
On the discretisation of the semiclassical Schrödinger

equation with time-dependent potential

Arieh Iserles,∗ Karolina Kropielnicka† & Pranav Singh‡

April 30, 2015

AMS Mathematics Subject Classification: Primary 65M70, Secondary 35Q41,
65L05, 65F60

Keywords: Semiclassical Schrödinger equation, time-dependent potentials, Magnus
expansion, exponential splittings, Zassenhaus splitting, spectral collocation, Krylov
subspace methods

Abstract

The computation of the semiclassical Schrödinger equation featuring time-
dependent potentials is of great importance in quantum control of atomic and
molecular processes. It presents major challenges because of the presence of
a small parameter. Assuming periodic boundary conditions, the standard ap-
proach in tackling this problem consists of semi-discretisation with a spectral
method, followed by a Magnus expansion. It is typical to discretise in time, there-
after replacing all integrals occurring in the Magnus expansion with quadratures.
Following this, an exponential splitting is usually prescribed. In this paper we
sketch an alternative strategy where semi-discretisation and approximation of in-
tegrals is done at the very end, following an exponential splitting. This approach
allows us to consider significantly larger time steps and gives us the flexibility
to handle a variety of potentials, inclusive of highly oscillatory potentials. Our
analysis commences from the investigation of the free Lie algebra generated by
differentiation and by multiplication with the interaction potential. It turns out
that this algebra possesses structure that renders it amenable to a very effective
form of asymptotic splitting: an exponential splitting where consecutive terms
are scaled by increasing powers of the small parameter. This leads to meth-
ods that attain high spatial and temporal accuracy and whose cost scales like
O (M logM), where M is the number of degrees of freedom in the discretisation.
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1 Introduction

We consider the linear, time-dependent Schrödinger equation for a single particle
moving in a time-varying electric field,

∂u(x, t)

∂t
= iε

∂2u(x, t)

∂x2
+ iε−1V (x, t)u(x, t), x ∈ R, t ≥ 0, (1.1)

where the wavefunction u = u(x, t) is given with an initial condition u(x, 0) = u0(x).
Here 0 < ε� 1 is the semiclassical parameter whose small size affects rapid oscillations
of solution which cause obvious difficulties with numerical discretisation.

Historically, the time-independent Schrödinger equation (TISE) preceded the de-
velopment of the time-dependent Schrödinger equation (TDSE). Briggs & Rost (2001)
note that Schrödinger considered time dependence in the TDSE as arising from time-
dependent potentials, in a classical treatment of the external environment. One of the
first applications of the TDSE that Schrödinger considered was to the interaction of
an atom with a classical electric field, resulting in a time-dependent potential, V (t).
Time-dependent potentials, in this way, can be considered to have a fundamental
relevance to the TDSE.

As laser technology matures and ability to manipulate electric and magnetic fields
increases, unprecedented quantum control of atomic and molecular systems is becom-
ing possible (Shapiro & Brumer 2003). Numerical solution of TDSE with time-varying
potentials should prove particularly relevant in this field.

Consider the evolution of the wave-packet

u0(x) = (δπ)−1/4 exp

(
− (x− x0)2

2δ

)
(1.2)

with

x0 = −0.3, δ = 1.22× 10−4,

sitting in the double-well potential

V0 = −(450x4 − 100x2 + 1). (1.3)

The negative sign accounts for our convention since traditionally the potential in (1.1)
appears with the opposite sign. It is typical to impose periodic boundary conditions
in order to resolve spatial oscillations with spectral accuracy. We restrict the domain
to [−1, 1], imposing periodic boundaries at x = ±1.

Figure 1.1 shows that the wave-packet u(T ) at T = 0.1, evolving under the influence
of the time-independent double-well potential V0 alone, does not leave the left well.
When we excite the wave-packet with the time-varying potential,

Lω(x, t) = 2ρ(t) sin((x− 5t)πω), (1.4)

however, we find that we are able to induce part of the wave-packet to move to the
second well. Figure 1.1 shows the final wave-packet uL(T ) under the influence of the
potential V (x, t) = V0 + L100(x, t). Here the semiclassical parameter is taken to be
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Figure 1.1: (left) initial wave-packet u(0) = u0, (right) final wave-packets at time
T = 1 : u(T ) under the influence of V0 and uL(T ) under the influence of V0+L100(x, t).
For consistency with physical interpretations we depict the negative potential, scaling
it down by a factor of five for ease of illustration.

ε = 0.01 and

ρ(t) =


e
− 1

1−(30t−1)2 for |30t− 1| < 1,

0 otherwise
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is a bump function which acts as a smooth envelope simulating the switching on and
off of the time-varying component of the potential.

Considering (1.1) to be an evolutionary PDE evolving in a Hilbert space, say
H = L2[−1, 1], and suppressing the dependence on x,

∂tu(t) =
(
iε∂2

x + iε−1V (t)
)
u(t), u(0) = u0, (1.5)

is seen to be of the ‘ODE-like’ form

∂tu(t) = A(t)u(t), u(0) = u0, (1.6)

with A(t) := iε∂2
x + iε−1V (t). The operator A(t) belongs to u(H), the Lie algebra

of (infinite-dimensional) skew-Hermitian operators acting on the Hilbert space H. Its
flow is, therefore, unitary and resides in U(H) – the Lie group corresponding to u(H).
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Unitary evolution of the wavefunction, u(t), under this flow is a central aspect of
quantum mechanics. Preservation of this property under discretisation is a desirable
aspect of any numerical method which naturally comes about when working in the
appropriate Lie-algebraic framework. Note that unitarity automatically guarantees
stability of a consistent numerical scheme.

We impose periodic boundary conditions at ±1 to allow an effective approximation
by spectral methods and assume throughout that the interaction potential V (·, t) and
the wavefunction u(·, t) are sufficiently smooth. For the purpose of this paper and
for simplicity sake we assume that they belong to C∞p ([−1, 1];R) and C∞p ([−1, 1];C),
respectively, the spaces of real valued and complex valued smooth periodic functions
over [−1, 1], but our results extend in a straightforward manner to functions of lower
smoothness.

Traditionally, the first step in approximating (1.5) is spatial discretisation,

u′(t) = i(εK2 + ε−1DV (·,t))u(t), t ≥ 0, (1.7)

where vector u(t) ∈ CM represents an approximation to the solution at time t, u(0)
is derived from the initial conditions, while K2 and DV (·,t) are M ×M matrices which
represent (discretisation of) second derivative and a multiplication by the interac-
tion potential V (·, t), respectively. Hochbruck & Lubich (2002) propose solving (1.7)
through a Magnus expansion,

u(h) = eΘ(h)u(0),

where Θ(h) ∈ uM (C) is a time-dependent M ×M skew-Hermitian matrix obtained as

an infinite series
∑∞
k=1 Θ[k](h) with each Θ[k](h) composed of k nested integrals and

commutators of the matrices iεK2 and iε−1DV . The authors conclude that h‖K‖ ≤
c for some constant c and time step h, suffices for the convergence of the Magnus
expansion Θ(h). In the context of the Schrödinger equation (1.1), this represented a
significant improvement over the more stringent convergence requirements of (Iserles
& Nørsett 1999, Moan & Niesen 2008) which were obtained under a very general
setting.

Jin, Markowich & Sparber (2011) note that the solution of the Schrödinger equa-
tion develops oscillations of order O

(
ε−1
)
, necessitating a large number of degrees of

freedom in the spatial discretisation, M = O
(
ε−1
)
. Since the differentiation matrix K

scales as O (M) = O
(
ε−1
)
, the constraint on the time step h = O (ε) is considerable.

Additionally, Θ(h) ends up being a large matrix (spectrally as well as in size) which
does not posses any favourable structure that could allow an effective approximation
of the exponential exp(Θ(h)).

Splitting methods (Yošida 1990, McLachlan & Quispel 2002, Blanes, Casas &
Murua 2006, Lubich 2008, Jin et al. 2011, Faou 2012) can separate some spectrally
large but structurally favourable components of the form iεK2 and iε−1D from Θ(h).
These components are either diagonal or circulant matrices and are either exponenti-
ated directly or through a couple of Fast Fourier Transforms (FFTs) which can diago-
nalise the circulant. The remaining parts of Θ(h) end up being spectrally smaller and
may be exponentiated via Lanczos iterations (Gallopoulos & Saad 1992, Hochbruck
& Lubich 1997). However, the large size and inconvenient structure of commutators
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occurring in Θ(h) and its splittings makes this approach suboptimal, particularly once
we seek higher-order schemes.

Our narrative develops along a different path: in line with the approach of (Bader,
Iserles, Kropielnicka & Singh 2014), the semidiscretisation is deferred to the very last
moment. This enables us to take a subtle but powerful advantage of working with
undiscretised operators, ∂2

x and V , which, when properly applied, simplifies expressions
and allows us to lower the complexity of the method.

In contrast to the approach of (Hochbruck & Lubich 2002), we seek a Magnus
expansion for the undiscretised equation (1.5),

u(h) = eΘ(h)u(0),

where h is a small time step and Θ(h) ∈ u(C∞p ([−1, 1];C)) is a skew-Hermitian operator
acting on the space of smooth periodic functions over [−1, 1]. The Magnus expansion
Θ(h), introduced in section 2, features nested integrals of commutators of A.

In Section 3, we introduce simplification rules of the free Lie algebra of ∂2
x and V ,

FLA{∂2
x, V }. We observe that once we work with the undiscretised operators, it is

possible to expand commutators and arrive at a commutator-free Magnus expansion
for (1.5). The property of height reduction summed up in Lemma 1 and Corollary 1
is a clear demonstration of the systematic reduction in complexity which results from
working with undiscretised operators.

Terms of the Magnus expansion obtained in this way do not seem to be skew-
Hermitian, however. A straightforward discretisation at this stage would result in
loss of unitarity and would raise stability concerns. We remedy this in Section 4
through replacement rules for differential operators and arrive at an expansion, all
terms of which are of the Jordan form ik+1 〈f〉k := ik+1

(
f ◦ ∂kx + ∂kx ◦ f

)
/2, which

makes them skew-Hermitian. These terms discretise as skew-Hermitian matrices in
uM (C) whose exponentials are guaranteed to be unitary, whereby unitary evolution of
the wavefunction and unconditional stability of the method are assured.

Keeping the eventual discretisation in mind, where M = O
(
ε−1
)

degrees of spa-
tial freedom are necessitated by the nature of the Schrödinger equation, we use the
shorthand ∂x = O

(
ε−1
)

(although in principle it is an infinite-dimensional unbounded
operator). We assume that the time step h scales as h = O (εσ) for some 0 < σ ≤ 1,
allowing us to analyse all the terms solely in powers of ε. We find that, in principle,
an effective scheme can be developed for any σ > 1/3. We are able to use time steps
as large as h = O

(
ε1/2

)
, for instance, where we fall in the regime h‖K‖ = O

(
ε−1/2

)
,

which represents a considerable improvement. In Section 5 we develop truncated Mag-
nus expansions that can achieve an arbitrarily high order, expressed in powers of the
semiclassical parameter ε.

We recap the Zassenhaus splitting algorithm in Section 6 which allows us to sep-
arate components of the Magnus expansion by powers of ε, arriving at asymptotic
splittings of the form

un+1 = e
1
2W

[0]

e
1
2W

[1]

· · · e 1
2W

[s]

eW
[s+1]

e
1
2W

[s]

· · · e 1
2W

[1]

e
1
2W

[0]

un,

which commitO
(
ε(s+3)σ−1

)
error. HereW [0],W [1] = O

(
εσ−1

)
andW [2] = O

(
ε3σ−1

)
.

