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Abstract

We explore orthogonal polynomials on the unit circle whose Schur parame-
ters are {cαn}∞n=1, where 0 < |α|, |c| < 1. Specifically, we derive two different
generating functions. The first can be represented explicitly in terms of sums of
a q-hypergeometric type and used to derive explicitly the underlying orthogonal
polynomials, while the second obeys a functional differential equation and can
be used to determine the asymptotic behaviour of these polynomials. Extending
these constructs to orthogonal polynomials of the second kind, we are able to
construct the Carathèodoty function and examine the underlying orthogonality
measure.

1 Introduction

Let {φn}n∈Z+ be the set of monic polynomials, orthogonal on the complex unit circle
T with respect to the measure dµ,∫

T
φn(z)φ̄m(z) dµ(z) = 0, m 6= n.

It is known that the φns obey a three-term recurrence relation of the form

φn(z) = zφn−1(z) + anφ
∗
n−1(z), n ∈ N,
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where an = φn(0), |an| < 1 and p∗(z) = znp̄(z−1), p ∈ Pn, as well as the difference
equation

(an+1 + anz)φn(z) = anφn+1(z) + (1− |an|2)an+1zφn−1(z), n ∈ N, (1.1)

with the initial conditions

φ0(z) ≡ 1, φ1(z) = z + a1

(Simon 2005). Note therefore that any sequence {an}n∈Z+
of this kind uniquely defines

a set of orthogonal polynomials on the unit circle (OPUC) and is known as a sequence
of Schur parameters. Let α, c ∈ C where 0 < |c|, |α| < 1. In the present paper we are
interested in the orthogonal polynomials corresponding to the sequence

an =

{
1, n = 0,

cαn, n ∈ N.
(1.2)

In that case the recurrence (1.1) assumes the form

(α+ z)φn(z) = φn+1(z) + α(1− |c|2|α|2n)zφn−1(z). (1.3)

Note that α = 1 in (1.2) corresponds to Geronimus polynomials, while c = 1 and
α = −q1/2, |q| < 1, to Rogers–Szegő polynomials. Moreover, α = c = 0 correspond to
the standard Lebesgue measure on the unit circle, with φn(z) = zn (in the context of
this paper, for brevity, we call these “Lebesgue polynomials”). Thus, our concern here
is to investigate a family of OPUCs whose extreme cases are these three important
families.

In Section 2 we explore the generating function

Ξ(z, t) =

∞∑
n=0

φn(z)tn. (1.4)

We represent Ξ as a sum of two q-hypergeometric functions and explore the extremal
cases of Geronimus and Rogers–Szegő polynomials. Section 3 is devoted to another
generating function,

Φ(z, t) =

∞∑
n=0

φn(z)

n!
tn. (1.5)

We show that Φ obeys a functional-differential equation of the pantograph type, hence
can be expanded in Dirichlet series. This leads to its explicit representation in terms
of q-Bessel functions. We also explore the extremal cases. In Section 4 we derive, using
similar methodology, generating functions for orthogonal polynomials of the second
kind.

The generating functions (1.4) and (1.5) are, in a deep sense, complementary.
While Ξ lends itself more easily to the explicit representation of the polynomials
φn as sums incorporating Gauss–Heine symbols, Φ allows for the derivation of the
asymptotic behaviour of the sequence {φn}∞n=0. This, in turn, is fundamental to the
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derivation of the underlying Carathéodory function and of the orthogonality measure:
this we accomplish in Section 5.

The construction of orthogonal polynomials in this paper is purely formal: we
commence from Schur parameters and use them in the recurrence relation (1.1), rather
than commencing from an orthogonality measure. Thus, there is nothing per se in our
construction to guarantee that the underlying measure exists. Using the Carathéodory
function, we demonstrate in Section 5 that a signed measure always exists and present
extensive numerical evidence that it is a proper measure for all pairs (α, c) except for
a small domains corresponding to large |α| < 1.

2 Generating functions and functional equations

We consider first the generating function

Ξ(z, t) =

∞∑
n=0

φn(z)tn, t, z ∈ C.

Note that it follows at once from the Poincaré criterion that Ξ converges for all |t| < 1.
Multiplying (1.3) by tn and summing up results in

∞∑
1

φn+1t
n = (α+ z)

∞∑
1

φnt
n −

∞∑
1

(1− |c|2qn)αzφn−1t
n

⇒ t−1[Ξ(z, t)− 1− (cα+ z)t] = (α+ z)[Ξ(z, t)− 1]− αztΞ(z, t) + αztq|c|2Ξ(z, qt),

where q = |α|2 ∈ [0, 1]. We thus deduce that

Ξ(z, t) =
1

(1− αt)(1− zt)
[1 + α(c− 1)t+ qαzt2|c|2Ξ(z, qt)]. (2.1)

Let (z, q)n = (1 − z)(1 − qz) · · · (1 − qn−1z) be the Gauss–Heine symbol (Gasper &
Rahman 2004). Iterating (2.1),

Ξ(z, t) =
1 + α(c− 1)t

(αt, q)1(zt, q)1
+

q(αzt2|c|2)

(αt, q)1(zt, q)1
Ξ(z, qt)

=
1 + α(c− 1)t

(αt, q)1(zt, q)1
+

q(αzt2|c|2)

(αt, q)2(zt, q)2
[1 + α(c− 1)qt+ q3(αzt2|c|2)Ξ(z, q2t)]

=
1 + α(c− 1)t

(αt, q)1(zt, q)1
+

1 + α(c− 1)qt

(αt, q)2(zt, q)2
q(αzt2|c|2)

+
q4(αzt2|c|2)2

(αt, q)3(zt, q)3
[1 + α(c− 1)q2t+ q5(αzt2|c|2)Ξ(z, q3t)]

= · · · =
s−1∑
m=0

1 + α(c− 1)qmt

(αt, q)m+1(zt, q)m+1
qm

2

(αzt2|c|2)m +
qs

2

(αzt2|c|2)s

(αt, q)s(zt, q)s
Ξ(z, qst)

for all s ∈ N. Letting s→∞, we obtain

Ξ(z, t) =

∞∑
m=0

qm
2

(αzt2|c|2)m

(αt, q)m+1(zt, q)m+1
+ α(c− 1)t

∞∑
m=0

qm(m+1)(αzt2|c|2)m

(αt, q)m+1(zt, q)m+1
. (2.2)
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Note that

Ξ(z, t) =
1

(1− αt)(1− zt)

∞∑
m=0

qm(m−1)(αzqt2|c|2)m

(qαt, q)m(qzt, q)m

+
α(c− 1)t

(1− αt)(1− zt)

∞∑
m=0

qm(m−1)(αzq2t2|c|2)m

(qαt, q)m(qzt, q)m

=
1

(1− αt)(1− zt) 1φ2

[
q;
qαt, qzt, ;

q, αzqt2|c|2
]

+
α(c− 1)t

(1− αt)(1− zt) 1φ2

[
q;
qαt, qzt, ;

q, αzq2t2|c|2
]
,

where mφn, m,n ∈ Z+, are q-hypergeometric (also known as basic hypergeometric)
functions (Gasper & Rahman 2004).

Let us examine the consequences of (2.2). The main step is the identity

1

(t, q)m+1
=

∞∑
k=0

[
m+ k
m

]
q

tk, (2.3)

where the q-binomial coefficient is[
n
m

]
q

=
(q, q)n

(q, q)m(q, q)n−m
, 0 ≤ m ≤ n.

(2.3) must be known and at any rate can be easily proved by induction. Consequently

F (X) :=

∞∑
m=0

qm
2

Xmt2m

(αt, q)m+1(zt, q)m+1

=

∞∑
k=0

qk
2

Xk
∞∑
`=0

[
k + `
k

]
q

α`
∞∑
m=0

[
k +m
k

]
q

zmt`+m+2k

=

∞∑
k=0

qk
2

Xk
∞∑
`=0

[
k + `
k

]
q

α`
∞∑

m=2k+`

[
m− k − `

k

]
q

zm−`−2ktm

=

∞∑
k=0

∞∑
m=2k

m−2k∑
`=0

[
k + `
k

]
q

[
m− k − `

k

]
q

qk
2

Xkα`zm−`−2ktm

=

∞∑
m=0

bm/2c∑
k=0

m−2k∑
`=0

[
k + `
k

]
q

[
m− k − `

k

]
q

qk
2

Xkα`zm−`−2ktm

=

∞∑
m=0

fm(X)tm,

where

fm(X) =

bm/2c∑
k=0

m−2k∑
`=0

[
k + `
k

]
q

[
m− k − `

k

]
q

qk
2

Xkα`zm−`−2k
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=

bm/2c∑
k=0

m−2k∑
`=0

[
k + `
k

]
q

[
m− k − `

k

]
q

qk
2

Xkαm−2k−`z`

=

m∑
`=0

b(m−`)/2c∑
k=0

[
k + `
k

]
q

[
m− k − `

k

]
q

qk
2

Xkαm−2k−`z`.

It follows from the definition of Ξ and from (2.2) that

φm(z) = fm(αz|c|2)) + α(c− 1)fm−1(αzq|c|2), m ∈ N. (2.4)

But

fm(αz|c|2) =

m∑
`=0

b(m−`)/2c∑
k=0

[
k + `
k

]
q

[
m− k − `

k

]
q

qk
2

|c|2kαm−k−`zk+`

=

m∑
`=0

b(m−`)/2c+`∑
k=`

[
k
`

]
q

[
m− k
k − `

]
q

q(k−`)2 |c|2(k−`)αm−kzk

=

m∑
k=0

k∑
`=(2k−m)+

[
k
`

]
q

[
m− k
k − `

]
q

q(k−`)2 |c|2(k−`)αm−kzk

=

m∑
k=0

min{k,m−k}∑
l=0

[
k
`

]
q

[
m− k
`

]
q

q`
2

|c|2`αm−kzk

and, likewise,

αfm−1(αzq|c|2) =

m−1∑
k=0

min{k,m−k−1}∑
`=0

[
k
`

]
q

[
m− k − 1

`

]
q

q`(`+1)|c|2`αm−kzk.

We thus deduce that

φm(z) =

m∑
k=0

min{k,m−k}∑
`=0

[
k
`

]
q

[
m− k
`

]
q

q`
2

|c|2`αm−kzk (2.5)

+ (c− 1)

m−1∑
k=0

min{k,m−k−1}∑
`=0

[
k
`

]
q

[
m− k − 1

`

]
q

q`(`+1)|c|2`αm−kzk.

However, since

[
m− k
`

]
q

− q`
[
m− k − 1

`

]
q

=


0, ` = 0,[
m− k − 1
`− 1

]
q

, ` = 1, . . . ,m− k,

we can rewrite (2.5) for m ∈ N in the form

φm(z) =

m−1∑
k=1

min{k,m−k−1}∑
`=1

[
k
`

]
q

[
m− k − 1
`− 1

]
q

q`
2

|c|2`αm−kzk (2.6)
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+

m∑
k=b(m+1)/2c

[
k

m− k

]
q

q(m−k)2 |c|2(m−k)αm−kzk

+ c

m−1∑
k=0

min{k,m−k−1}∑
`=0

[
k
`

]
q

[
m− k − 1

`

]
q

q`(`+1)|c|2`αm−kzk.

