
DAMTP 2014/NA02

On fast trust region methods for quadratic models

with linear constraints

M.J.D. Powell

Abstract: Quadratic models Qk(x), x ∈ Rn, of the objective function F (x),
x∈Rn, are used by many successful iterative algorithms for minimization, where
k is the iteration number. Given the vector of variables xk ∈ Rn, a new vector
xk+1 may be calculated that satisfies Qk(xk+1) < Qk(xk), in the hope that it
provides the reduction F (xk+1)<F (xk). Trust region methods include a bound
of the form ‖xk+1−xk‖ ≤ ∆k. Also we allow general linear constraints on the
variables that have to hold at xk and at xk+1. We consider the construction
of xk+1, using only of magnitude n2 operations on a typical iteration when n is
large. The linear constraints are treated by active sets, which may be updated
during an iteration, and which decrease the number of degrees of freedom in
the variables temporarily, by restricting x to an affine subset of Rn. Conjugate
gradient and Krylov subspace methods are addressed for adjusting the reduced
variables, but the resultant steps are expressed in terms of the original variables.
Termination conditions are given that are intended to combine suitable reductions
in Qk(·) with a sufficiently small number of steps. The reason for our work is that
xk+1 is required in the LINCOA software of the author, which is designed for
linearly constrained optimization without derivatives when there are hundreds of
variables. Our studies go beyond the final version of LINCOA, however, which
employs conjugate gradients with termination at the trust region boundary. In
particular, we find that, if an active set is updated at a point that is not the
trust region centre, then the Krylov method may terminate too early due to a
degeneracy. An extension to the conjugate gradient method for searching round
the trust region boundary receives attention too, but it was also rejected from
LINCOA, because of poor numerical results. The given techniques of LINCOA
seem to be adequate in practice.

Keywords: Conjugate gradients; Krylov subspaces; Linear constraints; Quadratic
models; Trust region methods.

Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences,
Wilberforce Road,
Cambridge CB3 0WA,
England.

August, 2014

1. Introduction

Let an iterative algorithm be applied to seek the least value of a general objective
function F (x), x∈Rn, subject to the linear constraints

aTj x ≤ bj, j=1, 2, . . . ,m, (1.1)

the value m= 0 being reserved for the unconstrained case. We assume that, for
any vector of variables x ∈Rn, the function value F (x) can be calculated. The
vectors x of these calculations are generated automatically by the algorithm after
some preliminary work. A feasible point x1 with F (x1) are required for the first
iteration, where feasible means that the constraints (1.1) are satisfied. For every
iteration number k, we define xk to be the point that, at the start of the k-th
iteration, has supplied the least calculated value of the objective function so far,
subject to xk being feasible. If this point is not unique, we choose the candidate
that occurs first, so xk+1 6=xk implies the strict reduction F (xk+1)<F (xk).

The main task of the k-th iteration is to pick a new vector of variables, x+k
say, or to decide that the sequence of iterations is complete. On some iterations,
x+k may be infeasible, in order to investigate changes to the objective function
when moving away from a constraint boundary, an extreme case being when
the boundary is the set of points that satisfy a linear equality constraint that is
expressed as two linear inequalities. We restrict attention, however, to an iteration
that makes x+k feasible, and that tries to achieve the reduction F (x+k)<F (xk). We
also restrict attention to algorithms that employ a quadratic model Qk(x)≈F (x),
x∈Rn, and a trust region radius ∆k>0.

We let the model function of the k-th iteration be the quadratic

Qk(x) = F (xk) + (x−xk)Tg
k

+ 1
2

(x−xk)THk (x−xk), x∈Rn, (1.2)

the vector g
k
∈Rn and the n×n symmetric matrix Hk being chosen before the

start of the iteration. The trust region radius ∆k is also chosen in advance. The
ideal vector x+k would be the vector x that minimizes Qk(x) subject to the linear
constraints (1.1) and the trust region bound

‖x− xk‖ ≤ ∆k. (1.3)

The purpose of our work, however, is to generate a vector x+k that is a useful
approximation to this ideal vector, and whose construction requires only O(n2)
operations on most iterations. This is done by the LINCOA Fortran software,
developed by the author for linearly constrained optimization when derivatives of
F (x), x∈Rn, are not available. LINCOA has been applied successfully to several
test problems that have hundreds of variables without taking advantage of any
sparsity, which would not be practicable if the average amount of work on each
iteration were O(n3), this amount of computation being typical if an accurate
approximation to the ideal vector is required.

When first derivatives of F are calculated, the choice g
k

= ∇F (xk) is usual
for the model function (1.2). Furthermore, after choosing the second derivative

2

matrix H1 for the first iteration, the k-th iteration may construct Hk+1 from Hk

by the symmetric Broyden formula (see equation (3.6.5) of Fletcher, 1987, for
instance). There is also a version of that formula for derivative-free optimization
(Powell, 2004). It generates both g

k+1
and Hk+1 from g

k
and Hk by minimizing

‖Hk+1−Hk‖F subject to some interpolation conditions, where the subscript “F”
denotes the Frobenius matrix norm. The techniques that provide g

k
, Hk and ∆k

are separate from our work, however, except for one feature. It is that, instead of
requiring Hk to be available explicitly, we assume that, for any v∈Rn, the form
of Hk allows the matrix vector product Hk v to be calculated in O(n2) operations.
Thus our work is relevant to the LINCOA Fortran software, where the expression
for Hk includes a linear combination of about 2n+1 outer products of the form
y yT , y∈Rn.

Table 4 of Powell (2013) gives some numerical results, on the efficiency of the
symmetric Broyden formula in derivative-free unconstrained optimization when
F is a strictly convex quadratic function. In all of these tests, the optimal vector
of variables is calculated to high accuracy, using only about O(n) values of F for
large n, which shows that the updating formula is successful at capturing enough
second derivative information to provide fast convergence. There is no need for
‖Hk−∇2F (xk)‖ to become small, as explained by Broyden, Dennis and Moré
(1973) when ∇F is available. In the tests of Powell (2013) with a quadratic F ,
every initial matrix H1 satisfies ‖H1−∇2F‖F > 1

2
‖∇2F‖F . Further, although the

sequence ‖Hk−∇2F‖F , k= 1, 2, . . . , K, decreases monotonically, where K is the
final value of k, the property

‖HK −∇2F ‖F > 0.9 ‖H1 −∇2F ‖F (1.4)

is not unusual when n is large.
Therefore the setting for our choice of x+k is that we seek a vector x that

provides a relatively small value of Qk(x) subject to the constraints (1.1) and (1.3),
although we expect the accuracy of the approximation Qk(x)≈F (x), x∈Rn, to
be poor. After choosing x+k , the value F (x+k) is calculated usually, and then, in
derivative-free optimization, the next quadratic model satisfies the equation

Qk+1(x
+
k) = F (x+k), (1.5)

even if x+k is not the best vector of variables so far. Thus, if |Qk(x+k)−F (x+k)| is
large, then Qk+1 is substantially different from Qk. Fortunately, the symmetric
Broyden formula has the property that, if F is quadratic, then ‖Hk+1−Hk‖ tends
to zero as k becomes large, so it is usual on the later iterations for the error
|Qk(x+k)−F (x+k)| to be much less than a typical error |Qk(x)−F (x)|, ‖x−xk‖≤∆k.
Thus the reduction F (x+k)<F (xk) is inherited from Qk(x+k)<Qk(xk) much more
often than would be predicted by theoretical analysis, if the theory employed a
bound on |Qk(x+k)−F (x+k)| that is derived only from the errors ‖g

k
−∇F (xk)‖ and

‖Hk−∇2F (xk)‖, assuming that F is twice differentiable.
Suitable ways of choosing x+k in the unconstrained case (m=0) are described

by Conn, Gould and Toint (2000) and by Powell (2006), for instance. They

3

are addressed in Section 2, where both truncated conjugate gradient and Krylov
subspace methods receive attention. They are pertinent to our techniques for
linear constraints (m>0), because, as explained in Section 3, active set methods
are employed. Those methods generate sequences of unconstrained problems,
some of the constraints (1.1) being satisfied as equations, which can reduce the
number of variables, while the other constraints (1.1) are ignored temporarily.
The idea of combining active set methods with Krylov subspaces is considered in
Section 4. It was attractive to the author during the early development of the
LINCOA software, but two severe disadvantages of this approach are exposed in
Section 4. The present version of LINCOA combines active set methods with
truncated conjugate gradients, which is the subject of Section 5. The conjugate
gradient calculations are complete if they generate a vector x on the boundary
of the trust region constraint (1.3), but moves round this boundary that preserve
feasibility may provide a useful reduction in the value of Qk(x). This possibility is
studied in Section 6. Some further remarks, including a technique for preserving
feasibility when applying the Krylov method, are given in Section 7.

2. The unconstrained case

There are no linear constraints on the variables throughout this section, m being
zero in expression (1.1). We consider truncated conjugate gradient and Krylov
subspace methods for constructing a point x+k at which the quadratic model Qk(x),
‖x−xk‖ ≤ ∆k, is relatively small. These methods are iterative, a sequence of
points p

`
, `= 1, 2, . . . , L, being generated, with p

1
= xk, with Qk(p

`+1
)<Qk(p

`
),

`= 1, 2, . . . , L−1, and with x+k = p
L
. The main difference between them is that

the conjugate gradient iterations are terminated if the `-th iteration generates a
point p

`+1
that satisfies ‖p

`+1
−xk‖=∆k, but both p

`
and p

`+1
may be on the trust

region boundary in a Krylov subspace iteration. The second derivative matrix Hk

of the quadratic model (1.2) is allowed to be indefinite. We keep in mind that we
would like the total amount of computation for each k to be O(n2).

If the gradient g
k

of the model (1.2) were zero, then, instead of investigating
whether Hk has any negative eigenvalues, we would abandon the search for a
vector x+k that provides Qk(x+k) < Qk(xk). In this case LINCOA would try to
improve the model by changing one of its interpolation conditions. We assume
throughout this section, however, that g

k
is nonzero.

The first iteration (`=1) of both the conjugate gradient and Krylov subspace
methods picks the vector

p
2

= p
1
− α1 gk = xk − α1 gk, (2.1)

where α1 is the value of α that minimizes the quadratic function of one variable
Qk(p

1
−αg

k
), α∈R, subject to ‖p

1
−αg

k
−xk‖≤∆k. Further, whenever a conjugate

4

gradient iteration generates p
`+1

from p
`
, a line search from p

`
along the direction

d` =

 −g
k
, `=1,

−∇Qk(p
`
) + β` d`−1, `≥2,

(2.2)

is made, the value of β` being defined by the conjugacy condition dT
` Hk d`−1 = 0.