The absence of an O
(
ε2σ−1

)
term is an anomaly here since the following exponents
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W [k], for k ≥ 3, are O
(
ε(k+1)σ−1

)
. This is to be compared with the splittings of

(Bader et al. 2014) which do not feature any exponent of size O
(
ε(2k)σ−1

)
.

In the approach presented here, evaluation of integrals is postponed till the very
end, and terms of the splitting, W [k], still feature integrals at this stage. A range
of options available to us for evaluation of integrals is considered in Section 6. If
an analytic form of the interaction potential V is available, it might be possible to
evaluate the integrals exactly. In general, it might be possible to approximate the
integral through analytic means, standard quadratures or high frequency quadratures
in special cases.

When dealing with highly oscillatory potentials, keeping the integrals intact helps
suppress high-frequency oscillations. In contrast, approaches where the Magnus ex-
pansion commences with a Taylor expansion or a standard quadrature would require
dramatic suppression of time-step. When the interaction potential V possesses more
favourable temporal behaviour, values of V at only a few temporal grid points are
required for a high order method once we resort to Gauss–Legendre quadrature or a
Taylor expansion of V (h). For O

(
ε7σ−1

)
accuracy, for instance, we require merely

three Gauss–Legendre knots, tk = h(1 + k
√

3/5)/2, k = −1, 0, 1.

Since we deliberately postpone spatial discretisation, the splittings are in an op-
eratorial form, featuring undiscretised operators such as ∂2

x. The choice of spatial
discretisation at this stage does allow us some flexibility. However, we restrict our
attention to spectral collocation, whereby ∂x is replaced by a circulant matrix K. The
largest exponents in the splitting, W [0] and W [1], are of the form ih∂2

x and ihµ(h),
where µ(h) is an integral of the potential V from 0 to h. These are discretised as a
circulant and a diagonal matrix, respectively, and are easily exponentiated with an
O (M logM) cost. The remaining exponents, which possess more complicated struc-
tures of the form ik+1 〈f〉k, are small enough to be exponentiated effectively through
Krylov methods such as Lanczos iterations (Tal Ezer & Kosloff 1984, Gallopoulos &
Saad 1992) with an O (M logM) cost per exponent. At this stage we have a fully con-
crete numerical scheme. We wrap up Section 6 by presenting numerical experiments
to demonstrate the efficacy of our approach.

In Section 7 we exploit time symmetry of the Magnus expansion to derive splittings
where the exponents W [k] are O

(
ε(2k−1)σ−1

)
for k ≥ 2. In these new splittings terms

of size O
(
ε(2k)σ−1

)
do not feature, reducing the number of exponents in the splitting

(and the cost) to half and making higher order splittings simpler and more feasible.
In order to achieve this feat we need to analyse the terms of the Magnus expansion in
terms of their odd and even components. The time symmetry of the Magnus expansion
results in the Magnus expansion being odd, whereby we are able to discard all its even
components.

In an alternative approach, which is under parallel development, we commence
our analysis from an integral-free approximation of the Magnus expansion. Here the
integrals appearing in the Magnus expansion are replaced by Gauss–Legendre quadra-
tures or Taylor expansions of V at the outset. The analysis in this approach, which
will feature in another publication, should be easier to follow.

Since we wish to retain integrals till the very end in the approach presented here,
the mathematical machinery we need to introduce becomes more involved. However,
we end up with a highly flexible method – not only is it possible to approximate
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the integrals through any quadrature method, but we may also use exact integrals for
potentials which possess an analytic form. This flexibility allows us to tackle effectively
potentials with weaker temporal regularity as well as highly oscillatory potentials of
certain forms.

2 The Magnus expansion

For a general equation of the form (1.6) where A(t) resides in a Lie algebra g, the
central idea of the Magnus expansion (Magnus 1954) is to seek a solution for the flow
(which must reside in the corresponding Lie group G) as the exponential of an element
Θ(t) in the Lie algebra g,

u(t) = eΘ(t)u(0). (2.1)

Θ(t) is expanded as an infinite series Θ(t) =
∑∞
k=1 Θ[k](t), the convergence of which

is only guaranteed for sufficiently small time steps (Moan & Niesen 2008, Hochbruck
& Lubich 2002). In practice, we work with finite truncations of this series. In order
to keep truncation errors small and keeping the convergence criteria in mind, it is
customary to evolve the solution in small time steps h,

u(t+ h) = eΘ(t+h,t)u(t), (2.2)

starting from the initial step,

u(h) = eΘ(h,0)u(0). (2.3)

Here exp (Θ(t+ h, t)) is the operator which evolves the solution from t to t+h. Since
it encodes the flow at time t under A, Θ(t+h, t) is recovered from Θ(h, 0) by replacing
all occurrences of A(ζ) with A(t+ζ). For all intents and purposes, therefore, it suffices
to restrict the analysis to the first step (2.3). We hide the dependence on t for the
larger part of this paper, shortening Θ(h, 0) to Θ(h).

Simple differentiation of (2.3) together with elementary algebra (Iserles, Munthe-
Kaas, Nørsett & Zanna 2000) show that the exponent has to satisfy the dexpinv
equation,

Θ′(h) = dexp−1
Θ(h)A(h) =

∞∑
m=0

Bm
m!

admΘ(h)A(h), (2.4)

whereBm are Bernoulli numbers and the adjoint map is recursively defined by ad0
A(B) =

B, adk+1
A (B) = [A, adkA(B)]. Magnus (1954) resorted to solving the dexpinv equation

via Picard iteration,

Ω0(h) = 0,

Ωk+1(h) =

∫ h

0

dexp−1
Ωk(ξ)A(ξ)dξ =

∞∑
m=0

Bm
m!

∫ h

0

admΩk(ξ)A(ξ)dξ,

whereby Θ(h) = limk→∞ Ωk(h). The series Ωk(h) is known as the Magnus expansion.
For computational reasons, however, we adopt another version of this expansion de-
scribed by Iserles & Nørsett (1999) where the operator Θ(h) is presented as an infinite
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series: Θ(h) =
∑∞
k=1 Θ[k](h), where

Θ[1](h) =

∫ h

0

A(ξ1)dξ1,

Θ[2](h) = −1

2

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]
dξ1,

Θ[3](h) =
1

12

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1

+
1

4

∫ h

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2, A(ξ1)

]
dξ1,

Θ[4](h) = − 1

24

∫ h

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3,

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]]
dξ2, A(ξ1)

]
dξ1

− 1

24

∫ h

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1

− 1

24

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2, A(ξ1)

]]
dξ1

− 1

8

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]]
dξ1.

The terms in the Magnus expansion can be obtained through a recursive procedure,
whereby they can be easily coded as binary rooted trees. Let C be a mapping from
trees to terms. We recursively define the set of trees T̂k and the corresponding terms:

(1) Let T̂1 = {τ0}, and Cτ0(h) = A(h).

(2) If τ1 ∈ T̂m1 and τ2 ∈ T̂m2 then there exists τ ∈ T̂m1+m2 such that

Cτ (h) =

[∫ h

0

Cτ1(ξ)dξ, Cτ2(h)

]
.

We depict the inverse of the bijection C as ;, so that Cτ ; τ for any tree τ . A graphical
representation for these terms is obtained by representing the atomic expression A(h)
as a single vertex, τ0 = •,

A(h) ; r ,
representing the unary operator of integration by a vertical line,∫ h

0

Cτ (ξ) dξ ; rτ ,

and the Lie bracket – a binary operator – by a fork,

[Cτ1(h), Cτ2(h)] ; r@�τ1 τ2
.
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This results in a more transparent representation of Magnus expansion and what is
far more comfortable for investigation of the terms or for implementation. The first
three sets of trees formed in this way, T̂1, T̂2 and T̂3, are,

A(h) ; r ∈ T̂1,[∫ h

0

A(ξ2)dξ2, A(h)

]
;
@�rr rr

∈ T̂2,

[∫ h

0

A(ξ2)dξ2,

[∫ h

0

A(ξ2)dξ2, A(h)

]]
;
@�
@�rrr rr rr

∈ T̂3,

[∫ h

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2, A(h)

]
;

@�

@�rr rrr rr
∈ T̂3.

It should be evident that trees in T̂k have k − 1 vertical lines. Finally, we define the
set of trees which actually appear in the Magnus expansion: Tk,

τ = rτ̂ ∈ Tk, Cτ (h) =

∫ h

0

Cτ̂ (ξ) dξ, ∀τ̂ ∈ T̂k,

so that every tree τ in Tk is obtained by adding an integral to a tree τ̂ from the
auxiliary set T̂k.

Each tree in Tk possesses k integrals. For A(h) = O
(
h0
)

and τ ∈ Tk, it im-

mediately follows that Cτ (h) = O
(
hk
)
. We say that the tree τ is O

(
hk
)
, for short.

Similarly, every τ ∈ T̂k is O
(
hk−1

)
. Each component of the Magnus expansion Θ[k](h)

is composed solely of trees from the corresponding set Tk,

Θ[1](h) = rr ,
Θ[2](h) = − 1

2

@�rrr rr
,

Θ[3](h) = 1
12

@�
@�rrrr rr rr

+ 1
4

@�

@�

rrr rrr rr
,

Θ[4](h) = − 1
24 rrr rrrr rr rr
@�

@�
�@

− 1
24 rrr rrr rr r rr
QQ ��

@�
@�

− 1
24 rrrr rr rrr rr
@�
@�

@�

− 1
8 rr r r rr r rr r r
@
@
@

�
�
�

.
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The set of all trees that appear in the Magnus expansion is
⋃
k≥1 Tk and the Magnus

expansion can be written in the form

Θ(h) =

∞∑
k=1

Θ[k](h) =

∞∑
k=1

∑
τ∈Tk

α(τ)Cτ (h), h ≥ 0, (2.5)

where α(τ) is a scalar which can be recursively obtained (Iserles et al. 2000, Iserles &
Nørsett 1999). The reader is forewarned about certain conflict of notation: the sets

Tk in (Iserles et al. 2000, Iserles & Nørsett 1999) correspond to our auxiliary sets T̂k+1

and the last integral occurs explicitly in the Magnus expansion corresponding to (2.5).
A few discrepancies will, therefore, be found in numbering of trees and truncations of
the Magnus expansion when directly comparing with these texts.

A tree τ is said to be of power k in h if k is the greatest integer such that Cτ (h) =
O
(
hk
)
. We define Fk ⊆

⋃
j≥1 Tj as the set of all trees of power k in h which appear

in the Magnus expansion. It is clear that τ ∈ Tk implies that τ ∈ Fm for some m ≥ k
since a tree with k integrals is, at the very least, O

(
hk
)
. The two sets are not identical,

however. For instance, it can be shown that the tree

@�rrr rr

belongs to T2 and F3. Such a gain in power occurs wherever we encounter a pattern

of the form
[∫ h

0
Cτ (ξ) dξ, Cτ (h)

]
with τ ∈ T̂k which corresponds to the tree structure,

@�rr τ
τ

.

Upon expanding Cτ (h) as
∑∞
i=k−1 h

iCi we find that the largest term in the above tree,[
1
kh

kCk−1, h
k−1Ck−1

]
, vanishes since Ck−1 commutes with itself (Iserles et al. 2000).

