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1 The purpose of GNI

Geometric numerical integration (GNI) emerged as a major thread in numerical math-
ematics some 25 years ago. Although it has had antecedents, in particular the con-
certed effort of the late Feng Kang and his group in Beijing to design structure-
preserving methods, the importance of GNI has been recognised and its scope delin-
eated only in the 1990s.

But we are racing ahead of ourselves. At the beginning, like always in mathematics,
there is the definition and the rationale of GNI. The rationale is that all-too-often
mathematicians concerned with differential equations split into three groups that have
little in common. Firstly, there are the applied mathematicians, the model builders,
who formulate differential equations to describe physical reality. Secondly, there are
those pure mathematicians investigating differential equations and unravelling their
qualitative features. Finally, the numerical analysts who flesh out the numbers and the
graphics on the bones of mathematical formulation. Such groups tended to operate
in mostly separate spheres and, in particular, this has been true with regards to
computation. Discretisation methods were designed (with huge creativity and insight)
to produce rapidly and robustly numerical solutions that can be relied to carry overall
small error. Yet, such methods have often carried no guarantee whatsoever to respect
qualitative features of the underlying system, the very same features that had been
obtained with such effort by pure and applied mathematicians.

Qualitative features come basically in two flavours, the dynamical and the geo-
metric. Dynamical features – sensitivity with respect to initial conditions and other
parameters, as well as the asymptotic behaviour – have been recognised as important
by numerical analysts for a long time, not least because they tend to impinge directly
on accuracy. Thus, sensitivity with respect to initial conditions and perturbations
comes under ‘conditioning’ and the recovery of correct asymptotics under ‘stability’,
both subject to many decades of successful enquiry. Geometric attributes are invari-
ants, constants of the flow. They are often formulated in the language of differential
geometry (hence the name!) and mostly come in three varieties: conservation laws,
e.g. Hamiltonian energy or angular momentum, which geometrically mean that the so-
lution, rather than evolving in some large space Rd, is restricted to a lower-dimensional
manifoldM, Lie point symmetries, e.g. scaling invariance, which restrict the solution
to the tangent bundle of some manifold, and quantities like symplecticity and volume,
whose conservation corresponds to an evolution on the cotangent bundle of a man-



ifold. The design and implementation of numerical methods that respect geometric
invariants is the business of GNI.

Since its emergence, GNI has become the new paradigm in numerical solution of
ODEs, while making significant inroads into numerical PDEs. As often, yesterday’s
revolutionaries became the new establishment. This is an excellent moment to pause
and take stock. Have all the major challenges been achieved, all peaks scaled, leaving
just a tidying-up operation? Is there still any point to GNI as a separate activity or
should it be considered as a victim of its own success and its practitioners depart to
fields anew – including new areas of activity that have been fostered or enabled by
GNI?

These are difficult questions and we claim no special authority to answer them in an
emphatic fashion. Yet, these are questions which, we believe, must be addressed. This
short article is an attempt to foster a discussion. We commence with a brief survey
of the main themes of GNI circa 2015. This is followed by a review of recent and
ongoing developments, as well as of some new research directions that have emerged
from GNI but have acquired a life of their own.

2 The story so far

2.1 Symplectic integration

The early story of GNI is mostly the story of symplectic methods. A Hamiltonian
system

ṗ = −∂H(p, q)

∂q
, q̇ =

∂H(p, q)

∂p
, (2.1)

where H : R2d → R is a Hamiltonian energy, plays a fundamental role in mechanics
and is known to possess a long list of structural invariants, e.g. the conservation of
the Hamiltonian energy. Yet, arguably its most important feature is the conservation
of the symplectic form

∑d
k=1 dpk ∧ dqk because symplecticity is equivalent to Hamil-

tonicity – in other words, every solution of a Hamiltonian system is a symplectic flow
and every symplectic flow is Hamiltonian with respect to an appropriate Hamiltonian
energy (Hairer, Lubich & Wanner 2006).

The solution of Hamiltonian problems using symplectic methods has a long history,
beautifully reviewed in (Hairer, Lubich & Wanner 2003), but modern efforts can be
traced to the work of Feng and his collaborators at the Chinese Academy of Sciences,
who have used generating-function methods to solve Hamiltonian systems (Feng, Wu,
Qin & Wang 1989). And then, virtually simultaneously, Lasagni (1988), Sanz-Serna
(1988) and Suris (1988) proved that certain Runge–Kutta methods, including the well-
known Gauss–Legendre methods, preserve symplecticity and they presented an easy
criterion for the symplecticity of Runge–Kutta methods. GNI came of age!

Subsequent research into symplectic Runge–Kutta methods had branched out into
a number of directions, each with its own important ramifications outside the Hamil-
tonian world:

• Backward error analysis. The idea of backward error analysis ( BEA ) can be
traced to Wilkinson’s research into linear algebra algorithms in the 1950ties.
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Instead of asking “what is the numerical error for our problem”, Wilkinson
asked “which nearby problem is solved exactly by our method?”. The difference
between the original and the nearby problem can tell us a great deal about the
nature of the error in a numerical algorithm.

A generalisation of BEA to the field of differential equations is fraught with
difficulties. Perhaps the first successful attempt to analyse Hamiltonian ODEs in
this setting was by Nĕıshtadt (1984) and it was followed by many, too numerous
to list: an excellent exposition (like for many things GNI) is the monograph
of Hairer et al. (2006). The main technical tool is the B-series, an expansion
of composite functions in terms of forests of rooted trees, originally pioneered
by Butcher (1963). (We mention in passing that the Hopf algebra structure
of this Butcher group has been recently exploited by mathematical physicists to
understand the renormalisation group (Connes & Kreimer 1999) – as the authors
write, “We regard Butcher’s work on the classification of numerical integration
methods as an impressive example that concrete problem-oriented work can lead
to far-reaching conceptual results”.) It is possible to prove that, subject to very
generous conditions, the solution of a Hamiltonian problem by a symplectic
method, implemented with constant step size, is exponentially near to the exact
solution of a nearby Hamiltonian problem for an exponentially long time. This
leads to considerably greater numerical precision, as well as to the conservation
on average (in a strict ergodic sense) of Hamiltonian energy.

B-series fall short in a highly oscillatory and multiscale setting, encountered
frequently in practical Hamiltonian systems. The alternative in the BEA context
is an expansion into modulated Fourier series (Hairer & Lubich 2000).

• Composition and splitting.

