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Abstract

The recent numerical implementation by Fornberg and collab-

orators of the so-called unified method to linear elliptic PDEs in

polygonal domains involves the computation of the finite Fourier

transform of the Legendre polynomials. A variation of this ap-

proach, introduced by two of the authors, also involves the same

computation. Here, instead of expressing the finite Fourier trans-

form of the Legendre polynomials in terms of Bessel functions

J
n+ 1

2

, we employ an explicit formula in terms of exponentials.

We illustrate the usefulness of this formula, which is considerably

cheaper to use, by implementing the unified method to the modi-

fied Helmholtz equation in the interior of a square. For complete-

ness we present an explicit formula for the finite Fourier transform

of all Jacobi polynomials.

1 Introduction

A novel method, often called the unified method, for analysing boundary
value problems for linear and integrable nonlinear PDEs has been intro-
duced by one of the authors [5]–[7] and used extensively in the literature.
Recently, B. Fornberg and collaborators [4],[9] have introduced a pow-
erful numerical implementation of the unified method to linear elliptic
PDEs formulated in the interior of a polygon. In this case, the unified
method yields two simple algebraic equations, the so-called global rela-
tions, which couple the finite Fourier transforms of the given boundary
data with the finite Fourier transforms of the unknown boundary val-
ues. For the determination of these boundary values one has to choose
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(a) appropriate basis functions and (b) suitable collocation points in the
Fourier space. Several such choices have featured in the literature [4],
[8]–[16]; it appears that the best choice is the following: (a) the un-
known boundary values are expanded in terms of Legendre polynomials
and (b) the collocation points are chosen on the rays introduced in [8],
[16]. We note that Chebyshev and Legendre polynomials give rise to
equivalent finite bases of L2, and hence either choice will result in the
same numerical method (however the conditioning of the resulting linear
systems will differ as conditioning is not invariant under matrix column
operations).

The above numerical implementation requires the computation of
the finite Fourier transform of Legendre polynomials. For this purpose,
Fornberg and collaborators have used the fact that the finite Fourier
transform of the Legendre polynomials can be expressed in terms of
Jn+ 1

2

, Bessel functions of order half integer. Here we employ an explicit
formula for the Fourier transform of the Legendre polynomials. We
have not been able to find such a formula in the literature, so we include
the relevant derivation. Furthermore, for completeness, we include the
corresponding formula for all Jacobi polynomials.

As an example of the applicability of the analytic formula for the
Fourier transform of the Legendre polynomials, we implement the unified
method to the modified Helmholtz equation in the simplest possible
polygon, namely a square.

Taking into consideration that the finite Fourier transform of the
Legendre polynomials can be computed either explicitly or in terms of
Bessel functions, the explicit formula presented in Section 3 implies a
new explicit expression for Bessel functions of order half integer.

2 The modified Helmholtz equation in the

interior of a square

Let u(x, y) satisfy the modified Helmholtz equation

∂2u

∂x2
+

∂2u

∂y2
− β2u = 0, β > 0, (x, y) ∈ R, (2.1)

in the interior of a domain Ω ⊂ R2. It is straightforward to verify that
the following differential form W is closed:

W (x, y, λ)

= e−iβ
2 (λz−

z̄
λ)
{[

−uy +
β

2

(

λ+
1

λ

)

u

]

dx+

[

ux +
β

2

(

iλ+
1

iλ

)

u

]

dy

}

,

(x, y) ∈ Ω, λ ∈ C \ {0}. (2.2)
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Figure 2.1: The square with sides of length 2.

Hence if ∂Ω denotes the boundary of Ω then the following equation is
valid,

∫

∂Ω

W (x, y, λ) = 0, λ ∈ C \ {0}. (2.3)

The above equation, called in [5] the global relation, is valid for all λ,
thus it provides a family of equations which can be used to characterise
the Dirichlet to Neumann map. Actually, for elliptic PDEs involving
second order derivatives it is necessary to employ two global relations.
The second global relation is

∫

∂Ω

W̃ (x, y, λ) = 0, λ ∈ C \ {0}, (2.4)

where

W̃ (x, y, λ) = W

(

x, y,
1

λ

)

. (2.5)

For polygonal domains, equations (2.3) and (2.4) characterise the Dirich-
let to Neumann map. Rigorous aspects of this method, often referred
to as the unified method, are discussed in [1]–[3].

In what follows we will use the simplest possible polygon, namely a
square.

Consider the square from Figure 2.1 with corners at the points

(−1, 1), (−1, 1), (1,−1), (1, 1).