Note that, as a reality check, it follows at once from (2.6) that φm(0) = cαm for m ∈ N.
It is easy to consider the extramal cases. We commence by allowing α→ 1 (Geron-

imus polynomials):

lim
q→1

[
n
m

]
q

=

(
n

m

)
implies

φm(z) =

m∑
k=0

min{k,m−k}∑
`=0

(
k

`

)(
m− k
`

)
|c|2`zk

+ (c− 1)

m−1∑
k=0

min{k,m−k−1}∑
`=0

(
k

`

)(
m− k − 1

`

)
|c|2`zk

=

m−1∑
k=1

min{k,m−k−1}∑
`=1

(
k

`

)(
m− k − 1

`− 1

)
|c|2`zk +

∑
k=b(m+1)/2c

(
k

m− k

)
|c|2(m−k)zk

+ c

m−1∑
k=0

min{k,m−k−1}∑
`=0

(
k

`

)(
m− k − 1

`

)
|c|2`zk.

We next prove directly that the above representation obeys the recurrence

φm+1(z) = (1 + z)φm(z)− (1− |c|2)zφm−1(z).

Substituting our expressions on the left, we obtain after laborious algebra

(1 + z)φm(z)− (1− |c|2)zφm−1(z)

=

m∑
k=0

min{k,m−k}∑
`=0

(
k

`

)(
m− k
`

)
|c|2`zk

+

m+1∑
k=1

min{k−1,m−k+1}∑
`=0

(
k − 1

`

)(
m− k + 1

`

)
|c|2`zk

−
m∑
k=1

min{k−1,m−k}∑
`=0

(
k − 1

`

)(
m− k
`

)
|c|2`zk

+

m∑
k=1

min{k,m−k+1}∑
`=1

(
k − 1

`− 1

)(
m− k
`− 1

)
|c|2`zk
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+ (c− 1)

m−1∑
k=0

min{k,m−k−1}∑
`=0

(
k

`

)(
m− k − 1

`

)
|c|2`zk

+ (c− 1)

m∑
k=1

min{k−1,m−k}∑
`=0

(
k − 1

`

)(
m− k
`

)
|c|2`zk

− (c− 1)

m−1∑
k=1

min{k−1,m−k−1}∑
`=0

(
k − 1

`

)(
m− k − 1

`

)
|c|2`zk

+ (c− 1)

m−1∑
k=1

min{k,m−k}∑
`=1

(
k − 1

`− 1

)(
m− k − 1

`− 1

)
|c|2`zk.

Assuming the convention that
(
n
m

)
= 0 for m ≤ −1 and m ≥ n + 1, we have for the

term multiplied by (c− 1)

m−1∑
k=0

m−1∑
`=0

(
k

`

)(
m− k − 1

`

)
|c|2`zk +

m∑
k=1

m∑
`=0

(
k − 1

`

)(
m− k
`

)
|c|2`zk

−
m−1∑
k=1

m−1∑
`=0

(
k − 1

`

)(
m− k − 1

`

)
|c|2`zk +

m−1∑
k=1

m∑
`=1

(
k − 1

`− 1

)(
m− k − 1

`− 1

)
|c|2`zk

=

m∑
k=0

m∑
`=0

(
k

`

)(
m− k
`

)
|c|2`zk,

because easy calculation confirms that(
k

`

)(
m− k − 1

`

)
+

(
k − 1

`

)(
m− k
`

)
−
(
k − 1

`

)(
m− k − 1

`

)
+

(
k − 1

`− 1

)(
m− k − 1

`− 1

)
=

(
k

`

)(
m− k
`

)
.

This gives the correct multiple of (c − 1) in φm+1(z). Similar calculation applies to
the remaining terms and confirms that our polynomial obeys the recurrence relation.
Since φ0(z) ≡ 1 and φ1(z) = z + c, it follows that we have recovered Geronimus
polynomials.

Further, note that

min{k,m−k}∑
`=0

(
k

`

)(
m− k
`

)
x` =

∞∑
`=0

(−k)`(−m+ k)`

`!2
x` = 2F1

[
−k,−m+ k;
1;

x

]
.

Assume first that m ≤ 2k. According to the Euler identity for hypergeometric func-
tions

2F1

[
−k,−m+ k;
1;

x

]
= (1− x)2

2F1

[
k + 1,−m+ k;
1;

x

x− 1

]
,

(Rainville 1960, p. 60), while a classical representation of Jacobi polynomials is

P(α,β)
n (z) =

(α+ 1)n
n!

2F1

[
−n, n+ α+ β + 1;
α+ 1;

1− z
2

]
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(Rainville 1960, p. 254). Letting n = m − k ≥ 0, α = 0, β = 2k − m ≥ 0 and
z = (1 + x)/(1− x), we thus have

min{k,m−k}∑
`=0

(
k

`

)(
m− k
`

)
x` = (1− x)m−kP

(0,2k−m)
m−k

(
1 + x

1− x

)
,

while in the case m ≥ 2k, by symmetry,

min{k,m−k}∑
`=0

(
k

`

)(
m− k
`

)
x` = (1− x)kP

(0,m−2k)
k

(
1 + x

1− x

)
.

In other words,

min{k,m−k}∑
`=0

(
k

`

)(
m− k
`

)
x` = (1− x)min{k,m−k}P

(0,|m−2k|)
min{k,m−k}

(
1 + x

1− x

)
for k = 0, . . . ,m. We thus deduce that Geronimus polynomials can be written explic-
itly in the form

φm(z) =

m∑
k=0

(1− |c|2)min{k,m−k}P
(0,|m−2k|)
min{k,m−k}

(
1 + |c|2

1− |c|2

)
zk (2.7)

+ (c− 1)

m−1∑
k=0

(1− |c|2)min{k,m−1−k}P
(0,|m−1−2k|)
min{k,m−1−k}

(
1 + |c|2

1− |c|2

)
zk

for all m ∈ Z+. Letting

ϕm(z, x) =

m∑
k=0

(1− x)min{k,m−2k}P
(0,|m−2k|)
min{k,m−k}

(
1 + x

1− x

)
zk, m ∈ Z+,

we deduce from (2.7) that

φm(z) = ϕm(z, |c|2) + (c− 1)zϕm−1(z, |c|2), m ∈ Z+. (2.8)

Since the coefficients of ϕm(z, |c|2) are real and palindromic (the (m− `)th coefficient
is the same as the `th coefficient), we deduce at once that

ϕm(z, x)∗ = ϕm(z, x), m ∈ Z+, x ∈ R,

therefore
φ∗m(z) = ϕm(z, |c|2) + (c− 1)zϕm(z, |c|2).

For c = 1 (Rogers–Szegő polynomials) it is more convenient to use (2.5), whereby

φm(z) =

m∑
k=0

min{k,m−k}∑
`=0

[
k
`

]
q

[
m− k
`

]
q

q`
2

αm−kzk. (2.9)
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It is known that, given α = −q1/2, Rogers–Szegő polynomials can be represented in
the form

φm(z) =

m∑
k=0

(−1)m−k
[
m
k

]
q

q(m−k)/2zk

(Simon 2005). To confirm that (2.9) reduces to this form, we need to prove that

min{k,m−k}∑
`=0

[
k
`

]
q

[
m− k
`

]
q

q`
2

=

[
m
k

]
q

, k = 0, . . . ,m. (2.10)

Lemma 2.1 The identity (2.10) is true for all k,m ∈ Z+.

Proof Since

(q, q)n
(q, q)n−`

= (−1)`qn`−
1
2 `(`−1)(q−n, q)`, ` = 0, . . . , n,

and bearing in mind that ` ≥ max{k,m−k}+ 1 implies (q−k, q)l = 0, we deduce that

min{k,m−k}∑
`=0

[
k
`

]
q

[
m− k
`

]
q

q`
2

=

min{k,m−k}∑
`=0

(q−k, q)`(q
−m+k, q)`

[(q, q)`]
2 q(m+1)`

=

∞∑
`=0

(q−k, q)`(q
−m+k, q)`

[(q, q)`]
2 q(m+1)`

= 2φ1

[
q−k, q−m+k;
q;

q, qm+1

]
.

We use now the q-Gauss sum

2φ1

[
a, b;
c;

q,
c

ab

]
=

(c/a, q)∞(c/b)∞
(c, q)∞(c/(ab), q)∞

(Gasper & Rahman 2004, p. 236) with a = q−k, b = q−m+k, c = q and the outcome is

min{k,m−k}∑
`=0

[
k
`

]
q

[
m− k
`

]
q

q`
2

=
(qk+1, q)∞(qm−k+1, q)∞

(q, q)∞(qm+1, q)∞
.

The identity (2.10) follows from the identities

(qk+1, q)∞
(q, q)∞

=
1

(q, q)k
,

(qm−k+1, q)

(qm+1, q)∞
=

(q, q)m
(q, q)m−k

,

2

We deduce that the Rogers–Szegő case is recovered asymptotically, as required.
To complete our analysis of extremal cases, we finally consider c = 0, i.e. Lebesgue

polynomials. The only surviving term from (2.5) is k = m in the second sum, hence
φm(z) = zm. This complete the analysis.
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3 Generating functions and functional-differential
equations

In this section we seek an alternative generating function, of the form

Φ(t, z) =

∞∑
n=0

φn(z)

n!
tn.

For brevity we will often suppress the dependence of Φ upon z, in which case we write
Φ = Φ(t).

Multiplying (1.3) by tn/n! and summing up for n = 1, 2, . . . results in

(α+ z)

∞∑
n=1

φn
n!
tn =

∞∑
n=1

φn+1

n!
tn + αz

∞∑
n=1

φn−1

n!
tn − α|c|2z

∞∑
n=1

φn−1

n!
|α|2ntn.

However,

∞∑
n=1

φn
n!
tn = Φ(t)− Φ(0),

∞∑
n=1

φn+1

n!
tn =

∂

∂t

∞∑
n=2

φn
n!
tn =

∂

∂t
[Φ(t)− Φ(0)− Φ′(0)t] = Φ′(t)− Φ′(0),

∞∑
n=1

φn−1

n!
tn =

∞∑
n=0

φn
(n+ 1)!

tn+1 =

∫ t

0

Φ(x) dx,

∞∑
n=1

φn−1

n!
|α|2ntn =

∞∑
n=0

φn
(n+ 1)!

(|α|2t)n+1 =

∫ |α|2t
0

Φ(x) dx

and, putting all this together,

(α+ z)[Φ(t)− Φ(0)] = Φ′(t)− Φ′(0) + αz

∫ t

o

Φ(x)dx− αz|c|2
∫ |α|2t

0

Φ(x) dx.

We differentiate this expression with respect to t, whence

(α+ z)Φ′(t) = Φ′′(t) + αzΦ(t)− α|α|2|c|2zΦ(|α|2t).

We rewrite this functional differential equation in the form

Φ′′(t) = (α+ z)Φ′(t)− αzΦ(t) + ατzΦ(qt), (3.1)

where q = |α|2, τ = q|c|2 are both in (0, 1), with the initial conditions Φ(0) = φ0(z) ≡
1, Φ′(0) = φ1(z) = z + cα.

The equation (3.1) is a special instance of the pantograph equation

y′(t) = Ay(t) +By(qt), t ≥ 0, y(0) = y0 ∈ Cd, (3.2)

where A and B are d× d complex matrices and q ∈ (0, 1) (Iserles 1993). It is known
that (3.2) has a unique solution for all t ∈ [0,∞) and that, as long as the eigenvalues
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of A reside in the open left complex half-plane and the eigenvalues of A−1B in the
open complex unit disc, it is true that limt→∞ y(t) = 0. Moreover, as long as A is
nonsingular and the spectral radius of A−1B is less that one, the solution of (3.2) can
be expanded into Dirichlet series (Iserles 1993). This has a profound implications to
our study of the generating function Φ.

