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1 The second industrial revolution

Our world has been shaped by the outcome of the scientific revolution and its
offspring, the industrial revolution. The essence of this scientific revolution,
shaped by its pioneers – Newton, Gallileo, Descartes, Kepler, Huygens, Boyle,
Leibnitz – was in the rigorous understanding of the physical world, the laws
underlying matter, energy and their interaction. The word “rigorous” is a hint
to the fundamental role of mathematics in this endeavour but, one way or the
other, the process has been driven by physics. Ultimately, physics led to applied
physics (also known as engineering) and to the industrial revolution. Humanity
has been changed forever.

We are living in interesting times, arguably at a juncture of an equal impor-
tance and impact to the original scientific revolution. The world around us is
changing and it is clear that the future will be as unrecognisable to us as our
world – the Internet, mobile telephony, medical imaging, satellite navigation, so-
cial networks, the entire panoply of personal computers, laptops, tablets, smart
phones so ubiquitous in our daily life of work and leisure. . . – would have been
incomprehensible to previous generations.

In as much as physics is fundamental to these developments, from quantum
to solid state physics to nanotechnology, the common denominator underlying
them is not physics but information. We are surrounded by technology that
collects, transmits, manipulates and ultimately needs to understand reams of
information, of an order of magnitude which is hard to comprehend: in 2012,
in every single minute the Internet processed 2 × 108 emails, 2 × 106 Google
search queries, 7× 105 Facebook postings and 48 hours of youtube uploads
[18]. At the same minute CERN computers would have generated up to 600
gigabytes of data: ostensibly a theoretical physics centre, its main tool of trade is
information. Even such emblematic ‘physics machines’ like cars are increasingly
crammed with information systems, while avionics dominate the cost of modern
jet fighters.
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Mathematics has historically been the language of physical reality and its
success there underpins all of modern science and technology [19]. Given the
very nature of information, there is every reason to believe that mathematics is,
to an even greater extent, the language of data. This has profound implications
to the future of applied mathematics, as is the ever-present tension between data
(values of qualitative or quantitative variables) and information (the content
and meaning present in data).

Impact on mathematics Applied mathematics represents the broad inter-
face between mathematical methodology and application areas. It is responsive,
constantly changing to address challenges from applications, but also proactive,
because mathematical tools ceaselessly reshape applications in science, tech-
nology and medicine. At a greater remove, pure mathematics is also shaped
by challenges originating in application areas: thus, differential geometry had
responded to general relativity, functional analysis to quantum mechanics and
algebraic geometry to string theory. And the theory of differential equations
has responded to endless problems occurring in a wide range of applications. . .

What are the new challenges, originating in the information revolution?
These are early days and it is premature and foolish to seek a comprehensive
list. Tentatively, the following themes have emerged in the last decades:

• Imaging. Modern medicine is increasingly based on the use of scanning
devices. The challenge here is to produce a high quality description of
patients and their ailments from data which is necessarily limited by the
capability of scanners and the need to minimise exposure to harmful ra-
diation. Imaging, however, ranges way beyond medicine, e.g. to reservoir
modelling. Oil companies consider themselves lucky if the manage to re-
cover 35% of reserves in an oil field: the key to better exploitation is
improved imaging of oil reservoirs from seismic data.

• Data mining. The following situation is pervasive across wide fields
of applications, from bio-informatics (in particular, genomics) to search
engines, from forensics to marketing analytics: we are presented with
huge quantities of data and need to ‘mine’ some deeper meaning. Most of
the data is likely to be irrelevant or redundant in the underlying context
(recall the tension between data and information!) and the little which
is significant is invariably contaminated by noise, yet the imperative is to
make sense out of it.

• Networks. Data flows across networks of an increasing complexity. It is
switched and rerouted repeatedly (and automatically) to increase speed
and reliability and in response to varying loads. The challenge is decep-
tively similar, from the flow of data on the Internet to mobile telephony
to the electricity grid to the distribution of goods, but each medium has
its own rules and characteristics.

• Signal processing. Most data is communicated as a long sequence of
bits. How to do this efficiently and reliably? How to clean up noise
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without distorting meaning? How to represent data, indeed how to sample
it so that it can be communicated efficiently? Inasmuch as this range
of problems has been with us for almost a century, its very urgency is
underlied by a step change in the amount of data that need be transmitted.

• Machine learning. Since the dawn of computing (or even earlier, if you
include fiction) humankind has been concerned with ‘smart machines’:
artificial intelligence, robots, automata. . . ‘Smart’ is all about endowing
information with meaning in an organised manner. Machines need to ac-
quire information – thus, not just ‘read’ an image as an aggregate of pixels
but ‘understand’ it as a collection of moving objects – and comprehend it:
understand the unfolding scene and decide how to react to it subject to
predetermined goals.