Many Hamiltonians of interest can be partitioned into a sum of kinetic and
potential energy, H(p, q) = p>Mp+V (q). It is often useful to take advantage of
this in the design of symplectic methods. While conventional symplectic Runge–
Kutta methods are implicit, hence expensive, partitioned Runge–Kutta methods,
advancing separately in the ‘direction’ of kinetic and potential energy, can be
explicit and are in general much cheaper. While perhaps the most important
method, the Störmer–Verlet scheme (Hairer et al. 2003), has been known for
many years, modern theory has led to an entire menagerie of composite and
partitioned methods (Sanz-Serna & Calvo 1994).

Splitting methods1 have been used in the numerical solution of PDEs since
1950s. Thus, given the equation ut = L1(u)+L2(u), where the Lks are (perhaps
nonlinear) operators, the idea is to approximate the solution in the form

u(t+ h) ≈ eα1hL1eβ1hL2eα2hL1 · · · eαshL1eβsL2u(t), (2.2)

where v(t0 + h) =: ehL1v(t0) and w(t0 + h) =: ehL2w(t0) are, formally, the
solutions of v̇ = L1(v) and ẇ = L2(w) respectively, with suitable boundary
conditions. The underlying assumption is that the solutions of the latter two

1Occasionally known in the PDE literature as alternate direction methods.
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equations are either available explicitly or are easy to approximate, while the
original equation is more difficult.

A pride of place belongs to palindromic compositions of the form

eα1hL1eβ1hL2eα2hL1 · · · eαqhL1eβqhL2eαqhL1 · · · eα2hL1eβ1hL2eα1hL1 , (2.3)

invariant with respect to a reversal of the terms. They constitute a time-
symmetric map, and this has a number of auspicious consequences. Firstly,
they are always of an even order. Secondly – and this is crucial in the GNI
context – they respect both structural invariants whose integrators are closed
under composition, i.e. form a group (for example integrators preserving volume,
symmetries, or first integrals), as well as invariants whose integrators are closed
under symmetric composition, i.e. form a symmetric space (for example integra-
tors that are self-adjoint, or preserve reversing symmetries). A basic example of
(2.3) is the second-order Strang composition

e
1
2hL1ehL2e

1
2hL1 = eh(L1+L2) +O

(
h3
)
.

Its order – and, for that matter, the order of any time-symmetric method – can
be boosted by the Yoshida device (Yoshida 1990). Let Φ be a time-symmetric
approximation to etL of order 2P , say. Then

Φ((1 + α)h)Φ(−(1 + 2α)h)Φ((1 + α)h), where α =
21/(2P+1) − 1

2− 21/(2P+1)

is also time symmetric and of order 2P+2. Successive applications of the Yoshida
device allow to increase arbitrarily the order of the Strang composition, while
retaining its structure-preserving features. This is but a single example of the
huge world of splitting and composition methods, reviewed in (McLachlan &
Quispel 2002).

• Exponential integrators.

Many ‘difficult’ ODEs can be written in the form ẏ = Ay+b(y) where the matrix
A is ‘larger’ (in some sense) than b(y) – for example, A may be the Jacobian
of an ODE (which may vary from step to step). Thus, it is to be expected that
the ‘nastiness’ of the ODE under scrutiny – be it stiffness, Hamiltonicity or high
oscillation – is somehow ‘hardwired’ into the matrix A. The exact solution of
the ODE can be written in terms of the variation-of-constants formula,

y(t+ h) = ehAy(t) +

∫ h

0

e(h−ξ)Ab(y(t+ ξ)) dξ, (2.4)

except that, of course, the right-hand side includes the unknown function y.
Given the availability of very effective methods to compute the matrix exponen-
tial, we can exploit this to construct exponential integrators, explicit methods
that often exhibit favourable stability and structure-preservation features. The
simplest example, the exponential Euler method, freezes y within the integral
in (2.4) at its known value at t, the outcome being the first-order method

yn+1 = ehAyn +A−1(ehA − I)b(yn).
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The order can be boosted by observing that (in a loose sense which can be made
much more precise) the integral above is discretised by the Euler method, which
is a one-stage explicit Runge–Kutta scheme, discretising it instead by multistage
schemes of this kind leads to higher-order methods (Hochbruck & Ostermann
2010).

Many Hamiltonian systems of interest can be formulated as second-order systems
of the form ÿ + Ω2y = g(y). Such systems feature prominently in the case of
highly oscillatory mechanical systems, where Ω is positive definite and has some
large eigenvalues. Variation of constants (2.4) now reads[
y(t+ h)
ẏ(t+ h)

]
=

[
cos(hΩ) Ω−1 sin(hΩ)
−Ω sin(hΩ) cos(hΩ)

] [
y(t)
ẏ(t)

]
+

∫ t+h

t

[
cos((h− ξ)Ω) Ω−1 sin((h− ξ)Ω)
−Ω sin((h− ξ)Ω) cos((h− ξ)Ω)

][
0

g(y(t+ ξ))

]
dξ

and we can use either standard exponential integrators or exponential integrators
designed directly for second-order systems and using Runge–Kutta–Nyström
methods on the nonlinear part (Wu, You & Wang 2013).

An important family of exponential integrators for second-order systems are
Gautschi-type methods

yn+1 − 2yn + yn−1 = h2Ψ(hΩ)(gn − Ω2yn), (2.5)

which are of second order. Here Ψ(x) = 2(1 − cosx)/x while, in Gautschi’s
original method, gn = g(yn) (Hochbruck & Ostermann 2010). Unfortunately,
this choice results in resonances and a better one is gn = g(Φ(hΩ)yn), where
the filter Φ eliminates resonances: Φ(0) = I and Φ(kπ) = 0 for k ∈ N. We refer
to (Hochbruck & Ostermann 2010) for further discussion of such methods in the
context of symplectic integration.

• Variational integrators. Lagrangian formulation recasts a large number of differ-
ential equations as minima of nonlinear functionals. Thus, for example, instead
of the Hamiltonian problem M q̈ + ∇V (q) = 0, where the matrix M is positive
definite, we may consider the equivalent variational formulation of minimiz-
ing the positive-definite nonlinear functional L(q, q̇) = 1

2 q̇
>M q̇ − V (q). With

greater generality, Hamiltonian and Lagrangian formulations are connected via
the familiar Euler–Lagrange equations and, given the functional L, the corre-
sponding second-order system is

∂L(q, q̇)

∂q
− d

dt

[
∂L(q, q̇)

∂q̇

]
= 0.

The rationale of variational integrators parallels that of the Ritz method in the
theory of finite elements. We first reformulate the Hamiltonian problem as a
Lagrangian one, project it to a finite-dimensional space, solve it there and trans-
form back. The original symplectic structure is replaced by a finite-dimensional
symplectic structure, hence the approach is by design symplectic (Marsden &
West 2001).
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2.2 Lie-group methods

Let G be a Lie group and M a differentiable manifold. We say that Λ : G ×M→M
is a group action if

a. Λ(ι, y) = y for all y ∈M (where ι is the identity of G) and

b. Λ(p,Λ(q, y)) = Λ(p · q, y) for all p, q ∈ G and y ∈M.