The power truncated Magnus expansion, which is based on truncation by the sets
Fk, is defined as

Θp(h) :=

p∑
k=1

∑
τ∈Fk

α(τ)Cτ (h). (2.6)

The largest terms that have been discarded in this truncation correspond to trees from
Fp+1, which are O

(
hp+1

)
, so that this truncated expansion incurs an error of

Θp(h) = Θ(h) +O
(
hp+1

)
,

where Θ(h) is the full Magnus series.

3 Expanding in an algebra of operators

The vector field in the Schrödinger equation (1.5) is a linear combination of the action
of two operators, ∂2

x and the multiplication by the interaction potential V (ξ), for any
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ξ ≥ 0. Since the Magnus expansion requires nested commutation, the focus of our
interest is the free Lie algebra

F = FLA{∂2
x, V (·)},

i.e. the linear-space closure of all nested commutators generated by ∂2
x and V (·). To

compute commutators we need in principle to describe their action on functions, e.g.

[V, ∂2
x]u = V (∂2

xu)− ∂2
x(V u) = −(∂2

xV )u− 2(∂xV )∂xu

implies that [V, ∂2
x] = −(∂2

xV )− 2(∂xV )∂x, where we have suppressed dependence on
the time variable ξ since it plays no role. In general, we note that all terms in F belong
to the set

G =

{
n∑
k=0

fk(x)∂kx : n ∈ Z+, f0, . . . , fn ∈ C∞p ([−1, 1];R)

}
,

which is itself a Lie algebra (Bader et al. 2014) with the commutator n∑
i=0

fi(x)∂ix,

m∑
j=0

gj(x)∂jx

 =

n∑
i=0

m∑
j=0

i∑
`=0

(
i

`

)
fi(x)

(
∂i−`x gj(x)

)
∂`+jx

−
m∑
j=0

n∑
i=0

j∑
`=0

(
j

`

)
gj(x)

(
∂j−`x fi(x)

)
∂`+ix . (3.1)

Once we begin to simplify commutators of terms in the Lie algebra G using the above
simplification procedure, we encounter systematic reduction in differential operators
which is summarised in the observation of height reduction. This observation is what
justifies working directly in the undiscretised operators – it leads to a reduction in the
spectral radius of terms, eventually allowing an effective asymptotic splitting.

Definition 1 The height of a term in the free Lie algebra G is defined as the degree
of the highest-degree differential operator occurring in the term,

ht

(
n∑
k=0

fk(x)∂kx

)
= n.

We note that the height of (∂3
xV )∂x+V ∂2

x, defined in this way, is two, not three, since
∂3
x is not acting as an operator but instead describes the third derivative of V . The

term 0 ∈ G is assigned a height of −1, making it the only term with negative height.
We extend the notion of height to commutators in the free Lie algebra F by defining

it as the height of the term in G to which the commutator reduces upon applying
the simplification rule (3.1). Additionally, we may extend the notion of height to
other algebras including the free algebra of ∂2

x and V under operatorial composition
◦ and their free Jordan algebra (which is the free algebra under the Jordan product,
A •B := 1

2 (A ◦B +B ◦A)).
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Lemma 1 (Height reduction) For all C1, C2 ∈ G, such that C1, C2 6= 0,

ht([C1, C2]) ≤ ht(C1) + ht(C2)− 1. (3.2)

Proof Let ht(C1) = n and ht(C2) = m, so that for some fi and gj , C1 =∑n
i=0 fi(x)∂ix and C2 =

∑m
j=0 gj(x)∂jx. The commutator [C1, C2] is then described

exactly by (3.1), where the terms featuring ∂n+m
x in the two summations cancel out.

The highest degree differential operator, therefore, has a degree not exceeding n+m−1.
2

We note that in general the terms corresponding to ∂n+m−1
x do not cancel out and,

with the exception of some special cases, (3.2) holds as an equality.
This property extends in a natural way to nested commutators appearing in the

Magnus expansion. Terms in the Magnus expansion (2.5) are of the form

IS,L(h) =

∫
S
L(ξ1, ξ2, . . . , ξs) dξ,

where L a multilinear form free of integrals and consisting solely of commutators
featuring A(ξj), j = 1, 2, . . . , s, while S is an s-dimensional polytope of a special form,

S = {ξ ∈ Rs : ξ1 ∈ [0, h], ξl ∈ [0, ξml ], l = 2, 3, . . . , s}, (3.3)

whereml ∈ {1, 2, . . . , l−1}, l = 2, 3, . . . , s. For instance, the multilinear form occurring
in the tree

@�rrr rr
is L = [A(ξ), A(ζ)] and the polytope of integration is the triangle S = {(ζ, ξ) ∈ R2 :
ζ ∈ [0, h], ξ ∈ [0, ζ]}. Simplification identities of the free Lie algebra such as (3.1),
which solely concern themselves with the algebraic structure in the spatial domain,
can be applied directly to simplify L.

Corollary 1 For any C1, . . . , Cn ∈ {i∂2
x} ∪ {iV (ξ) : ξ ∈ R} – where we take the

imaginary unit into account – if L(C1, . . . , Cn) 6= 0,

ht (L(C1, . . . , Cn)) ≤
n∑
k=1

ht(Ck)− (n− 1),

where L is a commutator involving C1, . . . , Cn in any order.

Where negative height is encountered in a subpart of the commutator L, the entire
term vanishes. Just like the case of Lemma 1, there are choices of V such that
Corollary 1 holds with equality.

Commutators in the Magnus expansion Θ(h) =
∑∞
k=1 Θ[k](h) can be expanded

in G. With A(ζ) = iε∂2
x + iε−1V (ζ), the first term of the Magnus expansion is the

integral

rr :

∫ h

0

A(ζ) dζ =

∫ h

0

(
iε∂2

x + iε−1V (ζ)
)

dζ = ihε∂2
x + iε−1

∫ h

0

V (ζ) dζ. (3.4)
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Other terms can be written as nested integrals of commutators L(A1, . . . , An), Aj =
A(ξj) = iε∂2

x + iε−1V (ξj), which can again be worked out in the free Lie algebra,

@�rrr rr
:

∫ h

0

[∫ ζ

0

A(ξ) dξ , A(ζ)

]
dζ =

∫ h

0

∫ ζ

0

[A(ξ), A(ζ)] dξ dζ

=

∫ h

0

∫ ζ

0

[
iε∂2

x + iε−1V (ξ) , iε∂2
x + iε−1V (ζ)

]
dξ dζ

= −
∫ h

0

∫ ζ

0

[
∂2
x, V (ζ)

]
+
[
V (ξ), ∂2

x

]
dξ dζ

= 2

(∫ h

0

∫ ζ

0

(∂xV (ξ)) dξ dζ −
∫ h

0

ζ(∂xV (ζ)) dζ

)
∂x

+

∫ h

0

∫ ζ

0

(∂2
xV (ξ)) dξ dζ −

∫ h

0

ζ(∂2
xV (ζ)) dζ, (3.5)

@�
@�rrrr rr rr

: 4iε

(∫ h

0

ζ

∫ ζ

0

(∂2
xV (ξ)) dξ dζ −

∫ h

0

ζ2(∂2
xV (ζ)) dζ

)
∂2
x

+ 4iε

(∫ h

0

ζ

∫ ζ

0

(∂3
xV (ξ)) dξ dζ −

∫ h

0

ζ2(∂3
xV (ζ)) dζ

)
∂x

+ 2iε−1

∫ h

0

ζ(∂xV (ζ))

∫ ζ

0

(∂xV (ξ)) dξ dζ −
∫ h

0

(∫ ζ

0

(∂xV (ξ)) dξ

)2

dζ


+ iε

(∫ h

0

ζ

∫ ζ

0

(∂4
xV (ξ)) dξ dζ −

∫ h

0

ζ2(∂4
xV (ζ)) dζ

)
. (3.6)

After simplifying terms in the Magnus expansion (2.5) we arrive at expressions such
as (3.5) and (3.6), where each integral is of the form

IS,P (h) =

∫
S
P (ξ) dξ,

where P (ξ) =
∏s
j=1 Pj(ξj) for some Pj , and S is an s-dimensional polytope of the

special form (3.3).

Integration over the polytope S in the temporal domain has remained an af-
terthought up to this stage. The special forms of these polytopes, and of certain
integrands obtained after expanding the commutators, allows us to simplify the terms
of the Magnus expansion further. Integration by parts leads us to the following iden-
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tities:

∫ h

0

P1(ξ1)

(∫ ξ1

0

P2(ξ2)dξ2

)
dξ1 =

∫ h

0

P2(ξ1)

(∫ h

ξ1

P1(ξ2)dξ2

)
dξ1, (3.7)

∫ h

0

P1(ξ1)dξ1

(∫ ξ1

0

P2(ξ2)dξ2

)(∫ ξ1

0

P3(ξ3)dξ3

)
dξ1 (3.8)

=

∫ h

0

(∫ h

ξ3

P1(ξ1)dξ1

)(
P2(ξ3)

∫ ξ3

0

P3(ξ2)dξ2 + P3(ξ3)

∫ ξ3

0

P2(ξ2)dξ2

)
dξ3.

In our simplifications, (3.5) and (3.6), we have already encountered integrals over a

triangle such as
∫ h

0

∫ ζ
0
(∂xV (ξ)) dξ dζ and

∫ h
0
ζ
∫ ζ

0
(∂2
xV (ξ)) dξ dζ. We can reduce these to

integrations over a line by applying the first identity with P1(ξ1) = 1, P2(ξ2) = ∂xV (ξ2)
and P1(ξ1) = ξ1, P2(ξ2) = ∂xV (ξ2), respectively. Integration over the pyramid in∫ h

0

(∫ ζ
0
(∂xV (ξ)) dξ

)2

dζ is similarly reduced using the second identity with P1(ξ1) = 1,

P2(ξ2) = ∂xV (ξ2), P3(ξ3) = ∂xV (ξ3).

Although it might be possible to develop a general formalism for extending these
observations to higher dimensional polytopes appearing in the Magnus expansion, the
two identities presented here suffice for all results presented in our work. Deducing
similarly useful identities for reduction of nested integrals in any specific high dimen-
sional polytope case should also be relatively straightforward.

4 Regaining stability

The algebraic structure of the Lie algebra G is far too weak for our stability concerns.
Expanding nested commutators in the Lie algebra G does give us a commutator-free
method, but it does so by mixing all powers of ∂x: in the simplification of the first three
trees – (3.4), (3.5) and (3.6) – we encounter terms of the form i∂2

x, if(x), f(x), f(x)∂x
and if(x)∂2

x for some real-valued function f ∈ C∞p ([−1, 1];R). This presence is worri-
some for an important reason, namely stability.

Both ∂2
x and multiplication by V (x, t) are Hermitian operators, therefore A(t) =

iε∂2
x+iε−1V (x, t) is a skew-Hermitian operator: its flow is thus unitary. This survives

under eventual discretisation, because any reasonable approximation of ∂2
x under pe-

riodic boundaries preserves Hermitian structure. However, terms of the form f(x),
without the leading i are Hermitian while terms of the form f(x)∂x and if(x)∂2

x, are
in general neither skew-Hermitian nor Hermitian. This is fraught with loss of unitarity
and stability.