What does it mean for mathematics? Here our guesses are, if at all, even
more tentative. Clearly, entire new mathematical subjects are bound to evolve in
response to the challenge of information and it is unwise to speculate too much.
By this stage all we can do is sketch crude outlines, based on the snapshot of
our current understanding.

The challenges posed by information have several broad mathematical or-
ganising principles:

1. Both the process of measuring information and the imperfection of our
mathematical models mean that data is invariably contaminated by noise
and uncertainty. Thus, statistics is an essential tool.

2. A major feature of information is that there is plenty of it! Thus, its
understanding calls for large scale computation: numerical linear algebra,
computational differential equations and, in particular, large-scale opti-
mization. Much of this computation is new in kind, shifting the classical
centre of gravity of numerical analysis.

3. Signals need be represented and approximated in the correct mathemat-
ical framework. In practical terms, this means harmonic analysis and
approximation theory.

4. A major challenge is to recover a sparse structure hidden in data: to de-
scribe ‘big data’ using a small number of variables – ideally, reduced to
a small number of observations. This calls for techniques from combina-
torics, functional analysis and, again, computation.

5. To recover and understand spatial structure, an image hiding in a long se-
quence of bits, we need geometric insight, hence geometric and topological
analysis.

6. Mathematical analysis of data rapidly leads to problems defined in a very
large number of dimensions. This is a challenge for a number of reasons,
not least the well-known curse of dimensionality [3] in computation. Yet,
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it is also an opportunity, because techniques of functional analysis, mea-
sure theory and convexity theory can sometimes turn this curse into a
blessing of dimensionality.

7. A typical problem arising in the analysis of information admits many
solutions: it is an inverse problem. It has no ‘right’ or ‘wrong’ solution in
a standard scientific sense. For example: we may have an image except
that small bit is missing and there is an infinite number of ways to ‘inpaint’
it. The human eye (to be more exact, the human mind) is quite good at
this sort of task, the challenge here is to ‘educate’ a computer to do this
just as well – or even better.

The impact of the information revolution on applied mathematics is bound
to be profound, much more than just a change in the sort of problems attracting
the attention of academic and industrial mathematicians of the next generation.
The entire ‘graph of connectivity’ of mathematics, a graph that has been shaped
since the dawn of the ‘physics revolution’ of Galileo and Newton, is likely to
change. A significant proportion of information-heavy problems arises in areas
which are new to the experience of mathematicians, e.g. medicine, biology or
social sciences, as well as in the less classical areas of engineering: information
engineering, software engineering and electronics. We are, indeed, living in
interesting times.

To flesh out the dry concepts and convey some of the excitement of mathe-
matics of information, we briefly review two lively current themes of research:
image processing and sparse recovery.

2 Image Processing

Digital images are one of the main sources of information. As in our other
examples before – the plain vastness of images and videos that exist in our
digital system nowadays makes their unaided processing and interpretation by
humans impossible. Automatic storage management, processing and analysis
algorithms are needed to be able to retrieve only the essence of what the visual
world has up its sleeve. Moreover, certain acquisition devices – such as magnetic
resonance tomography or remote sensing of the atmosphere – do not immediately
provide us with the kind of information relevant to our needs. Mathematical
inversion algorithms are needed to extract this information from the physical
and statistical laws that relate the measurements with the image.

Before we go any further we first need to understand what a digital image
really is. Roughly speaking it is obtained from an analogue image (representing
the continuous world) by sampling and quantization. Basically this means that
the digital camera superimposes a regular grid on an analogue image and assigns
a value, e.g., the mean brightness in this field, to each grid element. In the
terminology of digital images these grid elements are called pixels. The image
content is then described by grey values or colour values in each pixel. The
grey values are scalar values ranging between 0 (black) and 255 (white). The
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colour values are vector values, e.g., (r, g, b), where each channel r, g and b
represents the red, green, and blue component of the colour and ranges, as the
grey values, from 0 to 255. The mathematical representation of a digital image
is a so-called image function u defined (for now) on a two dimensional (in general
rectangular) image domain, the grid. Indeed, in some applications, images are
three dimensional (e.g. videos, 3D medical imaging) or even four dimensional
(involving three spatial dimensions and time) objects, but for simplicity we
focus on the two dimensional case for the following conceptual presentation.
This function is either scalar valued in the case of a grey value image, or vector
valued in the case of a colour image. Here the function value u(x, y) denotes
the grey value, i.e., colour value, of the image in the pixel (x, y) of the image
domain. Figure 1 visualizes the connection between the digital image and its
image function for a grey value image.