If, in addition, for every x, y ∈M there exists p ∈ G such that y = Λ(p, x), the action
is said to be transitive and M is a homogeneous space, acted upon by G.

Every Lie group acts upon itself, while the orthogonal group O(n) acts on the
(n − 1)-sphere by multiplication, Λ(p, y) = py. The orthogonal group also acts on
the isospectral manifold of all symmetric matrices similar to a specific symmetric
matrix by similarity, Λ(p, y) = pyp>. Given 1 ≤ m ≤ n, the Grassmann manifold
G(n,m) of all m-dimensional subspaces of Rn is a homogeneous space acted upon by
SO(m) × SO(n −m), where SO(m) is the special orthogonal group – more precisely,
G(n,m) = SO(n)/(SO(m)× SO(n−m)).

Faced with a differential equation evolving in a homogeneous space, we can identify
its flow with a group action: Given an initial condition y0 ∈ M, instead of asking
“what is the value of y at time t > 0” we might pose the equivalent question “what is
the group action that takes the solution from y0 to y(t)?”. This is often a considerably
more helpful formulation because a group action can be further related to an algebra
action. Let g be the Lie algebra corresponding to the matrix group G, i.e. the tangent
space at ι ∈ G, and denote by X(M) the set of all Lipschitz vector fields over M.
Let λ : g → X(M) and a : R+ ×M → g be both Lipschitz. In particular, we might
consider

λ(a, y) =
d

ds
Λ(ρ(s, y), y)

s=0
,

where Λ is a group action and ρ : R+ → G, ρ(s, y(s)) = ι + a(s, y(s))s + O
(
s2
)

for
small |s|. The equation ẏ = λ(a(t, y), y), y(0) = y0 ∈M represents algebra action and
its solution evolves in M. Moreover,

y(t) = Λ(v(t), y0) where v̇ = a(t,Λ(v, y0))v, v(0) = ι ∈ G (2.6)

is a Lie-group equation. Instead of solving the original ODE on M, it is possible to
solve (2.6) and use the group action Λ to advance the solution to the next step: this is
the organising principle of most Lie-group methods (Iserles, Munthe-Kaas, Nørsett &
Zanna 2000). It works because a Lie-group equation can be solved in the underlying
Lie algebra, which is a linear space. Consider an ODE2 ẏ = f(y), y(0) ∈ M, such
that f : M → X – the solution y(t) evolves on the manifold. While conventional
numerical methods are highly unlikely to stay inM, this is not the case for Lie-group
methods. We can travel safely between M and G using a group action. The traffic
between G and g is slightly more complicated and we need to define a trivialisation,
i.e. an invertible map taking smoothly a neighbourhood of 0 ∈ g to a neighbourhood
of ι ∈ G and taking zero to identity. The most ubiquitous example of trivialisation is
the exponential map, which represents the solution of (2.6) as v(t) = eω(t), where ω is

2Or, for that matter, a PDE, except that formalities are somewhat more complicated.
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the solution of the dexpinv equation

ω̇ =

∞∑
m=0

Bm
m!

adma(t,eω)ω, ω(0) = 0 ∈ g (2.7)

(Iserles et al. 2000). Here the Bms are Bernoulli numbers, while admb is the adjoint
operator in g,

ad0
bc = c, admb c = [b, adm−1b c], m ∈ N, b, c ∈ g.

Because g is closed under linear operations and commutation, solving (2.7) while
respecting Lie-algebraic structure is straightforward. Mapping back, first to G and
finally to M, we keep the numerical solution of ẏ = f(t) on the manifold.

Particularly effective is the use of explicit Runge–Kutta methods for (2.7), the so-
called Runge–Kutta–Munthe-Kaas (RKMK) methods (Munthe-Kaas 1998). To help
us distinguish between conventional Runge–Kutta methods and RKMK, consider the
three-stage, third-order method with the Butcher tableau3

0
1
2

1
2

1 −1 2

1
6

2
3

1
6

. (2.8)

Applied to the ODE ẏ = f(t, y), y(tn) = yn ∈M, evolving on the manifold M⊂ Rd,
it becomes

k1 = f(tn, yn),

k2 = f(tn+ 1
2
, yn + 1

2hk1),

k3 = f(tn+1, yn − hk1 + 2hk2),

∆ = h( 1
6k1 + 2

3k2 + 1
6k3),

yn+1 = yn + ∆.

Since we operate in Rd, there is absolutely no reason for yn+1 to live inM. However,
once we implement (2.8) at an algebra level (truncating first the dexpinv equation
(2.7)),

k1 = a(tn, ι),

k2 = a(tn+ 1
2
, ehk1/2),

k3 = a(tn+1, e
−hk1+2hk2),

∆ = h( 1
6k1 + 2

3k2 + 1
6k3),

ωn+1 = ∆ + 1
6h[∆, k1]

yn+1 = Λ(eωn+1 , yn),

3For traditional concepts such as Butcher tableaux, Runge-Kutta methods and B-series, the reader
is referred to (Hairer, Nørsett & Wanner 1993).
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the solution is guaranteed to stay in M.
An important special case of a Lie-group equation is the linear ODE v̇ = a(t)v,

where a : R+ → g. Although RKMK works perfectly well in a linear case, spe-
cial methods do even better. Perhaps the most important is the Magnus expansion
(Magnus 1954), v(t) = eω(t)v(0), where

ω(t) =

∫ t

0

a(ξ) dξ − 1

2

∫ t

0

∫ ξ1

0

[a(ξ2), a(ξ1)] dξ2 dξ1

+
1

4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[a(ξ3), a(ξ2)], a(ξ1)] dξ3 dξ2 dξ1 (2.9)

+
1

12

∫ t

0

∫ ξ1

0

∫ ξ2

0

[a(ξ3), [a(ξ2), a(ξ1)]] dξ3 dξ2 dξ1 + · · · .

We refer to (Iserles & Nørsett 1999, Iserles et al. 2000, Blanes, Casas, Oteo & Ros 2009)
for explicit means to derive expansion terms, efficient computation of multivariate
integrals that arise in this context and many other implementation details. Magnus
expansions are important in a number of settings when preservation of structure is not
an issue, not least in the solution of linear stochastic ODEs (Lord, Malham & Wiese
2008).