In similar vein to Bader et al. (2014), in the pursuit of stability, we proceed to
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replace all odd powers of ∂x that are accompanied by i using the identities

f∂x = − 1
2

[∫ x

0

f(ξ) dξ

]
∂2
x − 1

2∂xf + 1
2∂

2
x

[∫ x

0

f(ξ) dξ ·
]
,

f∂3
x = −(∂xf)∂2

x − 1
4

[∫ x

0

f(ξ) dξ

]
∂4
x + 1

4∂
3
xf − 1

2∂
2
x[(∂xf) · ] + 1

4∂
4
x

[∫ x

0

f(ξ) dξ ·
]
,

f∂5
x = 4

3 (∂3
xf)∂2

x − 5
3 (∂xf)∂4

x − 1
6

[∫ x

0

f(ξ) dξ

]
∂6
x − 1

2∂
5
xf + 7

6∂
2
x[(∂3

xf) · ]

− 5
6∂

4
x[(∂xf) · ] + 1

6∂
6
x

[∫ x

0

f(ξ) dξ ·
]
,

where f is any C1 function. The general form for expressing f∂2s+1
x as a linear

combination of even derivatives is also known (Bader et al. 2014).
In the Zassenhaus splitting for time-independent potentials (Bader et al. 2014),

the commutators arise solely from the symmetric Baker–Campbell–Hausdorff formula
where each commutator has an odd number of letters. In the case of the Schrödinger
equation, where the operators ∂2

x and V are accompanied by i, this translates into an
odd power of i for each commutator.

The Magnus expansion, however, does not posses such a desirable structure – it
has commutators with odd as well as even number of letters. As a consequence, we
have odd and even powers of i accompanying our terms and it does not suffice to
automatically replace odd powers of ∂x. Instead, we replace all odd powers of ∂x
when accompanied by an odd power of i and all even powers of ∂x when accompanied
by an even power of i. A general formula for replacement of even derivatives by odd
derivatives can be proven along similar lines to (Bader et al. 2014). For all practical
purposes, however, we only require the identities,

f = −
[∫ x

0

f(ξ) dξ

]
∂x + ∂x

[∫ x

0

f(ξ) dξ ·
]
,

f∂2
x = − 1

3

[∫ x

0

f(ξ) dξ

]
∂3
x − 2

3 (∂xf)∂x − 1
3∂x[(∂xf) · ] + 1

3∂
3
x

[∫ x

0

f(ξ) dξ ·
]
,

f∂4
x = − 1

5

[∫ x

0

f(ξ) dξ

]
∂5
x − 4

3 (∂xf)∂3
x + 8

15 (∂3
xf)∂x + 7

15∂x[(∂3
xf) · ]

− 2
3∂

3
x[(∂xf) · ] + 1

5∂
5
x

[∫ x

0

f(ξ) dξ ·
]
,

which can be easily verified. Since these replacement rules are identities and our
definition of height requires simplification of all terms to terms residing in G, the
heights of both sides of each identity are the same. Consequently, the property of
height reduction from Lemma 1 and Corollary 1 is retained.

The motivation behind the observation of height reduction, however, is to study
a systematic decrease in the highest degree differential operator occurring in a term.
Upon eventual spatial discretisation the differential operators occurring in each ex-
pression are replaced by matrices, the spectral radius of which is largely governed
by the highest degree differential operator occurring in it. The notion of height is
supposed to provide a direct estimate of the spectral radius in this way. However,
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the highest degree differential operator is a property of an expression and clearly the
replacement rules seem to increase this by one.

However, we note in Lemma 2 that the correct use of these replacement rules does
not increase the highest degree differential operator in the expressions that concern us.
Since we work in the free Lie algebra generated by i∂2

x and iV , the terms that interest
us are commutators of the form L detailed in Corollary 1. We remind the reader that
we only prescribe replacing odd-degree differential operators when accompanied by i
and replacing even-degree differential operators when not accompanied by i.

Lemma 2 (Reduction of highest degree differential operators) For any Cj ∈
{i∂2

x} ∪ {iV (ξ) : ξ ∈ R}, j = 1, . . . , n consider a commutator L(C1, . . . , Cn) 6= 0
featuring Cj in any order. If the highest-degree differential operator occurring in the
simplification of L after replacement of appropriate derivatives is ∂dx, then

d ≤
n∑
k=1

ht(Ck)− (n− 1).

Proof We assume j instances of i∂2
x and n−j instances of iV (·) in the commutator

L. Height reduction implies ht(L) ≤ 2j + 1 − n, since L 6= 0. We argue that the
derivative replacement rules of section 4, when correctly used, cannot produce terms
with differential operators of a degree higher than 2j + 1− n.

Since the replacement rules of Section 4 never increase the degree of differential
operators by more than one (Bader et al. 2014), we need only concern ourselves with
the largest possible term, inf∂2j+1−n

x for some f ∈ C∞p ([−1, 1];R). However, the term
is either of the form g∂2m+1

x or ig∂2m
x for some m ∈ N and g ∈ C∞p ([−1, 1];R). In

either case it does not warrant replacement. 2

The consequence of Lemma 2 is that we continue to witness the same decrease in
the highest degree differential operator despite the replacement rules, and the notion
of height remains a valid proxy. We note that there are choices of V for which ht(L) =
2j + 1− n and Lemma 2 holds with equality.

Once the appropriate odd and even differential operators are replaced, operators
of the form f∂kx +∂kx [f · ] start appearing ubiquitously in our analysis. Far from being
unique to the Magnus expansion, this is characteristic of the free Lie algebra of ∂2

x and
V – these algebraic forms also appear in Zassenhaus splittings for time-independent
potentials (Bader et al. 2014). We introduce a useful notation

〈f〉k := f • ∂kx = 1
2

{
f ◦ ∂kx + ∂kx ◦ f

}
= 1

2

{
f∂kx + ∂kx [f · ]

}
, f ∈ C∞p ([−1, 1];R),

where • is the Jordan product on the associative algebra of ◦ (operatorial composition).
The notion of height extends to such terms since it is possible to reduce them to
expressions in G. A simplification procedure corresponding to (3.1) shows that,

ht (〈f〉k) = k,

ht ([〈f〉k , 〈g〉l]) ≤ k + l − 1,

for all f, g 6= 0 and k, l ∈ N0. It should be obvious that 〈f〉k is Hermitian if k is even
and skew-Hermitian if k is odd. In this notation 〈1〉2 = ∂2

x and 〈V 〉0 = V . It is worth
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noting that there is rich algebraic theory behind these structures which is currently
under development and will feature in another publication, but not much is lost here
by considering these as merely a notational convenience.

After suitable replacement of derivatives and applications of the integration iden-
tities (3.7) and (3.8), the trees in F1,F3 and F4 which appear in the truncated Magnus
expansion

Θ4(h) = rr − 1
2

@�rrr rr
+ 1

12

@�
@�rrrr rr rr

+ 1
4

@�

@�

rrr rrr rr
, (4.1)

simplify to the forms

rr : ihε∂2
x + iε−1

∫ h

0

V (ζ) dζ, (4.2)

@�rrr rr
: −4

〈∫ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

, (4.3)

@�
@�rrrr rr rr

: −2iε−1

∫ h

0

∫ ζ

0

(2h− 3ζ) (∂xV (ζ))(∂xV (ξ)) dξ dζ

+ 2iε

〈∫ h

0

(
h2 − 3ζ2

)
(∂2
xV (ζ)) dζ

〉
2

, (4.4)

@�

@�

rrr rrr rr
: 2iε−1

∫ h

0

∫ ζ

0

(ζ − 2ξ) (∂xV (ζ))(∂xV (ξ)) dξ dζ

− 2iε

〈∫ h

0

(
h2 − 4hζ + 3ζ2

)
(∂2
xV (ζ)) dζ

〉
2

. (4.5)

The term
〈∫ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1
, which occurs in the simplification of the tree

@�rrr rr
∈ F3,

might seem to be O
(
h2
)

at first sight, contradicting our expectations from a tree
in F3. A closer look at the special form of the integrand, however, shows that the
term is indeed O

(
h3
)
. To observe this, consider V (ζ) expanded about h = 0 so that

V (h) = V (0) +
∑∞
k=1 h

kV (k)(0)/k! and note that the h2 term
∫ h

0

(
ζ − h

2

)
(∂xV (0)) dζ

vanishes. Similar care has to be exercised throughout the simplifications in combining
the appropriate terms before analysing size.
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Upon eventual discretisation through spectral methods, we replace the operator ∂x
by the skew-symmetric circulant matrix K whose action can be effectively computed
through two FFTs. In the second tree we encounter an expression of the form 〈f〉1
which is eventually discretised in the form 1

2 (KDf +DfK), where Df is a real diagonal
matrix discretising f(x). It, therefore, retains skew-Hermiticity.

In fact, our entire Magnus expansion is of the form
∑∞
k=0 ik+1 〈fk〉k for appropriate

terms fk, and it can be seen that each term ik+1 〈fk〉k is skew-Hermitian. It is discre-
tised in the skew-Hermitian form ik+1

(
KkDfk +DfkKk

)
/2. The Magnus expansion,

developed in this way preserves skew-Hermiticity and its exponential preserves uni-
tarity, which is desirable in the case of the Schrödinger equation but also gives us
unconditional stability for free.

A Wentzel–Kramers–Brillouin (WKB) analysis (Hinch 1991) shows that the solu-
tion of the Schrödinger equation develops spatial oscillations of order O

(
ε−1
)

(Jin et
al. 2011, Bao, Jin & P. A. Markowich 2002). A reasonable approximation of the solu-
tion therefore necessitates taking O

(
ε−1
)

Fourier modes and consequently ∂nx scales
as O (ε−n) upon discretisation. We analyse all terms in the common currency of the
inherent semiclassical parameter ε and additionally assume that our choice of the
time-step, h, is governed by h = O (εσ), for some 0 < σ ≤ 1.

The height of a term, which serves as a proxy for the degree of the highest degree
differential operator occurring in it, helps us estimate the spectral radius. For instance,
the height of 〈f〉n is n and it scales like O (ε−n) for f = O

(
ε0
)
. The property of height

reduction can therefore be seen to result in a systematic reduction of spectral radius,
highlighting the advantage of working with undiscretised operators.

5 Expanding in powers of the small parameter

The power truncated Magnus expansion (2.6),

Θp(h) :=

p∑
k=1

∑
τ∈Fk

α(τ)Cτ (h),

has the desirable characteristic of being odd in h due to the time symmetry of its
flow (Iserles & Nørsett 1999, Iserles et al. 2000, Iserles, Nørsett & Rasmussen 2001).
Odd-indexed methods of this form consequently gain an extra power of h,

Θ2p−1(h) = Θ(h) +O
(
h2p+1

)
. (5.1)

Once we start analysing the Magnus expansion for the Schrödinger equation in the
currency of ε we need to consider truncating the sets of trees by powers of ε. For this
purpose we define the set Ek along (somewhat) similar lines to the definition of Fk:
τ ∈ Ek if k is the greatest integer such that τ = O

(
εkσ−1

)
. It turns out that the sets

Ek and Fk are, in fact, identical.

Theorem 3 Em = Fm
Proof Consider any τ ∈ Fm. Clearly τ ∈ Tn for some n ≤ m, and we know

that Cτ (h) is a nested integral of a commutator L̃(A1, . . . , An), where Ak = A(ξk) =
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iε∂2
x+iε−1V (ξk). By linearity of the Lie bracket, this commutator expands to a linear

combination of commutators of the form L(C1, . . . , Cn), where each Ck ∈ {i∂2
x} ∪

{iV (ξ) : ξ ∈ R}. Not all of these commutators end up vanishing, and we restrict our
attention to those with non-negative height, L(C1, . . . , Cn) 6= 0.

We assume j instances of i∂2
x and n− j instances of iV (·) in L. From Corollary 1

and Lemma 2 we know that there is some V , O
(
h0
)

and O
(
ε0
)

in size, for which
expansion of L in the Lie algebra (taking derivative replacement rules into account)
results in the highest degree of a differential operator being 2j − (n− 1).