Figure 1: Digital image versus image function: On the very left a grey value
photograph; in the middle the image function within a small selection of the
digital photograph is shown where the grey value u(x, y) is plotted as the height
over the (x, y) - plane; on the very right the grey values for a small detail of the
digital photograph are displayed in matrix form.

Typical sizes of digital images range from 2000×2000 pixels in images taken
with a simple digital camera, to 10000×10000 pixels in images taken with high-
resolution cameras used by professional photographers. The size of images in
medical imaging applications depends on the task at hand. Positron emission
tomography (PET) for example produces three-dimensional image data, where
a full-length body scan has a typical size of 175× 175× 500 pixels.

Image de-noising In most acquisition processes for digital images wrong
information is added to an image. Even modern cameras which are able to
acquire high-resolution images produce noisy outputs, cf. Figure 2. In fact, the
appearance of noise is an intrinsic problem in image processing. When presented
with a noisy image or data the task is to identify and remove the noise while
preserving the most important information and structures. While for the human
eye, noise is an easy problem to cope with – indeed if the noise is not too strong
we are still able to analyse an image for its contents – this is not the case for the
computer. This is an important insight when aiming for an automated analysis
of an image.
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Figure 2: Bad lighting conditions may result into noisy images. Left: A digital
photo which has been acquired under poor lighting. Right: Plot of the grey
values of the red channel along the straight line in the photograph.

In medical, seismic, and biological imaging or for certain visualisation tasks
in chemistry, physical imaging tools are employed to visualise the inside of
the body, the earth, a cell or chemical reactions. In such applications, it is
usually not the image that is measured but noisy samples of its Fourier or Radon
transform for instance. In these cases, we want to reconstruct an approximation
of the original image density from (usually under-) sampled and noisy transform
data by ‘smoothly’ inverting the transformation, cf. Figure 3.

Noise in an image usually constitutes a highly oscillatory (high frequency)
component of the acquired image data. One way to think about de-noising an
image is to smooth (or regularise) that image, aiming to ‘smooth’ away the
noise. The simplest and best investigated method for regularising images is to
apply a linear filter. One example of such a filter is Gaussian regularisation.
However, linear filters such as the Gaussian are not recommended when aiming
for noise reduction and structure preservation at the same time. While the
Gaussian filter removes the noise it also blurs the intrinsic image structures, see
Figure 4b. One of the most successful image denoising approaches counteracting
the introduction of blur is nonlinear PDEs and non-smooth variational models
[2]. Here, the denoised image is modelled as a function in the continuum and
computed as a solution of a differential equation or a minimiser of a convex
(or even non-convex) functional. Among the pioneers of these approaches are
Rudin, Osher and Fatemi who introduced in 1992 the total variation for image
regularisation [17]. In particular, for a noisy image g defined on a rectangular
image domain Ω ⊂ R2 the standard total variation denoising approach computes

2Data provided by the MPI for biophysical chemistry Göttingen
3Photo courtesy of Kostas Papafitsoros
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Figure 3: Reconstruction of a slice of a brain scan (left image) acquired with
a magnetic resonance tomograph2 from just 12% noisy samples of the Fourier
transform data (right image).

(a) Noisy photograph (b) Gaussian denoising

(c) Total variation denoising (1) (d) Total generalised variation denoising

Figure 4: Different methods for image denoising.3
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the denoised image u as a solution of

min
u

{
α|Du|(Ω)︸ ︷︷ ︸

Regularising term

modelled by a multiple

of the total variation

+
1

2
‖u− g‖22︸ ︷︷ ︸

Data fidelity term

modelled by the squared

distance between u and g

}
. (1)

The total variation |Du|(Ω) of the image function u on Ω is really the total
variation (in the measure-theoretic sense) of the Radon measure given by the
distributional derivative Du [1]. In Figure 4c an example for total variation
denoising is shown. In comparison with the Gaussian filtered image in Fig-
ure 4b image structures, such as edges are much better preserved. Yet, total
variation denoising is far from being the ‘perfect’ denoising method: it intro-
duced the so-called staircasing effect in the parts of the image which undergo a
linear change of grey values (such as on the bonnet of the car). In the last cou-
ple of years alternatives and extensions of total variation denoising have been
proposed, which aim to improve upon the staircasing artefacts by introducing
higher-order derivatives into the denoising model, compare e.g. [6, 16] and ref-
erences therein. A very successful approach along these lines is total generalised
variation denoising proposed in [4], compare Figure 4d. Other denoising ap-
proaches involve representing the image within a multi scale basis or a frame
such as wavelets, shearlets and alike [9, 11].