Thus p
`+1

is the vector

p
`+1

= p
`

+ α` d`, (2.3)

where α` is the value of α that minimizes Qk(p
`
+αd`), α∈R, subject to the bound

‖p
`
+αd`−xk‖≤∆k. This procedure is well-defined, provided it is terminated if

‖p
`+1
−xk‖ = ∆k or ∇Qk(p

`+1
) = 0 occurs. In theory, these conditions provide

termination after at most n iterations (see Fletcher, 1987, for instance).
The only task of a conjugate gradient iteration that requires O(n2) operations

is the calculation of the product Hk d`. All of the other tasks of the `-th iteration
can be done in only O(n) operations, by taking advantage of the availability of
Hk d`−1 when ∇Qk(p

`
), β` and d` are formed. Therefore the target of O(n2) work

for each k is maintained if L, the final value of `, is bounded above by a number
that is independent of both k and n. Further, because the total work of the
optimization algorithm depends on the average value of L over k, a few large
values of L may be tolerable.

The two termination conditions that have been mentioned are not suitable
for keeping L small. Indeed, if Hk is positive definite, then, for every `≥ 1, the
property Qk(p

`+1
) < Qk(xk) implies ‖p

`+1
−xk‖ < ∆k for sufficiently large ∆k.

Furthermore, if ∇Qk(p
`+1

)=0 is achieved in exact arithmetic, then ` may have to

be close to n, but it is usual for computer rounding errors to prevent ∇Qk(p
`+1

)
from becoming zero. Instead, the termination conditions of LINCOA, which are
described below, are recommended for use in practice. They require a positive
constant η1<1 to be prescribed, the LINCOA value being η1 =0.01.

Termination occurs immediately with x+k = p
`

if the calculated d` is not a
descent direction, which is the condition

dT
` ∇Qk(p

`
) ≥ 0. (2.4)

Otherwise, the positive steplength α̂`, say, that puts p
`
+α̂` d` on the trust region

boundary is found, and termination occurs also with x+k = p
`

if this move is
expected to give a relatively small reduction in Qk(·), which is the test

α̂` |dT
` ∇Qk(p

`
)| ≤ η1 {Qk(xk)−Qk(p

`
)}. (2.5)

In the usual situation, when both inequalities (2.4) and (2.5) fail, the product
Hk d` is generated for the construction of the new point (2.3). The calculation
ends with x+k =p

`+1
if p

`+1
is on the trust region boundary, or if the reduction in

Qk by the `-th iteration has the property

Qk(p
`
)−Qk(p

`+1
) ≤ η1 {Qk(xk)−Qk(p

`+1
)}. (2.6)

5

It also ends in the case `=n, which is unlikely unless n is small. In all other cases,
` is increased by one for the next conjugate gradient iteration.

Condition (2.4) is equivalent to ∇Qk(p
`
) = 0 in exact arithmetic, because, if

∇Qk(p
`
) is nonzero, then the given choices of p

`
and d` give the property

dT
` ∇Qk(p

`
) = −‖∇Qk(p

`
)‖2 < 0, (2.7)

the vector norm being Euclidean. The requirement dT
` ∇Qk(p

`
)< 0 before α` is

calculated provides α` > 0. For ` ≥ 2, the test (2.5) causes termination when
‖∇Qk(p

`
)‖ is small. Specifically, as ‖p

`
−xk‖<∆k and ‖p

`
+α̂` d`−xk‖=∆k imply

‖α̂` d`‖<2∆k, we deduce from the Cauchy–Schwarz inequality that condition (2.5)
holds in the case

‖∇Qk(p
`
)‖ ≤ η1 {Qk(xk)−Qk(p

`
)} / (2∆k). (2.8)

The test (2.6) gives L= `+1 and x+k = p
`+1

when Qk(p
`
)−Qk(p

`+1
) is relatively

small. We find in Section 5 that the given conditions for termination are also
useful for search directions d` that satisfy linear constraints on the variables.

In the remainder of this section, we consider a Krylov subspace method for
calculating x+k from xk, where k is any positive integer such that the gradient g

k
of the model (1.2) is nonzero. For `≥1, the Krylov subspace K` is defined to be
the span of the vectors Hj−1

k g
k
∈Rn, j = 1, 2, . . . , `, the matrix Hj−1

k being the
(j−1)-th power of Hk =∇2Qk, and H0

k being the unit matrix even if Hk is zero. Let
`∗ be the greatest integer ` such that K` has dimension `, which implies K` =K`∗ ,
`≥ `∗. We retain p

1
=xk. The `-th iteration of our method constructs p

`+1
, and

the number of iterations is at most `∗. Our choice of p
`+1

is a highly accurate

estimate of the vector x that minimizes Qk(x), subject to ‖x−xk‖ ≤ ∆k and
subject to the condition that x−xk is in K`. We find later in this section that the
calculation of p

`+1
for each ` requires only O(n2) operations. An introduction to

Krylov subspace methods is given by Conn, Gould and Toint (2000), for instance.
It is well known that each p

`+1
of the conjugate gradient method has the

property that p
`+1
−xk is in the Krylov subspace K`, which can be deduced by

induction from equations (2.2) and (2.3). It is also well known that the search
directions of the conjugate gradient method satisfy dT

` Hk dj = 0, 1 ≤ j < `. It
follows that the points p

`
, ` = 1, 2, 3, . . ., of the conjugate gradient and Krylov

subspace methods are the same while they are strictly inside the trust region
{x : ‖x−xk‖≤∆k}. We recall that the conjugate gradient method is terminated
when its p

`+1
is on the trust region boundary, but the iterations of the Krylov

subspace method may continue, in order to provide a smaller value of Qk(x+k).
Our Krylov subspace method has a standard form with termination conditions

for use in practice. For `= 1, 2, . . . , `∗, we let v` be a vector of unit length in K`

that, for `≥2, satisfies the orthogonality conditions

vT` d = 0, d∈K`−1, (2.9)

6

which defines every v` except its sign. Thus {vj : j=1, 2, . . . , `} is an orthonormal
basis of K`. Further, because Hkvj is in the subspace Kj+1, the conditions (2.9)
provide the highly useful property

vT` Hk vj = 0, 1≤j≤ `−2. (2.10)

The usual way of constructing v`, ` ≥ 2, is described below. It is extended in
Section 4 to calculations with linear constraints on the variables.

After setting p
1
=xk, the vector p

2
of our Krylov subspace method is given by

equation (2.1) as mentioned already. For `≥2, we write p
`+1

as the sum

p
`+1

= xk +
∑`

i=1 θi vi. (2.11)

Therefore, assuming that every vector norm is Euclidean, we seek the vector of
coefficients θ∈R` that minimizes the quadratic function

Φk`(θ) = Qk(xk +
∑`

i=1 θi vi), θ∈R`, (2.12)

subject to ‖θ‖≤∆k. This function has the second derivatives

d 2Φk`(θ) / dθi dθj = vTiHk vj, 1≤ i, j≤`, (2.13)

and equation (2.10) shows that the matrix ∇2Φk`(·) is tridiagonal. Moreover,
the gradient ∇Φk`(0) has the components vTi gk, i = 1, 2, . . . , `, so only the first
component is nonzero, its value being ±‖g

k
‖. Hence, after forming the tridiagonal

part of ∇2Φk`(·), the required θ can be calculated accurately, conveniently and
rapidly by the algorithm of Moré and Sorensen (1983).

At the beginning of the `-th iteration of our Krylov subspace method, where
`≥2, the vectors vi, i=1, 2, . . . , `−1, are available, with the tridiagonal part of the
second derivative matrix ∇2Φk`−1(·), its last diagonal element being vT`−1Hkv`−1,
so the product Hkv`−1 has been calculated already. A condition for termination at
this stage is suggested in the next paragraph. If it fails, then the Arnoldi formula

v` =
Hk v`−1 −

∑`−1
j=1 (vTjHk v`−1) vj

‖Hk v`−1 −
∑`−1

j=1 (vTjHk v`−1) vj ‖
(2.14)

is applied, the amount of work being only O(n), because equation (2.10) provides
vTjHkv`−1 =0, j≤ −̀3. The calculation of Hkv` requiresO(n2) operations, however,
which is needed for the second derivatives vT`−1Hkv` and vT`Hkv`. Then p

`+1
is

generated by the method of the previous paragraph, followed by termination with
x+k = p

`+1
if inequality (2.6) is satisfied. Otherwise, ` is increased by one for the

next iteration.
The left hand side of the test (2.5) is the reduction that occurs in the linear

function
Λk`(x) = Qk(p

`
) + (x−p

`
)T∇Qk(p

`
), x∈Rn, (2.15)

7

if a step is taken from p
`

along the direction d` to the trust region boundary. For
Krylov subspace methods, we replace that left hand side by the greatest reduction
that can be achieved in Λk`(·) by any step from p

`
to the trust region boundary.

We see that this step is to the point

p̂
`+1

= xk −∆k∇Qk(p
`
) / ‖∇Qk(p

`
)‖, (2.16)

assuming ∇Qk(p
`
) 6=0, so inequality (2.5) becomes the termination condition

(p
`
−p̂

`+1
)T∇Qk(p

`
) ≤ η1 {Qk(xk)−Qk(p

`
) }, (2.17)

which is the test

∆k ‖∇Qk(p
`
)‖ − (xk− p`)

T ∇Qk(p
`
) ≤ η1 {Qk(xk)−Qk(p

`
) }. (2.18)

If it is satisfied, then, instead of forming v` and ∇2Φk`(·) for the calculation of
p
`+1

, the choice x+k =p
`

is made, which completes the Krylov subspace iterations.

The vectors p
`

and ∇Qk(p
`
) are required for the termination condition (2.18)

when `≥2. The construction of p
`

provides the parameters γi, say, of the sum

p
`

= xk +
∑`−1

i=1 γi vi, (2.19)

which corresponds to equation (2.11), and we retain the vectors vi, i=1, 2, . . . , −̀1.
Further, the quadratic function (1.2) has the gradient

∇Qk(p
`
) = g

k
+
∑`−1

i=1 γiHk vi, (2.20)

but we prefer not to store Hk vi, i = 1, 2, . . . , `−2. Instead, because Hk vi is in
the space Ki+1, and because any vector in K`−1 is unchanged if it is multiplied by∑`−1

j=1 vj v
T
j , we can write equation (2.20) in the form

∇Qk(p
`
) = g

k
+ γ`−1Hk v`−1 +

`−1∑
j=1

{ `−2∑
i=1

γi v
T
jHk vi

}
vj. (2.21)

Thus it is straightforward to calculate ∇Qk(p
`
), and again we take advantage of

the property (2.10).