Just to verify that we are on the right track, we note that for z = 0 the pantograph
reduces to the linear differential equation

Φ′′(t) = αΦ′(t), t ≥ 0, Φ(0) = 1, Φ′(0) = cα,

witht the solution Φ(t) = ceαt + 1− c. Therefore

an = Φ(n)(0) =

{
1, n = 0,

cαn, n ∈ N,

as required.
It is instructive to examine (3.1) in the three important special cases already

mentioned. For the Lebesgue case α = c = 0 the equation reduces to Φ′′(t) = zΦ′(t),
with the initial conditions Φ(0) = 1, Φ′(0) = z, therefore Φ(z, t) = etz and we recover
φn(z) = zn, n ∈ Z+. For Geronimus polynomials α = 1, hence q = 1, τ = |c|2, and
(3.2) reduces to an ordinary differential equation

Φ′′ − (1 + z)Φ′ + (1− |c|2)zΦ = 0, t ≥ 0,

whose general solution is Φ(t) = β+et%+ + β−et%− where

%± =
1 + z ±

√
(1− z)2 + 4|c|2z

2

are the roots of the quadratic %2 − (1 + z)% + (1 − |c|2)z = 0. Fitting the initial
conditions Φ(0) = 1, Φ′(0) = z + c, we have

β± =
1

2
± (1− z)− 2c√

(1− z)2 + 4|c|2z
.

This results in the known representation of Geronimus polynomials, namely

φn(z) =

[
1

2
− (1− z)− 2c√

(1− z)2 + 4|c|2z

][
1 + z +

√
(1− z)2 + 4|c|2z

2

]n
(3.3)

+

[
1

2
+

(1− z)− 2c√
(1− z)2 + 4|c|2z

][
1 + z −

√
(1− z)2 + 4|c|2z

2

]n
, n ∈ Z+

(Simon 2005, p. 87). This representation of an orthogonal polynomials system using
’non-polynomial’ building blocks is similar in this sense to the familiar formula for
Chebyshev polynomials of first and second kind (Rainville 1960, p. 301).

Finally, in the Rogers–Szegő case c = 1, α = −q1/2, we stay with a pantograph
equation, specifically

Φ′′(t) = (z − q1/2)Φ′(t) + q1/2zΦ(t)− q3/2zΦ(qt), t ≥ 0 (3.4)
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with Φ(0) = 1, Φ′(0) = z − q1/2.
Our next step is to study the solution of (3.1) in order to obtain a general expression

for the φns. This is the subject matter of the next section. In the sequel we apply our
results and analyse the limiting cases of Geronimus and Rogers–Szegő polynomials
from the point of view of this section, i.e. commencing from the pantograph equation
(3.1).

3.1 Study of the solutions through Dirichlet series

Provided that the pantograph equation (3.2) is in a stable regime, its solution can be
expanded into Dirichlet series,

y(t) =

∞∑
m=0

etq
mAvm, t ≥ 0, (3.5)

(Iserles 1993).
The general pantograph equation

y′(t) = Ay(t) +By(qt), t ≥ 0, y(0) = y0 ∈ Cd,

has a Dirichlet solution provided that A is invertible and ‖A−1B‖2 < 1. In our case,
we have

y =

[
Φ
Φ′

]
, A =

[
0 1
−αz α+ z

]
, B =

[
0 0
αzτ 0

]
,

therefore

A−1B = τ

[
−1 0
0 0

]
.

The eigenvalues of A are α and z, both nonzero, hence the matrix is nonsingular,
while the spectral radius of A−1B is τ ∈ [0, 1). Consequently, the solution of (3.1)
can be expanded into a Dirichlet series of the form (3.5). Specifically, Φ possesses the
expansion

Φ(t) =

∞∑
m=0

vmeλq
mt, v0 6= 0,

where λ and {vm}m∈Z+
are independent of t (the variable z is treated as a parameter).

Substituting this into (3.1), we have

λ2
∞∑
m=0

vmq
2meλq

mt = (α+z)λ

∞∑
m=0

vmq
meλq

mt−αz
∞∑
m=0

vmeλq
mt+ατz

∞∑
m=0

vm−1eλq
mt.

Assuming λ 6= 0, the functions eλq
mt are linearly independent for all m ∈ Z, therefore

it follows that

[λ2q2m − (α+ z)qm + αz]vm =

{
0, m = 0,

αzτvm−1, m ∈ N.
(3.6)
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An immediate consequence of (3.6) is that, letting m = 0, v0 6= 0 implies

λ2 − (α+ z)λ+ αz = (λ− α)(λ− z) = 0

and we deduce that there exist two admissible values of λ, namely λ = α and λ = z.
Next, we consider the case m ∈ Z. Now

(α− qmλ)(z − qmλ)vm = αzτvm−1,

therefore

λ = α : (1− qm)
(

1− qmα
z

)
vm = τvm−1,

λ = z : (1− qm)
(

1− qm z

α

)
vm = τvm−1.

Using easy induction, we have

vm =
τm

(q, q)m(α/z, q)m
v0 and vm =

τm

(q, q)m(z/α, q)m
v0

respectively, where, as before, (κ, q)m is the Gauss–Heine symbol,

(κ, q)m =

m−1∏
j=0

(1− κqj)

(Gasper & Rahman 2004). This argument has led us to a Dirichlet-series representa-
tion of Φ, formulated in the following theorem.

Theorem 3.1 The generating function Φ(t, z) =
∑∞
m=0 φm(z)tm/m! of the OPUC

with respect to the Schur parameters (1.2) can be expressed explicitly in the form

Φ(t, z) = β1(z)

∞∑
m=0

τm

(q, q)m(α/z, q)m
eαq

mt + β2(z)

∞∑
m=0

τm

(q, q)m(z/α, q)m
ezq

mt, (3.7)

where β1 and β2 are determined by the conditions Φ(0, z) ≡ 1, ∂Φ(0, z)/∂t = z + cα.

Corollary 3.2 The monic OPUC with respect to the Schur parameters (1.2) is

φm(z) = αmβ1(z)F (αz−1, qmτ, q) + zmβ2(z)F (α−1z, qmτ, q), m ∈ Z+, (3.8)

where

F (ζ, τ, q) =

∞∑
m=0

τm

(q, q)m(ζ, q)m
. (3.9)

Proof Repeatedly differentiating the Dirichlet series (3.7) term-by-term, a pro-
cedure which is justified by its absolute convergence. 2

Note that F (0, τ, q) is the so-called “little q-exponential function”,

F (0, τ, q) =

∞∑
m=0

τm

(q, q)m
= eq(τ) =

1

(τ, q)∞
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(Gasper & Rahman 2004, p. 236), while

lim
|ζ|→∞

F (ζ, qmτ, q) ≡ 1, lim
|ζ|→0

ζmF (ζ, qmτ, q) =

{
1, m = 0,

0, m ∈ N,

where |ζ| → ∞ in a sector of the form | arg ζ| > δ for some δ > 0. Therefore

φ0(0) = β1(0) + β2(0), φn(0) = β1(0)αn, n ∈ N,

where we recall that β1 and β2 are determined by the initial conditions,

φ0(z) ≡ 1, φ1(z) = z + cα.

Thus, β1(0) = c, β2(0) = 1 − c, and we verify from (3.8) the explicit form of Schur
parameters,

φn(0) = cαn, n ∈ Z+.

It is convenient to reformulate (3.8) somewhat. Thus, we let

η1(z) = β1(z)F (αz−1, τ, q), η2(z) = β2(z)F (α−1z, τ, q)

and

Hm(ζ, τ, q) =
F (ζ, qmτ, q)

F (ζ, τ, q)
, m ∈ Z+. (3.10)

Then (3.8) can be rewritten in the form

φm(z) = αmη1(z)Hm(αz−1, τ, q) + zmη2(z)Hm(α−1z, τ, q), m ∈ Z+. (3.11)

The initial conditions being

η1 + η2 = 1,

αH1(αz−1, τ, q)η1 + zH1(α−1z, τ, q)η2 = z + cα,

we obtain

η1(z) =
z + cα− zH1(α−1z, τ, q)

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
, (3.12)

η2(z) =
αH1(αz−1, τ, q)− z − cα

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
)).

The representation (3.11) is not the final form in which we can cast the OPUC
{φn}n∈Z+

.

Theorem 3.3 The explicit form of the OPUC with respect to the Schur parameters
(1.2) is

φm(z) = αmη1(z)

m∏
`=1

H1(αz−1, q`τ, q) + zmη2(z)

m∏
`=1

H1(α−1z, q`τ, q), m ∈ Z+,

(3.13)
where η1 and η2 have been given in (3.12).
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Proof Follows at once from (3.11), noting that

Hm(ζ, τ, q) =
F (ζ, qτ, q)

F (ζ, τ, q)
× F (ζ, q2τ, q)

F (ζ, qτ, q)
× · · · × F (ζ, qmτ, q)

F (ζ, qm−1τ, q)
=

m∏
`=1

H1(ζ, q`τ, q).

2

The representation (3.13) has an important advantage in comparison with the
seemingly simpler form (3.11): we need to deal with just a single function H1, rather
than with Hm for all m ∈ N. It is also reminiscent of the representation (3.3) of
Geronimus polynomials and indeed we will prove in the sequel that (3.13) reduces to
(3.3) as α→ 1.

3.2 The function H1

3.2.1 Analiticity

It will be proved later in this section that the function

F (ζ, τ, q) =

∞∑
m=0

τm

(q, q)m(ζ, q)m
, τ ∈ (0, q),

is meromorphic in ζ ∈ C. Specifically, it is analytic except for simple polar singulari-
tyes at q−` for all ` ∈ Z+, because (q−`, q)m = 0 for m ≥ `+1. Our interest is, however,
not in the function F per se but in the ratios Hm(αz−1, τ, q) and Hm(α−1z, τ, q) for
m ∈ N.

Let ζ = q−` + ε for some ` ∈ Z+ and 0 < |ε| � 1. It is an easy calculation that

(ζ, q)m = (−1)mq(m−1−`)m (q, q)`
(q, q)`−m

+O(ε), m ≤ `,

(ζ, q)m = (−1)`+1εq
1
2 (`−1)`(q, q)`(q, q)m−`−1 +O(ε2), m ≥ `+ 1.

Therefore, after further algebra,

F (q−` + ε, τ, q) =
1

ε

(−1)`+1q
1
2 (`−1)`τ `+1

(q, q)`(q, q)`+1
F (q`+2, τ, q) +O(1).

We deduce that

H1(q−` + ε, τ, q) = q`+1H1(q`+2, τ, q) +O(ε).

Therefore the singularity at q−` is removable. This, however, does not mean that
H1, unlike F , is an entire function, because it has polar singularities at the zeros
of F (·, τ, q). Indeed, we demonstrate in the sequel that H1 is meromorphic, with a
countable number of isolated poles accumulating at infinity.

Note that, according to Section 3.1, lim|ζ|→∞ F (ζ, τ, q) = 1 as long as ζ is re-
stricted to a sector of the form | arg ζ| > δ > 0. Hence, subject to this restriction,
lim|ζ|→∞H1(ζ, τ, q) = 1, while limM→∞H1(q−M , τ, q) = 0.
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3.2.2 An expansion in ζ

The function F has been given as a power series in τ . However, and given its analyticity
in ζ, it is instructive to expand it in power series in the latter variable. We commence
by observing that

F (ζ, τ, q)− F (qζ, τ, q) =

∞∑
m=1

τm

(q, q)m

[
1

(ζ, q)m
− 1

(qζ, q)m

]

=
ζ

1− ζ

∞∑
m=0

(1− qm)τm

(q, q)m(qζ, q)m

=
ζ

1− ζ
[F (qζ, τ, q)− F (qζ, qτ, q)].

This results in the recurrence relation

F (ζ, τ, q) =
1

1− ζ
[F (qζ, τ, q)− ζF (qζ, qτ, q)]. (3.14)

Before we advance any further, it is useful to recall the definition of an rφs basic
hypergeometric function: given r, s ∈ Z+ and q, a1, . . . , ar, b1, . . . , bs ∈ C, |q| < 1,

rφs

[
a1, . . . , ar;
b1, . . . , bs;

q, z

]
=

∞∑
m=0

(a1, q)m(a2, q)m · · · (ar, q)m
(q, q)m(b1, q)m(b2, q)m · · · (bs, q)m

[
(−1)mq(

m
2 )
]1+s−r

zm

(Gasper & Rahman 2004, p. 4).

Proposition 3.4 The function F can be expressed in the form

F (ζ, τ, q) =
1

(ζ, q)∞(τ, q)∞

∞∑
m=0

(τ, q)m
(q, q)m

q
1
2 (m−1)m(−ζ)m (3.15)

=
1

(ζ, q)∞(τ, q)∞
1φ1

[
τ ;
0;
q, ζ

]
.

Proof We commence by proving that, for any r ∈ Z+,

F (ζ, τ, q) =
1

(ζ, q)r

r∑
m=0

[
r
m

]
q

q
1
2 (m−1)m(−ζ)mF (qrζ, qmτ, q),

where we recall that[
n
m

]
q

=
(q, q)n

(q, q)m(q, q)n−m
, 0 ≤ m ≤ n,

is the q- binomial symbol (Gasper & Rahman 2004, P. 235).
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This is certainly true for r = 0 and, because of (3.14), for r = 1. Moreover, using
induction on r and applying (3.14) on the right-hand side,

F (ζ, τ, q)

=
1

(ζ, q)r

r∑
m=0

[
r
m

]
q

q
1
2 (m−1) (−ζ)m

(1− qrζ)
[F (qr+1ζ, qmτ, q)− qrζF (qr+1ζ, qm+1τ, q)]

=
1

(ζ, q)r+1

r∑
m=0

[
r
m

]
q

q
1
2 (m−1)m(−ζ)mF (qr+1ζ, qmτ, q)

+
1

(ζ, q)r+1

r+1∑
m=1

[
r

m− 1

]
q

q
1
2 (m−2)(m−1)+r(−ζ)mF (qr+1ζ, qmτ, q)

and the desired expression follows from the identity[
r
m

]
q

+ qr−m+1

[
r

m− 1

]
q

=

[
r + 1
m

]
q

(Gasper & Rahman 2004, p. 235).
To prove (3.15), we let r →∞, noting that for every fixed m

lim
r→∞

[
r
m

]
q

=
1

(q, q)m

and that

lim
r→∞

F (qrζ, τ, q) = F (0, τ, q) =

∞∑
m=0

τm

(q, q)m
= eq(τ) =

1

(τ, q)∞

(cf. Section 2). 2

Using (3.15), we investigate the analyticity of H1. Our point of departure is the
observation that

F (ζ, τ, q) =
G(ζ, τ, q)

(τ, q)∞(ζ, q)∞
,

where

G(ζ, τ, q) =

∞∑
m=0

(−1)m
(τ, q)m
(q, q)m

q
1
2 (m−1)mζm.

It is obvious that G is an entire function of ζ.
Given an entire function f(ζ) =

∑∞
m=0 fmζ

m, its order is defined by

ρ(f) = lim sup
r→∞

log log max−π≤θ≤π |f(reiθ)|
log r

cite[p. 182]hille62aft and, while at the first instance it describes the behaviour near
the singularity at ∞, it can be used to reveal many other interesting features. An
alternative expression for ρ(f) is

ρ(G) = lim sup
m→∞

m logm

log |fm|−1
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(Hille 1962, p. 186). Therefore

ρ(G) = lim sup
m→∞

m logm

log(q, q)m − log(τ, q)m − 1
2 (m− 1)m| log q|

= 0.

Since ρ(G) = 0, G(0, τ, q) = 1 and G is clearly not a polynomial in ζ (recall that
τ < 1), we use the Hadamard factorization theorem (Hille 1962) to argue that it can
be represented in the form

G(ζ, τ, q) =

∞∏
n=1

(
1− ζ

σn

)
, ζ ∈ C,

where σn = σn(τ, q) ∈ C accumulate at ∞. We deduce that

H1(ζ, τ, q) =
(τ, q)∞
(qτ, q)∞

G(ζ, qτ, q)

G(ζ, τ, q)
= (1− τ)

∞∏
n=1

1− ζ/σn(qτ, q)

1− ζ/σn(τ, q)
. (3.16)

In particular, this indeed proves that H1 is meromorphic.
The only possible impediment to the analyticity of H1 are the poles, i.e., the zeros

of G(·, τ, q). However,

G(ζ, 0, q) =

∞∑
m=0

(−1)m
q

1
2 (m−1)m

(q, q)m
ζm = Eq(−ζ) = (ζ, q)∞

where Eq is the ’big q exponential function’ (Gasper & Rahman 2004, p. 236). There-
fore, for τ = 0 the only zeros of G(·, 0, q) are q−`, ` ∈ Z+, all positive, distinct and
cancelling each other in the quotient H1.

Next, we compute G(q−`, τ, q) for ` ∈ Z+ and τ > 0. To this end we utilise the
identity

(τ, q)m =

m∑
k=0

(−1)k
[
m
k

]
q

q
1
2 (k−1)kτk, m ∈ Z+,

whose inductive proof is trivial and left to the reader. Thus,

G(q−`, τ, q) =

∞∑
m=0

(−1)m
q

1
2 (m−1)m

(q, q)m

m∑
k=0

(−1)k
[
m
k

]
q

q
1
2 (k−1)k−m`τk

=

∞∑
k=0

(−1)k

(q, q)k
q

1
2 (k−1)kτk

∞∑
m=k

(−1)m
q

1
2 (m−1)m−m`

(q, q)m−k

=

∞∑
k=0

q(k−1)k−k`

(q, q)k
τk

∞∑
m=0

(−1)m
q

1
2 (m−1)m+(k−`)m

(q, q)m

=

∞∑
k=0

q(k−1)k−k`

(q, q)k
τkeq(−qk−`) =

∞∑
k=0

q(k−1)k−k`

(q, q)k
τk(qk−`, q)∞

= (q, q)∞

∞∑
k=`+1

q(k−1)k−k`

(q, q)k(q, q)k−`−1
τk > 0
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(note that all the series above converge).
Likewise, given 0 < δ � 1, an identical calculation yields

G(q−`+δ, τ, q) =

∞∑
k=0

q(k−1)k−k(`−δ)(qk−`+δ, q)∞.

Now, while for k ≥ `+ 1 it is true that

(qk−`+δ, q)∞ =
(q, q)∞

(q, q)k−`−1
,

for k = 0, 1, . . . , ` we obtain

(qk−`+δ, q)∞ = (1− qδ)(−1)`−kq−
1
2 (`−k−1)(`−k)(q, q)`−k(q, q)∞[1 +O(δ)].

Therefore

(qk−`+δ, q)∞ = (−1)`−k(1− qδ)q− 1
2 (`−1)`(q, q)∞

∑̀
k=0

(−1)kτk
(q, q)`−k
(q, q)k

q
1
2 (k−1)k+δk

×[1 +O(δ)] +G(q−`, τ, q)[1 +O(δ)].

While G(q−`, τ, q) > 0, we can render the first sum negative by choosing δ > 0 when
` is even, δ < 0 otherwise. Moreover, G(q−`, τ, q) = O(τ `), hence small (τ ∈ (0, q)),
while the first sum is O(1) in τ . We deduce that for every suficiently small τ > 0 and
` ∈ N it is true that σ2`−1(τ) < σ2`(τ) lie in the interval (q−2`+1, q−2`), the first very
near the left endpoint and the second very near right endpoint.

Moreover, while q−
1
2 (`−1)` increases very rapidly with `, the others terms depend

on ` in a fairly weak manner. Therefore we can expect |σ`−q`| to decrease very rapidly
as ` grows, and this is confirmed by numerical computations. On the other hand, the
interval (1, q−1) is the obvious place where thing are more interesting. For 0 < τ � 1
two zeros emerge from the endpoints, ’sliding’ inwards: numerical calculations confirm
that after a short while they may coalesce into a double zero, which subsequently
bifurcates into the complex plane as a conjugate pair of zeros.

Fig. 3.1 displays G for two values of q and several values of τ in the first two
intervals of the form [q−2`, q−2`−1]. In the first interval in the case q = 9

16 (the left
column), at τ = 0 two zeros emerge at the endpoints of the interval and they travel
inwards: for τ = 1

20 they have hardly moved but they coalesce very near τ = 1
10

(actually, at τ ≈ 0.09992063019) and, having moved to complex plane, G is positive
throughout the first interval for increasing τ . In the second interval not much happen:
again, two zeros emerge from the endpoints and travel inwards, but they do it ever-
so-slowly and we are already in the asymptotic regime. For q = 3

10 , however, double
zeros persist in the first interval for all τ ∈ (0, q], while the situation in the second
interval hardly changes.

Although the analysis of the function G is valuable in understanding the behaviour
of H1, it is of interest to convert F into a ’proper’ power series in ζ, thereby represent-
ing H1 as a quotient of two power series. To this end we replace Eq(ζ) = 1/(ζ, q)∞
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Figure 3.1: The function G in the first two intervals of the form [q−2`, q−2`−1] (denoted
by thick lines) for q = 9

16 and τ = j
20 , j = 0, 1, 2, 3 (left column) and q = 3

10 , τ = j
10 ,

j = 0, 1, 2, 3.

by its expansion
∑∞
n=0 ζ

n/(q, q)n. It then follows from (3.15) that

(τ, q)∞F (ζ, τ, q) =

∞∑
n=0

ζn

(q, q)n

∞∑
m=0

(τ, q)m
(q, q)m

q
1
2 (m−1)m(−1)mζm

=

∞∑
m=0

(τ, q)m
(q, q)m

(−1)mq
1
2 (m−1)m

∞∑
n=m

ζn

(q, q)n−m
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=

∞∑
n=0

ζn

(q, q)n

n∑
m=0

(−1)m
[
n
m

]
q

q
1
2 (m−1)m(τ, q)m.