Such a term is O (hm) by definition of Fm and is accompanied by a scalar factor
of ε2j−n. Combining these facts, we see that the tree τ is O

(
εmσ−1

)
in size and

consequently also belongs to Em.
Every τ ∈ Em, of course, must be in some Fn and thus in En. However, the

definition of Ek dictates that n = m. Thus the sets Fm and Em must coincide. 2

The consequence of Theorem 3 is that Magnus expansions truncated by Ek (which
interest us when analysing in powers of ε),

Θε
p(h) :=

p∑
k=1

∑
τ∈Ek

α(τ)Cετ (h), (5.2)

are identical to the corresponding Magnus expansions (2.6) truncated by Fk (analysed
in powers of h), and we may use Θp to denote both. It must be noted that under
scalings which differ from our choice of M = O

(
ε−1
)
, this observation no longer holds.

Here the superscript ε explicitly acknowledges the dependence on ε.
The largest trees that are discarded in this expansion are O

(
ε(p+1)σ−1

)
since they

belong to Ep+1, and the expansion incurs an error of

Θε
p(h) = Θ(h) +O

(
ε(p+1)σ−1

)
. (5.3)

Odd-indexed truncations, as expected, gain a power of εσ,

Θε
2p−1(h) = Θ(h) +O

(
ε(2p+1)σ−1

)
. (5.4)

We must make a clear distinction between discarding trees by powers of ε and
discarding terms obtained upon simplification of these trees in the free Lie algebra.
A tree τ ∈ Em is O

(
εmσ−1

)
by definition, and is included in the expansion Θε

2p−1 if

m ≤ 2p − 1. Upon simplifying, however, it might feature O
(
ε2pσ−1

)
, O

(
ε(2p+1)σ−1

)
or smaller terms which must, nevertheless, be retained in the expansion Θε

2p−1 for the
sake of time symmetry.

Once the desirable time symmetry properties are fully exploited, though, we dis-
card all O

(
ε(2p+1)σ−1

)
and smaller terms from Θε

2p−1 and arrive at Θ̃ε
2p−1, which

carries an error of

Θ̃ε
2p−1(h) = Θε

2p−1(h) +O
(
ε(2p+1)σ−1

)
= Θ(h) +O

(
ε(2p+1)σ−1

)
. (5.5)

We are prohibited, however, to discard any O
(
ε2pσ−1

)
terms that might originate in

simplifications without compromising on error. For completeness, we also define Θ̃ε
2p
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as the expansion obtained after discarding all O
(
ε(2p+1)σ−1

)
and smaller terms from

Θε
2p. However, it is preferable to work solely with odd-indexed expansions due to the

free gain in power. For instance, the Magnus expansion Θ̃ε
4, obtained by discarding

all O
(
ε5σ−1

)
terms from Θ4 (4.1–5),

Θ̃ε
4(h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x + iε−1

∫ h

0

V (ζ) dζ +

O(ε3σ−1)︷ ︸︸ ︷
2

〈∫ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

+

O(ε4σ−1)︷ ︸︸ ︷
iε−1

∫ h

0

∫ ζ

0

(
ζ − ξ − h

3

)
[∂xV (ζ)] [∂xV (ξ)] dξ dζ

−

O(ε4σ−1)︷ ︸︸ ︷
2iε

〈∫ h

0

(
ζ2 − hζ + h2

6

)
(∂2
xV (ζ)) dζ

〉
2

, (5.6)

shares the same O
(
ε5σ−1

)
error with the simpler expansion

Θ̃ε
3(h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x + iε−1

∫ h

0

V (ζ) dζ +

O(ε3σ−1)︷ ︸︸ ︷
2

〈∫ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

. (5.7)

Before rushing on to make a conjecture that all terms of the form O
(
ε2kσ−1

)
, such

as the O
(
ε4σ−1

)
term in Θ̃ε

4, may be discarded at no cost in general, it is worth
remembering that the increased order (5.4) due to time symmetry of an odd-indexed
method, Θ̃ε

2p−1, only allows us to discard the ‘penultimate’ O
(
ε2pσ−1

)
trees. Thus

Θ̃ε
5 will once again feature the discarded O

(
ε4σ−1

)
trees while being free to discard

the O
(
ε6σ−1

)
trees, and Θ̃ε

7 will feature trees of sizes O
(
εkσ−1

)
for k = 1, 3, 4, 5, 6, 7

while being free to discard the O
(
ε8σ−1

)
trees. Terms (to be contrasted with trees)

of size O
(
ε8σ−1

)
do usually appear from the simplification of included trees in such

situations, however, and we are prohibited to discard them.

A further exploitation of the time symmetry is explored in Section 7 where we
develop expansions that discard all O

(
ε2kσ−1

)
terms.

5.1 A simplifying notation

The algebraic workings become increasingly convoluted once we start dealing with
larger nested commutators and integrals. Here it becomes helpful to introduce a
notation for the integrals on the line,

µj,k(h) :=

∫ h

0

B̃kj (h, ζ)V (ζ) dζ, (5.8)
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and integrals over the triangle,

Λ [f ]a,b(h) :=

∫ h

0

∫ ζ

0

f(h, ζ, ξ) [∂axV (ζ)]
[
∂bxV (ξ)

]
dξ dζ, (5.9)

where B̃ is a rescaling of the Bernoulli polynomials (Abramowitz & Stegun 1964,
Lehmer 1988),

B̃j(h, ζ) := hjBj (ζ/h) .

Since the jth Bernoulli polynomial scales as O
(
hj
)
, we expect µj,k(h) = O

(
hjk+1

)
but since the integral of the Bernoulli polynomials vanishes,∫ h

0

Bj(h, ζ) dζ = 0, (5.10)

the term µj,1(h) gains an extra power of h and is O
(
hj+2

)
. With this new notation

in place, the Magnus expansions Θ̃ε
3 and Θ̃ε

4 can be presented more concisely,

Θ̃ε
3(h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x + iε−1µ0,0(h) +

O(ε3σ−1)︷ ︸︸ ︷
2 〈∂xµ1,1(h)〉1, (5.11)

Θ̃ε
4(h) = Θ̃ε

3(h) +

O(ε4σ−1)︷ ︸︸ ︷
iε−1Λ [φ]1,1(h)− 2iε

〈
∂2
xµ2,1(h)

〉
2
, (5.12)

with
φ(h, ζ, ξ) := ζ − ξ − h

3 .

In general, for a polynomial pn(h, ζ, ξ) featuring only degree-n terms in h, ζ and ξ, the
linear (integral) functional Λ [pn]a,b(h) is O

(
hn+2

)
. However, the integral of φ over

the triangle vanishes, ∫ h

0

∫ ζ

0

φ(h, ζ, ξ) dξ dζ = 0, (5.13)

lending an extra power of h to terms featuring Λ [φ]a,b(h).

6 Symmetric Zassenhaus splittings

Once a suitably truncated Magnus expansion Θ̃ε
p(h) has been derived, we still need to

approximate effectively the exponential exp(Θ̃ε
p(h))u(0). This is certainly not easier

than the challenge of exponentiating ihε∂2
x + ihε−1V that we face in the case of the

time-independent potential since Θ̃ε
p(h) for p ≥ 2 always features a term, ihε∂2

x +
iε−1µ0,0(h), with similar structure and size. The matter is complicated further by
the inclusion of increasingly complex terms once we consider p ≥ 3, such as the term
2 〈∂xµ1,1(h)〉1 which appears in Θ̃ε

3(h).
A reasonable way of approximating this exponential is an exponential splitting

(Yošida 1990, McLachlan & Quispel 2002, Blanes et al. 2006, Lubich 2008, Jin et
al. 2011, Faou 2012). Unlike the Magnus expansion of (Hochbruck & Lubich 2002),
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our Magnus expansion is commutator-free and features terms which are smaller in
size due to the property of height reduction. However, since we have maintained the
expansion in an operatorial form – featuring undiscretised operators – we can resort
to a symmetric Zassenhaus splitting for exp(Θ̃ε

p(h)) along the lines of Bader et al.
(2014). This splitting builds on the standard, non-symmetric, Zassenhaus splitting
of (Oteo 1991) while correctly accounting for powers of ε and handling undiscretised
operators of the form we encounter in the analysis of the Schrödinger equation. This
has crucial advantages over conventional splittings (Bader et al. 2014).

The Zassenhaus algorithm provides a neat separation of terms with differing struc-
ture and size, each of which is easy to exponentiate separately. It achieves this separa-
tion by a recursive application of the symmetric Baker–Campbell–Hausdorff formula
(usually known in an abbreviated form as the symmetric BCH formula),

e
1
2XeY e

1
2X = esBCH(X,Y ), (6.1)

for X and Y in a Lie algebra g, where

sBCH(hX, hY ) = h(X + Y )− h3( 1
24 [[Y,X], X] + 1

12 [[Y,X], Y ]) +O
(
h5
)
. (6.2)

The expansion (6.2) features terms of the Hall basis (Reutenauer 1993), such as
[[Y,X], X] and [[Y,X], Y ], and can be computed to an arbitrary power of h using
an algorithm from (Casas & Murua 2009). Coefficients and terms of the Hall ba-
sis for sufficiently high degree sBCH expansions are also available in a tabular form
(Murua 2010). Since (6.1) is palindromic, only odd powers of h feature in the expan-
sion (6.2).

Let us recall the basic principle for the iterative symmetric Zassenhaus splitting

(Bader et al. 2014). Our goal is to compute eW
[0]

, where W [0] = X + Y . Using the
sBCH formula (6.1), we write

eW
[0]

= e
1
2XesBCH(−X,W[0])e

1
2X . (6.3)

For X,Y = O (h), sBCH(−X,X + Y ) = X + O
(
h3
)

and thus, we have extracted

X from the exponent W [0] at the cost of correction terms in form of higher-order
commutators. However, when accounting in powers of ε, we start with X and Y
which might be O

(
ε0
)

or larger, such as the terms ihε∂2
x and iε−1µ0,0(h) under the

scaling 0 < σ ≤ 1. A similar decrease in the size of correction terms is not observed
here till the commutators are simplified in the free Lie algebra where the property of
height reduction (Lemma 2) proves crucial.

Assuming that the corrections are decreasing in size, it is then enough to identify
the largest terms W [1] in the central exponent W [1] = sBCH(−X,W [0]) to continue
the iteration until the desired accuracy, say O (εr), is reached,

W [k+1] = sBCH(−W [k],W [k]) +O (εr) , W [0] = X + Y, (6.4)

where we may discard all O (εr) or smaller terms at each stage. In this notation, the
result after s steps can be written as

exp(X + Y ) = e
1
2W

[0]

e
1
2W

[1]

· · · e 1
2W

[s]

eW
[s+1]

e
1
2W

[s]

· · · e 1
2W

[1]

e
1
2W

[0]

+O (εr) .
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We emphasize that, in principle, we are free to choose the elements W [k] that we
want to extract. This choice can afford a great deal of flexibility – it could be based
on some structural property which allows for trivial exponentiation of W [k] when ex-
tracted separately, a small spectral radius which makes the term amenable to effective
exponentiation through Krylov subspace methods, a combination of both, or some
other criteria. So long as the terms are decreasing in size, the convergence of the pro-
cedure is guaranteed. This can lead to many variants of the splitting, some of which
could prove to have more favourable properties than others. However, we present the
general idea here and do not explore its variants.