3. Active sets

We now turn to linear constraints on the variables, m being positive in expression
(1.1). We apply an active set method, this technique being more than 40 years
old (see Gill and Murray, 1974, for instance). The active set A, say, is a subset of
the indices {1, 2, . . . ,m} such that the constraint gradients aj, j∈A, are linearly
independent. Usually, until A is updated, the variables x∈Rn are restricted by
the equations

aTj x = bj, j∈A, (3.1)

8

but, if j is not in A, the constraint aTj x≤bj is ignored, until updating of the active
set is needed to prevent a constraint violation. This updating may occur several
times during the search on the k-th iteration for a vector x+k =x that provides a
relatively small value of Qk(x), subject to the inequality constraints (1.1) and the
bound ‖x−xk‖≤∆k. As in Section 2, the search generates a sequence of points
p
`
, `=1, 2, . . . , L, in the trust region with p

1
=xk, x+k =p

L
, and Qk(p

`+1
)<Qk(p

`
),

`=1, 2, . . . , L−1. Also, every p
`

is feasible. Let A be the current active set when
p
`+1

is constructed. We replace the equations (3.1) by the conditions

aTj (p
`+1
−p

`
) = 0, j∈A, (3.2)

throughout this section.
This replacement brings a strong advantage if one (or more) of the residuals

bj−aTj x, j=1, 2, . . . ,m, is very small and positive, because it allows the indices of
those constraints to be in A. The equations (3.1), however, require the choice of
A at x=xk to be a subset of {j : bj−aTj xk =0}. Let bi−aTi xk be tiny and positive,
where i is one of the constraint indices. If i is not in the set A, then the condition
bi−aTi p2≥0 is ignored in the first attempt to construct p

2
, so it is likely that the

p
2

of this attempt violates the i-th constraint. Then p
2

would be shifted somehow

to a feasible position in Rn, and usually the new p
2

would satisfy aTi p2 =bi, with i
being included in a new active set for the construction of p

3
. Thus the active set

of the k-th iteration may be updated after a tiny step from p
1

=xk to p
2
, which

tends to be expensive if there are many tiny steps, the work of a typical updating
being O(n2). Therefore the conditions (3.2) are employed instead of the equations
(3.1) in the LINCOA software, the actual choice of A at xk being as follows.

For every feasible x∈Rn, and for the current ∆k, we let J (x) be the set

J (x) = {j : bj−aTj x ≤ η2 ∆k ‖aj‖} ⊂ {1, 2, . . . ,m}, (3.3)

where η2 is a positive constant, the value η2 = 0.2 being set in the LINCOA
software. In other words, the constraint index j is in J (x) if and only if the
distance from x to the boundary of the j-th constraint is at most η2 ∆k. The
choice of A at xk is a subset of J (xk). As in Section 2, the step from p

1
=xk to

p
2

is along a search direction d1, which is defined below. This direction has the

property aTjd1 ≤ 0, j ∈J (xk), in order that every positive step along d1 goes no
closer to the boundary of the j-th constraint for every j∈J (xk). It follows that,
if the length of the step from p

1
to p

2
is governed by the need for p

2
to be feasible,

then the length ‖p
2
−p

1
‖ is greater than η2 ∆k, which prevents the tiny step that

is addressed in the previous paragraph. This device is taken from the TOLMIN
algorithm of Powell (1989).

The direction d1 is the unique vector d that minimizes ‖g
k
+d‖2 subject to the

conditions
aTjd ≤ 0, j∈J (xk), (3.4)

and the choice of A at xk is derived from properties of d1. Let I(xk) be the set

I(xk) = {j∈J (xk) : aTjd1 =0}. (3.5)

9

If the index j is in J (xk) but not in I(xk), then a sufficiently small perturbation
to the j-th constraint does not alter d1. It follows that d1 is also the vector d that
minimizes ‖g

k
+d‖2 subject to aTjd≤ 0, j ∈I(xk). Furthermore, the definition of

I(xk) implies that d1 is the d that minimizes ‖g
k
+d‖2 subject to the equations

aTjd = 0, j∈I(xk). (3.6)

We pickA=I(xk) if the vectors aj, j∈I(xk), are linearly independent. Otherwise,
A is any subset of I(xk) such that aj, j ∈ A, is a basis of the linear subspace
spanned by aj, j∈I(xk). The actual choice of basis does not matter, because the
conditions (3.2) are always equivalent to aTj (p

`+1
−p

`
)=0, j∈I(xk).

In the LINCOA software, d1 is calculated by the Goldfarb and Idnani (1983)
algorithm for quadratic programming. A subset A of J (xk) is updated until it
becomes the required active set. Let d(A) be the vector d that minimizes ‖g

k
+d‖2

subject to aTjd=0, j∈A. The vectors aj, j∈A, are linearly independent for every
A that occurs. Also, by employing the signs of some Lagrange multipliers, every
A is given the property that d(A) is the vector d that minimizes ‖g

k
+d‖2 subject

to aTjd ≤ 0, j ∈ A. It follows that the Goldfarb–Idnani calculation is complete
when d = d(A) satisfies all the inequalities (3.4). Otherwise, a strict increase
in ‖g

k
+d(A)‖2 is obtained by picking an index j ∈ J (xk) with aTjd(A)> 0 and

adding it to A, combined with deletions from A if necessary to achieve the stated
conditions on A. For k ≥ 2, the initial A of this procedure is derived from the
previous active set, which is called a “warm start”. Usually, when the final A is
different from the initial A, the amount of work of this part of LINCOA is within
our target, namely O(n2) operations for each k.

Let A be the n×|A| matrix that has the columns aj, j ∈A, where A is any
of the sets that occur in the previous paragraph. When A is updated in the
Goldfarb–Idnani algorithm, the QR factorization of A is updated too. We let Q̂R
be this factorization, where Q̂ is n×|A| with orthonormal columns and where R
is square, upper triangular and nonsingular. Furthermore, an n×(n−|A|) matrix
Q̌ is calculated and updated such that the n×n matrix (Q̂ | Q̌) is orthogonal. We
employ the matrices Q̂, R and Q̌ that are available when the choice of the active
set at xk is complete.

Indeed, the direction d that minimizes ‖g
k
+d‖2 subject to the equations (3.6)

is given by the formula
d1 = −Q̌ Q̌Tg

k
. (3.7)

Further, the step p
`+1
−p

`
satisfies the conditions (3.2) if and only if p

`+1
−p

`
is in

the column space of Q̌. Thus, until A is changed from its choice at xk to avoid a
constraint violation, our search for a small value of Qk(x), x∈Rn, subject to the
active constraints and the bound ‖x−xk‖≤∆k, is equivalent to seeking a small
value of the quadratic function Qk(xk + Q̌σ), σ ∈ Rn−|A|, subject to ‖σ‖ ≤ ∆k.
The calculation is now without linear constraints, so we can employ some of the
techniques of Section 2. We address the construction of Q̌σ by Krylov subspace
and truncated conjugate gradient methods in Sections 4 and 5, respectively. Much

10

-
@
@@R
@
@

• •

•

p
1
=xk =(0, 0)

p
2
=(2, 0)

p
3
=(3,−1)

‖x‖=
√

10

Feasible Region
�
��
�*

−∇Qk(·)

Figure 1: A change to the active set in two dimensions

cancellation is usual in the product Q̌Tg
k

for large k, due to the first order con-
ditions at the solution of a smooth optimization problem, and this cancellation
occurs in the second term of the product d1 =−Q̌(Q̌Tg

k
). Fortunately, because the

definition of Q̌ provides aTj Q̌= 0, j ∈A, the vector (3.7) satisfies the constraints

aTjd1 =0, j∈A, for every product Q̌Tg
k
.

Here is a simple example in two dimensions, illustrated in Figure 1, that makes
an important point. Letting x1 and x2 be the components of x∈R2, and letting
xk be at the origin, we seek a relatively small value of the linear function

Qk(x) = −2x1 − x2, x∈R2, (3.8)

subject to the constraints

aT1 x = x2 ≤ 0, aT2 x = x1 + x2 ≤ 2 and ‖x−xk‖2 ≤
√

10. (3.9)

The feasible region of Figure 1 contains the points that satisfy the constraints
(3.9), and the steepest descent direction −∇Qk(·) is shown too. We pick the
LINCOA value η2 =0.2 for expression (3.3), which gives J (xk)={1} with m=2.
A positive step from p

1
= xk along −∇Qk(·) would violate x2 ≤ 0, so the first

active set A is also {1}. Thus p
2

is at (2, 0) as shown in Figure 1, the length of
the step to p

2
being restricted by the constraints because Qk(·) is linear. Further

progress can be made from p
2

only by deleting the index 1 from A, but an empty
set is still excluded by the direction of −∇Qk(·). Therefore A is updated from
{1} to {2}, which causes p

3
to be the feasible point on the trust region boundary

that satisfies aT2 (p
3
−p

2
)=0. We find that x=p

3
=(3,−1) is the x that minimizes

the function (3.8) subject to the constraints (3.9), and that the algorithm supplies
the strictly decreasing sequence Qk(p

1
)=0, Qk(p

2
)=−4 and Qk(p

3
)=−5.

The important point of this example is that, when A is updated at p
2
, it is

necessary not only to add a constraint index to A but also to make a deletion

11

from A. Furthermore, in all cases when A is updated at x=p
`
, say, we want the

length of the step from p
`

to p
`+1

to be at least η2 ∆k if it is restricted by the
linear constraints. Therefore, if a new A is required at the feasible point p

`
, it is

generated by the procedure that is described earlier in this section, after replacing
g
k

by ∇Qk(p
`
) and xk by p

`
. We are reluctant to update the active set at p

`
,

however, when p
`

is close to the boundary of the trust region. Indeed, if a new
active set at p

`
is under consideration in the LINCOA software, then the change

to A is made if and only if the distance from p
`

to the trust region boundary
is at least η2∆k, which is the condition ‖p

`
−xk‖ ≤ (1−η2) ∆k. Otherwise, the

calculation of x+k is terminated with L=` and x+k =p
`
.

4. Krylov subspace methods

Let the active set A be chosen at the trust region centre p
1
=xk as in Section 3.

We recall from the paragraph that includes equation (3.7) that the minimization
of Qk(x), x∈Rn, subject to the active and trust region constraints

aTj (x−xk) = 0, j∈A, and ‖x−xk‖ ≤ ∆k (4.1)

is equivalent to the minimization of the quadratic function

Q red
k (σ) = Qk(xk + Q̌ σ), σ∈Rn−|A|, (4.2)

subject only to the trust region bound ‖σ‖ ≤ ∆k, where Q̌ is an n× (n−|A|)
matrix with orthonormal columns that are orthogonal to aj, j ∈ A. Because
there is a trust region bound but no linear constraints on σ, either the Krylov
subspace method or the conjugate direction method can be taken from Section 2
to construct a relatively small value of Q red

k (σ), ‖σ‖ ≤ ∆k. The Krylov subspace
alternative receives attention in this section. First we express it in terms of the
original variables x∈Rn.

Recalling that the Krylov subspace K` in Section 2 is the span of the vectors
Hj−1

k g
k
∈ Rn, j = 1, 2, . . . , `, we now let K` be the subspace of Rn−|A| that is

spanned by (∇2Q red
k)j−1∇Q red

k (0), j = 1, 2, . . . , `. Further, corresponding to the
sequence p

`
∈Rn, `=1, 2, 3, . . ., in Section 2, we consider the sequence s`∈Rn−|A|,

`=1, 2, 3, . . ., where s1 is zero, and where the `-th iteration of the Krylov subspace
method sets s`+1 to the vector σ in K` that minimizes Q red

k (σ) subject to ‖σ‖≤∆k.
The analogue of equation (2.11) is that we write s`+1 as the sum

s`+1 =
∑`

i=1 θiwi ∈ Rn−|A|, (4.3)

each wi being a vector of unit length in Ki with the property wT
i wj = 0, i 6= j.

