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Abstract The Klein–Gordon equation with nonlinear potential features in a large
number of applications, yet its computation represents a major challenge. The
main theme of this paper is the construction of symmetric and arbitrarily high-
order time-stepping numerical methods for the nonlinear Klein–Gordon equa-
tion and the analysis of their stability and convergence. To this end, subject
to periodic boundary conditions, we construct an abstract ordinary differential
equation in a suitable function space. Subsequently, we introduce an operator-
variation-of-constants formula to derive a symmetric and arbitrarily high-order
time-integration formula for the nonlinear abstract ODE. Stability and conver-
gence are proved once the spatial differential operator is approximated by an ap-
propriate positive semi-definite matrix, subject to sufficient temporal and spatial
smoothness. Numerical results demonstrate the advantage and efficiency of our
new methods in comparison with the existing numerical approaches.
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1 Introduction

The nonlinear wave equation plays a prominent role in a wide range of applications
in engineering and science, inclusive of nonlinear optics, solid state physics and
quantum field theory [14]. In particular, the Klein–Gordon equation, a relativistic
counterpart of the Schrödinger equation, is used to model diverse nonlinear phe-
nomena, such as the propagation of dislocations in crystals and the behaviour of
elementary particles and of Josephson junctions (see [15, Chap. 2] for details).

Its computation presents numerous enduring challenges which motivate us to
derive and analyse symmetric and arbitrarily high-order numerical methods for
the nonlinear Klein–Gordon equation.

In this paper we restrict ourselves to the one-dimensional case, noting that
all our ideas, algorithms and analysis extend easily to the solution of a nonlinear
Klein–Gordon equations in a moderate number of space dimensions.

We consider the following nonlinear Klein–Gordon equation,

utt − a2∆u = f(u), t0 < t ≤ T, x ∈ Ω,

u(x, t0) = ϕ1(x), ut(x, t0) = ϕ2(x), x ∈ Ω̄,
(1)

where u(x, t) represents the wave displacement at position x and time t, and the
nonlinear function f(u) is the negative derivative of a potential energy V (u) ≥ 0.
For simplicity, we assume that the initial value problem (1) is accompanied by the
periodic boundary condition on the domain Ω = (−π, π),

u(x, t) = u(x+ 2π, t), x ∈ (−π, π], (2)

where 2π is the fundamental period with respect to x. In the literature, there are
various choices of the potential f(u): the best known is the sine-Gordon equation

utt − a2∆u+ sin(u) = 0,

but also polynomials f feature in many applications. An important structural
feature of (1–2) is that u(·, t) ∈ H1(Ω) and ut(·, t) ∈ L2(Ω) imply energy conser-
vation,

E(t) =
1

2

∫
Ω

[
u2t + a2|∇u|2 + 2V (u)

]
dx ≡ E(t0). (3)

This is an crucial e.g. in soliton theory and ideally should be preserved by a
numerical discretization.

Historically, the Klein–Gordon equation has received a great deal of attention,
focussing on both its numerical and analytical aspects. On the analytical front, the
initial value problem (1) was investigated e.g. by [7,18,26,32,41]). In particular,
for the defocusing case, V (u) ≥ 0, u ∈ R, the global existence of solutions was
established in [7], and for the focusing case, V (u) ≤ 0, u ∈ R, possible finite time
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blow-up was investigated. In numerical analysis, various solution procedures have
been proposed and studied inclusive of classical finite difference methods such as
explicit, semi-implicit, compact finite difference and symplectic conservative dis-
cretisations [1,4,16,33,38]. Other effective integrators, such as the finite element
method and the spectral method were also studied in [11,12,20,44]. Although vari-
ous numerical methods for the nonlinear Klein–Gordon equation have been derived
and investigated in the literature, their accuracy is limited and little attention has
been paid to the special structure produced by spatial discretisations.

Motivated by recent interest in exponential integrators for semilinear parabolic
problems [13,23–25,30], and based on the operator spectrum theory (see, e.g.
[6]) we first formulate the nonlinear Klein–Gordon equation (1–2) as an abstract
second-order ordinary differential equation. Subsequently, the operator-variation-
of-constants formula (also known as the Duhamel Principle) for the abstract equa-
tion is introduced: this is an implicit expression of the solution of the nonlinear
Klein–Gordon equation (1–2). Similarly to the powerful approach to dealing with
the semiclassical Schrödinger equation in [3], this work foregoes the standard steps
of first semidiscretising and then dealing with the semidiscretisation. Using the
derived operator-variation-of-constants formula, we interpolate the nonlinear inte-
grators by two-point Hermite interpolation, this leads to a class of symmetric and
arbitrarily high-order time integration formulæ. The semidiscretisation is deferred
to the very last moment, and this enables us to take a subtle but powerful ad-
vantage of dealing with the undiscretised operator ∆ and incorporate the special
structure produced by spatial discretisations into the new integrator.

The main purpose of this paper is to present symmetric and arbitrarily high-
order time-stepping methods for the nonlinear Klein–Gordon equation (1–2) and
analyse their stability and convergence. Its outline is as follows. We commence in
Section2 by representing (1–2)as an abstract ordinary differential system on the
Hilbert space L2(Ω). In Section 3, keeping the eventual discretisation in mind,
we apply a two-point Hermite interpolation to the operator-variation-of-constants
formula and develop our time integration formula of arbitrarily high order in
an infinite-dimensional function space. Moreover, some properties of the opera-
tor functions and the Birkhoff–Hermite quadrature formula can ensure that our
time integration formula is independent of integrals and is symmetric. The analysis
of its stability and convergence for the fully discrete scheme are studied in Section
4 and Section 5, respectively. Section 6 is concerned with the semidiscretisation.
The choice of spatial discretisation at this stage does allow us some flexibility.
After the discretisation, a class of numerical schemes is presented. However, since
these schemes are implicit, iteration cannot be avoided in practical computations.
Therefore, we introduce a waveform relaxation algorithm and prove its conver-
gence in Section 7. In Section 8, we display preliminary numerical results which
demonstrate the advantages and efficiency of our new algorithms in comparison
with existing numerical methods. The last section is devoted to brief conclusions
and pointers for future research.

2 The formulation of abstract ordinary differential equations

We use operator theory (see, e.g. [6]) first to formulate (1–2) as an abstract
second-order ordinary differential equation in the infinity-dimensional function
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space L2(Ω) and then to present implicitly its solution as an operator-variation-
of-constants formula. To this end, some bounded operator functions are defined in
advance and those are essential in introducing the formula.

We commence by defining the functions

φj(x) :=
∞∑
k=0

(−1)kxk

(2k + j)!
, j ∈ Z+ for ∀x ≥ 0. (4)

It is easy to see that the functions φj are bounded for all x ≥ 0. For instance,

φ0(x) = cos(
√
x), φ1(x) = sinc(

√
x),

and it is obvious that |φj(x)| ≤ 1 for j = 0, 1 and ∀x ≥ 0. We now consider the
linear differential operator A defined by

(Av)(x) = −a2vxx(x)

in order to gain an abstract formulation for the problem (1–2). While A is a linear,
unbounded positive semi-definite operator, whose domain is

D(A) :=
{
v ∈ H1(Ω) : v(x) = v(x+ 2π)

}
.

The operator A has a complete system of orthogonal eigenfunctions
{
eikx : k ