I V (half the asymptotically larger term,
which we wish to knock out by this stage), therefore

17 Vred?

v =elo =

Ro oSBCH(=2R0.7T0) o Ro

(S c e

Note that, having just ‘decapitated’ the leading term, 7 :=
SBCH(-2Ro, 7o) = O(&'/2), we next identify the leading (i.c.

O(s” 2)) term of 7 and let R, be half of it. Therefore

-1 2
e’e V+redy _ e

and SBCH(-2R,, 71) = O(&*?). We continue in this vein un-
til the right accuracy has been attained, except that, more per-
haps than elsewhere, the devil is in the detail! On the face of
it, the sSBCH formula introduces commutators galore and this
might mire the entire enterprise in expensive calculations. Ex-
cept that, upon further examination, commutators go away!
For example, it is easy to confirm that [V, 2] = =V” = 2V’4,.
In general, every combination of nested commutators of V
and 9 can be written in the form 20 ye(x)3* for some n > 0
and functions yy,...,y, which depend on V and its deriva-
tives.

Commutators go away but another problem rears its head:
odd powers of d,, which may cause instability and play havoc
with our expansions. The remedy is to get rid of odd deriva-
tives by a simple trick, e.g.

Ro oR1 oSBCH(=2R1,T1) oR1 oRo

X X
Y = ~5 f W) dEdT — 3y (x) + 30 [ f 6] df] :
X0 X0

We have only even-order derivative operators on the right and
all is well! The outcome,

Ry = %‘rs_lV = O(s‘l/z) s

Rl = lTsﬁﬁ + ﬁr%’lV” = O(s'/2),

2
Ry = — OV )+ VP + yre VIV = 0(?),
etc. is our asymptotic splitting.

Now — and only now — we discretise derivatives by one
of the very powerful methods of numerical analysis, e.g.,
spectral collocation [5]. All this procedure can be further im-
proved by, paradoxically, first knocking out the smaller term
7£6% since this counterintuitive step means that all O(sm/ 2)

exponentials for m < % can be evaluated easily either because
they are diagonal or by FFT. The remaining exponentials can
be reduced by Krylov subspace methods to a very small num-
ber of dimensions, e.g., for s = 2 we need just dimension 3
for R, and dimension 2 for 75.
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Beyond univariate Schrodinger. Equation (4.10) is the simplest
model of linear Schrodinger equations in quantum chemistry. In gen-
eral, we wish to solve the multivariate equation du = ieViu +
ie”'V(x)u in a d-dimensional torus. Provided that d is moderately
small, the asymptotic expansion (4.14) generalises and, at the cost of
O(Nd log N) operations, remains practically feasible. However, once
d is large, this approach must be matched by specialised methodolo-
gies for highly-dimensional setting, e.g., sparse grids: this is under
active research. Another generalisation is to time-dependent interac-
tion potentials, important if magnetism effects are taken on board.

Yet, the potential scope of ‘asymptotic splitting” is much wider,
not just because of the asymptotic rate of decay but because commu-
tators are replaced by easy-to-evaluate expressions. Only future can
tell the limits of this methodology.
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Touching the Abstract: Mathematics

at the Museum

Enrico Giusti (Giardino di Archimede, Firenze, Italy)

A visitor venturing into the mathematics section of a
modern science museum could happen on one of the
most interesting, stimulating, surprising mechanical phe-
nomena: a Lorenz chaotic water wheel. Many of you will
be familiar with it: water flows into containers that hang
on the edge of a rotating circle and slowly leaks from a
hole in the bottom. In the beginning, the movement is
rather regular and predictable but soon, either because
some visitor sneezes or because the jet is not perfectly
uniform or because some butterfly flaps its wings in the
Amazon jungle, the movement becomes essentially ir-
regular: even a powerful computer cannot predict it for
more than a few minutes in advance. In essence, it’s a bril-
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liant example of deterministic chaos — a process in which
unavoidable perturbations in the environment multiply
so quickly that a medium-term forecast is impossible.
Still, modern mathematics is able to explain these phe-
nomena: the fountain is a physical model of the power of
mathematics and an example of its success.

Science museums haven’t always had such spectacular
mathematics sections. On the contrary, the oldest ones,
especially, seemed to want to reproduce the pedantic ap-
proach of school learning: portraits of famous mathema-
ticians of the past hung on the walls of the room; three-
dimensional models in display cases showed the interests
of 19th century mathematicians; and all around the room
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