The outcome is a power-series representation of F ,

F (ζ, τ, q) =
1

(τ, q)∞

∞∑
n=0

dn(τ)ζn,

where

dn(τ) =
1

(q, q)n

n∑
m=0

(−1)m
[
n
m

]
q

q
1
2 (m−1)m(τ, q)m, m ∈ Z+. (3.17)

Proposition 3.5 The above coefficients dn(τ) satisfy d0 ≡ 1 and

dn(τ) =

n∑
m=1

q(m−1)m

(q, q)m

[
n− 1
m− 1

]
q

τm, n ∈ N. (3.18)

Proof
The expressions (3.17) and (3.18) match for n = 0, 1. We continue by induction on

n ∈ N. Firstly, using identity I.45 from (Gasper & Rahman 2004, p. 235), we deduce
from (3.17) that

dn(τ) =
1

(q, q)n

n∑
m=0

(−1)m

{[
n− 1
m

]
q

+ qn−m
[
n− 1
m− 1

]
q

}
q

1
2 (m−1)m(τ, q)m

=
dn−1(τ)

1− qn
− qn−1 1− τ

(q, q)n

n−1∑
m=0

(−1)m
[
n− 1
m

]
q

q
1
2 (m−1)m(qτ, q)m

=
1

1− qn
[dn−1(τ)− qn−1(1− τ)dn−1(qτ)], n ∈ N.

Likewise, for n ≥ 2 (3.18) yields

1

1− qn
[dn−1(τ)− qn−1(1− τ)dn−1(qτ)

=
1

1− qn
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

τm − qn−1

1− qn
(1− τ)

n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

(qτ)m

=
1

1− qn
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

(1− qn+m−1)τm

+
1

1− qn
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

qn+m−1τm+1

=
1

1− qn

{
n−1∑
m=1

q(m−1)m

(q, q)m

[
n− 2
m− 1

]
q

(1− qn+m−1)τm +

n∑
m=2

q(m−2)m+n

(q, q)m−1

[
n− 2
m− 2

]
q

τm

}
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=
1

1− qn
n∑

m=1

q(m−1)m

(q, q)m

{[
n− 2
m− 1

]
q

(1− qn+m−1 + qn−m
[
n− 2
m− 2

]
q

(1− qm)

}
τm

=

n∑
m=1

q(m−1)m

(q, q)m

[
n− 1
m− 1

]
q

τm,

as can be confirmed by straightforward calculation. We thus obtained the left-hand
side of (3.18) . In other words, the functions dn in (3.17) and (3.18) obey the same
recurrence relation. Since they match for n = 1, an inductive proof follows. 2

Since (τ, q)∞/(qτ, q)∞ = 1−τ , the outcome of our analysis is the rational expansion

H1(ζ, τ, q) = (1− τ)

∞∑
n=0

dn(qτ)ζn

∞∑
n=0

dn(τ)ζn
, (3.19)

where alternative expressions for dn have been given in (3.17) and (3.18).
Bearing in mind the representation (3.13), combining the values of H1 at z/α and

at α/z, it is perhaps more illuminating to consider (3.19) not as a rational expansion
in ζ about the origin but as a Fourier expansion on circles of radii |α| = q1/2 and
|α|−1 = q−1/2.

3.2.3 An expansion of the generating function

The above expressions of the function F provides an expansion of the generating
function in z and z−1. It is enough to take account of the expression (3.7) and recall
that

F (α−1z, |c|2qN , q) =
(|c|2, q)N
(|c|2, q)∞

[
1 +

∞∑
n=1

dn(|c|2qN )
( z
α

)n]
,

F (αz−1, |c|2qN , q) =
(|c|2, q)N
(|c|2, q)∞

[
1 +

∞∑
n=1

dn(|c|2qN )
(α
z

)n]
,

where

dn(x) =

n∑
m=1

q(m−1)m

(q, q)m

[
n− 1
m− 1

]
q

xm, n ∈ N.

Using the function F , we can express the underlying sequence of OPUC as a
expansion in z and z−1,(3.8)

φN (z) = αNβ1(z)F (αz−1, |c|2qN , q) + zNβ2(z)F (α−1z, |c|2qN , q), n ∈ Z+,

where β1 and β2 are determined from the initial conditions φ0 ≡ 1 and φ1(z) = cα+z,

β1(z) =
zF (α−1z, |c|2q, q)− (cα+ z)F (α−1z, |c|2, q)

zF (αz−1, |c|2, q)F (α−1z, |c|2q, q)− αF (αz−1, |c|2q, q)F (α−1z, |c|2, q)

β2(z) =
(cα+ z)F (αz−1, |c|2, q)− αF (αz−1, |c|2q, q)

zF (αz−1, |c|2, q)F (α−1z, |c|2q, q)− αF (αz−1, |c|2q, q)F (α−1z, |c|2, q)
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To verify that the underlying Schur parameters are correct, we note that for all N ∈ N

φN (0) = cαN
F (∞; |c|2qN , q
F (∞; |c|2q, q)

= cαN ,

because F (∞; |c|2qN , q) ≡ 1 according to our computation.

3.3 A representation of the OPUC as q-Bessel functions

In this section we obtain an explicit representation of the OPUC sequence {φn} as

a linear combination of the q-Bessel functions J
(2)
ν (cf. (Gasper & Rahman 2004,

p. 4) for the definition of q-Bessel functions). This is very much in line with the
numerous explicit representations of orthogonal polynomials on the real line in terms of
hypergeometric and q-hypergeometric functions (Chihara 1978, Ismail 2005). Bearing
in mind the definition of F and the representation (3.8) of the OPUC {φn}, a simple
calculation leads to

F (ζ, τ, q)− F (ζ, qτ, q) =

∞∑
m=1

(1− qm)τm

(q, q)m(ζ, q)m
=

∞∑
m=1

τm

(q, q)m−1(ζ, q)m

=

∞∑
m=0

τm+1

(q, q)m(ζ, q)m+1
=

τ

1− ζ
F (qζ, τ, q).

We thus deduce the functional equation

F (ζ, τ, q) = F (ζ, qτ, q) +
τ

1− ζ
F (qζ, τ, q), (3.20)

given in tandem with the initial condition F (ζ, 0, q) ≡ 1.
Note, incidentally, that the function

F̃ (ζ, τ, q) =
1

(ζ, q)∞(τ, q)∞

is a solution of (3.20), as can be verify easly by direct substitution. Needless to say,
F̃ 6= F (cf. (3.15)), but then there is absolutely no reason to claim that (3.20) has a
unique solution.

We now start similarly to Subsection 3.2.2, yet progress differently,

F (ζ, τ, q)− F (qζ, τ, q) =
∑
m=1

τm

(q, q)m(ζ, q)m+1
[(1− ζqm)− (1− ζ)]

= ζ
∑
m=1

τm

(q, q)m−1(ζ, q)m+1
=

ζτ

(1− ζ)(1− qζ)
F (q2ζ, τ, q).

Let
χr = F (qrζ, τ, q), r ∈ Z+.

(Needless to say, χr = χr(ζ, τ, q), but it is convenient to suppress parameters). We
have just proved that

χ0 = χ1 +
ζτ

(ζ, q)2
χ2
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and, replacing ζ with qrζ for r ∈ Z+, we deduce the recurrence

χr = χr+1 +
ζqrτ

(ζqr, q)2
χr+2, r ∈ Z+. (3.21)

Proposition 3.6 For every s ∈ Z+ it is true that

χ0 =

s∑
`=0

[
s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`
χs+`. (3.22)

Proof By induction on s. The statement is trivial for s = 0 and reduces to (3.21)
for s = 1. In general, we assume (3.22) for s and use (3.21),

χ0 =

s∑
`=0

[
s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`

[
χs+1+` +

qs+`ζτ

(qs+`ζ, q)2
χs+`+2

]

=

s∑
`=0

[
s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`
χs+1+`

+

s+1∑
`=1

qs+`−1

(qs+`−1ζ, q)2

[
s

`− 1

]
q

q(`−2)(`−1)(ζτ)`

(ζ, q)`−1(qsζ, q)`−1
χs+1+`.

Let us examine the `th term (we restrict our attention to 1 ≤ ` ≤ s, cases ` = 0 and
` = s+ 1 being trivial):[

s
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`
+

[
s

`− 1

]
q

qs+`−1+(`−2)(`−1)(ζτ)`

(ζ, q)`−1(qsζ, q)`+1

=
q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`+1

{[
s
`

]
q

(1− qs+`ζ) +

[
s

`− 1

]
q

qs−`+1(1− q`−1ζ)

}
.

But [
s
`

]
q

(1− qs+`ζ) +

[
s

`− 1

]
q

qs−`+1(1− q`−1ζ)

=
(q, q)s

(q, q)`(q, q)s+1−`
[(1− qs+1−`)(1− qs+`ζ) + (1− q`)(qs−`+1 − qsζ)]

=
(q, q)s

(q, q)`(q, q)s+1−`
(1− qs+1)(1− qsζ) =

[
s+ 1
`

]
q

(1− qsζ),

therefore the `th term is

q(`−1)`(ζτ)`

(ζ, q)`(qsζ, q)`+1

[
s+ 1
`

]
q

(1− qsζ) =

[
s+ 1
`

]
q

q(`−1)`(ζτ)`

(ζ, q)`(qs+1ζ, q)`
.

This is precisely (3.22) for s+ 1 and an inductive proof is complete. 2
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We now let s→∞ in (3.22),

lim
s→∞

χs+` = lim
s→∞

F (qs+`ζ, τ, q) = F (0, τ, q) = eq(τ) =
1

(τ, q)∞
,

lim
s→∞

(qsζ, q)` = (0, q)` = 1,

lim
s→∞

[
s
`

]
q

= lim
s→∞

(q, q)s
(q, q)`(q, q)s−`

=
(q, q)∞

(q, q)`(q, q)∞
=

1

(q, q)`
.

Therefore

F (ζ, τ, q) = eq(x)

∞∑
`=0

q(`−1)` (ζτ)`

(q, q)`(ζ, q)`
=

1

(τ, q)∞
0φ1

[
−;
ζ;

q, ζτ

]
.

There exist several generalisations of Bessel functions into the realm of q-functions.
In particular, the second q-Bessel function is

J(2)
ν (x, q) =

(qν+1, q)∞
(q, q)∞

(x
2

)ν
0φ1

[
−;
qν+1;

q,−1

4
x2qν+1

]
(Gasper & Rahman 2004, p. 25). Letting

µ =
log ζ

log q

(in other words, qµ = ζ) we thus have

J
(2)
µ−1(2

√
τ , q) =

(ζ, q)∞
(q, q)∞

τ (µ−1)/2
0φ1

[
−;
ζ;

q,−ζτ
]

and we conclude that

F (ζ, τ, q) =
(q, q)∞

(τ, q)∞(ζ, q)∞
(−τ)−(µ−1)/2J

(2)
µ−1(2i

√
τ , q). (3.23)

We now use (3.8) to obtain an explicit representation of the φms in terms of q-
Bessel functions. To this end we note that we need to reckon for both F (αz−1, qmτ, q)
and F (α−1z, qmτ, q). However, if qµ(z) = α−1z then q−µ(z) = αz−1. Therefore,

φm(z) =
(q, q)∞

(qmτ, q)∞

{
αmβ1(z)

(αz−1, q)∞
(−qmτ)[µ(z)+1]/2J

(2)
−µ(z)−1(2i(qmτ)1/2, q)

+
zmβ2(z)

(α−1z, q)∞
(−qmτ)[µ(z)+1]/2J

(2)
µ(z)−1(2i(qmτ)1/2, q)

}
, m ∈ Z+.