There are alternative means to expand the solution of (2.7) in a linear case, not
least the Fer expansion, that has found recently an important application in the com-
putation of Sturm–Liouville spectra (Ramos & Iserles 2015).

Another approach to Lie-group equations uses canonical coordinates of the second
kind (Owren & Marthinsen 2001).

2.3 Conservation of volume

An ODE ẋ = f(x) is divergence-free if ∇ · f(x) = 0. The flows of divergence-free
ODEs are volume-preserving (VP). Volume is important to preserve, as it leads to
KAM-tori, incompressibility, and, most importantly, is a crucial ingredient for ergod-
icity. Unlike symplecticity, however, phase space volume can generically not be pre-
served by Runge–Kutta methods, or even by their generalisations, B-series methods.
This was proved independently in (Chartier & Murua 2007) and in (Iserles, Quispel &
Tse 2007). Since B-series methods cannot preserve volume, we need to look to other
methods.

There are essentially two known numerical integration methods that preserve phase
space volume. The first volume-preserving method is based on splitting (Feng & Shang
1995). As an example, consider a 3D volume preserving vector field:

ẋ = u(x, y, z)

ẏ = v(x, y, z) (2.10)

ż = w(x, y, z)

with
ux + vy + wz = 0.
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We split this 3D VP vector field into two 2D VP vector fields as follows

ẋ = u(x, y, z), ẋ = 0,

ẏ = −
∫
ux(x, y, z) dy, ẏ = v(x, y, z) +

∫
ux(x, y, z) dy,

ż = 0; ż = w(x, y, z).

(2.11)

The vector field on the left is divergence-free by construction, and since both vector
fields add up to (2.1), it follows that the vector field on the right is also volume-
preserving.

Having split the original vector field into 2D VP vector fields, we need to find
VP integrators for each of these 2D VP vector fields. But that is easy, since 2D
VP vector fields are essentially equivalent to 2D Hamiltonian vector fields (with the
extra dimension ‘frozen’), and all symplectic methods (e.g. symplectic Runge–Kutta
methods) are volume-preserving for Hamiltonian vector fields.

The above splitting method is easily generalised to n dimensions, where one splits
into n − 1 2D VP vector fields, and integrates each using a symplectic Runge–Kutta
method.

An alternative VP integration method was discovered independently by Shang and
by Quispel (Shang 1994, Quispel 1995). We again illustrate this method in 3D.

We will look for an integrator of the form

x1 = g1(x′1, x2, x3)

x′2 = g2(x′1, x2, x3) (2.12)

x′3 = g1(x′1, x
′
2, x3)

where (here and below) xi = xi(nh), and x′i = xi((n + 1)h). The reason the form
(2.12) is convenient, is because any such map is VP iff

∂x1
∂x′1

=
∂x′2
∂x2

∂x′3
∂x3

. (2.13)

To see how to construct a VP integrator of the form (2.12), consider as an example
the ODE

ẋ1 = x2 + x21 + x33

ẋ2 = x3 + x1x2 + x41 (2.14)

ẋ3 = x1 − 3x1x3 + x52

It is easy to check that it is divergence-free.

Now consistency requires that any integrator for (2.14) should satisfy

x′1 = x1 + h(x2 + x21 + x33) +O
(
h2
)

x′2 = x2 + h(x3 + x1x2 + x41) +O
(
h2
)

(2.15)

x′3 = x3 + h(x1 − 3x1x3 + x52) +O
(
h2
)
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and therefore

x1 = x′1 − h(x2 + x′21 + x33) +O
(
h2
)

(2.16)

x′2 = x2 + h(x3 + x′1x2 + x′41 ) +O
(
h2
)

(2.17)

x′3 = x3 + h(x′1 − 3x′1x3 + x′52 ) +O
(
h2
)

(2.18)

Since we are free to choose any consistent g2 and g3 in (2.12), provided g1 satisfies
(2.13), we choose the terms designated by O

(
h2
)

in (2.15) and (2.16) to be identically
zero. Equation (2.13) then yields

∂x1
∂x′1

= (1 + hx′1)(1− 3hx′1). (2.19)

This can easily be integrated to give

x1 = x′1 − hx′21 − h2x′31 + k(x2, x3;h). (2.20)

where the function k denotes an integration constant that we can choose appropriately.
The simplest VP integrator satisfying both (2.14) and (2.20) is therefore:

x1 = x′1 − h(x2 + x′21 + x33)− h2x′31
x′2 = x2 + h(x3 + x′1x2 + x′41 ) (2.21)

x′3 = x3 + h(x′1 − 3x′1x3 + x′52 )

A nice aspect of the integrator (2.21) (and (2.12)) is that it is essentially only implicit
in one variable. Once x′1 is computed from the first (implicit) equation, the other two
equations are essentially explicit.

Of course the method just described also generalises to any divergence-free ODE in
any dimension.

2.4 Preserving energy and other first integrals

As mentioned, Hamiltonian systems exhibit two important geometric properties simul-
taneously, they conserve both the symplectic form and the energy. A famous no-go
theorem by Ge & Marsden (1988) has shown that it is generically impossible to con-
struct a geometric integrator that preserves both properties at once. One therefore
must choose which one of these two to preserve in any given application. Particularly
in low dimensions and if the energy surface is compact, there are often advantages in
preserving the energy.

An energy-preserving B-series method was discovered in (Quispel & McLaren 2008)
cf. also (McLachlan, Quispel & Robidoux 1999).

For any ODE ẋ = f(x), this so-called average vector field method is given by

x′ − x
h

=

∫ 1

0

f(ξx′ + (1− ξ)x) dξ. (2.22)
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If the vector field f is Hamiltonian, i.e. if there exists a Hamiltonian function H(x)
and a constant skew-symmetric matrix S such that f(x) = S∇H(x), then it follows
from (2.22) that energy is preserved, i.e. H(x′) = H(x).

While the B-series method (2.22) is energy-preserving for any Hamiltonian H, it
can be shown that no Runge–Kutta method is energy-preserving for all H. For a given
polynomial H however, Runge–Kutta methods preserving that H do exist (Iavernaro
& Trigiante 2009). This can be seen as follows.

Note that the integral in (2.22) is one-dimensional. This means that e.g. for cubic
vector fields (and hence for quartic Hamiltonians) an equivalent method is obtained
by replacing the integral in (2.22) using Simpson’s rule:∫ 1

0

g(ξ) dξ ≈ 1

6

[
g(0) + 4g( 1

2 ) + g(1)
]
. (2.23)

yielding the Runge–Kutta method

x′ − x
h

=
1

6

[
f(x) + 4f

(
x+ x′

2

)
+ f(x′)

]
, (2.24)

preserving all quartic Hamiltonians.
We note that (2.22) has second order accuracy. Higher order generalisations have

been given in (Hairer 2010). We note that the average vector field method has also
been applied to a slew of semi-discretised PDEs in (Celledoni, Grimm, McLachlan,
McLaren, O’Neale, Owren & Quispel 2012).