All through, we discard terms smaller than our error tolerance – for Θ̃ε
2p−1(h) this

means discarding terms of size O
(
ε(2p+1)σ−1

)
. For Θ̃ε

3, where p = 2, we get a five-
stage splitting by starting with X = ihε∂2

x and then extracting the largest term at
each iteration,

exp
(

Θ̃ε
3(h)

)
= e

1
2W

[0]

e
1
2W

[1]

eW
[2]

e
1
2W

[1]

e
1
2W

[0]

+O
(
ε5σ−1

)
, (6.5)

where

W [0] = ihε∂2
x = O

(
εσ−1

)
,

W [1] = iε−1µ0,0(h) = O
(
εσ−1

)
,

W [2] = 1
6 ihε−1 (∂xµ0,0(h))

2
+ 2 〈∂xµ1,1(h)〉1 −

1
6 ih2ε

〈
∂2
xµ0,0(h)

〉
2

= O
(
ε3σ−1

)
.

As a quick sanity check, we do arrive at the standard symmetric Zassenhaus splitting
(Bader et al. 2014) for time-independent potentials, V (x, t) := V (x).

It is only by this stage – having arrived at an asymptotic splitting expressed in
operatorial terms – that we start considering discretisation issues. Considerations of
spatial and temporal discretisation (in the form of approximation through quadrature)
are entirely independent here and one may proceed to address them in any order.

6.1 Evaluation of integrals

At first, we consider the problem of evaluating the integrals appearing in our splitting:
µ0,0(h) and µ1,1(h). The integral

µ0,0(h) =

∫ h

0

V (ζ) dζ

appears once in W [1] and twice inW [2]. Since we have already committed anO
(
ε5σ−1

)
error in the splitting, we need not approximate the integrals to a greater degree of
accuracy. In the term 1

6 ih2ε
〈
∂2
xµ0,0(h)

〉
2
, we need an O

(
ε3σ
)

or O
(
h3
)

approximation

of µ0,0(h) due to the presence of the h2ε scalar factor and since 〈f〉2 is O
(
ε−2
)

for

f = O
(
ε0
)
. However, O

(
h4
)

and O
(
h5
)

approximations are needed for its other

occurrences in W [2] and W [1], respectively. The only occurrence of µ1,1(h),

µ1,1(h) =

∫ h

0

(
ζ − h

2

)
V (ζ) dζ,
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demands an O
(
h5
)

approximation. Thus, it suffices to evaluate O
(
h5
)

accuracy
approximations for the integrals µ0,0(h) and µ1,1(h) once per time step.

In the standard setting, where V (h) is O
(
h0
)

and is sufficiently smooth in the tem-
poral domain, we may effectively approximate the integrals using two Gauss–Legendre
knots tk := h

2 (1 + k/
√

3), k = −1, 1, and weights wk = h
2 (Davis & Rabinowitz 1984),

µ0,0(h) =

(
V (t1) + V (t−1)

2

)
h+O

(
h5
)
,

and

µ1,1(h) =

(
V (t1)− V (t−1)

4
√

3

)
h2 +O

(
h5
)
.

These turn out to be centred finite difference approximations of ∂jtV (t) at t = h
2 for

j = 0, 1 on the grid h
2 (1 + k/

√
3), k = −1, 0, 1. This is not altogether surprising.

Instead of preserving the integrals till the very end, as we have chosen to do
here, it is possible to start directly from the results of (Munthe–Kaas & Owren 1999)
where the Magnus expansion is developed with integrals replaced by quadrature at the
outset. This approach is equivalent to the Taylor series development of the integrand
by Blanes, Casas, Oteo & Ros (2009). When discretising with Gauss–Legendre knots
in either case, we arrive at Magnus expansions and Zassenhaus splittings featuring
the above approximations once more. This alternative approach, where we commence
our analysis from an integral-free approximation of the Magnus expansion, is under
development in parallel and will feature in another publication.

While the approach presented here requires us to carry all integrals along in an
undiscretised form, and is thus considerably more involved, it is also more flexible.
Little has been assumed about the regularity of V in the temporal domain so far.
It is generally accepted that integrals are to be preferred over derivatives – they are
particularly helpful in the case of functions with low regularity and in the case of
highly oscillatory functions. Here our decision of not replacing the integrals with
Taylor expansion at the outset affords us the ability to effectively handle such cases.

It might be possible to evaluate the exact integral for µ0,0(h) and µ1,1(h), for
instance, if an analytic expression for V is available. This is also true for potentials of
the form V (x, t) = f(t)V (x) where an analytic expression for f(t) is available. If f(t)
is a highly oscillatory envelope, oscillating around the origin, there can be a further
decrease in size of integrals involved which can benefit us greatly.

Where an exact integral is not available, integrals featuring highly oscillatory in-
tegrands of the form ∫ 1

0

f(t) eiωg(t) dt

can be approximated effectively using the Filon method (Iserles & Nørsett 2005). The
time-varying potential Lω introduced earlier,

Lω(x, t) = 2ρ(t) sin((x− 5t)πω), (1.4)

for instance, can be integrated in this manner. The significance of such quadratures
increases when we start considering very highly oscillatory potentials with oscillations
of the order of ε−1 or larger, as might be expected in some applications of quantum
control.
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6.2 Spatial discretisation

In the numerical solution of the Schrödinger equation it is common to resort to spec-
tral methods for spatial discretisation (Jin et al. 2011, Faou 2012). We follow the
spectral collocation or pseudo-spectral approach (Fornberg 1998, Hesthaven, Gottlieb
& Gottlieb 2007), where the idea is to interpolate the solution at nodal values using a
trigonometric polynomial. Since it is compelling in the presence of periodic boundary
conditions to use equispaced points, the unknowns are un ≈ u(n/(N + 1

2 )), |n| ≤ N ,
where M = 2N + 1. The main appeal of spectral methods is that they exhibit spectral
convergence: for sufficiently large M the error decays faster than O (M−α) = O (εα)
for any α > 0. In classical terms, the method is of an infinite order.

The wavefunction u ∈ C∞p ([−1, 1];C) is discretised as a vector u ∈ CM . We write
Dan to denote the diagonal M ×M matrix whose diagonal entries form the sequence
{an}Nn=−N . We write Df to denote the diagonal matrix corresponding to pointwise

multiplication by f on the grid {xn}Nn=−N , xn = n/(N + 1
2 ), where the underlying

sequence is {f(xn)}Nn=−N . The differential operator ∂x is discretised as a circulant
matrix K, which is diagonalisable using the Fast Fourier Transform matrix F ,

∂x ; K = F−1DinπF .

The computation of Ku, which involves two FFTs, costs O (M logM) operations,
while Dfu costs O (M) operations as it can be evaluated in a pointwise fashion.

6.3 Approximation of exponentials

In the time-stepping procedure (2.3), we are interested in approximating exp(Θ(h))u(0).
For the splitting (6.5), this breaks down into a sequence of matrix-vector products of
the form exp(W )u which need be approximated.

We note that G(Df ) = DG(f) for any analytic operator G, while the unitarity of the
Fourier transform implies that G(K) = F−1DG(imπ)F . Consequently, the exponential

of W [0] = ihε∂2
x is evaluated using two FFTs,

e
1
2W

[0]

u; F−1Dexp(−ihεn2π2/2)Fu,

in O (M logM) operations, and W [1] is exponentiated trivially in O (M) operations,

e
1
2W

[1]

u = exp
(

1
2 iε−1µ0,0(h)

)
u; Dexp( 1

2 iε−1µ0,0(h))u.

W [0] and W [1], which happen to be the largest of the exponents, have been exponenti-
ated directly. Since both calculations are exact (up to machine accuracy), unitarity is
maintained. No direct way of exponentiating the remaining exponent, W [2], presents
itself in general. To deal with this we use Lanczos iterations, which is a Krylov sub-
space method. Such methods have undergone many enhancements since the pioneering
work of Tal Ezer & Kosloff (1984): in the current paper we adopt the approach in
(Gallopoulos & Saad 1992).

Given an M ×M matrix A and v ∈ CM , the mth Krylov subspace is

Km(A,v) = span {v,Av,A2v, . . . ,Am−1v}, m ∈ N.
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It is well known that dimKm−1(A,v) ≤ dimKm(A,v) ≤ min{m,M} and we refer
to (Golub & Van Loan 1996) for other properties of Krylov subspaces. The main idea
is to approximate

eAv ≈ VmeHmV∗mv, (6.6)

where Vm and Hm are M ×m and m×m respectively and m�M . In addition, the
columns of Vm are orthonormal vectors which form a basis of Km(A,v), while Hm is
upper Hessenberg.

The matrices Vm and Hm are generated by Lanczos iterations

Lanczos iterations

h0,1 = 0
v0 = 0
v1 = v/‖v‖2
for j = 1, . . . ,m do
t = Avj
hj,j = v∗j t
t = t− hj,jvj − hj−1,jvj−1

hj+1,j = ‖t‖2, hj,j+1 = −hj+1,j

vj+1 = t/hj+1,j

end for

(Golub & Van Loan 1996, Gallopoulos & Saad 1992). Note that, once A ∈ uM (C),
where uM (C) is the Lie algebra of M ×M skew-Hermitian matrices, it follows that
Hm ∈ um(C). Therefore, the columns of Vm being orthonormal, the `2 norm is
conserved. Moreover, since V∗mv = ‖v‖2e1, where e1 ∈ Cm is the first unit vector, it
follows that eHmV∗mv is merely the first column of eHm , scaled by ‖v‖2. To compute
the approximation (6.6) we thus need to evaluate a small exponential and calculate a
single matrix-vector product.

For small values of m, once Hm and Vm are available, approximating the exponen-
tial is very inexpensive. The computational cost is, therefore, largely governed by the
cost of the m iterations, each involving a matrix-vector product of the form Avj .

The only exponent, W [2], for which we resort to Lanczos iterations in the splitting
(6.5) features Jordan terms of the form 〈f〉k = (f ◦∂kx+∂kx ◦f)/2. These are discretised
in a straightforward way,

〈f〉k ;
1

2
(DfKk +KkDf ) =

1

2

(
DfF−1D(inπ)kF + F−1D(inπ)kFDf

)
,

and the cost of approximating 〈f〉k u by 1
2

(
DfF−1D(inπ)kFu+ F−1D(inπ)kFDfu

)
is dominated by the O (M logM) cost of the four FFTs. Approximating W [2]vj in
every Lanczos iteration is an O (M logM) affair, therefore, bringing the overall cost
to O (mM logM) operations.

The terms inW [2] feature expressions of the form ∂xµ0,0(h), ∂xµ1,1(h) and ∂2
xµ0,0(h)

which might be available in closed form. However, in general these can be evaluated
through numerical differentiation if µ0,0(h) and µ1,1(h), or their suitable approxi-
mations, are available. ∂2

xµ0,0(h), for instance, can be approximated by the vector
K2µ0,0(h). We note that the degree of accuracy required in the differentiation here
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is considerably smaller than the spectral accuracy of spectral-collocation differentia-
tion matrices. We may, instead, use centred finite-difference differentiation matrices
of varying accuracy (depending on the accuracy requirement per term) to achieve the
same feat at an O (M) cost.