3.4 Limiting behaviour

In this subsection we consider the three instances when the Schur parameters an = cαn

are allowed to approach their limiting values, which correspond to known OPUC:
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α = 0 (Lebesgue), c = 1 (Rogers–Szegő) and α = 1 (Geroniums). The first is trivial,
the second relatively straightforward while the third confronts us with the greatest
difficulty.

In the Lebesgue case the pantograph equation (3.1) becomes the (trivial) ODE
Φ′′ = zΦ′ which, in tandem with the initial conditions Φ(0) = 1, Φ′(0) = z, results
in the explicit solution Φ(t, z) = etz. Hence φm(z) = zm – not great surprise here!
To deduce this from directly from the representation (3.11), we note first that in the
current case F (ζ, τ, q) = (1 − τ)−1 is independent of ζ and this implies that also
Hm(ζ, τ, q) = (1 − τ)−1. Therefore, by (3.12), η2(z) ≡ 1 − τ and, α being zero, we
recover φm(z) = zm from (3.11).

3.4.1 Rogers–Szegő polynomials

We recall that the Schur parameters is given by an = αn = (−1)nqn/2, where q ∈ (0, 1),
give raise to the Rogers–Szegő polynomials (Simon 2005), whose explicit form is

φm(z) =

m∑
j=0

(−1)m−j
[
m
j

]
q

q
1
2 (m−j)zj , m ∈ Z+. (3.24)

Setting α = −q1/2 presents absolutely no problems in our analysis, since q = |α|2, is
consistent with the current setting. Thus, we can readily deduce from (3.15) that

F (ζ, qm, q) =
1

(ζ, q)∞(qm, q)∞

∞∑
`=0

(−1)`
[
m+ `− 1

`

]
q

q
1
2 (`−1)`ζ`, m ∈ N.

In particular,

F (ζ, q, q) =
1

(ζ, q)∞(q, q)∞
r(ζ),

F (ζ, q2, q) =
1

(ζ, q)∞(q2, q)∞

∞∑
`=0

(−1)`
1− q`+1

1− q
q

1
2 (`−1)`ζ`

=
1

(ζ, q)∞(q, q)∞
[r(ζ)− qr(qζ)],

where

r(ζ) = G(ζ, q, q) =

∞∑
`=0

(−1)`q
1
2 (`−1)`ζ`

is an entire function of order zero: all of the analysis in Subsection 3.2.2 applies here.
With greater generality, it follows from (Gasper & Rahman 2004, p. 235) that

F (ζ, qm, q) =
1

(ζ, q)∞(q, q)∞

m−1∑
j=0

[
m− 1
j

]
q

q
1
2 j(j+1) r(q

jζ)

r(ζ)
, m ∈ N.

Therefore

Hm(ζ, q, q) =
F (ζ, qm+1, q)

F (ζ, q, q)
=

m∑
j=0

[
m
j

]
q

q
1
2 j(j+1) r(q

jζ)

r(ζ)
. (3.25)
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It can be verified at once by elementary algebra that

r(qζ) =
1− r(ζ)

ζ
, ζ ∈ C,

therefore, by induction,

r(qmζ) = (−1)mq−
1
2 (m−1)mζ−m

[
r(ζ)−

m−1∑
`=0

(−1)`q
1
2 (`−1)`ζ`

]
.

In principle (3.25) can be reformulated employing just r(ζ), but this adds little to our
understanding.

Intriguingly, the function r resembles a Jacobi theta function. Specifically, r(ζ) +

r(ζ−1) = −1 +
∑∞
l=−∞(−1)`q

1
2 (`−1)`ζ`. But, letting p = q1/2, we have

∞∑
`=−∞

(−1)`q
1
2 (`−1)`ζ` = p−1/4

∞∑
`=−∞

(−1)`p(`− 1
2 )2ζ` = p−1/4

∞∑
`=−∞

p(`+ 1
2 )2(−ζ−1)`.

Let z = log(−ζ)/(2i). Then

∞∑
`=−∞

(−1)`q
1
2 (`−1)`ζ` = p−1/4e−izθ2(z, p),

where θ2 is the second Jacobi theta function (Rainville 1960, p. 316). Unfortunately,
this intriguing connection with theta functions does not provide, insofar as we can see,
much insight into Rogers–Szegő polynomials.

Abandoning the theta connection, we substitute (3.25) into (3.11) to recover an
alternative representation of Rogers–Szegő polynomials, substituting (3.25) into

φm(z) = (−1)mqm/2η1(z)Hm(−q1/2z−1, qm+1, q) + zmη2(z)Hm(−q1/2z, qm+1, q),

where η1 and η2 can be also expressed using the form for H1 from (3.25).

3.4.2 Geronimus polynomials

The limiting case α = 1, therefore q = 1, corresponding to Geronimus polynomi-
als, is substantially more complicated, because the q-factorials (q, q)m littering our
denominators, become zero and naive progression to the limit does not work.

We recall that in this case the generating function Φ obeys an ODE with the
explicit solution (3.3). Using the notation therein, we let

%∗+(z) = z%̄+(z−1)

and observe that, conjugation flipping the sign of a square root, it is true that %∗+(z) =
%−(z). Consequently, for Geronimus polynomials,

φm(z) = β+(z)%m+ (z) + β−(z)(%∗+)m(z), m ∈ Z+, (3.26)
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where we recall that

%+(z) =
1

2
[1 + z +

√
(1− z)2 + 4|c|2z].

Our intent is to demonstrate that, as α→ 1, the expression (3.13) tends to (3.26).
This is not a straightforward statement since, as α → 1, so does q and the function
F becomes unbounded. Fortunately the functions F (ζ, qτ, q) and F (ζ, τ, q), at the
numerator and denominator of H1 respectively, blow up at a commensurable rate and
their quotient H1(ζ, τ, q) remains bounded.

Lemma 3.7 Bearing in mind that q = |α|2, it is true that

lim
α→1

H1(α−1z, τ, q) =
%−(z)

z
=
%∗+(z)

z
. (3.27)

Proof Set

R(ζ, τ, q) =
F (qζ, τ, q)

F (ζ, τ, q)

and denote

Ho
1 (z, c) = lim

α→1
H(α−1z, τ, q), Ro(z, c) = lim

α→1
R(α−1z, τ, q).

(Recall that τ = q|c|2). We have

F (ζ, τ, q)− F (ζ, qτ, q) =

∞∑
m=1

τm

(q, q)m−1(ζ, q)m
=

τ

1− ζ

∞∑
m=0

τm

(q, q)m(qζ, q)m

=
τ

1− ζ
F (qζ, τ, q),

while we have already proved in Section 3.3 that

F (ζ, τ, q)− F (qζ, τ, q) =
ζτ

(1− ζ)(1− qτ)
F (q2ζ, τ, q).

Dividing the first identity by F (ζ, τ, q), we have

1−H1(ζ, τ, q) =
τ

1− ζ
× F (qζ, τ, q)

F (ζ, τ, q)
⇒ H1(ζ, τ, q) = 1− τ

1− ζ
R(ζ, τ, q),

while similar division in the second identity yields

1−R(ζ, τ, q) =
ζτ

(1− ζ)(1− qτ)

F (qζ, τ, q)

F (ζ, τ, q)
× F (q2ζ, τ, q)

F (qζ, τ, q)

=
ζτ

(1− ζ)(1− qτ)
R(ζ, τ, q)R(qζ, τ, q).

Letting α→ 1, hence q → 1, ζ → z and τ → |c|2, we obtain the quadratic equation

|c|2zRo2(z, c) + (1− z)2Ro(z, c)− (1− z)2 = 0,
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therefore

Ro(z, c) = − 1− z
2|c|2z

[(1− z)±
√

(1− z)2 + 4|c|2z]

and analyticity at the origin means that we need to take a minus sign inside the square
brackets. Therefore

Ho
1 (z, c) = lim

α→1

[
1− τ

1− ζ
R(ζ, τ, q)

]
= 1− |c|2

1− z
Ro(z, c)

= 1 +
(1− z)−

√
(1− z)2 + 4|c|2z
2z

=
1 + z −

√
(1− z)2 + 4|c|2z

2z
=
%−(z)

z

and the proof follows. 2

Formulæ(3.3) and (3.13) are both linear combinations of two components: for
(3.3) these are powers of %+ and %−. Let us restrict the attention to the curve of
orthogonality, |z| = 1. The functions %± have two brach points, 1−2|c|2±i|c|

√
1− |c|2,

both of unit modulus. Since conjugations flips the sign of a square root, it follows
from (3.27) that

H1(αeiθ, τ, q) = H1(α−1eiθ, τ, q)
α→1−→ e−iθ

2

[
1 + eiθ −

√
(1− e−iθ)2 + 4|c|2

]
= %+(eiθ)

for every θ ∈ [−π, π]. We deduce that

lim
α→1

φm(z) = [ lim
α→1

η1(z)]λm+ (z) + [ lim
α→1

η2(z)]λm− (z), m ∈ Z+.

Although it is possible to prove directly (and messily) that lim
α→1

η1 = β+ and lim
α→1

η2 =

β−, this is not necessary, because η1,2 and β± are determined by the equations

β+(z) + β−(z) = 1, β+(z)%+(z) + β−(z)%−(z) = z + c

and

η1(z) + η2(z) = 1, αH1

(α
z
, τ, q

)
η1(z) + zH1

( z
α
, τ, q

)
η2(z) = z + cα.

Thus, once α → 1, the second set of equations tends to the first, we obtain the right
limits to η1 and η2 and our polynomials indeed converge to Geronimus polynomials.

4 Generating functions and orthogonal polynomials
of the second kind

Given a sequence of OPUC, {φn}, the polynomials defined by the recurrence relation

Ωn(z) = zΩn−1(z)− φn(0)Ω∗n−1(z), n ∈ N,

are the so-called orthogonal polynomials of the second kind corresponding to {φn}.
Note that the underlying sequence of Schur parameters satisfies Ωn(0) = −φn(0),
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n ∈ N. These polynomials also obey the difference equation (1.1), except that the
initial conditions are Ω0(z) ≡ 1, Ω1(z) = z − a1.

Throughout the paper we seek to analyse orthogonal polynomials whose Schur
parameters are given by (1.2). The corresponding sequence of OPUCs of the second
kind, also satisfies the difference equation (1.3), but with the initial conditions

Ω0(z) ≡ 1, Ω1(z) = z − cα.

For the generating function given by

Ξ̃(z, t) =

∞∑
n=0

Ωn(z)tn.

the entire discussion of Section 2 remains valid for the second kind polynomials. How-
ever, due to the different initial conditions, equation (2.2) becomes

Ξ̃(z, t) =

∞∑
m=0

qm
2

(αzt2|c|2)m

(αt, q)m+1(zt, q)m+1
− α(c− 1)t

∞∑
m=0

qm(m+1)(αzt2|c|2)m

(αt, q)m+1(zt, q)m+1
,

while (2.4) for the OPUC of the second kind is given by

Ωm(z) = fm(αz|c|2))− α(c− 1)fm−1(αzq|c|2), m ∈ N,

equivalently by

Ωm(z) =

m∑
k=0

min{k,m−k}∑
`=0

[
k
`

]
q

[
m− k
`

]
q

q`
2

|c|2`αm−kzk (4.1)

− (c− 1)

m−1∑
k=0

min{k,m−k−1}∑
`=0

[
k
`

]
q

[
m− k − 1

`

]
q

q`(`+1)|c|2`αm−kzk.