While energy is one of the most important constants of the motion in applications,
many other types of first integrals do occur. We note here that all B-series methods
preserve all linear first integrals, and that all symplectic B-series methods preserve all
quadratic first integrals. So, for example, the implicit midpoint rule

x′ − x
h

= f

(
x+ x′

2

)
(which is symplectic) preserves all linear and quadratic first integrals. There are
however many cases not covered by any of the above.

How does one preserve a cubic first integral that is not energy? And what about
Hamiltonian systems whose symplectic structure is not constant? It turns out that
generically, any ODE ẋ = f(x) that preserves an integral I(x), can be written in the
form

ẋ = S(x)∇I(x), (2.25)

where S(x) is a skew-symmetric matrix4.
An integral-preserving discretisation of (2.25) is given by

x′ − x
h

= S̄(x,x′)∇̄I(x,x′), (2.26)

where S̄(x,x′) is any consistent approximation to S(x) (e.g. S̄(x,x′) = S(x)), and
the discrete gradient ∇̄I is defined by

(x′ − x) · ∇̄I(x,x′) = I(x′)− I(x) (2.27)

4Note that in general S(x) need not satisfy the so-called Jacobi identity.
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and
lim

x′→x
∇̄I(x,x′) = ∇I(x). (2.28)

There are many different discrete gradients that satisfy (2.27) and (2.28). A particu-
larly simple one is given by the Itoh–Abe discrete gradient, which for example in 3D
reads

∇̄I(x,x′) =



I(x′1, x2, x3)− I(x1, x2, x3)

x′1 − x1
I(x′1, x

′
2, x3)− I(x′1, x2, x3)

x′2 − x2
I(x′1, x

′
2, x
′
3)− I(x′1, x

′
2, x3)

x′3 − x3


. (2.29)

Other examples of discrete gradients, as well as constructions of the skew-symmetric
matrix S(x) for a given vector field f and integral I may be found in (McLachlan et
al. 1999).

We note that the discrete gradient method can also be used for systems with any
number of integrals. For example an ODE ẋ = f(x) possessing two integrals I(x)
and J(x) can be written

ẋi = Sijk(x)
∂I(x)

∂xj

∂J(x)

∂xk
, (2.30)

where the summation convention is assumed over repeated indices and S(x) is a
completely antisymmetric tensor. A discretisation of (2.30) which preserves both I
and J is given by

x′i − xi
h

= S̄ijk(x,x′)∇̄I(x,x′)
j
∇̄J(x,x′)

k
(2.31)

with S̄ any completely skew approximation of S and ∇̄I and ∇̄J discrete gradients as
defined above.

3 Five recent stories of GNI

The purpose of this section is not to present a totality of recent research into GNI,
a subject that would have called for a substantially longer paper. Instead, we wish
to highlight a small number of developments with which the authors are familiar and
which provide a flavour of the very wide range of issues on the current GNI agenda.

3.1 Highly oscillatory Hamiltonian systems

High oscillation occurs in many Hamiltonian systems. Sometimes, e.g. in the integra-
tion of equations of celestial mechanics, the source of the problem is that we wish to
compute the solution across a very large number of periods and the oscillation is an
artefact of the time scale in which the solution has physical relevance. In other cases
oscillation is implicit in the multiscale structure of the underlying problem. A case in
point are the (modified) Fermi–Pasta–Ulam (FPU) equations, describing a mechanical
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system consisting of alternating stiff harmonic and soft nonlinear springs. The soft
springs impart fast oscillation, while the hard springs generate slow transfer of energy
across the system: good numerical integration must capture both!

A good point to start (which includes modified FPU as a special case) is the
second-order ODE

q̈ + Ω2q = g(q), t ≥ 0, q(0) = u0, q̇(0) = v0, (3.1)

where g(q) = −∇U(q) and

Ω =

[
O O
O ωI

]
, ω � 1, q =

[
q0
q1

]
, q0 ∈ Rn0 , q1 ∈ Rn1 .

An important aspect of systems of the form (3.1) is that the exact solution, in addition
to preserving the total Hamiltonian energy

H(p, q) =
1

2
(‖p1‖2 + ω2‖q1‖2) +

1

2
‖p0‖2 + U(q0, q1), (3.2)

where q̇ = p, also preserves the oscillatory energy

I(p, q) =
1

2
‖p1‖2 +

ω2

2
‖q1‖2 (3.3)

for intervals of lengthO
(
ωN
)

for any N ≥ 1. This has been proved using the modulated
Fourier expansions

q(t) =

∞∑
m=−∞

eimωtzm(t).

The solution of (3.1) exhibits oscillations at frequency O(ω) and this inhibits the
efficiency of many symplectic methods, requiring step size of O

(
ω−1

)
, a situation akin

to stiffness in more conventional ODEs. However, by their very structure, exponential
integrators (and in particular Gautschi-type methods (2.5)) are particularly effective
in integrating the linear part, which gives rise to high oscillation. The problem with
Gautschi-type methods, though, might be the occurrence of resonances and we need
to be careful to avoid them, both in the choice of the right filter (cf. the discussion in
Subsection 2.1) and step size h.

Of course, one would like geometric numerical integrators applied to (3.1) to ex-
hibit favourable preservation properties with respect to both total energy (3.2) and
oscillatory energy (3.3). Applying modulated Fourier expansions to trigonometric and
modified trigonometric integrators, this is indeed the case provided that the step size
obeys the non-resonance condition with respect to the frequency ω,

| sin( 1
2mhω)| ≥ ch1/2, m = 1, . . . , N, N ≥ 2,

cf. Hairer & Lubich (2009).
All this has been generalised to systems with multiple frequencies, with the Hamil-

tonian function

H(p, q) =

oscillatory︷ ︸︸ ︷
1

2

s∑
j=1

(
‖pj‖2 + ω2

j ‖qj‖2
)

+

slow︷ ︸︸ ︷
1

2
‖p0‖2 + U(q),
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where

p =


p0
p1
...
ps

, q =


q0
q1
...
qs

, 0 < min
j=1,...,s

ωj , 1� max
j=1,...,s

ωj

for both the exact solution (Gauckler, Hairer & Lubich 2013) and for discretisations
obtained using trigonometric and modified trigonometric integrators (Cohen, Gauck-
ler, Hairer & Lubich 2015).

Further achievements and open problem in the challenging area of marrying sym-
plectic integration and high oscillation are beautifully described in (Hairer 2014).