We pick w1 =−∇Q red
k (0)/‖∇Q red

k (0)‖, and, for `≥ 2, the Arnoldi formula (2.14)
supplies the vector

w` =
∇2Q red

k w`−1 −
∑`−1

j=1 (wT
j ∇2Q red

k w`−1)wj

‖∇2Q red
k w`−1 −

∑`−1
j=1 (wT

j ∇2Q red
k w`−1)wj ‖

. (4.4)

12

Equation (2.10), which is very useful for trust region calculations without linear
constraints, takes the form

wT
` ∇2Q red

k wj = 0, 1≤j≤`−2, (4.5)

so again there are at most two nonzero terms in the sum of the Arnoldi formula.
Instead of generating each wi explicitly, however, we work with the vectors

vi = Q̌wi ∈Rn, i≥ 1, which are analogous to the vectors vi in the second half of
Section 2. In particular, because Q̌T Q̌ is the (n−|A|)×(n−|A|) unit matrix, they
enjoy the orthonormality property

vTi vj = (Q̌wi)
T (Q̌wj) = wT

i wj = δij, (4.6)

for all relevant positive integers i and j. Furthermore, equations (4.2) and (4.3)
show that Q red

k (s`+1) is the same as Qk(p
`+1

), where p
`+1

is the point

p
`+1

= xk +
∑`

i=1 θi Q̌wi = xk +
∑`

i=1 θi vi. (4.7)

It follows that the required values of the parameters θi, i= 1, 2, . . . , `, are given
by the minimization of the function

Φk`(θ) = Qk(xk +
∑`

i=1 θi vi), θ∈R`, (4.8)

subject to the trust region bound ‖θ‖ ≤∆k, which is like the calculation in the
paragraph that includes expressions (2.11)–(2.13).

In order to construct vi, i≥ 1, we replace wi in the definition vi = Q̌wi by a
vector that is available. The quadratic (4.2) has the first and second derivatives

∇Q red
k (σ) = Q̌T ∇Qk(xk+Q̌ σ), σ∈Rn−|A|,

and ∇2Q red
k = Q̌T ∇2Qk Q̌ = Q̌THk Q̌.

 (4.9)

Hence ∇Qk(xk)=g
k

yields the vector

v1 = Q̌w1 = −Q̌∇Q red
k (0) / ‖∇Q red

k (0)‖ = −Q̌ Q̌Tg
k
/ ‖Q̌ Q̌Tg

k
‖. (4.10)

For `≥2, v` = Q̌w` is obtained from equation (4.4) multiplied by Q̌. Specifically,
the identities

∇2Q red
k w`−1 = Q̌THk Q̌w`−1 = Q̌THk v`−1 (4.11)

and

wT
` ∇2Q red

k wj = wT
` (Q̌THk Q̌)wj = vT`Hk vj, 1≤j≤`, (4.12)

give the Arnoldi formula

v` = Q̌w` =
Q̌ Q̌THk v`−1 −

∑`−1
j=1 (vTjHk v`−1) vj

‖ Q̌ Q̌THk v`−1 −
∑`−1

j=1 (vTjHk v`−1) vj ‖
, `≥2. (4.13)

13

Only the last two terms of its sum can be nonzero as before due to equations (4.5)
and (4.12).

The Krylov subspace method with the active set A is now very close to the
method described in the two paragraphs that include equations (2.11)–(2.14).
The first change to the description in Section 2 is that, instead of the form (2.1),
p
2

is now the point p
1
−α1Q̌Q̌

Tg
k
, where α1 is the value of α that minimizes

Qk(p
1
−αQ̌Q̌Tg

k
), α∈R, subject to ‖p

2
−xk‖≤∆k. Equation (2.10) is a consequence

of the properties (4.5) and (4.12), so ∇2Φk`(·) is still tridiagonal. The last `−1
components of the gradient ∇Φk`(0) ∈R` are still zero, but its first component
is now ±‖Q̌Q̌Tg

k
‖=±‖Q̌Tg

k
‖. Finally, the Arnoldi formula (2.14) is replaced by

expression (4.13). We retain termination if inequality (2.6) holds.
The Krylov method was employed in an early version of the LINCOA software.

If the calculated point (4.7) violates an inactive linear constraint, then p
`+1

has
to be replaced by a feasible point, and often the active set is changed. Some
difficulties may occur, however, which are addressed in the remainder of this
section. Because of them, the current version of LINCOA applies the version of
conjugate gradients given in Section 5, instead of the Krylov method.

Here is an instructive example in only two variables with an empty active set,
where both p

1
=xk and p

2
are feasible, but the p

3
of the Krylov method violates

a constraint. We seek a small value of the quadratic model

Qk(x) = −50x1 − 8x1x2 − 44x22, x∈R2, (4.14)

subject to ‖x‖≤1 and x2≤0.2, the trust region centre being at the origin, which
is well away from the boundary of the linear constraint. The point p

2
has the form

(2.1), where p
1
=xk =0 and g

k
=∇Qk(xk)=(−50, 0)T . The function Qk(p

1
−αg

k
),

α ∈ R, is linear, so p
2

is on the trust region boundary at (1, 0)T , which is also
well away from the boundary of the linear constraint. Therefore p

3
has the form

(2.11) with `=2, the coefficients θ1 and θ2 being calculated to minimize expression
(2.12) subject to ‖θ‖≤1. In other words, because n=2, the point p

3
is the vector

x that minimizes the model (4.14) subject to ‖x‖ ≤ 1, and one can verify that
this point is the unconstrained minimizer of the strictly convex quadratic function
Qk(x)+47 ‖x‖2, x∈R2. Thus we find the sequence

p
1

=

(
0
0

)
, p

2
=

(
1
0

)
and p

3
=

(
0.6
0.8

)
, (4.15)

with Qk(p
1
)=0, Qk(p

2
)=−50 and Qk(p

3
)=−62.

The point p
3

is unacceptable, however, as it violates the constraint x2≤ 0.2.
The condition Qk(p

3
) < Qk(p

2
) suggests that it may be helpful to consider the

function of one variable

Qk(p
2

+ α {p
3
− p

2
}) = −50 + 13.6α− 25.6α2, α∈R, (4.16)

in order to move to the feasible point on the straight line through p
2

and p
3

that
provides the least value of Qk(·) subject to the trust region bound. Feasibility

14

demands α ≤ 0.25, but the function (4.16) increases strictly monotonically for
0≤α≤ 17/64, so all positive values of α are rejected. Furthermore, all negative
values of α are excluded by the trust region bound. In this case, therefore, the
point p

3
of the Krylov method fails to provide an improvement over p

2
, even when

p
3
−p

2
is used as a search direction from p

2
. On the other hand, p

2
can be generated

easily by the conjugate gradient method, and then x+k =xk+p
2

is chosen, because
p
2

is on the trust region boundary.
The minimization of the function (4.14) subject to the constraints

‖x‖ ≤ 1, x2 ≤ 0.2 and x1+ 0.1x2 ≤ 0.6 (4.17)

is also instructive. The data p
1

= xk = 0 and g
k

= (−50, 0)T imply again that
the step from p

1
to p

2
is along the first coordinate direction, and now p

2
is at

(0.6, 0)T , because of the last of the conditions (4.17). The move from p
2

is along
the boundary of x1+0.1x2≤ 0.6, the index of this constraint being put into the
active set A, so p

3
and Qk(p

3
) take the values

p
3

=

(
0.6+0.1α
−α

)
and Qk(p

3
) = −30− 0.2α− 43.2α2, (4.18)

for some steplength α that has to be chosen. The Krylov method would calculate
the α that minimizes Qk(p

3
) subject to ‖p

3
‖≤1, which is α=−0.8576, and then p

3

is on the trust region boundary at (0.5142, 0.8576)T with Qk(p
3
)=−61.0647, the

exact figures being rounded to four decimal places. This p
3

violates the constraint
x2 ≤ 0.2, however, so, if the sign of α is accepted, and if |α| is reduced by a
line search to provide feasibility, then we find α = −0.2, p

3
= (0.58, 0.2)T and

Qk(p
3
) = −31.688. On the other hand, a conjugate gradient search would go

downhill from p
2

to p
3
, and expression (4.18) for Qk(p

3
) shows that α would be

positive. This search would reach the trust region boundary at the feasible point
p
3

= (0.6739,−0.7388)T , with α = 0.7388 and Qk(p
3
) = −53.7298. Thus it can

happen that the Krylov method is highly disadvantageous if its steplengths are
reduced without a change of sign for the sake of feasibility.

Another infelicity of the Krylov method when there are linear constraints is
shown by the final example of this section. We consider the minimization of the
function

Qk(x) = x21− 0.1x22− 20x23− 10x1x3 + 4.8x2x3− 4x2−x3 + 21, x∈R3, (4.19)

subject to the constraints

x3 ≤ 1 and ‖x‖ ≤
√

26, (4.20)

so again the trust region centre xk is at the origin. The step to p
2

from p
1

= xk
is along the direction −∇Qk(xk)=(0, 4, 1)T , and, because Qk(·) has negative cur-
vature along this direction, the step is the longest one allowed by the constraints,

15

giving p
2
=(0, 4, 1)T . Further, the active set becomes nonempty, in order to follow

the boundary of x3≤1, which, after the step from p
1

to p
2
, reduces the calculation

to the minimization of the function of two variables

Q̃k(x̃) = Qk

 x̃1
x̃2
1

 = x̃21 − 0.1 x̃22 − 10 x̃1 + 0.8 x̃2, x̃∈R2, (4.21)

subject to ‖x̃‖ ≤ 5, starting at the point p̃
1

= (0, 4)T , although the centre of the
trust region is still at the origin.

The Krylov subspace K`, `≥ 1, for the minimization of Q̃k(x̃), x̃∈R2, is the
space spanned by the vectors (∇2Q̃k)j−1∇Q̃k(p̃

1
), j = 1, 2, . . . , `. The example

has been chosen so that the matrix ∇2Q̃k is diagonal and so that ∇Q̃k(p̃
1
) is

a multiple of the first coordinate vector. It follows that all searches in Krylov
subspaces, starting at p̃

1
= (0, 4)T , cannot alter the value x̃2 = 4 of the second

variable, assuming that computer arithmetic is without rounding errors. The
search from p̃

1
to p̃

2
is along the direction −∇Q̃k(p̃

1
) = (10, 0)T . It goes to the

point p̃
2
=(3, 4)T on the trust region boundary, which corresponds to p

3
=(3, 4, 1)T .