Segmentation Going beyond image enhancement towards image analysis, a
common question is what are the main objects in an image (or indeed video,
which corresponds to a sequence of images) that encode the essential information
given. In brain imaging for instance, a good indicator for certain deseases is
the ratio of white to grey matter in the brain, which makes it necessary to
separate these parts in the brain from the rest. Researchers who are interested
in monitoring mitosis of cells in a sequence of microscopy frames aim for tracking
separate cells and their division.

What is common to all these problems is the goal to segment an image into
its different objects. The simplest situation is binary, a segmentation into object
and background. Image segmentation aims to segment one or more objects of
interest in an image, also under the presence of noise and blur. A large commu-
nity of researchers including mathematicians, engineers and computer scientists
have investigated image segmentation, proposing and analysing models for this
task. The methodologies used have a wide range, from machine learning to geo-
metric measure theory. As for image denoising variational segmentation models
form a significant part of research in this area. Mumford and Shah [14] intro-
duced in 1989 a segmentation model that is based on the idea of decomposing
an image into piecewise smooth parts that are separated by an edge set Γ – the
boundary of the object to be segmented. As before, let Ω ⊂ R2 be a rectangular
domain and g a given (possibly noisy) image. Further, define an edge set Γ to be
a relatively closed subset of Ω, with finite one-dimensional Hausdorff measure.
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We search for a pair (u,Γ) minimising

α

2

∫
Ω\Γ
|∇u|2 dx+ βH1(Γ) +

1

2

∫
Ω

(u− f)2 dx. (2)

Here α and β are nonnegative constants andH1(Γ) is the one-dimensional Haus-
dorff measure of Γ (which is the length of Γ if Γ is regular).

Since this pioneering proposal of David Mumford and Jayant Shah, many
more variational models for image segmentation have been proposed, all based
on the detection of boundaries between different objects as either locations of
prominent edges in the image (edge-based segmentation like (2)) or borders of
regions with a specific colour value (region-based segmentation like in [7]). In
Figure 5 image segmentation is done by employing the total variation as an
indicator for this detection. In general, analytic and numerical treatment of
these segmentation approaches is difficult due to the measure-theoretic char-
acter of solutions as well as the usual non-convexity of the functional J . This
gives analysts and optimisers many beautiful mathematical problems to work on
whose solution will have a huge impact in a wide range of image segmentation
applications.

Figure 5: Image segmentation with total variation labelling [12]

Recapping the general message of mathematical image processing we see
that a key ingredient in processing and analysing images is to reduce their
information to just few essential features. In total variation denoising these
features are the image edges, in Mumford–Shah segmentation these are the
edges together with the smooth image parts in between. This demonstrates an
important principle true across data analysis, namely the reduction of data size
of acquired measurements.

3 Sparsity

Compressed sensing, i.e., the nonadaptive compressed acquisition of data, com-
prises techniques which allow one to sense/acquire only the essential features
of signals and to recover them by efficient algorithms. The two main practical
approaches to sparse recovery are `1-minimization and greedy methods. In the
last five to ten years there has been a significant progress in this field and its

9



impact has grown on daily basis through many new applications. Given a dis-
crete signal s ∈ RN , one searches for a so-called sparse vector representation of
this signal with respect to a prescribed basis (or union of bases), in the sense
that it should only contain as few as possible nonzero entries, i.e., the number
of nonzero entries in this sparse representation should be K � N . In the ideal
case, these nonzero entries perfectly constitute the features of this signal. In
mathematical terms, given a prescribed basis or dictionary (i.e., a union of mul-
tiple bases) Φ ∈ RN ×RM with M ≥ N for the signal s, one seeks the sparsest
coefficients α ∈ RM such that s = Φα. Mathematically, the sparsest α is given
by the solution of the following optimization problem:

min
α
‖α‖0 , s.t. s = Φα, (3)

where ‖α‖0 denotes the so-called “`0 norm” which simply counts the nonzero
entries in α. Although, due to its combinatorial nature, in general this recovery
is NP-hard (i.e., it is not expected to have polynomial complexity) [13], work in
compressed sensing has shown that for certain measurement matrices Φ exact
recovery is possible in polynomial time if the signal s is sparse enough. Random
partial Fourier matrices are an example of such an admissible measurement
matrix [5].