3.2 Kahan’s ‘unconventional’ method

A novel discretisation method for quadratic ODEs was introduced and studied in
(Kahan & Li 1997). This new method discretised the vector field

ẋi =
∑
j,k

aijkxjxk +
∑
j

bijxj + ci (3.4)

as follows,

x′i − xi
h

=
∑
j,k

aijk

(
xjx
′
k + x′jxk

2

)
+
∑
j

bij

(
xj + x′j

2

)
+ ci. (3.5)

Kahan called the method (3.5) ‘unconventional’, because it treats the quadratic terms
different from the linear terms. He also noted some nice features of (3.5), e.g. that it
often seemed to be able to integrate through singularities.

Properties of Kahan’s method:

1. Kahan’s method is (the reduction of) a Runge–Kutta method.

Celledoni, McLachlan, Owren & Quispel (2013) showed that (3.5) is the reduc-
tion to quadratic vector fields of the Runge–Kutta method

x′ − x
h

= 2f

(
x+ x′

2

)
− 1

2
f(x)− 1

2
f(x′) (3.6)

This explains inter alia why Kahan’s method preserves all linear first integrals.

2. Kahan’s method preserves a modified energy and measure.

For any Hamiltonian vector field of the form

ẋ = f(x) = S∇H(x), (3.7)

with cubic Hamiltonian H(x) and constant symplectic (or Poisson) structure
S, Kahan’s method preserves a modified energy as well as a modified measure
exactly (Celledoni et al. 2013).
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The modified volume is
dx1 ∧ · · · ∧ dxn

det
(
I − 1

2hf
′(x)

) , (3.8)

while the modified energy is

H̃(x) := H(x) +
1

3
h∇H(x)>

(
I − 1

2
hf ′(x)

)−1
f(x). (3.9)

3. Kahan’s method preserves the integrability of many integrable systems of quadratic
ODEs.

Beginning with the work of Hirota and Kimura, subsequently extended by Suris
and collaborators (Petrera, Pfadler & Suris 2011), and by Quispel and collabo-
rators (Celledoni et al. 2013, Celledoni, McLachlan, McLaren, Owren & Quispel
2014, van der Kamp, Kouloukas, Quispel, Tran & Vanhaecke 2014), it was shown
that Kahan’s method preserves the complete integrability of a surprisingly large
number of quadratic ODEs.

Here we list some 2D vector fields whose integrability is preserved by Kahan’s method:

• Quadratic Hamiltonian systems in 2D:

The 9-parameter family[
ẋ
ẏ

]
=

[
bx2 + 2cxy + dy2 + fx+ gy + i
−ax2 − 2bxy − cy2 − ex− fy − h

]
; (3.10)

• Suslov systems in 2D:

The 9-parameter family[
ẋ
ẏ

]
= l(x, y)

[
0 1
−1 0

]
∇H(x, y), (3.11)

where l(x, y) = ax+ by + c; H(x, y) = dx2 + exy + fy2 + gx+ hy + i;

• Reduced Nahm equations in 2D:

Octahedral symmetry: [
ẋ
ẏ

]
=

[
2x2 − 12y2

−6x2 − 4y2

]
; (3.12)

Icosahedral symmetry: [
ẋ
ẏ

]
=

[
2x2 − y2
−10xy + y2

]
. (3.13)

The modified energy and measure for the Kahan discretisations of these 2D systems,
as well as of many other (higher-dimensional) integrable quadratic vector fields are
given in (Petrera et al. 2011, Celledoni et al. 2013, Celledoni et al. 2014).

Generalisations to higher degree polynomial equations using polarisation are pre-
sented in (Celledoni, McLachlan, McLaren, Owren & Quispel 2015).
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3.3 Applications to celestial mechanics

GNI methods particularly come into their own when the integration time is large
compared to typical periods of the system. Thus long-term integrations of e.g. solar-
type systems and of particle accelerators typically need symplectic methods. In this
subsection we focus on the former5.

One of the first symplectic integrations of the solar system was done in (Sussman &
Wisdom 1992) where it was confirmed that the solar system has a positive Lyapunov
exponent, and hence exhibits chaotic behaviour cf (Laskar 2003).

More recently these methods have been improved and extended (McLachlan 1995b,
Duncan, Levison & Lee 1998, Laskar, Fienga, Gastineau & Manche 2011, Blanes,
Casas, Farrés, Laskar, Makazaga & Murua 2013). Several symplectic integrators of
high order were tested in (Farrés, Laskar, Blanes, Casas, Makazaga & Murua 2013), in
order to determine the best splitting scheme for long-term studies of the solar system.

These various methods have resulted in the fact that numerical algorithms for solar
system dynamics are now so accurate that they can be used to define the geologic time
scales in terms of the initial conditions and parameters of solar system models (or vice
versa).

3.4 Symmetric Zassenhaus splitting and the equations of quan-
tum mechanics

Equations of quantum mechanics in the semiclassical regime represent a double chal-
lenge of structure conservation and high oscillation. A good starting point is the linear
Schrödinger equation

∂u

∂t
= iε

∂2u

∂x2
− iε−1V (x)u (3.14)

(for simplicity we restrict our discourse to a single space dimension), given in [−1, 1]
with periodic boundary conditions. Here V is the potential energy of a quantum sys-
tem, |u(x, t)|2 is a position density of a particle and 0 < ε� 1 represents the difference
in mass between an electron and nuclei. It is imperative to preserve the unitarity of
the solution operator (otherwise |u( · , t)|2 is no longer a probability function), but also
deal with oscillation at a frequency of O

(
ε−1
)
. A conventional approach advances the

solution using a palindromic splitting (2.3), but this is suboptimal for a number of
reasons. Firstly, the number of splittings increases exponentially with order. Secondly,
error constants are exceedingly large. Thirdly, quantifying the quality of approxima-
tion in terms of the step-size h is misleading, because there are three small quantities
at play: the step size h, N−1 where N is the number of degrees of freedom in space
discretisation (typically either a spectral method or spectral collocation) and, finally,
ε > 0 which, originating in physics rather than being a numerical artefact, is the most
important. We henceforth let N = O

(
ε−1
)

(to resolve the high-frequency oscillations)
and h = O(εσ) for some σ > 0 – obviously, the smaller σ, the larger the time step.

5A very readable early review of integrators for solar system dynamics is (Morbidelli 2002b), cf
also (Morbidelli 2002a)
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Bader, Iserles, Kropielnicka & Singh (2014) have recently proposed an alternative
approach to the splitting of (3.14), of the form

eih(ε∂
2
x−ε

−1V ) ≈ eR0eR1 · · · eRseTs+1eRs · · · eR1eR0 (3.15)

such that Rk = O(εαk), Ts+1 = O(εαs+1), where α0 ≤ α1 < α2 < α3 < · · · – the
symmetric Zassenhaus splitting. Here ∂x = ∂/∂x.