Here Q̃k(·) is least subject to ‖x̃‖≤ 5 and x̃2 = 4, so the iterations of the Krylov
method are complete. They generate the monotonically decreasing sequence

Qk(p
1
) = 21, Qk(p

2
) = Q̃k(p̃

1
) = 1.6 and Qk(p

3
) = Q̃k(p̃

2
) = −19.4. (4.22)

In this case, the Krylov method brings the remarkable disadvantage that
Q̃k(p̃

2
) is not the least value of Q̃k(x̃) subject to ‖x̃‖≤5. Indeed, Q̃k(x̃)=−25 is

achieved by x̃= (5, 0)T , for example. The conjugate gradient method would also
generate the sequence p

`
, `=1, 2, 3, of the Krylov method, with termination at p

3
because it is on the boundary of the trust region. A way of extending the conjugate
gradient alternative by searching round the trust region boundary is considered
in Section 6. It can calculate the vector x̃ that minimizes the quadratic (4.21)
subject to ‖x̃‖≤5, and it is included in the NEWUOA software for unconstrained
optimization without derivatives (Powell, 2006).

5. Conjugate gradient methods

Taking the decision to employ conjugate gradients instead of Krylov subspace
methods in the LINCOA software provided much relief, because the difficulties in
the second half of Section 4 are avoided. In particular, if a step of the conjugate
gradient method goes from p

`
∈Rn to p

`+1
∈Rn, then the quadratic model along

this step, which is the function Qk(p
`
+α{p

`+1
−p

`
}), 0≤α≤1, decreases strictly

monotonically. The initial point of every step is feasible. It follows that, if one or
more of the linear constraints (1.1) are violated at x=p

`+1
, then it is suitable to

replace p
`+1

by the point

p
new

= p
`

+ α∗ (p
`+1
− p

`
), (5.1)

16

where α∗ is the greatest α∈R such that p
new

is feasible. Thus 0≤α∗< 1 holds,
and p

new
is on the boundary of a constraint whose index is not in the current A.

The conjugate gradient method of Section 2 without linear constraints can be
applied to the reduced function

Q red
k (σ) = Qk(p

1
+ Q̌ σ), σ∈Rn−|A|, (5.2)

after generating the active set A at p
1
, as suggested in the paragraph that includes

equation (3.7). Thus, starting at σ=σ1 = 0, and until a termination condition is
satisfied, we find the conjugate gradient search directions of the function (5.2) in
Rn−|A|. Letting these directions be d red

` , `= 1, 2, 3, . . ., which have the downhill
property (d red

`)T∇Q red
k (σ`)<0, each new point σ`+1∈Rn−|A| has the form

σ`+1 = σ` + α` d
red
` , (5.3)

where α` is the value of α≥0 that minimizes Q red
k (σ`+αd

red
`) subject to a trust

region bound. Equation (2.2) for the reduced problem provides the directions

d red
` =

 −∇Q red
k (0), `=1,

−∇Q red
k (σ`) + β` d

red
`−1, `≥2,

(5.4)

where β` is defined by the conjugacy condition

(d red
`)T ∇2Q red

k d red
`−1 = 0. (5.5)

As in Section 4, we prefer to work with the original variables x∈Rn, instead of
with the reduced variables σ∈Rn−|A|, so we express the techniques of the previous
paragraph in terms of the original variables. In particular, the line search of the
`-th conjugate gradient iteration sets α` to the value of α ≥ 0 that minimizes
Qk(p

`
+αd`) subject to ‖p

`
+αd`−xk‖≤∆k, where p

`
and d` are the vectors

p
`

= p
1

+ Q̌ σ` and d` = Q̌ d red
` , `≥1, (5.6)

which follows from the definition (5.2). Thus equation (5.3) supplies the sequence
of points p

`+1
=p

`
+α` d`, `=1, 2, 3, . . ., and there is no change to each steplength

α`. Furthermore, formula (5.4) and the definition (5.2) supply the directions

d` = Q̌ d red
` =

 −Q̌∇Q
red
k (0) = −Q̌ Q̌T ∇Qk(p

1
), `=1,

−Q̌ Q̌T ∇Qk(p
`
) + β` d`−1, `≥2,

(5.7)

and there is no change to the value of β`. Because equations (5.6) and (4.9) give
the identities

dT
` Hk dj = (d red

`)T Q̌THk Q̌ d
red
j = (d red

`)T ∇2Q red
k d red

j , j=1, 2, . . . , `, (5.8)

the condition (5.5) that defines β` is just dT
` Hk d`−1 = 0, which agrees with the

choice of β` in formula (2.2). Therefore, until a termination condition holds, the

17

conjugate direction method for the active set A is the same as the conjugate
direction method in Section 2, except that the gradients ∇Qk(p

`
), ` ≥ 1, are

multiplied by the projection operator Q̌Q̌T . Thus the directions (5.7) have the
property aTjd` =0, j∈A, in order to satisfy the constraints (3.2).

The conditions of LINCOA for terminating the conjugate gradient steps for
the current active set A are close to the conditions in the paragraph that includes
expressions (2.4)–(2.6). Again there is termination with x+k =p

`
if inequality (2.4)

or (2.5) holds, where α̂` is still the nonnegative value of α such that p
`
+αd` is

on the trust region boundary. Alternatively, the new point p
`+1

= p
`
+α` d` is

calculated. If the test (2.6) is satisfied, or if p
`+1

is a feasible point on the trust

region boundary, or if p
`+1

is any feasible point with `=n−|A|, then the conjugate

gradient steps for the current iteration number k are complete, the value x+k =p
`+1

being chosen, except that x+k =p
new

is preferred if p
`+1

is infeasible, as suggested
in the first paragraph of this section. Another possibility is that p

`+1
is a feasible

point that is strictly inside the trust region with `<n−|A|. Then ` is increased
by one in order to continue the conjugate gradient steps for the current A. In all
other cases, p

`+1
is infeasible, and we let p

new
be the point (5.1).

In these other cases, a choice is made between ending the conjugate gradient
steps with x+k =p

new
, or generating a new active set at p

new
. We recall from the last

paragraph of Section 3 that the LINCOA choice is to update A if and only if the
distance from p

new
to the trust region boundary is at least η2∆k. Furthermore,

after using the notation p
1

= xk at the beginning of the k-th iteration as in
Section 2, we now revise the meaning of p

1
to p

1
= p

new
whenever a new active

set is constructed at p
new

. Thus the description in this section of the truncated
conjugate gradient method is valid for every A.

The number of conjugate gradient steps is finite for each A, even if we allow `
to exceed n−|A|. Indeed, failure of the termination test (2.6) gives the condition

Qk(xk)−Qk(p
`+1

) > {Qk(xk)−Qk(p
`
)} / (1−η1), (5.9)

which cannot happen an infinite number of times as Qk(x), ‖x−xk‖ ≤ ∆k, is
bounded below. Also, the number of new active sets is finite for each iteration
number k, which can be proved in the following way.

Let p
1

be different from xk due to a previous change to the active set, and let
the work with the current A be followed by the construction of another active set
at the point (5.1) with `= `∗, say. Then condition (5.9) and Qk(p

new
)≤Qk(p

`∗
)

provide the bound

Qk(xk)−Qk(p
new

) ≥ {Qk(xk)−Qk(p
1
)} / (1−η1)`

∗−1, (5.10)

which is helpful to our proof for `∗≥ 2, because 0<η1< 1, 0<η2< 1 and `∗≥ 2
imply 1/(1−η1)`

∗−1>(1+ 1
4
η1η2). In the alternative case `∗=1, we recall that the

choice of A gives the search direction d1 the property aTjd1≤ 0, j ∈J (p
1
), where

J (x), x∈Rn, is the set (3.3). Thus the infeasibility of p
2

and equation (5.1) yield

18

‖p
new
−p

1
‖> η2∆k. Moreover, the failure of the termination condition (2.5) for

`=1 with ‖α̂1 d1‖<2∆k supply the inequality

|(p
new
− p

1
)T∇Qk(p

1
)| = |α̂1 d

T
1 ∇Qk(p

1
)| ‖p

new
− p

1
‖ / ‖α̂ d1‖

> η1 {Qk(xk)−Qk(p
1
)} ‖p

new
− p

1
‖ / (2 ∆k), (5.11)

the first line being true because p
new
−p

1
is a multiple of d1. Now the function

φ(α)=Qk(p
1
+α{p

new
−p

1
}), 0≤α≤1, is a quadratic that decreases monotonically,

which implies φ(0)−φ(1)≥ 1
2
|φ′(0)|, and |φ′(0)| is the left hand side of expression

(5.11). Thus, remembering ‖p
new
−p

1
‖>η2∆k, we deduce the property

φ(0)− φ(1) = Qk(p
1
)−Qk(p

new
) > 1

4
η1 η2 {Qk(xk)−Qk(p

1
)}, (5.12)

which gives the bound

Qk(xk)−Qk(p
new

) > (1 + 1
4
η1 η2) {Qk(xk)−Qk(p

1
)} (5.13)

in the case `∗ = 1. It follows from expressions (5.10) and (5.13) that, whenever
consecutive changes to the active set occur, the new value of Qk(xk)−Qk(p

1
) is

greater than the old one multiplied by (1+1
4
η1η2). Again, due to the boundedness

of Qk(x), ‖x−xk‖ ≤∆k, this cannot happen an infinte number of times, so the
number of changes to the active set is finite for each k.

An extension of the given techniques for truncated conjugate gradients subject
to linear constraints is included in LINCOA, which introduces a tendency for x+k
to be on the boundaries of the active constraints. Without the extension, more
changes than necessary are made often to the active set in the following way. Let
the j-th constraint be in the current A, which demands the condition

bj − aTj p1 ≤ η2 ∆k ‖aj‖ (5.14)

for the current ∆k, let p
curr

be the current p
1
, and let (bj−aTj pcurr)/(η2‖aj‖) be

greater than the final trust region radius. Further, let the directions of aj and
∇F (x) for every relevant x be such that it would be helpful to keep the j-th
constraint active for the remainder of the calculation. The j-th constraint cannot
be in the final active set, however, unless changes to p

1
cause (bj−aTj p1)/(η2‖aj‖)

to be at most the final value of ∆k. On the other hand, while j is in A, condition
(3.2) shows that all the conjugate gradient steps give bj−aTj p`+1

=bj−aTj p`. Thus

the index j may remain in A until ∆k becomes less than (bj−aTj pcurr)/(η2‖aj‖).
Then j has to be removed from A, which allows the conjugate gradient method
to generate a new p

1
that supplies the reduction bj−aTj p1 < bj−aTj pcurr. If j is

the index of a linear constraint that is important to the final vector of variables,
however, then j will be reinstated in A by yet another change to the active set.