On the one hand, greedy solvers have been designed for its solution. These
methods find the support of the signal s iteratively. Orthogonal matching pursuit
(OMP) is such an algorithm, first proposed by Mallat and Zhang [13]. OMP was
followed by a series of improved algorithms, such as Regularized OMP (ROMP),
and Compressive Sampling MP (CoSaMP) providing stronger guarantees of re-
covery and better error estimates.

Facing the same problem of sparse recovery Chen, Donoho, and Saunders
[8] proposed a convexified form of the minimization problem (3), called basis
pursuit:

min
α
‖α‖1 , s.t. s = Φα, (4)

where ‖·‖1 denotes the `1 norm, which, for a discrete coefficient α ∈ RM , reads

‖α‖1 =
∑M−1
k=0 |αk| .

By replacing the `0 norm by the `1 norm, the quest for the sparsest solution
now amounts to solving a convex optimization problem, which is numerically
affordable with polynomial complexity. In subsequent work Donoho [10] could
show that for certain random measurements, basis pursuit (4) actually provides
a unique solution, which equals the solution of (3). Candès, Romberg, and Tao
also proposed `1 minimization for sparse signal recovery specifically in the case
of random partial Fourier matrices [5].

Greedy algorithms on the one hand and `1-minimization on the other hand
show certain advantages and challenges with respect to each other. First of
all, the `1 minimization method provides more uniform guarantees for sparse
recovery than OMP. In particular, having a suitable measurement matrix given,
the former guarantees recovery for all sparse signals whereas OMP can only
guarantee this for a fixed signal s. This problem with OMP was alleviated
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by its successors ROMP and CoSaMP. Still, in the presence of noise in the
signal, `1 minimization performs more robustly than OMP and related methods
with respect to the expected approximation error. On the other hand OMP
is in general computationally faster (for which there are mathematical proofs
and also clear empirical evidence). In fact, a very active area of research is
the construction of accelerated algorithms for `1 minimization, which already
promise to be competitive with OMP, see [15].

Finally, note the connection to image processing algorithms such as total
variation denoising (1) discussed earlier. In fact, for a discrete M × N image
u, the total variation |Du|(Ω) = ‖∇u‖1 is the `1 norm of the gradient of the
image u. This means that computing the denoised image as the solution of (1)
is equivalent to seeking an image u whose gradient is sparse, that is the image
consists only of a small number of edges with constant colour values in between.
This closes the circle to the image processing methods discussed before.

4 Conclusion

In modern, computerised and technology driven world an efficient acquisition,
processing and interpretation of data is a central challenge of our times. In
particular, the large-scale of acquired data (resulting from the improvement of
hardware as well as in the increase in spatial density of acquisition devices –
think of all the CCTV cameras watching over us!) is problematic for classical
processing and analysis methodologies. While the first three hundred years of
modern science engaged mainly with the natural world, current challenges are
mostly concerned with the fruits of our technology.

This challenge has been addressed in the last few decades by mathematicians,
computer scientists and information engineers, although it is fair to observe that
it is present across all of scholarship, from natural sciences and engineering to
medicine, social sciences and humanities. All generate data, all strive to read
information hidden within the data.

Recent breakthroughs in mathematical methodology, associated with the
work of Emmanuel Candès, Ingrid Daubechies, David Donoho, Stanley Osher
and Terence Tao, are but a first step on a long journey. By this stage it is
premature not just to sketch the roadmap for this journey but even to choose
the vehicles. Looking at the history of mathematics – and, indeed, of scholar-
ship – it is clear that the future belongs to theories and methodologies which
are yet undiscovered. Yet, we need to start somewhere and visualise (ever so
tentatively) the first few steps along this journey:

• Detecting the correct framework for ‘sparsity’ in different applications.
What are the correct features (in terms of harmonic analysis, what is the
correct basis) in which the solution is sparse?

• Understanding sparsity in terms of mathematical analysis and statistics;

• Advancing processing and analysis methodologies that are tuned to the

11



application at hand – in other words, combining mathematical insight with
knowledge gained in application areas;

• Developing efficient computational algorithms that can address the very
large and demanding numerical problems emerging from data research;

• Addressing the need for real-time computation, of crucial importance e.g.
in security and in medical diagnostics;

• Making data analysis more ‘machine intelligent’, combining artificial in-
telligence, machine learning, robotics and the understanding of data;

• Understanding inverse problems from both mathematical and phenomeno-
logical point of view. What does it really mean to ‘solve’ an inverse prob-
lem and how to go about it.

The world is changing and we, as mathematicians, must change with it – not
just because this is important, not just because this is exciting and replete
with wonderful intellectual challenges but also because, once we claim that
mathematics is the language of science and technology, we must be ready to
deploy it to sing new tunes.
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