To recover Geronimus polynomials of the second kind, it is enough to let α→ 1 in
(4.1), whereby

Ωm(z) =

m∑
k=0

min{k,m−k}∑
`=0

(
k

`

)(
m− k
`

)
|c|2`zk

− (c− 1)

m−1∑
k=0

min{k,m−k−1}∑
`=0

(
k

`

)(
m− k − 1

`

)
|c|2`zk.

Note that Ωm(0) = −c as it is required. For the Rogers–Szegő case, the expression
(2.9) remains valid.

For the generating function given by

Φ̃(t, z) =

∞∑
n=0

Ωn(z)

n!
tn,
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the formulas for the OPUC in terms of the corresponding hypergeometric functions,
developed in Section 3, remain equally valid,

φm(z) = αmη̃1(z)

m∏
l=1

H1(αz−1, qlτ, q) + zmη̃2(z)

m∏
l=1

H1(α−1z, qlτ, q),

Ωm(z) = αmη̂1(z)

m∏
l=1

H1(αz−1, qlτ, q) + zmη̂2(z)

m∏
l=1

H1(α−1z, qlτ, q),

where H1((ζ, τ, q) and F (ζ, τ, q) are given by (3.10) and (3.9) respectively,

H1(ζ, τ, q) =
F (ζ, qτ, q)

F (ζ, τ, q)
, F (ζ, τ, q) =

∞∑
m=0

τm

(q, q)m(ζ, q)m
,

and the coefficients η̃1(z), η̃2(z), are

η̃1(z) =
z + cα− zH1(α−1z, τ, q)

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
,

η̃2(z) =
αH1(αz−1, τ, q)− z − cα

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
,

η̂1(z) =
z − cα− zH1(α−1z, τ, q)

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
,

η̂2(z) =
αH1(αz−1, τ, q)− z + cα

αH1(αz−1, τ, q)− zH1(α−1z, τ, q)
,

taking into account the initial conditions Ω0(z) ≡ 1, Ω1(z) = z − cα.
We next extend our analysis to reciprocal polynomials. The analogue of (1.1) for

reciprocal polynomials {un} is

(zān+1 + ān)un(z) = ānun+1(z) + (1− |an|2)ān+1zun−1(z), n ∈ N,

thus for an = cαn, n ∈ N we obtain the recurrence

(ᾱz + 1)un(z) = un+1(z) + (1− |c|2|α|2n)ᾱzun−1(z), n ∈ Z.

Following the ideas developed in Section 3, we consider the generating function

U(t, z) =

∞∑
n=0

un(z)

n!
tn.

Multiplying (1.3) by tn/n! and summing up for n ∈ N results in

(ᾱz+1)

∞∑
n=1

un(z)

n!
tn =

∞∑
n=1

un+1(z)

n!
tn+ ᾱz

∞∑
n=1

un−1(z)

n!
tn− ᾱz|c|2

∞∑
n=1

un−1(z)

n!
|α|2ntn

or, equivalently,

(ᾱz + 1)[U(t)− U(0)] = U ′(t)− U ′(0) + ᾱz

∫ t

0

U(x) dx− ᾱz|c|2
∫ |α|2t

0

U(x) dx.
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Differentiating this expression with respect to t, we obtain a functional differential
equation á la (3.1),

U ′′(t) = (ᾱz + 1)U ′(t)− ᾱzU(t) + ᾱτzU(|α|2t) (4.2)

where q = |α|2, τ = q|c|2 and q, τ ∈ (0, 1), with the initial conditions U(0) = φ∗0(z) = 1,
U ′(0) = φ∗1(z) = c̄ᾱz + 1 for the reciprocal polynomials and U(0) = Ω∗0(z) = 1,
U ′(0) = Ω∗1(z) = −c̄ᾱz + 1 for the reciprocal polynomials of the second kind.

A similar approach to the one developed in Section 3 allows us to state

Theorem 4.1 The generating function can be expressed explicitly in the form

U(t, z) = βi1(z)

∞∑
m=0

τm

(q, q)m((ᾱz)−1, q)m
eq

mt + βi2(z)

∞∑
m=0

τm

(q, q)m(ᾱz, q)m
eᾱzq

mt,

with i = 1, 2 . The coefficients β1
1(z), β1

2(z) are determined by the initial conditions
U(0, z) ≡ 1, ∂U(0, z)/∂t = c̄ᾱz + 1, whereas β2

1(z), β2
2(z) are obtained from the initial

conditions U(0, z) ≡ 1, ∂U(0, z)/∂t = −c̄ᾱz + 1.

As a consequence of Theorem 4.1, we can obtain explicit expressions for the recip-
rocal polynomials and for the reciprocal polynomials of the second kind.

Corollary 4.2 The sequences of reciprocal polynomials (φ∗m), (Ω∗m) can be expressed
in the form

φ∗m(z) = β1
1(z)F ((ᾱz)−1, qmτ, q) + ᾱmzmβ1

2(z)F (ᾱz, qmτ, q)

with β1
1(z), β1

2(z) determined by the conditions φ∗0(z) = 1, φ∗1(z) = c̄ᾱz + 1 and

Ω∗m(z) = β2
1(z)F ((ᾱz)−1, qmτ, q) + ᾱmzmβ2

2(z)F (ᾱz, qmτ, q)

where β2
1(z), β2

2(z) follow from the conditions Ω∗0(z) = 1, Ω∗1(z) = −c̄ᾱz + 1.

Letting

Hm(ζ, τ, q) =
F (ζ, qmτ, q)

F (ζ, τ, q)
,

ηij(z) = βij(z)F (ζ, τ, q) , i, j = 1, 2,

and reformulating the above expressions, we can enunciate the following theorem.

Theorem 4.3 The reciprocal polynomials admit the representation

φ∗m(z) = η1
1(z)

m∏
l=1

H1((ᾱz)−1, qlτ, q) + η1
2(z)ᾱmzm

m∏
l=1

H1(ᾱz, qlτ, q),

Ω∗m(z) = η2
1(z)

m∏
l=1

H1((ᾱz)−1, qlτ, q) + η2
2(z)ᾱmzm

m∏
l=1

H1(ᾱz, qlτ, q),

with the same initial conditions as in Corollary 4.2
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To calculate the coefficients, we impose the initial conditions in the expressions of
Corollary 4.2 to obtain the system

β1
1F ((ᾱz)−1, τ, q) + β1

2F (ᾱz, τ, q) = 1

β1
1F
(
(ᾱz)−1, qτ, q

)
+ ᾱzβ1

2F (ᾱz, qτ, q) = c̄ᾱz + 1,

whose solution is

β1
1(z) =

(1 + c̄ᾱ)F (ᾱz, τ, q)− ᾱzF (ᾱz, qτ, q)

F (ᾱz, τ, q)F ((ᾱz)−1, qτ, q)− ᾱzF (ᾱz, qτ, q)F ((ᾱz)−1, τ, q)
,

β1
2(z) =

(1 + c̄ᾱz)F ((ᾱz)−1, τ, q)− F ((ᾱz)−1, qτ, q)

F (ᾱz, τ, q)F ((ᾱz)−1, qτ, q)− ᾱzF (ᾱz, qτ, q)F ((ᾱz)−1, τ, q)
.

Analogously, the system

β2
1F ((ᾱz)−1, τ, q) + β2

2F (ᾱz, τ, q) = 1

β2
1F
(
(ᾱz)−1, qτ, q

)
+ ᾱzβ2

2F (ᾱz, qτ, q) = −c̄ᾱz + 1

is solved by

β2
1(z) =

(1− c̄ᾱ)F (ᾱz, τ, q)− ᾱzF (ᾱz, qτ, q)

F (ᾱz, τ, q)F ((ᾱz)−1, qτ, q)− ᾱzF (ᾱz, qτ, q)F ((ᾱz)−1, τ, q)
,

β2
2(z) =

(1− c̄ᾱz)F ((ᾱz)−1, τ, q)− F ((ᾱz)−1, qτ, q)

F (ᾱz, τ, q)F ((ᾱz)−1, qτ, q)− ᾱzF (ᾱz, qτ, q)F ((ᾱz)−1, τ, q)
.

Concerning to the expressions of reciprocal polynomials given by Theorem 4.3,
imposition of the initial conditions results in the following representation for the co-
efficients,

η1
1(z) =

ᾱzH1 (ᾱz, qτ, q)− c̄ᾱz − 1

ᾱzH1 (ᾱz, qτ, q)−H1 ((ᾱz)−1, qτ, q)
,

η1
2(z) =

c̄ᾱz + 1−H1

(
(ᾱz)−1, qτ, q

)
ᾱzH1 (ᾱz, qτ, q)−H1 ((ᾱz)−1, qτ, q)

and

η2
1(z) =

ᾱzH1 (ᾱz, qτ, q) + c̄ᾱz − 1

ᾱzH1 (ᾱz, qτ, q)−H1 ((ᾱz)−1, qτ, q)
,

η2
2(z) =

−c̄ᾱz + 1−H1

(
(ᾱz)−1, qτ, q

)
ᾱzH1 (ᾱz, qτ, q)−H1 ((ᾱz)−1, qτ, q)

.

5 The Carathéodory function

An analytic function F in the open unit disk D is called a Carathéodory function if
F (0) = 1 and ReF (z) > 0 on D. Such functions play a major role in the theory of
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OPUC (Simon 2005). In fact, the coefficients of its Maclaurin series

F(z) = 1 + 2

∞∑
n=1

µ−nz
n, |z| < 1,

provide the moments {µn} of the orthogonality measure µ. At the same time, such
measure has a decomposition

dµ(eiθ) = ω(θ)
dθ

2π
+ µs(e

iθ),

where
ω(θ) = lim

r↑1
ReF(reiθ),

and the support of the singular part µs lies on the set

{eiθ : lim
r↑1
F(reiθ) =∞}.

In particular, eiθ0 is a mass point of µ with the mass µ({eiθ0}) if and only if

µ
(
{eiθ0}

)
= lim

r↑1

1− r
2
F
(
reiθ0

)
6= 0. (5.1)

In our case |α| < 1 implies that the Schur parameters are `2-bounded, and this implies
that there is no singular part of µ (Simon 2005, p. 4).

Furthermore, given a sequence of OPUC {φn} and its corresponding polynomials of
the second kind {Ωn}, the link between the Carathéodory functions and the sequences
of OPUCs rests upon the equality

F(z) = lim
m→∞

Ω∗m(z)

φ∗m(z)
, (5.2)

(Peherstorfer & Steinbauer 1995, Simon 2005), where φ∗m and Ω∗m are the reciprocal
polynomials of φm and Ωm, respectively.

We seek to obtain the Carathéodory function corresponding to the sequence of
OPUCs studied in the paper. To this end we use (5.2) with φ∗m, Ω∗m given by Corollary
4.2 , or equivalently, by Theorem 4.3 . Using Corollary 4.2 and taking into account
the properties of the function F (ζ, qτ, q), we have

F(z) = lim
m→∞

Ω∗m(z)

φ∗m(z)
(5.3)

= lim
m→∞

(
β2

1(z)F ((ᾱz)−1, qmτ, q) + ᾱmzmβ2
2(z)F (ᾱz, qmτ, q)

β1
1(z)F ((ᾱz)−1, qmτ, q) + ᾱmzmβ1

2(z)F (ᾱz, qmτ, q)

)
=

(1− c̄ᾱ)F (ᾱz, τ, q)− ᾱzF (ᾱz, qτ, q)

(1 + c̄ᾱ)F (ᾱz, τ, q)− ᾱzF (ᾱz, qτ, q)
.