For the sides S1, S2, S3, S4, we have respectively

z = −1 + iy, z = x− i, z = 1 + iy, z = x+ i. (2.6)
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In order to analyse the global relations, taking into account the orien-
tations of the sides, we introduce the following expressions:

û1(λ) = e
β

2 (iλ+
1

iλ )
∫

−1

+1

e
β

2 (λ+
1

λ)y
[

u(1)
x +

β

2

(

iλ+
1

iλ

)

u(1)

]

dy, (2.7a)

û2(λ) = e−
β

2 (λ+
1

λ)
∫ +1

−1

e
β

2 (−iλ− 1

iλ)x
[

−u(2)
y +

β

2

(

λ+
1

λ

)

u(2)

]

dx,

(2.7b)

û3(λ) = e−
β

2 (iλ+
1

iλ )
∫ +1

−1

e
β

2 (λ+
1

λ)y
[

u(3)
x +

β

2

(

iλ+
1

iλ

)

u(3)

]

dy,

(2.7c)

û4(λ) = e
β

2 (λ+
1

λ)
∫

−1

+1

e
β

2 (−iλ− 1

iλ)x
[

−u(4)
y +

β

2

(

λ+
1

λ

)

u(4)

]

dx.

(2.7d)

Let D̂j and N̂j denote the parts of ûj corresponding to Dirichlet and
Neumann boundary values respectively. Then

û1(λ) = −e
β

2 (iλ+
1

iλ)N̂1(λ)−
β

2

(

iλ+
1

iλ

)

e
β

2 (iλ+
1

iλ )D̂1(λ), (2.8a)

û2(λ) = −e−
β

2 (λ+
1

λ )N̂2(−iλ) +
β

2

(

λ+
1

λ

)

e−
β

2 (λ+
1

λ )D̂2(−iλ), (2.8b)

û3(λ) = e−
β

2 (iλ+
1

iλ )N̂3(λ) +
β

2

(

iλ+
1

iλ

)

e−
β

2 (iλ+
1

iλ )D̂3(λ), (2.8c)

û4(λ) = e
β

2 (λ+
1

λ )N̂4(−iλ)− β

2

(

λ+
1

λ

)

e
β

2 (λ+
1

λ)D̂4(−iλ). (2.8d)

The first of the global relations (2.3) becomes

n
∑

j=1

ûj(λ) = 0, λ ∈ C \ {0}. (2.9)

For simplicity, we consider the following symmetric Dirichlet boundary
value problem:

u(1)= u(−1, y)= cosh(1) cosh(
√
3y)+cosh(

√
3) cosh(y), − 1<y<1;

(2.10a)

u(3)= u(1, y) = cosh(1) cosh(
√
3y)+cosh(

√
3) cosh(y), − 1<y<1;

(2.10b)

u(2)= u(x,−1)= cosh(1) cosh(
√
3x)+cosh(

√
3) cosh(x), − 1<x<1;

(2.10c)

u(4)= u(x, 1) = cosh(1) cosh(
√
3x)+cosh(

√
3) cosh(x), − 1<x<1.

(2.10d)
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Symmetry implies

u(x, y) = u(−x, y), u(x, y) = u(x,−y), u(x, y) = u(y, x). (2.11)

Thus,

u(3)
x = −u(1)

x , u(4)
y = −u(2)

y , u(2)
y = u(1)

x

∣

∣

∣

(x,y)↔(y,x)
. (2.12)

Hence, the first of the global relations, namely equation (2.9), becomes

cos

[

β

2

(

λ− 1

λ

)]

N̂1(λ) + cos

[

β

2

(

iλ− 1

iλ

)]

N̂1(−iλ)

=
β

2

(

λ− 1

λ

)

sin

[

β

2

(

λ− 1

λ

)]

D̂1(λ)

+
β

2

(

iλ− 1

iλ

)

sin

[

β

2

(

iλ− 1

iλ

)]

D̂1(−iλ), λ ∈ C \ {0}. (2.13a)

The simplest way to obtain the second of the global relations, namely
equation (2.4), is to take the Schwartz conjugate of equation (2.13a) (i.e.
to take the complex conjugate of (2.13a), subsequently replacing λ̄ with
λ). This yields the equation

cos

[

β

2

(

λ− 1

λ

)]

N̂1(λ) + cos

[

β

2

(

iλ− 1

iλ

)]

N̂1(iλ)

=
β

2

(

λ− 1

λ

)

sin

[

β

2

(

λ− 1

λ

)]

D̂1(λ)

+
β

2

(

iλ− 1

iλ

)

sin

[

β

2

(

iλ− 1

iλ

)]

D̂1(iλ), λ ∈ C \ {0}. (2.13b)