The splitting (3.15) is derived at the level of differential operators (i.e., prior to
space discretisation), applying the symmetric Baker–Campbell–Hausdorff formula to
elements in the free Lie algebra spanned by ∂2x and V . For σ = 1, for example, this
yields

R0 = − 1
2τε
−1V = O(1) ,

R1 = 1
2τε∂

2
x = O(1) ,

R2 = 1
24τ

3ε−1(∂xV )2 + 1
12τ

3ε{(∂2xV )∂2x + ∂2x[(∂2xV ) · ]} = O
(
ε2
)
,

R3 = − 1
120τ

5ε−1(∂2xV )(∂xV )2 − 1
24τ

3ε(∂4xV ) + 1
240τ

5ε
(
7{(∂2xV )2∂2x

+ ∂2x[(∂2xV )2 · ] + {(∂3xV )(∂xV )∂2x + ∂2x[(∂3xV )(∂xV ) · ]}
)

+ 1
120τ

5ε−3{(∂4xV )∂4x + ∂4x[(∂4xV ) · ]} = O
(
ε4
)
,

where τ = ih. Note that all the commutators, ubiquitous in the BCH formula, have
disappeared: in general, the commutators in this free Lie algebra can be replaced by
linear combinations of derivatives, with the remarkable property of height reduction:
each commutator ‘kills’ one derivative, e.g.

[V, ∂2x] = −(∂2xV )− 2(∂xV )∂x, [[V, ∂2x], ∂2x] = (∂4xV ) + 4(∂3xV )∂x + 4(∂2xV )∂2x.

Once we discretise with spectral collocation, R0 becomes a diagonal matrix and
its exponential is trivial, while eR1v can be computed in two FFTs for any vector v
because R1 is a Toeplitz circulant. Neither R2 nor R3 possess useful structure, except
that they are small! Therefore we can approximate eRkv using the Krylov–Arnoldi
process in just 3 and 2 iterations for k = 2 and k = 3, respectively, to attain an error
of O

(
ε6
)

(Bader et al. 2014).
All this has been generalised to time-dependent potentials and is applicable to a

wider range of quantum mechanics equations in the semiclassical regime.

4 Beyond GNI

Ideas in one area of mathematical endeavour often inspire work in another area. This is
true not just because new mathematical research equips us with a range of innovative
tools but because it provides insight that casts new light not just on the subject in
question but elsewhere in the mathematical universe. GNI has thus contributed not
just toward its own goal, better understanding of structure-preserving discretisation
methods for differential equations, but in other, often unexpected, directions.
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4.1 GNI meets abstract algebra

The traditional treatment of discretisation methods for differential equations was
wholly analytic, using tools of functional analysis and approximation theory. (Lately,
also tools from algebraic topology.) GNI has added an emphasis on geometry and this
leads in a natural manner into concepts and tools from abstract algebra. As often
in such mathematical dialogues, while GNI borrowed much of its conceptual back-
ground from abstract algebra, it has also contributed to the latter, not just with new
applications but also new ideas.

• B-series and beyond. Consider numerical integration methods that associate to
each vector field f a map ψh(f). A method ψh is called g-covariant6 if the
following diagram commutes,

x̃ = ψh(f)(x) - ỹ = ψh(f̃)(y)

? ?

ẋ = f(x) - ẏ = f̃(y)

x = g(y)

x = g(y)

It follows that if g is a symmetry of the vector field f and ψ is g-covariant,
then ψ preserves the symmetry g. It seems that this concept of covariance for
integration methods was first introduced in (McLachlan 1995a) and (McLachlan,
Quispel & Turner 1998).

It is not hard to check that all B-series methods are covariant with respect
to the group of affine transformations. A natural question to ask then, was
“are B-series methods the only numerical integration methods that preserve the
affine group?”. This question was open for many years, until it was answered in
the negative by (Munthe-Kaas & Verdier 2015), who introduced a more general
class of integration methods dubbed “aromatic Butcher series”, and showed that
(under mild assumptions) this is the most general class of methods preserving
affine covariance. Expansions of methods in this new class contain both rooted
trees (as in B-series), as well as products of rooted trees and so-called k-loops
(Iserles et al. 2007).

Whereas it may be said that to date the importance of aromatic B-series has
been at the formal rather than at the constructive level, these methods may hold
the promise of the construction of affine-covariant volume-preserving integrators.

• Word expansions. Classical B-series can be significantly generalised by expand-
ing in word series (Murua & Sanz-Serna 2015). This introduced an overarching

6Also called equivariant.
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framework for Taylor expansions, Fourier expansions, modulated Fourier expan-
sions and splitting methods. We consider an ODE of the form

ẋ =
∑
a∈A

λa(t)fa(x), x(0) = x0, (4.1)

where A is a given alphabet. The solution of (4.1) can be formally expanded in
the form

x(t) =

∞∑
n=0

∑
w∈Wn

αw(t)fw(x0),

where Wn is the set of all words with n letters from A. The coefficients αw

and functions fw can be obtained recursively from the λas and fas in a manner
similar to B-series. Needless to say, exactly like with B-series, word series can
be interpreted using an algebra over rooted trees.

The concept of word series is fairly new in numerical mathematics but it ex-
hibits an early promise to provide a powerful algebraic tool for the analysis of
dynamical systems and their discretisation.

• Extension of Magnus expansions. Let W be a Rota–Baxter algebra, a commuta-
tive unital algebra equipped with a linear map R such that

R(x)R(y) = R(R(x)y + xR(y) + θxy), x, y ∈ W,

where θ is a parameter. The inverse ∂ of R obeys

∂(xy) = ∂(x)y + x∂(y) + θ∂(x)∂(y)

and is hence a generalisation of a derivation operator: a neat example, with clear
numerical implications, is the backward difference ∂(x) = [x(t) − x(t − θ)]/θ.
Ebrahimi-Fard & Manchon (2009) generalised Magnus expansions to this and
similar settings, e.g. dendriform algebras. Their work uses the approach in
(Iserles & Nørsett 1999), representing individual ‘Magnus terms’ as rooted trees,
but generalises it a great deal.