The projected steepest descent direction −Q̌Q̌T∇Qk(p
1
) is calculated as before

when the new active set A is constructed at p
1
, but now we call this direction

d old, because the main feature of the extension is that it picks a new direction d1

19

for the formula p
2
=p

1
+α1 d1, in order that the residuals of the active constraints

can be reduced by the move from p
1

to p
2
. We still require d old to be a direction

of descent, so the conjugate gradient steps are terminated by setting x+k = p
1

if

dT
old∇Qk(p

1
)≥0 holds in practice, which is the test (2.4). Also, if all the residuals

bj−aTj p1, j∈A, are sufficiently small, which means in LINCOA that they satisfy
the bounds

bj − aTj p1 ≤ 10−4 ∆k ‖aj‖, j∈A, (5.15)

then the conjugate gradient steps from p
1

are as before, with d1 =d old.
In all other cases, the extension begins by calculating the shortest step from

p
1

to the boundaries of the active constraints. This step is the vector dperp, say,

in the column space of A that satisfies ATdperp = r, where A has the columns aj,
j∈A, and where r has the components bj−aTj p1, j∈A. We recall from near the

middle of Section 3 that the QR factorization A= Q̂R is available, which assists
the construction of d perp. Indeed, it has the form dperp = Q̂s, and s is defined by
the equations

ATd perp = (Q̂R)T Q̂ s = R Ts = r, (5.16)

so s can be calculated easily, using the triangularity and nonsingularity of R. The
new search direction d1 of the extension is a nonnegative linear combination of
d old and dperp, as explained below.

The choice p
2
=p

1
+d1, where d1 is the direction

d1 = η2 ∆k d old / ‖d old‖ + θ dperp (5.17)

with θ=1, would bring the advantages that the length of the step from p
1

to p
2

is
greater than η2 ∆k, and p

2
would be on the boundaries of all the active constraints.

This point p
2
, however, can be infeasible and can violate the trust region bound,

although p
1
+d1 would satisfy all the constraints in the case θ=0. Therefore the

extension picks the direction (5.17), after setting θ to the greatest number in [0, 1]
such that all the constraints hold at p

1
+d1. The value θ=0 may occur, and then

d1 is a multiple of d old, so we would generate the sequence of steps from p
1

by the
conjugate gradient method without the extension.

When θ is positive in formula (5.17), we pick p
2

= p
1
+α1 d1, where α1 is the

value of α that minimizes Qk(p
1
+αd1), 0≤α≤1. The point p

2
is feasible due to

the choice of θ, but, for every α>1, at least one constraint is violated at p
1
+αd1,

in the usual case when p
1
+d1 is on the boundary of a constraint that is satisfied

as a strict inequality at p
1
. Our step from p

1
to p

2
achieves the reductions

bj − aTj p2 = (1− α1 θ) (bj − aTj p1), j∈A, (5.18)

in the residuals of the active constraints.
The following argument shows that α1 is positive in equation (5.18). We have

to rule out α1 =0, so it is sufficient to establish dT
1 ∇Qk(p

1
)<0, and we recall that

termination with x+k =p
1

would have happened earlier in the case dT
old∇Qk(p

1
)≥0.

20

Hence, because of the choice (5.17), it is sufficient to prove dT
perp∇Qk(p

1
)≤0. We

find in the paragraph that includes expressions (3.4)–(3.6) that d old is the vector
d that minimizes ‖∇Qk(p

1
)+d‖ subject to aTjd ≤ 0, j ∈ A, and the first order

conditions at the solution of this quadratic programming problem provide the
relation

d old = −∇Qk(p
1
) +

∑
j∈A λj aj, (5.19)

for some multipliers λj that are all nonpositive. Moreover, dperp is derived from
the equations aTjdperp = rj, j ∈A, each rj = bj−aTj p1 being nonnegative because
p
1

is feasible. Thus, remembering that d perp is orthogonal to d old, we deduce the
required inequality

dT
perp∇Qk(p

1
) = dT

perp

{
−d old +

∑
j∈A λj aj

}
=
∑

j∈A λj rj ≤ 0. (5.20)

We now know from the property (5.18) that, with the extension, the step
from p

1
to p

2
achieves a strict reduction in every positive residual of an active

constraint. Termination with x+k = p
2

is suitable if Qk(p
1
+α1 d1) is the least

value of Qk(p
1
+αd1), α ≥ 0, and if condition (2.6) holds for ` = 1. Otherwise,

a search direction d2 is chosen for a step from p
2

to p
3
. The constraints (3.2)

with `= 2 require d2 to be in the column space of Q̌, but the direction (5.17) is
not in this space for θ > 0. Therefore β2 has to be zero in formula (5.7), giving
d2 =−Q̌Q̌T∇Qk(p

2
). It is convenient to call this direction d1 =−Q̌Q̌T∇Qk(p

1
),

so we replace p
2

by p
1

without making a further change to A. Thus the given
description of the truncated conjugate gradient method for the current A becomes
valid for the continuation of the method. Formula (5.7) still provides search
directions that are mutually conjugate, because the new d1 is a projected steepest
descent direction.

6. Moves round the trust region boundary

The conjugate gradient method of Section 5 terminates at x+k = p
`+1

if p
`+1

is
a feasible point on the boundary of the trust region, but usually a move round
the boundary can generate another feasible point, x++

k say, that provides the
strict reduction Qk(x++

k) < Qk(x+k). In the case (4.19)–(4.20), for example, the
conjugate gradient method yields x+k = (3, 4, 1)T with Qk(x+k) =−19.4, although
the point x++

k =(5, 0, 1)T is feasible with Qk(x++
k)=−25, as mentioned at the end

of Section 4. The early versions of the LINCOA software included an extension
to the conjugate gradient method that seeks reductions in Qk(·) by searching
round the trust region boundary, which is described briefly below. Now, however,
LINCOA has been made simpler by the removal of the extension, because of some
numerical results that are given too in this section.

A move from x+k to x++
k round the trust region boundary is made by the early

versions of LINCOA only if the Taylor series linear function

Λ+
k (x) = Qk(x+k) + (x−x+k)T ∇Qk(x+k), x∈Rn, (6.1)

21

suggests that Qk(x++
k) is going to be substantially less than Qk(x+k). Indeed,

letting x̂++
k be the vector x that minimizes Λ+

k (x) subject to aTj (x−x+k)=0, j∈A,
and to ‖x−xk‖≤∆k, the search for a relatively small value of Qk(·) is terminated
at x+k if the inequality

Λ+
k (x+k)− Λ+

k (x̂++
k) = (x+k −x̂++

k)T ∇Qk(x+k) ≤ η1 {Qk(xk)−Qk(x+k)} (6.2)

holds, which corresponds to the test (2.17). The vector x̂++
k is not calculated

explicitly, however, because, using ‖x+k −xk‖ = ∆k, it can be shown that the
reduction Λ+

k (x+k)−Λ+
k (x̂++

k) is the sum

‖Q̌T (x+k −xk)‖ ‖Q̌T ∇Qk(x+k)‖+ {Q̌T (x+k −xk)}T Q̌T ∇Qk(x+k). (6.3)

Thus condition (6.2) causes termination if the vectors Q̌T (x+k−xk) and Q̌T∇Qk(x+k)
are parallel with opposite signs. Also, a difficulty is avoided by termination in the
highly unusual case when these two vectors are parallel (or nearly parallel) with
the same sign. Specifically, there is a search round the trust region boundary from
x+k only if x+k has the property

‖Q̌T (x+k −xk)‖ ‖Q̌T ∇Qk(x+k)‖ −
∣∣∣{Q̌T (x+k −xk)}T Q̌T ∇Qk(x+k)

∣∣∣
> η1 {Qk(xk)−Qk(x+k)}. (6.4)

When condition (6.4) holds, the vectors Q̌Q̌T (x+k −xk) and Q̌Q̌T ∇Qk(x+k) are
linearly independent, and we let S⊂Rn be the two dimensional linear space that
is spanned by them. Each move x++

k −x+k is chosen to be in S, which is reasonable
because x̂++

k −x+k is in S. The constraint ‖x++
k −xk‖= ∆k is achieved by giving

x++
k −xk the form

s(θ) = (cos θ−1) Q̌ Q̌T (x+k − xk) + sin θ v, θ∈R, (6.5)

where v is the vector in S that is orthogonal to Q̌Q̌T (x+k −xk), and that satisfies
‖v‖=‖Q̌Q̌T (x+k−xk‖ and vT∇Qk(x+k)<0. The value of θ is calculated by seeking
the first local minimum of the function

φ(θ) = Qk(x+k + s(θ)), θ≥0, (6.6)

subject to the feasibility of x+k +s(θ). The inequality vT∇Qk(x+k) < 0 supplies
φ′(0)<0.

Equations (1.2) and (6.5) show that the function (6.6) is a trigonometric poly-
nomial of degree two. The coefficients of this polynomial are generated, the
amount of work when n is large being dominated by the need for the product
Hkv, the product HkQ̌Q̌

T (x+k −xk) being available. We calculate an estimate, θ∗

say, of the least positive value of θ that satisfies φ′(θ) = 0, the relative error of
the estimate being at most 0.01. By considering every inactive constraint whose
boundary is within distance ∆k of xk, the value of θ∗ is reduced if necessary so

22

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@

rr rr
r

r r rrr r
r

r rrr r
r r

r

r

r
r

r
r

rr
r r

rr
r

r
r

r

rr
r rr

rr r
r

r

r r r
r
r

r
r

r rrr r

rr

r

r

r
r

r
r

rr
r r

r
r

r
r

r
r

r
r

r
rr r

r

r
r

r

r

r
r

r r rrr
rr

r

r
r
r

r
r

r rr

r

rr

r

r r

r

rr

r
r

r
r

r

r r
Initial points Final points Other final points

Figure 2: The points in triangle problem with n=80

that all the points x+k +s(θ), 0≤ θ ≤ θ∗, are feasible. Then we make the choice
x++
k =x+k +s(θ∗).

We take the view that x++
k is a new vector x+k . There are no more searches

round the trust region boundary for the current k if an inactive constraint causes
a decrease in θ∗ in the previous paragraph, or if the change above to x+k reduces
Qk(x+k) by an amount that is at most the new value of η1{Qk(xk)−Qk(x+k)}, which
corresponds to the test (2.6), or if condition (6.4) fails for the new x+k . Otherwise,
another move is made from x+k to a new x++

k in the way that has been described
already. This procedure is continued until termination occurs.

The success of searches round the trust region boundary was investigated by
numerical experiments, including the application of versions of LINCOA to the
following problem. We let n be even, and, for each x∈Rn, we set the points

p
i

=

(
x2i−1
x2i

)
∈ R2, i=1, 2, . . . , n/2. (6.7)

We seek the least value of the function

F (x) = n−2
∑n/2

i=2

∑i−1
j=1 min[‖p

i
− p

j
‖−1, 103], x∈Rn, (6.8)

subject to 3n/2 linear constraints, namely that every p
i

is in the triangle with
the vertices (0, 0), (2, 0) and (0, 2). The initial positions of the points are chosen
randomly within the triangle. For example, the left hand and middle parts of
Figure 2 show the initial random positions and the final calculated positions of
the points in a case with n = 80, while the right hand part of Figure 2 shows
calculated positions for a different random start. Both sets of final points satisfy
to high accuracy the first order conditions for the solution of the test problem, but
the numbers of final points that are strictly inside the triangle are different, the two
final values of the objective function being F = 0.15626737 and F = 0.15603890.
This test problem has several local minima, and LINCOA tries to find only one
of them.