Equations (2.13) are coupling the finite Fourier transform of the un-

known Neumann boundary value u
(1)
x , to the finite Fourier transform

of the given Dirichlet datum u(1). In order to solve these equations we

have to make two choices: (a) expand u
(1)
x in terms of appropriate basis

functions; (b) evaluate (2.13) at appropriate collocation points {λn}Mn=1.
Regarding (a), Fourier basis functions [8], [10]–[16], as well as Chebyshev
and Legendre polynomials [4], [9], [12], have been used earlier. Regard-
ing (b), in most of the earlier papers the collocation points λ ∈ C \ {0}
were chosen to lie on the rays in the complex λ-plane which are parallel
to the edges of the polygon and its reflection in the imaginary axis. Re-
cently, B. Fornberg and collaborators introduced the use of the so-called
Halton nodes [4], [9].

It appears that the most efficient numerical method involves the fol-
lowing [15]: (a) approximating the unknown boundary values in terms of
Legendre polynomials (following Fornberg) and (b) using the collocation
points employed in our earlier work [16], where ideas of Sifalakis and col-
laborators [12] for the Laplace equation were extended to the modified
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Figure 2.2: Numerical solution of the global relations (2.13) for the
symmetric Dirichlet boundary value problem (2.10).

Helmholtz equation. These points are on certain rays of the complex λ-
plane, determined by the exponential appearing in the global relation.
Furthermore, in order to ensure that the collocation matrix remains well
conditioned as the number N of basis functions increases, it is important
following Fornberg (i) to normalise each row, as well as each column, of
the collocation matrix by its l1-norm [4] and (ii) to “over-determine” the
linear system by choosing the number of collocation points to be about
the same as the number of unknowns.

Numerical experiments suggest that Legendre polynomials yield spec-
tral accuracy rather than the algebraic accuracy found with a Fourier
basis. Furthermore, as a result of choosing the collocation points to be
on the above rays, the semi-block circulant structure of the collocation
matrix for regular polygons, demonstrated for the Laplace equation in
[11], is preserved in modified Helmholtz equation as well. In addition,
it is remarkable that the condition number is independent of β [15].

Plots of the relative error E∞ (defined in [16]), as well as of the
matrix condition number as a function of N , for N/2, N , 3N/2 and
2N collocation points, are presented in Figure 2.2. The rectangular
collocation matrix was inverted by using the “backslash” command in
Matlab. It is clear that over-determining the linear system by a factor
of 2 is sufficient to achieve very good matrix conditioning.

3 Fourier expansions of polynomials

3.1 A general theory

Let pm ∈ Pm[x], the linear space of mth degree polynomials. We set

I[pm] =

∫ 1

−1

e−iλxpm(x) dx, m ∈ Z+. (3.1)
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Repeatedly integrating by parts we obtain the following:

I[pm] = − 1

iλ

∫ 1

−1

pm(x)
de−iλx

dx
dx = − 1

iλ
[pm(1)e−iλ − pm(−1)eiλ]

+
1

iλ
I[p′m]

= − 1

iλ
[pm(1)e−iλ − pm(−1)eiλ]− 1

(iλ)2
[p′m(1)e−iλ − p′m(−1)eiλ]

+
1

(iλ)2
I[p′′m]

= · · ·

= −
k

∑

n=0

1

(iλ)n+1
[p(n)m (1)e−iλ − p(n)m (−1)eiλ] +

1

(iλ)k+1
I[p(k+1)

m ],

k ∈ Z+.

Using p
(m+1)
m ≡ 0, we deduce the explicit representation

I[pm] = −e−iλ
m
∑

n=0

p
(n)
m (1)

(iλ)n+1
+ eiλ

m
∑

n=0

p
(n)
m (−1)

(iλ)n+1
, m ∈ Z+. (3.2)

3.2 Jacobi polynomials

Let pm = P
(α,β)
m , the mth Jacobi polynomial, where α, β > −1. Then

P(α,β)
m (1) =

(1 + α)m
m!

,

P(α,β)
m (−1) = (−1)mP(β,α)

m (1) = (−1)m
(1 + β)m

m!

(this can be easily deduced from http://dlmf.nist.gov/18.6). More-
over,

∂xP
(α,β)
m (x) = 1

2 (α+ β +m+ 1)P
(α+1,β+1)
m−1 (x)

(http://dlmf.nist.gov/18.9) and, by induction,

∂m
x P(α,β)

m (x) =
(α + β +m+ 1)n

2n
P
(α+n,β+n)
m−n (x), n = 0, . . . ,m.

Therefore

∂n
xP

(α,β)
m (1) =

(α+ β +m+ 1)n
2n

(α+ n+ 1)m−n

(m− n)!