As a reality check, applying Theorem 4.3,

F(z) = lim
m→∞

Ω∗m(z)

φ∗m(z)
(5.4)
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= lim
m→∞

(
η2

1(z)H1((ᾱz)−1, qmτ, q) + ᾱmzmη2
2(z)H1(ᾱz, qmτ, q)

η1
1(z)H1((ᾱz)−1, qmτ, q) + ᾱmzmη1

2(z)H1(ᾱz, qmτ, q)

)
=
ᾱzH1 (ᾱz, qτ, q) + c̄ᾱz − 1

ᾱzH1 (ᾱz, qτ, q)− c̄ᾱz − 1

which can be obtained directly from (5.3) dividing the numerator and denominator by
F (ᾱz, τ, q).

The two expressions for F have complementary advantages. While (5.3), express-
ing F by its definition (3.9), lends itself more easily to computation for all values of
|α|, |c| < 1, the expression (5.4) is more conducive to expansion of F into series in z.
The reason is that, substitituing (3.15) into (3.10), we can write H1 in the form

H1(ζ, τ, q) =

∞∑
m=0

(τ, q)m+1

(q, q)m
q

1
2 (m−1)m(−ζ)m

∞∑
m=0

(τ, q)m
(q, q)m

q
1
2 (m−1)m(−ζ)m

, (5.5)

with the term (ζ, q)∞ (problematic in both expansion into series and computation for
0 � |q| < 1) gone. Substitution of (5.5) into (5.4), letting q = |α|2, τ = |αc|2 and
expansion into series with Maple yield the McLaurin expansion of F ,

F(z) = 1− 2c̄(ᾱz)− 2c̄[(1− c̄)− |c|2|α|4](ᾱz)2 − 2c̄[(1− c̄)2 + 2|c|2c̄+ 2|α|4

− 3|α|4|c|2 + 2|α|8|c|4](ᾱz)3 − 2c̄[(1− c̄)3 − 6|α|4|c|2 − 3|α|4|c|2c̄2

+ |α|4|c|2(8− 5|α|4|c|2)c̄+ |α|8(9 + |α|2)|c|4 − |α|12(4 + |α|2)|c|6](ᾱz)4 + · · ·

Therefore

µ−1 = −c̄ᾱ,
µ−2 = −c̄[(1− c̄)− |c|2|α|4]ᾱ2,

µ−3 = −c̄[(1− c̄)2 + 2|c|2|α|4c̄+ 2|α|4 − 3|α|4|c|2 + 2|α|8|c|4]ᾱz3,

µ−4 = −c̄[(1− c̄)3 − 6|α|4|c|2 − 3|α|4|c|2c̄2 + |α|4|c|2(8− 5|α|4|c|2)c̄

+ |α|8(9 + |α|2)|c|4 − |α|12(4 + |α|2)|c|6]ᾱ4

and so on. Long calculation demonstrates that for |αc| < 1, |α(1− c)| < 1

F(z) = 1− 2c̄ᾱz

1− (1− c̄)ᾱz
+

2c̄|c|2|α|4(ᾱz)2

(1− ᾱz)3
− 4c̄2|c|2|α|4(ᾱz)3

(1− ᾱz)4

− 2c̄|c|4|α|8[2− (ᾱz)2](ᾱz)3

(1− ᾱz)5
+O

(
|c|5|α|12|z|4

)
.

The above expressions for the Carathéodory function provide the absolutely con-
tinuous part of the orthogonality measure

ωα,c(θ) = lim
r↑1

Re (F(reiθ) = ReG(ᾱeiθ, |α|, c), (5.6)
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where F(z) = G(ᾱz, |α|, c) and we let ω = ωα,c to emphasise its dependence on the
two parameters: note that in both (5.3) and (5.4) each z is always multiplied by ᾱ,
any instance of α which does not appear in the product ᾱz features as an absolute
value (cf. (5.5)) and, subject to |αc| < 1, |α(1 − c)| < 1, F is bounded for |z| = 1.
The latter fact implies that the singular part, of ω which is supported in the set
{eiθ : limr↑1 F(reiθ) = ∞}, is empty. Finally, replacing α by αeiψ merely shifts
periodically ω(θ) to ω(θ − ψ), hence we can focus entirely on the case α ∈ (0, 1).

Figure 5.1: The measure ω for α = 1
5 (solid line), α = 2

5 (dash line), α = 3
5 (dotted

line) and α = 4
5 (dash-dot line) for different values of c.

In Fig. 5.1 we demonstrate four instances of the measure ω from (5.6). Note that
we do it always for α ∈ (0, 1) for reasons that we have elucidated in the previous
paragraph. We present in each plot four different functions ω, for α ∈ { 1

5 ,
2
5 ,

3
5 ,

4
5}.

(Recall that replacing α > 0 by αeiψ merely shifts ω by −ψ.) In the left column
we display the plots for positive values of c. For small α the measure is fairly flat
(not a big surprise, since α = 0 corresponds to ω ≡ 1) but, as α grows, we obtain
more interesting shapes. In particular, once α nears 1, the plot is increasingly near
the origin in the middle of the range: this is consistent with the case α = 1, the
Geronimus polynomials, of which more later. The top right plot corresponds to a
complex value c = − 1

2 i. The plot is no longer symmetric with respect to the origin. In
the bottom left corner c is near 1, the case of Rogers–Szegő polynomials – except that
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for the latter α < 0 which (as we have already discussed) corresponds to a shift of the
argument of ω by π. We obtain curves which are fully consistent with the “wrapped
Gaussian” weight function of Rogers–Szegő polynomials (Simon 2005, p. 77). Finally,
in the right bottom corner we have c = − 1

4 , whose measure increasingly resembles a
Gaussian curve sharply peaked at the origin. Since H1 depends upon |c|, rather than
c itself, it follows from (5.4) that

G(z, α,−c) =
1

G(z, α, c)
.

Therefore
ωα,−c(θ) = ωα,c(−θ)/|G(eiθ, α, c)|2, |θ| ≤ π. (5.7)

Fig. 5.2 demonstrates this behaviour.

Figure 5.2: From the left: 1/|G(eiθ, 4
5 ,

1
2 )|2, ω 4

5 ,
1
2
(θ) and ω 4

5 ,−
1
2
(θ). The rightmost

curve is the product of the other two.

While in Fig. 5.1 the parameter c is fixed and α varies in each plot, the situation
is reversed in Fig. 5.3. Here in each plot α is fixed and c is allowed to vary. We note
that, once α < 1 is large, the measure is very small in a large portion of the range.
This is only to be expected since, as α→ 1, we obtain Geronimus polynomials, whose
measure vanishes for |θ| ≤ arccos(1− 2|c|2).1

For the degree one Bernstein–Szegő polynomials (Simon 2005, p. 72) with Schur
parameters a1 = c, an = 0 for all n ≥ 2, we recover the expression of the Carathéodory
function from (5.3) taking into account that the corresponding sequences of OPUC
and their reciprocal counterparts are

φn(z) = zn + czn−1, Ωn(z) = zn − czn−1,

φ∗n(z) = cz + 1, Ω∗n(z) = −c̄z + 1.

Although the direct computation of the Carathéodory function is fairly straight-

1Geronimus polynomials have a nonzero singular measure, but this is not the case for |α| < 1,
since, by our analysis, F is bounded for |z| = 1.
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Figure 5.3: The measure ω for c = 1
4 (solid line), c = 1

2 (dash line), c = 3
4 (dotted

line) and c = 1 (dash-dot line) for different values of c.

forward for the Bernstein–Szegő polynomials, corresponding to the Schur parameters

an =


1, n = 0,

d, n = 1,

0, n ≥ 2,

as a reality check we verify that it forms a limiting case of our polynomials as α→ 0
and cα→ d, |d| < 1. Since in that case H1 → 0, we have

F(z) =
zH1 (z, qτ, q) + d̄z − 1

zH1 (z, qτ, q)− d̄z − 1
=

1− d̄z
1 + d̄z

,

the correct expression (Simon 2005, p. 85).
Next we recover the Carathéodory function corresponding to the Geronimus poly-

nomials. We recall that in this case α = 1, hence q = 1, τ = |c|2 and the generating
function obeys an ODE

Φ′′(t)− (1 + z)Φ′(t) + (1− |c|2)zΦ(t) = 0, t ≥ 0, Φ(0) = 1, Φ′(0) = z + c,
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whose solution gives the known representation of Geronimus polynomials,

φn(z) = β+(z)ρ+(z)n + β−(z)ρ−(z)n,

where

%±(z) =
1 + z ±

√
(1− z)2 + 4|c|2z

2
, β±(z) =

1

2
∓ (1− z)− 2c√

(1− z)2 + 4|c|2z
.

If, instead, we impose the initial conditions Φ(0) = 1, Φ′(0) = z − c. the outcome is
Geronimus polynomials of the second kind. while letting Φ(0) = 1, Φ′(0) = c̄z+1 and
Φ(0) = 1, Φ′(0) = −c̄z + 1 results in the reciprocal polynomials.

Using (5.4), and the properties of the function H1(ζ, · , · ) developed in Subsection
3.2, after straightforward computation the Carathéodory function can be written in
the form

F(z) =
%−(z) + c̄z − 1

%−(z)− c̄z − 1
=
−1 + (2c̄+ 1)z −

√
(1− z)2 + 4|c|2z

−1− (2c̄− 1)z −
√

(1− z)2 + 4|c|2z

=
c̄z + c−

√
(1− z)2 + 4|c|2z

(1− c̄)z + c− 1
,

which is the right expression (see (Geronimus 1961, p. 158)).
Finally, we recall that ω = ωα,c obeys (5.6). Therefore, formalising our earlier

argument,
ωα,c(θ) = ReG(|α|ei(θ−argα), |α|, c) = ω|α|,c(θ − argα).

Let c = |c|eiκ. Recall that the second and third arguments of H1 depend only on the
nonnegative numbers |α| and |c|, because q = |α|2 and τ = |αc|2. Therefore, using
(5.4),

G(z, α, c) =
ᾱzH1 + e−iκ|c|ᾱz − 1

ᾱzH1 − e−iκ|c|ᾱz − 1

=
(ᾱzH1 + e−iκ|c|ᾱz − 1)(αz̄H̄1 − eiκ|c|αz̄ − 1)

|ᾱzH1 − e−iκ|c|ᾱz − 1|2

=
|α|2|H1|2 − 2Re (ᾱzH1)− |αc|2 + 1

|ᾱzH1 − e−iκ|c|ᾱz − 1|2
− 2|c|i Im

eiκ(|α|2H1 − αz̄)
|ᾱzH1 − e−iκ|c|ᾱz − 1|2

.

Therefore

ωα,c(θ) =

∣∣∣∣ ᾱeiθH1 + |c|ᾱeiθ − 1

ᾱeiθH1 + |c|ᾱei(θ−arg c) − 1

∣∣∣∣2 ωα,|c|(θ)
=

∣∣∣∣ |α|ei(θ−argα)(H1 + |c|)− 1

|α|ei(θ−argα)(H1 + c̄)− 1

∣∣∣∣2 ω|α|,|c|(θ − argα). (5.8)

This connection between the values of the measure for real and complex values of α
and c might be useful. In particular, it is easy, using (5.4), to prove that (5.7) is a
special case of (5.8).
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