The question of an appropriate value of m is answered by the inequality

‖eAv − VmeHmV∗mv‖2 ≤ 12e−ρ
2/(4m)

( eρ

2m

)m
, m ≥ ρ, (6.7)

where ρ = ρ(A) is the spectral radius of A (Hochbruck & Lubich 1997). Under the
scaling choice σ = 1, we know that W [2] = O

(
ε2
)

and assume, with very minor loss

of generality, that ρ(W [2]) ≤ cε2 for some c > 0. We thus deduce from (6.7) that

‖eW
[2]

v − VmeHmV∗mv‖2 ≤ 12
( ec

2m

)m
ε2m, m ≥ ρ,

and m = 2 is sufficient to reduce the error to O
(
ε4
)
, in line with the error of our

symmetric Zassenhaus algorithm. The number of iterations required do change with
the choice of σ. For σ = 1/2, for instance, under which W [2] is O

(
ε1/2

)
, we require

m = 3 for achieving the O
(
ε3/2

)
accuracy of our splitting.

A critical stage is reached at σ = 1/3, where the term W [2] becomes O
(
ε0
)

and
no longer decreases in size with ε. Beyond this, the exponent grows in size with
decreasing ε. Thus we are forced to place a limit on the time-step scaling and restrict
ourselves to 1/3 < σ ≤ 1. This restriction, nevertheless, is more generous than the
σ ≥ 1 restriction of (Hochbruck & Lubich 2002).

6.4 Numerical experiments

For numerical experiments we recall the setting discussed in the introduction: we
have a wave-packet (1.2) with x0 = −0.3 and δ = 1.22× 10−4, as before, sitting in the
double-well potential (1.3) (Figure 1.1) and excited by the time-varying field (1.4),

u(0) = u0,

V100(x, t) = V0 + L100(x, t),

with periodic boundaries imposed at x = ±1. The errors presented are the global
errors in u(x, T ) where T = 0.1 is the final time.

Under the scaling σ = 1, we commit a local error of O
(
ε4
)

per time step in the
splitting scheme (6.5). The precise scaling used in our numerical experiments is

M ∼ 5ε−1, h ∼ ε.

Since the number of time steps is O (ε−σ), the global error is O
(
ε3
)
.

Our analysis has been in the context of the L2 inner product and the corre-
sponding norm which, upon discretisation, translates to an `2 norm (scaled by a
factor of

√
2/M). Where L∞ error is of greater interest, it should be noted that

‖v‖`∞ ≤
√
M/2‖v‖`2 and consequently we may expect the global L∞ error to be

O
(
ε5/2

)
. This is indeed seen to be the case through numerical experiments in Fig-

ure 6.3.
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Figure 6.2: Wave packet u(x, t) under the influence of V100(x, t) = V0 + L100(x, t) at
t = T/2 (left) and at t = T (right). For consistency with physical interpretations we
depict the negative potential, scaling it down by a factor of five for ease of illustration.
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Figure 6.3: Global L∞ errors of the Zassenhaus splittings at T = 0.1 under the
scaling σ = 1: (left) error for the splitting (6.5) is O

(
ε5/2

)
, (right) error for the higher

order splitting (7.12) is O
(
ε9/2

)
.

7 Towards higher order splittings

Arbitrarily high order Zassenhaus splittings for the Schrödinger equation (1.1) can be
obtained by starting from a high order Magnus expansion. For a Zassenhaus splitting
featuring an error ofO

(
ε7σ−1

)
, for instance, we need to consider the Magnus expansion
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Θ̃ε
5 which is derived by simplifying trees in Θ5 and discarding all O

(
ε7σ−1

)
terms,

Θ̃ε
5(h) =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x + iε−1µ0,0(h) +

O(ε3σ−1)︷ ︸︸ ︷
2 〈∂xµ1,1(h)〉1 +

O(ε4σ−1)︷ ︸︸ ︷
iε−1Λ [φ]1,1(h)− 2iε

〈
∂2
xµ2,1(h)

〉
2

+

O(ε4σ−1)︷ ︸︸ ︷
1
6

〈
Λ [ψ1]1,2(h) + Λ [ψ2]2,1(h)

〉
1

+

O(ε5σ−1)︷ ︸︸ ︷
1
6

〈
Λ [θ1]1,2(h) + Λ [θ2]2,1(h)

〉
1

−

O(ε5σ−1)︷ ︸︸ ︷
4
3ε

2
〈
∂3
xµ1,3(h)

〉
3
−

O(ε6σ−1)︷ ︸︸ ︷
1
4 iε∂4

xµ2,1(h) = Θ(h) +O
(
ε7σ−1

)
, (7.1)

where

ψ1(h, ζ, ξ) : = h2 − 4hξ + 2ζξ, (7.2)

ψ2(h, ζ, ξ) : = (h− 2ζ)2 − 2ζξ,

θ1(h, ζ, ξ) : = h2 − 6hζ + 6hξ + 6ζξ + 3ζ2 − 12ξ2,

θ2(h, ζ, ξ) : = h2 − 6hζ + 6hξ − 6ζξ + 5ζ2.

Integrals of θj vanish over the triangle,∫ h

0

∫ ζ

0

θj(h, ζ, ξ) dξ dζ = 0, j = 1, 2, (7.3)

lending an extra power of h to the functionals where θjs appear. No similar observation
about ψjs can be made and, although similar in many regards, functionals featuring
them ought not be combined with the corresponding ones featuring θjs by this stage.

When we commence the Zassenhaus splitting procedure with the truncated Mag-
nus expansion Θ̃ε

5 featuring terms of sizes O
(
εkσ−1

)
, k = 1, 3, 4, 5, 6, the resulting

exponential splitting will continue to feature terms of all these sizes. The expansion
Θ̃ε

7 features O
(
εkσ−1

)
terms with k = 1, 3, 4, 5, 6, 7, 8, and its Zassenhaus expansion,

once again, retains all such terms. This is suboptimal – the time-symmetric nature
of the power-truncated Magnus expansion Θp implies that it should be possible to

expand Θε
p(h) and, therefore, Θ̃ε

p(h) solely in odd powers of h for any choice of the po-
tential, V . A Zassenhaus splitting commencing from such an odd-powered expansion
will never introduce even powers of h since underlying the procedure is a recursive
application of the symmetric BCH which features only odd-grade commutators.

To examine the time symmetry of the Magnus expansion, we revisit (2.2),

u(t+ h) = eΘ(t+h,t)u(t), (2.2)

where the exponential, exp(Θ(t+ h, t)), is the evolution operator from t to t+ h. As
we had remarked earlier, Θ(t + h, t) can be easily recovered from Θ(h, 0) (shortened
to Θ(h)) by substituting all occurrences of A(ζ) with A(t+ ζ).

We define t1/2 = t+ h/2 as the midpoint of the interval [t, t+ h] and rewrite (2.2)
as

u(t1/2 + h
2 ) = eΘ(t1/2+h

2 ,t1/2−
h
2 )u(t1/2 − h

2 ). (7.4)
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Since Θ(t1/2 − h
2 , t1/2 + h

2 ) is the evolution operator from t1/2 + h
2 to t1/2 − h

2 (going
backward in time by length h), we also have

u(t1/2 − h
2 ) = eΘ(t1/2−h2 ,t1/2+h

2 )u(t1/2 + h
2 ). (7.5)

Combining the two, we find that Θ(t1/2 − h
2 , t1/2 + h

2 ) = −Θ(t1/2 + h
2 , t1/2 −

h
2 ), so

that Θ is odd in h around the midpoint t1/2. Similarly, the power-truncated Magnus

expansions Θε
p(t1/2 + h

2 , t1/2 −
h
2 ) are also odd in h around t1/2. If we expand Θε

p in
powers of h around t1/2, therefore, we should only get odd powers of h.

The expansion Θε
p(t1/2 + h

2 , t1/2 −
h
2 ) = Θ(t+ h, t) can be obtained from Θε

p(h) =

Θε
p(h, 0) by substituting all occurrences of V (ζ) by V (t1/2 − h

2 + ζ). Keeping the odd
nature of the expansion about t1/2 in mind, we shift the origin to t1/2 by defining

W (ζ) := V (t1/2 + ζ),

whereby we need to substitute V (ζ) with W (ζ − h
2 ). To arrive at the desired expan-

sion of Θε
p(t + h, t), therefore, we only need to substitute occurrences of µj,k(h) and

Λ [f ]a,b(h) with the new definitions,

µj,k(h) :=

∫ h

0

B̃kj (h, ζ)W

(
ζ − h

2

)
dζ, (7.6)

Λ [f ]a,b(h) :=

∫ h

0

∫ ζ

0

f(h, ζ, ξ)

[
∂axW

(
ζ − h

2

)
∂bxW

(
ξ − h

2

)]
dξ dζ. (7.7)

Since we have shifted the origin to t1/2, all odd and even components are to be
understood with respect to 0 from this point onwards. This makes identification of
the odd components of the Magnus expansion simpler, assuming that the odd and
even components of W can be found.

A multivariate function F is said to be odd if F (−ζ) = −F (ζ) and even if F (−ζ) =
F (ζ). The odd and even components, F o and F e, of a multivariate function F are
defined as

F o(ζ) := 1
2 [F (ζ)− F (−ζ)]

and
F e(ζ) := 1

2 [F (ζ) + F (−ζ)] ,

respectively. It follows that the odd and even components of a product of two multi-
variate functions are

(F (ζ)G(ζ))
o

= F e(ζ)Go(ζ) + F o(ζ)Ge(ζ)

and
(F (ζ)G(ζ))

e
= F e(ζ)Ge(ζ) + F o(ζ)Go(ζ),

respectively. We stress that the odd-ness or even-ness of a multivariate function is
considered with respect to all its parameters and therefore changes with context. In
the integration identities,(∫ s

0

F (r, ζ) dr

)o
=

∫ s

0

F e(r, ζ) dr, (7.8)
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and (∫ s

0

F (r, ζ) dr

)e
=

∫ s

0

F o(r, ζ) dr, (7.9)

for instance, these are with respect to (s, ζ) on the left hand side but with respect to
(r, ζ) on the right hand side.

Extending the new definitions of µ and Λ (7.6, 7.7), we define

µ?,j,k(h) :=

∫ h

0

B̃kj (h, ζ)W ?

(
ζ − h

2

)
dζ, ? ∈ {e, o}, (7.10)

and

Λ [f ]?,a,b(h) :=

∫ h

0

∫ ζ

0

f(h, ζ, ξ)

[
∂axW

(
ζ − h

2

)
∂bxW

(
ξ − h

2

)]?
dξ dζ, ? ∈ {e, o}.

(7.11)
The even and odd components of previously defined terms µj,k(h) and Λ [f ]a,b(h) can

be expressed in terms of these new definitions. It should be obvious that B̃j(h, ζ) is
odd in (h, ζ) for odd values of j and even for even values. Consequently,

(µj,k(h))
o

=

∫ h

0

(
B̃kj (h, ζ)W

(
ζ − h

2

))e
dζ

=

∫ h

0

(
B̃kj (h, ζ)

)e
W e

(
ζ − h

2

)
+
(
B̃kj (h, ζ)

)o
W o

(
ζ − h

2

)
dζ

=


µe,j,k(h) if jk is even,

µo,j,k(h) if jk is odd.

In particular, µ0,0(h)o = µe,0,0(h) =
∫ h

0
W e
(
ζ − h

2

)
dζ. Note carefully the difference

of usage in subscript and superscript. The odd part of Λ [f ]a,b(h) is

(
Λ [f ]a,b(h)

)o
=

∫ h

0

∫ ζ

0

{
f(h, ζ, ξ)

[
∂axW

(
ζ − h

2

)
∂bxW

(
ξ − h

2

)]}o
dξ dζ

=

∫ h

0

∫ ζ

0

fo(h, ζ, ξ)

[
∂axW

(
ζ − h

2

)
∂bxW

(
ξ − h

2

)]e
dξ dζ

+

∫ h

0

∫ ζ

0

fe(h, ζ, ξ)

[
∂axW

(
ζ − h

2

)
∂bxW

(
ξ − h

2

)]o
dξ dζ

= Λ [fo]e,a,b(h) + Λ [fe]o,a,b(h).