23

n #F #TRI [1, 3] [4, 10] [11,∞)

10 144/127 100/91 96/68 5/19 0/3
20 483/451 324/318 243/101 80/198 0/19
40 1472/2270 983/1554 822/430 161/881 0/243
80 7324/5873 4861/3927 4555/2183 304/1433 2/311
160 34815/33396 22641/22192 22327/17702 313/3790 2/700
320 226065/287538 146717/189130 146042/173010 667/13758 9/2362

Table 1: The points in triangle problem with NPT=n+6

n #F #TRI [1, 3] [4, 10] [11,∞)

10 179/193 121/129 117/82 4/43 0/4
20 584/457 354/292 250/54 104/207 0/31
40 1472/1733 898/1078 608/115 287/667 3/296
80 5462/5838 3459/3741 2583/292 837/1716 39/1733
160 19645/26569 12588/18010 9766/2145 2726/6801 96/9064
320 73560/73061 48483/49428 39116/7878 9092/16559 275/24991

Table 2: The points in triangle problem with NPT=2n+1

LINCOA requires not only an initial vector of variables but also the initial and
final values of ∆k, which are set to 0.1 and 10−6 in these calculations. The value
of NPT is also required, which is the number of interpolation conditions satisfied
by each approximation Qk(x)≈ F (x), x ∈Rn. The amount of routine work for
each k is of magnitude NPT squared, due to a linear system of equations that
supplies each new quadratic model, so it is helpful for NPT to be of magnitude n
when n is large. The values NPT =n+6 and NPT = 2n+1 are compared in the
numerical results of this section.

Tables 1 and 2 give these results for n= 10×2`, `= 0, 1, 2, 3, 4, 5. There are
five cases for each n, the cases being distinguished by different random choices
of the initial vector of variables. For each application of LINCOA, we let #F
be the number of calculations of the objective function, and we let #TRI (Trust
Region Iterations) be the number of iterations that construct x+k by the truncated
conjugate gradient method of Section 5, with or without searches round the trust
region boundary. The second and third columns of the tables show the averages
to the nearest integer of #F and #TRI over the five cases for each n. We recall
that every step in the construction of x+k requires a vector to be multiplied by the
matrix Hk =∇2Qk, which is the most expensive part of every step. For each k,
the number of multiplications is in the range [1, 3], [4, 10] or [11,∞). The number
of occurrences of each range is counted for each test problem, the sum of these

24

numbers being #TRI. These counts are also averaged to the nearest integer over
the five cases for each n, the results being shown in the last three columns of the
tables. Two versions of LINCOA are employed, the first one being the current
version that is without searches round the trust region boundary, and the second
one being the extension of the current version that includes the boundary searches
and termination conditions of this section. The main entries in the table have the
form p/q, where p and q are the averages of the version of LINCOA that is without
and with boundary searches, respectively. Good accuracy is achieved throughout
the experiments of Tables 1 and 2, the greatest residual of a KKT first order
condition at a final vector of variables being about 3×10−5.

The results in the last rows of both tables are highly unfavourable to searches
round the trust region boundary. We find in the n = 320 row of Table 1 that
the extra work of the searches causes #F to become worse by 27%, while the
0.7% improvement in #F in the n=320 row of Table 2 is very expensive. Indeed,
although the conjugate gradient method is truncated after at most 3 steps in 39116
out of 48483 applications, the method with boundary searches requires more than
10 multiplications of a vector by Hk =∇2Qk in about half of its 49428 applications.
Furthermore, the boundary searches in the n= 80 and n= 160 rows of Table 2
also take much more effort, and they cause #F to increase by about 7% and 35%,
respectively. Table 2 is more relevant than Table 1 for n≥ 80 because its values
of #F are smaller. Moreover, the #F entries in the n= 40 rows of both tables
suggest strongly that boundary searches are unhelpful. We give less attention
to smaller values of n, because LINCOA is designed to be particularly useful for
minimization without derivatives when there are hundreds of variables, by taking
advantage of the discovery that the symmetric Broyden updating method makes
such calculations possible. Thus Tables 1 and 2 provide excellent support for the
decision, taken in 2013, to terminate the calculation of x+k by LINCOA when the
steps of the conjugate gradient method reach the trust region boundary.

7. Further remarks and discussion

We begin our conclusions by noting that, when there are no linear constraints on
the variables, the Krylov subspace method provides searches round the boundary
of the trust region that compare favourably with the searches of Section 6. Let
p̂
`+1
∈Rn and p̌

`+1
∈Rn be the points that are generated by the `-th step of the

Krylov method and by the `-th step of the conjugate gradient method augmented
by boundary searches, respectively, starting at the trust region centre p̂

1
= p̌

1
=xk,

but the greatest values of ` for the two methods may be different. Because p̌
`+1
−xk

is in the linear space spanned by the gradients ∇Qk(p̌
j
), j=1, 2, . . . , `, it is also in

the Krylov subspace K`, defined in the complete paragraph between expressions
(2.8) and (2.9), even if the dimension of K` is less than `. Also the choice of p̂

`+1
by the `-th step of the Krylov method satisfies p̂

`+1
−xk∈K`, with the additional

property that Qk(p̂
`+1

) is the least value of Qk(x), ‖x−xk‖ ≤ ∆k, subject to

25

x−xk∈K`. Thus the Krylov method enjoys the advantage Qk(p̂
`+1

)≤Qk(p̌
`+1

) for
every ` that occurs for both methods. Moreover, the Krylov method terminates
whenK`+1 =K` holds, which gives `≤n even if the other conditions for termination
are ignored. Usually, however, the number of boundary searches in Section 6 can
be made arbitrarily large by letting the parameter η1 in the test (6.4) be sufficiently
small. These remarks suggest that the very poor results for searches in the last
three columns of Tables 1 and 2 may be avoided if the Krylov method is applied.

Much of the effort in the development of LINCOA was spent on attempts to
include the Krylov subspace method of Section 4 when there are linear constraints
on the variables. Careful attention was given to the situation when, having chosen
an active set at the point p

1
∈Rn, which need not be the trust region centre xk,

the method generates the sequence p
j+1

, j = 1, 2, . . . , `, in the trust region, and

p
`+1

is the first point in the sequence that violates a linear constraint. If the

function φ(α)=Qk(p
`
+α{p

`+1
−p

`
}), 0≤α≤1, decreases monotonically, then the

method in the first paragraph of Section 5 is recommended, which allows either
termination with x+k = p

new
, or a change to A with p

new
becoming the starting

point p
1

of the Krylov method for the new active set, p
new

being the vector (5.1).
Examples in Section 4 show, however, that occasionally the first derivative

φ′(0) is positive, although the Krylov method gives φ(1) < φ(0) and φ′(1) ≤ 0,
where φ(·) is defined above. A way of making further progress in this case is
to pick θ > 0, and to let p

`+1
(θ) be the vector x that minimizes the extended

quadratic function

Q+
k (x, θ) = Qk(x) + θ ‖x− p

`
‖2, x∈Rn, (7.1)

subject to ‖x−xk‖≤∆k and to x−p
1

being in the current Krylov subspace. For
every θ > 0, the calculation of p

`+1
(θ) is like the calculation of p

`+1
= p

`+1
(0),

due to ∇2Q+
k (·, θ)−∇2Qk being a multiple of the unit matrix. The function

φ(α, θ)=Q+
k (p

`
+α{p

`+1
(θ)−p

`
}, θ), 0≤α≤1, does decrease monotonically if θ is

sufficiently large, in particular when Q+
k (·, θ) is convex, because of the property

φ′(1, θ)≤ 0. The author has considered finding a relatively small value of θ that
supplies the downhill condition φ′(0, θ) ≤ 0, followed by a change in p

`+1
from

p
`+1

(0) to p
`+1

(θ). Equation (7.1) with the Krylov method show that the move
from p

`
to the changed p

`+1
achieves the reduction

Qk(p
`+1

) ≤ Q+
k (p

`+1
, θ) = Q+

k (p
`+1

(θ), θ) ≤ Q+
k (p

`
, θ) = Qk(p

`
). (7.2)

Having replaced p
`+1

by p
`+1

(θ), where θ gives the required monotonicity, the
method in the second paragraph of this section is applied if p

`+1
is infeasible.

Otherwise, termination with x+k = p
`+1

is suitable if condition (2.6) holds, the
alternative being to continue the steps of the Krylov method for the calculation
of p

`+2
, with the current active set and the original quadratic model. These

techniques provide an iterative procedure that terminates for the current A, due
to the argument in the paragraph that includes inequality (5.9).

26

We give further consideration to the Krylov method when the active set is
chosen at a point p

1
that is different from the centre of the trust region. Then

attention is restricted to vectors x∈Rn that satisfy aTj (x−p
1
) = 0, j ∈A, which

allows the trust region bound ‖x−xk‖≤∆k to be written as the inequality

‖x−x̂k‖ ≤ {∆2
k − ‖x̂k− xk‖2}1/2 = ∆̂k, (7.3)

say, where x̂k is now the shifted trust region centre

x̂k = p
1

+ Q̌ Q̌T (xk− p1) = xk + Q̂ Q̂T (p
1
− xk). (7.4)

Indeed, as x−p
1

is restricted to the column space of Q̌, equation (7.4) shows

that x−x̂k and x̂k−xk are in the column spaces of Q̌ and Q̂, respectively. Thus
x− x̂k is orthogonal to x̂k−xk, so the identity x−xk = (x− x̂k)+(x̂k−xk) gives
the form (7.3) of the trust region bound. Further, because equation (7.4) implies
‖x̂k−xk‖ ≤ ‖p1−xk‖, and because active sets are chosen only at points p

1
that

satisfy ‖p
1
−xk‖<∆k, the trust region radius ∆̂k in expression (7.3) is positive.

The form (7.3) of the trust region bound exposes some deficiencies of the
Krylov method in the case p

1
6= xk. The description of the method in Section 4

is not convenient, however, because some of the details of the computation, like
the use of the Arnoldi formula (4.13), are not relevant to our discussion. Instead,
we employ a definition of the Krylov subspace K`, ` ≥ 1, that depends on the
sequence of points p

j
, j = 1, 2, . . . , `. It can be shown to be equivalent to the

previous one, because the Krylov and conjugate gradient methods generate the
same points while strictly inside the trust region, the direction (5.7) being in the
Krylov subspace K`. Thus K1 is the subspace

K` = span { Q̌ Q̌T ∇Qk(p
j
) : j=1, 2, . . . , ` } (7.5)

in the case ` = 1. Having found K1, we let p
2

be the point given by the usual
construction of p

`+1
in the case `=1. Indeed, p

`+1
is the vector x that minimizes

Qk(x), x∈Rn, subject to x−p
1
∈K` and to ‖x−x̂k‖≤ ∆̂k. The definition (7.5)

with this construction are applied iteratively for `= 1, 2, 3, . . ., until a condition
for termination is satisfied, one of them being K` =K`−1. Two obvious features
of formula (7.5) are that it provides K1 ⊂ K2 ⊂ · · · ⊂ K`, and that it puts the
step p

`+1
−p

`
into the column space of Q̌, as required by the constraints (3.2).

The termination condition (2.6) is recommended. We have addressed already the
situation when p

`+1
is infeasible.