• The algebra of the Zassenhaus splitting. The success of the Zassenhaus split-
ting (3.15) rests upon two features. Firstly, the replacement of commutators by
simpler, more tractable expressions and, secondly, height reduction of deriva-
tives under commutation. Singh (2015) has derived an algebraic structure
J which, encoding these two features, allows for a far-reaching generalisation
of the Zassenhaus framework. The elements of J are operators of the form
〈f〉k = f ◦ ∂kx + ∂kx ◦ f , where k ∈ Z+ and f resides in a suitable function space.
J can be endowed with a Lie-algebraic structure and, while bearing similari-
ties with the Weyl algebra and the Heisenberg group, is a new and intriguing
algebraic concept.
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4.2 Highly oscillatory quadrature

Magnus expansions (2.9) are particularly effective when the matrix A(t) oscillates
rapidly. This might seem paradoxical – we are all conditioned to expect high oscilla-
tion to be ‘difficult’ – but actually makes a great deal of sense. Standard numerical
methods are based on Taylor expansions, hence on differentiation, and their error
typically scales as a high derivative of the solution. Once a function oscillates rapidly,
differentiation roughly corresponds to multiplying amplitude by frequency, high deriva-
tives become large and so does the error. However, the Magnus expansion does not
differentiate, it integrates! This has an opposite effect: the more we integrate, the
smaller the amplitude and the series (2.9) converges more rapidly. Indeed, often it
pays to render a linear system highly oscillatory by a change of variables, in a manner
described in (Iserles 2002), and then solve it considerably faster and cheaper. Yet, once
we contemplate the discretisation of (2.9) for a highly oscillatory matrix function A(t),
we soon come up another problem, usually considered difficult, if not insurmountable:
computing multivariate integrals of highly oscillatory functions.

In a long list of methods for highly oscillatory quadrature (HOQ) circa 2002,
ranging from the useless to the dubious, one method stood out: Levin (1982) proposed
to calculate univariate integrals by converting the problem to an ODE and using
collocation. This was the only effective method around, yet incompletely understood.

The demands of GNI gave the initial spur to the emergence in the last ten years to
a broad swath of new methods for HOQ: Filon-type methods, which replace the non-
oscillatory portion of the integrand by an interpolating polynomial (Iserles & Nørsett
2005), improved Levin-type methods (Olver 2006) and the method of numerical sta-
tionary phase of Huybrechs & Vandewalle (2006). The common characteristic of all
these methods is that they are based on asymptotic expansions. This means that high
oscillation is no longer the enemy – indeed, the faster the oscillation, the smaller the
error!

Highly oscillatory integrals occur in numerous applications, from electromagnetic
and acoustic scattering to fluid dynamics, quantum mechanics and beyond. Their role
in GNI is minor. However, their modern numerical theory was originally motivated by
a problem in GNI. This is typical to how scholarship progresses and it is only natural
that HOQ has severed its GNI moorings and has become an independent area on its
own.

4.3 Structured linear algebra

GNI computations often lead to specialised problems in numerical linear algebra. How-
ever, structure preservation has wider impact in linear algebraic computations. Often
a matrix in an algebraic problem belongs to an algebraic structure, e.g. a specific Lie
algebra or a symmetric space, and it is important to retain this in computation –
the sobriquet “Geometric Numerical Algebra” might be appropriate! Moreover, as in
GNI so in GNA, respecting structure often leads to better, more accurate and cheaper
numerical methods. Finally, structured algebraic computation is often critical to GNI
computations.

• Matrix factorization is the lifeblood of numerical algebra, the basis of the most
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effective algorithms for the solution of linear systems, computation of eigenvalues
and solution of least-squares problems. A major question in GNA is “Suppose
that A ∈ A, where A is a set of matrices of given structure. Given a factorization
A = BC according to some set of rules, what can we say about the structure of
B or C?”. Mackey, Mackey & Tisseur (2005) addressed three such ‘factorization
rules’: the matrix square root, B = C, the matrix sign, where the elements of B
are ±1, and the polar decomposition, with unitary B and positive semidefinite
C. They focussed on sets A generated by a sesquilinear form 〈 · , · 〉. Such sets
conveniently fit into two classes:

(a) Automorphisms G, such that 〈Gx, Gy〉 = 〈x,y〉, generate a Lie group;

(b) Self-adjoint matrices S, such that 〈Sx,y〉 = 〈x, Sy〉, generate a Jordan
algebra; and

(c) Skew-adjoint matrices H such that 〈Hx,y〉 = −〈x, Hy〉, generate a Lie
algebra.

It is natural to expect that conservation of structure under factorization would
depend on the nature of the underlying inner product. The surprising out-
come of (Mackey et al. 2005) is that, for current purposes, it is sufficient to
split sesquilinear forms into just two classes, unitary and orthosymmetric, each
exhibiting similar behaviour.

• Many algebraic eigenvalue problems are structured, the simplest example being
that the eigenvalues of a symmetric matrix are real and of a skew-symmetric are
pure imaginary: all standard methods for the computation of eigenvalues respect
this. However, many other problems might have more elaborate structure, and
this is the case in particular for nonlinear eigenvalue problems. An important
example, with significant applications in mechanics, is

(λ2M + λG+K)x = 0, (4.2)

where bothM andK are symmetric, whileG is skew symmetric. The eigenvalues
λ of (4.2) exhibit Hamiltonian pattern: if λ is in the spectrum then so are −λ, λ̄
and −λ̄.7 As often in numerical algebra, (4.2) is particularly relevant when the
underlying matrices are large and sparse.

Numerical experiments demonstrate that standard methods for the computation
of a quadratic eigenvalue problems may fail to retain the Hamiltonian structure
of the spectrum but this can be obtained by bespoke algorithms, using a sym-
plectic version of the familiar Lanczos algorithm, cf. (Benner, Fassbender & Stoll
2007/08).

This is just one example of the growing field of structured eigenvalue and inverse
eigenvalue problems.

• The exponential from an algebra to a group: Recall Lie-group methods from
Section 2.2: a critical step, e.g. in the RKMK methods, is the exponential map

7To connect this to the GNI narrative, such a pattern is displayed by matrices in the symplectic
Lie algebra sp(2n).
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from a Lie algebra to a Lie group. Numerical analysis knows numerous effective
ways to approximate the matrix exponential (Moler & Van Loan 2003), yet most
of them fail to map a matrix from a Lie algebra to a Lie group! There is little
point to expand intellectual and computational effort to preserve structure, only
to abandon the latter in the ultimate step, and this explains the interest in
the computation of the matrix exponential which is assured to map A in a Lie
algebra to an element in the corresponding Lie group.

While early methods have used structure constants and, for maximal sparsity,
Lie-algebraic bases given by space-root decomposition (Celledoni & Iserles 2001),
the latest generation of algorithms is based upon generalised polar decomposition
(Munthe-Kaas, Quispel & Zanna 2001).
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