=
(α+ β + 1)m+n

(α+ β + 1)m

(α + 1)m
(α+ 1)n

1

2n(m− n)!

=
(α+ 1)m

(α+ β + 1)m

(α+ β + 1)m+n

2n(m− n)!(α+ 1)n
.
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Similarly

∂n
xP

(α,β)
m (−1) = (−1)n∂n

xP
(β,α)
m (1)

= (−1)m+n (β + 1)m
(α+ β + 1)m

(α+ β + 1)m+n

2n(m− n)!(β + 1)n
.

Substitution in (3.2) implies the following formula for the finite
Fourier transform of the mth Jacobi polynomial:

I[P(α,β)
m ] = (−1)m

(β + 1)m
(α+ β + 1)m

eiλ
m
∑

n=0

(−1)n
(α+ β + 1)m+n

2n(β + 1)n(m− n)!

1

(iλ)n+1

− (α+ 1)m
(α+ β + 1)m

e−iλ
m
∑

n=0

(α+ β + 1)m+n

2n(α+ 1)n(m− n)!

1

(iλ)n
. (3.3)

3.2.1 Legendre polynomials

Since Pm = P
(0,0)
m , (3.3) reduces to

I[Pm] = (−1)meiλ
m
∑

n=0

(−1)n
(m+ n)!

2nn!(m− n)!

1

(iλ)n+1

− e−iλ
m
∑

n=0

(m+ n)!

2nn!(m− n)!

1

(iλ)n+1
.

Hence, we obtain the following formula for the finite Fourier transform
of Legendre polynomials:

I[Pm] =

m
∑

n=0

(m+ n)!

2nn!(m− n)!

1

(iλ)n+1
[(−1)m+neiλ − e−iλ], m ∈ Z+.

(3.4)

3.2.2 Chebyshev polynomials

We have

Tm(x) =
m!

(12 )m
P(−1/2,−1/2)
m (x),

therefore

T(n)
m (1) =

m!

(12 )m

(m)n
2n

(n+ 1
2 )m−n

(m− n)!
=

m(m+ n− 1)!

2n(m− n)!(12 )n
, m ∈ N

and

T(n)
m (−1) = (−1)m+n m(m+ n− 1)!

2n(m− n)!(12 )n
, m ∈ N.
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Thus, substituting in (3.2), we obtain the following formula for the finite
Fourier transform of the Chebyshev polynomials:

I[Tm] =

m
∑

n=0

1

(iλ)n+1

m(m+ n− 1)!

2n(m− n)!(12 )n
[(−1)m+neiλ − e−iλ], m ∈ N.

(3.5)

3.2.3 Computations

It is slightly unwieldy to compute repeatedly Pochhammer symbols, but
also unnecessary. Indeed, the following recursive formulæ are valid:

I[Pm] =

m
∑

n=0

pm,n
(−1)m−neiλ − e−iλ

(iλ)n+1
, (3.6)

where

pm,0 = 1, pm,n =
(m+ 1

2 )
2 − (n− 1

2 )
2

2n
pm,n−1, n = 1, . . . ,m. (3.7)

Similarly,

I[Tm] =

m
∑

n=0

tm,n
(−1)m−neiλ − e−iλ

(iλ)n+1
, (3.8)

where

tm,0 = 1, tm,n =
m2 − (n− 1)2

2n− 1
tm,n−1, n = 1, . . . ,m. (3.9)

3.2.4 An explicit representation for the half-order

Bessel functions

Let Jm+ 1

2

(λ) denote the half-order Bessel function, i.e.

Jm+ 1

2

(λ) =
1

π

∫ π

0

cos

((

m+
1

2

)

τ − λ sin τ

)

dτ

+
(−1)m+1

π

∫

∞

0

exp

(

−λ sinh τ −
(

m+
1

2

)

τ

)

dτ,

λ ∈ C, m ∈ Z+.

(3.10)

Then equation (3.6) together with the formula for the Fourier transform
of the Legendre polynomials employed in [9], namely,

I[Pm](λ) =
1

im

√

2π

λ
Jm+ 1

2

(λ), (3.11)
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gives the following new explicit representation for Bessel functions of
order half integer:

Jm+ 1

2

(λ) =
1√
2π

m+1
∑

n=1

pm,n−1
(−1)m−n−1eiλ − e−iλ

in−mλn− 1

2

,

λ ∈ C \ {0}, m = 0, 1, 2, . . . , (3.12)

where pm,n are defined in (3.7) (see also (3.4)). Since Bessel functions of
order half integer can be easily converted to spherical Bessel functions,

Jn+ 1

2

(λ) =

√

2λ

π
jn(λ),

(3.12) is also available for the representation and rapid computation of
the latter.
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