We compare this choice of p
`+1

to the one that is optimal if Qk(x), x∈Rn, is
replaced by the linear approximation

Λk`(x) = Qk(p
`
) + (x− p

`
)T ∇Qk(p

`
), x∈Rn, (7.6)

which occurs also in equation (2.15). The vector −Q̌Q̌T∇Qk(p
`
) is the steepest

descent direction of Λk`(·) that is allowed by the active constraints, so the least

27

value of Λk`(·) subject to these constraints and the trust region bound (7.3) is at
the point

p̂
`+1

= x̂k − ∆̂k Q̌ Q̌
T ∇Qk(p

`
) / ‖Q̌ Q̌T ∇Qk(p

`
)‖. (7.7)

Assuming for the moment that the second derivatives of Qk(·) are small enough
for the approximation Λk`(x)≈Qk(x), ‖x−x̂‖≤∆̂k, to be useful, we would like the
reduction Qk(p

`
)−Qk(p

`+1
) to compare favourably with Qk(p

`
)−Λk`(p̂`+1

). This
hope is achieved if p̂

`+1
−p

1
is in K`, because then the calculation of p

`+1
by the

Krylov method provides Qk(p
`+1

)≤Qk(p̂
`+1

)≈ Λk`(p̂`+1
). Equation (7.7) shows

that p̂
`+1
−p

1
is a linear combination of x̂k−p1 and Q̌Q̌T∇Qk(p

`
), and the definition

(7.5) gives Q̌Q̌T∇Qk(p
`
) ∈ K`. It follows that the Krylov method is suitable in

the case x̂k−p1 =0, which means that the starting point of the Krylov method for
the current A is at the centre of the trust region constraint (7.3). Otherwise, the
Krylov method may be disadvantageous.

We apply the remarks above to the last example of Section 4, where we seek
a relatively small value of the function (4.19) subject to the constraints (4.20),
the trust region centre xk being at the origin. The initial active set is empty, so
the move from xk goes along the direction −∇Qk(xk), and it reaches the point
p
1

= (0, 4, 1)T on the boundary of the linear constraint x3 ≤ 1. This description

is in Section 4, except that our present notation requires the point (0, 4, 1)T to
be called p

1
instead of p

2
, because a new active set is generated there to prevent

violations of the linear constraint. The new set {aj : j ∈ A} contains only the
vector (0, 0, 1)T , which gives the matrices

Q̂ Q̂T =

 0 0 0
0 0 0
0 0 1

 and Q̌ Q̌T =

 1 0 0
0 1 0
0 0 0

 . (7.8)

Now we are working in R3, although the reduced space R2 is employed in the
penultimate paragraph of Section 4. Expressions (4.19), (7.8), (7.4) and (7.3)
supply ∇Qk(p

1
) = (−10, 0,−21.8)T , Q̌Q̌T∇Qk(p

1
) = (−10, 0, 0)T , x̂k = (0, 0, 1)T

and ∆̂k =5. Therefore the Krylov method and equation (7.7) provide p
2
=(3, 4, 1)T

and p̂
2

= (5, 0, 1)T , respectively. The Krylov method is inferior due to p
1
6= x̂k,

the new values of Qk(·) being Qk(p
2
) =−19.4 and Qk(p̂

2
) =−25. Furthermore,

the Krylov method is unable to generate another step that yields the reduction
Qk(p

3
) < Qk(p

2
). Indeed, the projected gradient Q̌Q̌T∇Qk(p

2
) = (−4, 0, 0)T is

parallel to Q̌Q̌T∇Qk(p
1
), so K2 = K1 occurs in the definition (7.5), which is a

condition for termination.
There are three excellent reasons for starting the Krylov method for the new

active set A at p
1

instead of at x̂k when p
1

is not a trust region centre. The
point x̂k may be infeasible, the value Qk(p

1
) is the least known value of Qk(x),

x∈Rn, so far subject to the linear constraints and the trust region bound, and
the new A has been chosen carefully so that a move from p

1
along the direction

−Q̌Q̌T∇Qk(p
1
) does not violate a constraint until the length of the move is greater

28

than η2∆k. Moreover, while the sequence of Krylov steps is strictly inside the trust
region, the steps are suitable, because they are the same as the conjugate gradient
steps in Section 5. When the Krylov steps move round the boundary of the trust
region, however, there is the very strong objection that the definition (7.5) of the
Krylov subspaces is without any attention to the actual trust region boundary,
this deficiency being shown clearly by the property K1 = K2 in the example of
the previous paragraph. Therefore, although it is argued in the first paragraph of
this section that boundary searches by the Krylov method are superior to those
of Section 6 in the case p

1
= xk, and although this argument is valid too in the

unusual situation p
1

= x̂k 6= xk, we expect the crude searches of Section 6 to be
better in the cases p

1
6= x̂k. We recall also that, when p

`+1
is generated by the

Krylov method, the uphill property (p
`+1
−p

`
)T∇Qk(p

`
) > 0 is possible, which

causes difficulties if p
`+1

is infeasible. These disadvantages led to the rejection of
the Krylov method from the LINCOA software, as mentioned earlier. Nevetheless,
the description of the Krylov method with linear constraints in Section 4 may be
useful, because, in many applications of LINCOA, most of the changes to A occur
at the beginning of an iteration, and then p

1
is at the trust region centre xk.

The choice of the quadratic model Qk(x), x∈Rn, for each iteration number
k is important, but it is outside the range of our work. Nevertheless, because
Tables 1 and 2 in Section 6 compare NPT=n+6 with NPT=2n+1, we comment
briefly on the number of interpolation conditions. When the author began to
investigate the symmetric Broyden method for minimization without derivatives,
as reported in the last three paragraphs of Powell (2003), NPT was chosen to be
O(n) for large n, in order to allow the routine work of each iteration to be only
O(n2). Comparisons were made with NPT= 1

2
(n+1)(n+2), which is the number

of degrees of freedom in a quadratic function. The finding that smaller values of
NPT often provide much lower values of #F was a welcome surprise. For the
smaller values, the second derivative matrix ∇2Qk is usually very different from
∇2F (xk) at the end of the calculation, even when F (·) is quadratic. It seems,
therefore, that quadratic models without good accuracy can be helpful to the
choice of xk+1. This view is supported by the following advantage of Qk(·) over a
linear approximation to F (·).

We suppose that there are no linear constraints on the variables, and that we
wish to predict whether the reduction F (x)<F (xk) is going to occur for some x
in the trust region of the k-th iteration. If a linear approximation Λk(·)≈ F (·),
say, is employed for the prediction, and if ∇Λk(xk) is nonzero, then the answer is
affirmative for all vectors x in the set {x : Λk(x)<Λk(xk)} ∩ {x : ‖x−xk‖≤∆k},
which is half of the trust region on one side of the plane {x : (x−xk)T∇Λk(xk)=0}.
On the other hand, a typical quadratic model Qk(·) is subject to the interpolation
conditions

Qk(y
i
) = F (y

i
), i=1, 2, . . . ,NPT, (7.9)

with NPT > n+ 1, and we expect xk to be a best interpolation point, which
means xk = y

t
, where t is an integer in [1,NPT] that satisfies F (y

t
) ≤ F (y

i
),

29

i = 1, 2, . . . ,NPT. Thus the set {x : Qk(x) < Qk(xk)} is usually very different
from a half plane, especially if xk is a strictly interior point of the convex hull
of the interpolation points. Indeed, the set excludes a neighbourhood of every y

i
with F (y

i
) > F (xk), and searches for relatively small values of Qk(·) stay away

automatically from the current interpolation points. Quadratic models with NPT
of magnitude n are obvious candidates for providing this useful feature. Further-
more, because symmetric Broyden updating takes up the freedom in each new
model by minimizing the change to the model in a particular way, some helpful
properties of the old model can be inherited by the new one, although ∇2Qk may
be a very bad estimate of ∇2F (xk). The author is enthusiastic about such models,
because of their success in his software for optimization without derivatives when
there are hundreds of variables.

Updating the quadratic model is an example of a subject that is fundamental
to the development of algorithms such as LINCOA, but the subject is separate
from our present work. Another fundamental subject that has not received our
attention is the choice of vectors x for the calculation of new values of F (x) on
iterations that are designed to improve the quadratic model, instead of trying to
achieve the reduction F (x)<F (xk). The number of these “model iterations” is
about (#F−#TRI−NPT) in Tables 1 and 2. Therefore our paper is definitely not
intended to be a description of LINCOA, although it may be welcomed by users
of LINCOA, because that description has not been written yet. Instead, we have
studied the investigations for LINCOA into the construction of feasible vectors x
that provide a sufficiently small value of Qk(x), ‖x−xk‖≤∆k, subject to linear
constraints. Most of the efforts of those investigations, which have taken about
two years, were spent on promising techniques that have not been included in the
software. The prime example is the Krylov subspace method, which was expected
to perform better than truncated conjugate gradients, due to its attractive way
of taking steps round the trust region boundary in the unconstrained case. The
reason for giving so much attention to failures of the Krylov method is that our
findings may be helpful to future research.

Acknowledgements

The author is very grateful to the Liu Bie Ju Centre and the Department of
Mathematics at the City University of Hong Kong for excellent facilities and
support, while he was investigating versions of the Krylov subspace method for
the LINCOA software.

30

References

C.G. Broyden, J.E. Dennis and J.J. Moré (1973), “On the local and super-
linear convergence of quasi-Newton methods”, J. Inst. Math. Appl., Vol. 12,
pp. 223–245.

A.R. Conn, N.I.M. Gould and Ph.L. Toint (2000), Trust-Region Methods,
MPS/SIAM Series on Optimization, SIAM (Philadelphia).

R. Fletcher (1987), Practical Methods of Optimization, John Wiley & Sons
(Chichester).

P.E. Gill and W. Murray (1974), Numerical Methods for Constrained Opti-
mization, Academic Press (London).

D. Goldfarb and A. Idnani (1983), “A numerically stable dual method for solving
strictly quadratic programs”, Math. Prog., Vol. 27, pp. 1–33.

J.J. Moré and D.C. Sorensen (1983), “Computing a trust region step”, SIAM J.
Sci. Stat. Comput., Vol. 4, pp. 553–572.

M.J.D. Powell (1989), “A tolerant algorithm for linearly constrained optimization
calculations”, Math. Prog. B, Vol. 45, pp. 547–566.

M.J.D. Powell (2003), “On trust region methods for unconstrained minimization
without derivatives”, Math. Prog. B, Vol. 97, pp. 605–623.

M.J.D. Powell (2004), “Least Frobenius norm updating of quadratic models that
satisfy interpolation conditions”, Math. Prog. B, Vol. 100, pp. 183–215.

M.J.D. Powell (2006), “The NEWUOA software for unconstrained optimization
without derivatives”, in Large-Scale Optimization, editors G. Di Pillo and
M. Roma, Springer (New York), pp. 255–297.

M.J.D. Powell (2013), “Beyond symmetric Broyden for updating quadratic
models in minimization without derivatives”, Math. Prog. B, Vol. 138,
pp. 475–500.

31