For an odd function such as φ(h, ζ, ξ) := ζ − ξ − h
3 , this reduces to(

Λ [φ]a,b(h)
)o

= Λ [φ]e,a,b(h).

The even parts µj,k(h)e and Λ [f ]a,b(h)e can be deduced analogously.
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The time symmetry of power truncated Magnus expansions ensures that Θε
p(h)

and Θ̃ε
p(h) are odd around the origin so that the even part Θ̃ε

p(h)e vanishes, leaving

Θ̃ε
p(h) = Θ̃ε

p(h)o. Even terms in the Magnus expansion may, therefore, be discarded
without further analysis. For instance, we conclude that

Θ̃ε
4(h) = ihε∂2

x + iε−1 (µ0,0(h))
o

+ 2 〈∂x (µ1,1(h))
o〉1

+ iε−1
(

Λ [φ]1,1(h)
)o
− 2iε

〈
∂2
x (µ2,1(h))

o〉
2

= ihε∂2
x + iε−1µe,0,0(h) + 2 〈∂xµo,1,1(h)〉1

+ iε−1Λ [φ]e,1,1(h)− 2iε
〈
∂2
xµe,2,1(h)

〉
2
.

For an analytic potential,

W

(
ζ − h

2

)
=

∞∑
k=0

W (k)(0)

k!

(
ζ − h

2

)k
,

we expect a gain of a single power of h in µj,1(h) which, instead of being O
(
hj+1

)
,

as might be expected otherwise, turns out to be O
(
hj+2

)
since

∫ h
0
Bj(h, ζ)W (0) dζ

vanishes. In the case of µe,j,1(h) where we take the even part of the potential W at
ζ − h

2 , this translates into a gain of two powers of h since the smallest non-vanishing
term is

1

2

∫ h

0

Bj(h, ζ)W (2)(0)

(
ζ − h

2

)2

dζ.

Consequently, the term −2iε
〈
∂2
xµe,2,1(h)

〉
2

is O
(
ε5σ−1

)
in contrast to the O

(
ε4σ−1

)
term −2iε

〈
∂2
xµ2,1(h)

〉
2

which appears in (5.12). This gain of power arises from dis-

carding the even part −2iε
〈
∂2
xµo,2,1(h)

〉
2

from the full term.

Similar analysis shows that iε−1Λ [φ]e,1,1(h) is also O
(
ε5σ−1

)
since the integral of

φ over the triangle vanishes. We may, therefore, discard this term from the expansion
Θ̃ε

4. We note that, after discarding the even terms and the O
(
ε5σ−1

)
odd terms,

Θ̃ε
4 and Θ̃ε

3 become identical. This is not entirely surprising since both feature an
O
(
ε5σ−1

)
error.

The full power of this approach becomes evident when working on higher-order
expansions such as Θ̃ε

5(h),

Θ̃ε
5(h)o =

O(εσ−1)︷ ︸︸ ︷
ihε∂2

x + iε−1µe,0,0(h) +

O(ε3σ−1)︷ ︸︸ ︷
2 〈∂xµo,1,1(h)〉1

+

O(ε5σ−1)︷ ︸︸ ︷
iε−1Λ [φ]e,1,1(h)− 2iε

〈
∂2
xµe,2,1(h)

〉
2

+

O(ε5σ−1)︷ ︸︸ ︷
1
6

〈
Λ [ψ1 + θ1]o,1,2(h) + Λ [ψ2 + θ2]o,2,1(h)

〉
1

−

O(ε5σ−1)︷ ︸︸ ︷
4
3ε

2
〈
∂3
xµo,1,3(h)

〉
3
−

O(ε7σ−1)︷ ︸︸ ︷
1
4 iε∂4

xµe,2,1(h) = Θ(h) +O
(
ε7σ−1

)
.
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Since ψj + θj is even,
(

Λ [ψj + θj ]a,b(h)
)o

= Λ [ψj + θj ]o,a,b(h). We also note that

Λ [f ]o,a,b(h) and µo,j,k(h) gain an extra power of h since the odd part of the function

V does not feature a constant term, V o(0) = 0. The term iε∂4
xµe,2,1(h), which is

O
(
ε7σ−1

)
, can now be discarded. In this way, we are able to eradicate all O

(
ε4σ−1

)
and O

(
ε6σ−1

)
terms, which correspond to even powers of h. This process allows us

to use half the number of terms for the same degree of accuracy.
A Zassenhaus splitting commencing from this Magnus expansion naturally yields

an exponential splitting featuring only O
(
εσ−1

)
, O

(
ε3σ−1

)
and O

(
ε5σ−1

)
terms,

exp
(

Θ̃ε
5(h)

)
= e

1
2W

[0]

e
1
2W

[1]

e
1
2W

[2]

eW
[3]

e
1
2W

[2]

e
1
2W

[1]

e
1
2W

[0]

+O
(
ε7σ−1

)
, (7.12)

where

W [0] = ihε∂2
x = O

(
εσ−1

)
,

W [1] = iε−1µe,0,0(h) = O
(
εσ−1

)
,

W [2] = 1
6 ihε−1 (∂xµe,0,0(h))

2
+ 2 〈∂xµo,1,1(h)〉1 −

1
6 ih2ε

〈
∂2
xµe,0,0(h)

〉
2

= O
(
ε3σ−1

)
,

W [3] = iε−1Λ [φ]e,1,1(h) + 1
24 ih2ε

(
∂4
xµe,0,0(h)

)
+ 1

6 iε−1 (∂xµe,0,0(h))
2 (
∂2
xµe,1,2(h)

)
+ 2

45 ih2ε−1 (∂xµe,0,0(h))
2 (
∂2
xµe,0,0(h)

)
+ 1

6

〈
Λ [ψ1 + θ1]o,1,2(h) + Λ [ψ2 + θ2]o,2,1(h)

〉
1

+ h
〈
(∂xµe,0,0(h))

(
∂2
xµo,1,1(h)

)
− 1

3

(
∂2
xµe,0,0(h)

)
(∂xµo,1,1(h))

〉
1

+ 1
30 ih3ε

〈(
∂2
xµe,0,0(h)

)2 − 2 (∂xµe,0,0(h))
(
∂3
xµe,0,0(h)

)〉
2

− 2iε
〈
∂2
xµe,2,1(h)

〉
2
− 4

3ε
2
〈
∂3
xµo,3,1(h)

〉
3

− 1
3h

2ε2
〈
∂3
xµo,1,1(h)

〉
3

+ 1
120 ih4ε3

〈
∂4
xµe,0,0(h)

〉
4

= O
(
ε5σ−1

)
.

The term 1
24 ih2ε

(
∂4
xµe,0,0(h)

)
in W [3] is O

(
ε3σ+1

)
. We remind the reader that this

splitting is obtained subject to 1/3 < σ ≤ 1. For 1/2 < σ ≤ 1, this term can be
bundled with the O

(
ε5σ−1

)
terms in W [3], whereas for σ ≤ 1/2 it can be ignored

since it is smaller than O
(
ε7σ−1

)
.

This scheme requires the evaluation of five line integrals,

µe,0,0(h) =

∫ h

0

W e

(
ζ − h

2

)
dζ,

µo,1,1(h) =

∫ h

0

(
ζ − h

2

)
W o

(
ζ − h

2

)
dζ,

µe,1,2(h) =

∫ h

0

(
ζ − h

2

)2
W e

(
ζ − h

2

)
dζ,

µe,2,1(h) =

∫ h

0

(
ζ2 − hζ + 1

6h
2
)
W e

(
ζ − h

2

)
dζ,

µo,3,1(h) =

∫ h

0

(
ζ3 − 3

2hζ
2 + 1

2h
2ζ
)
W o

(
ζ − h

2

)
dζ,
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and three integrals over the triangle,∫ h

0

∫ ζ

0

φ(h, ζ, ξ)

[
∂xW

(
ζ − h

2

)
∂xW

(
ξ − h

2

)]e
dξ dζ,∫ h

0

∫ ζ

0

(ψ1 + θ1)(h, ζ, ξ)

[
∂xW

(
ζ − h

2

)
∂2
xW

(
ξ − h

2

)]o
dξ dζ,∫ h

0

∫ ζ

0

(ψ2 + θ2)(h, ζ, ξ)

[
∂2
xW

(
ζ − h

2

)
∂xW

(
ξ − h

2

)]o
dξ dζ,

once per time step. If analytic expressions are not available, it is possible to approxi-
mate these through Gauss–Legendre quadrature. For the O

(
ε7σ−1

)
splitting here, we

require merely three Gauss–Legendre knots tk = h(1 + k
√

3/5)/2, k = −1, 0, 1, with
weights wk = 5

18h,
4
9h,

5
18h (Davis & Rabinowitz 1984), respectively, for the O

(
h7
)

accuracy which is required of the quadrature.
Evaluation for the integrals over the line, µ?,j,k(h), follows directly using these

quadrature knots. Integrals over the triangle are also easily evaluated using the same
three knots by substituting W with its interpolating polynomial.

Under the scaling σ = 1, the accuracy of the scheme is O
(
ε6
)

and we require

three and two Lanczos iterations, respectively, for exponentiating W [2] and W [3]. As
expected, the global L∞ error is seen to be O

(
ε9/2

)
(Figure 6.3) through numerical

experiments. The same set-up as Section 6.4 is used for the numerical experiments.

8 Conclusions

In this paper we have presented an effective method for the computation of the
Schrödinger equation featuring time-dependent potentials (1.1) under the semiclas-
sical scaling where ε � 1. It has led to asymptotic Zassenhaus splittings (6.5) and
(7.12), where the exponents are progressively smaller and retain integrals appearing
in the Magnus expansion in the undiscretised form. This allows us a great degree
of flexibility when handling highly oscillatory potentials. As a consequence of the
Lie-algebraic framework introduced here, each argument of an exponential is skew-
Hermitian and commutator free. Consequently, the exponentials are unitary and
inexpensive to evaluate.

The approach presented in this work should prove general enough to extend to
a range of other equations in the Schrödinger family. Some of the more immediate
possibilities of extensions of our work are

1. Semi-discretisation strategies: while this work has been presented with spectral
collocation as the underlying spatial discretisation, the results should prove to
be general enough to allow other strategies which suitably take care of the high
oscillations of the wavefunction.

2. Hagedorn wave-packets approach: to some extent the Hagedorn wave-packets
approach (Gradinaru & Hagedorn 2014, Lasser & Troppmann 2014) falls under
the umbrella of semi-discretisation strategies. However, it is unique and promis-
ing enough to merit a special mention. The specific form of these wave-packets
allows techniques of manipulation, exploiting which could require a re-think.
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3. Highly oscillatory potentials: this work sets the basis for future research on
highly oscillatory potentials by demonstrating how integrals can be kept intact
through an effective asymptotic splitting. There remains, however, possibility of
exploiting the special nature of certain highly oscillatory potentials to a greater
advantage.

4. Stochastic potentials: stochastic Schrödinger equations arise in the study of quan-
tum trajectories and continuous measurement (Barchielli & Gregoratti 2009),
and their numerical solutions have been studied for a variety of cases (Mora
2005, Liu 2013). The stochastic Magnus expansion, which possesses a favourable
numerical behaviour (Lord, Malham & Wiese 2008), could allow us to extend
our techniques to potentials with stochastic components of certain forms.
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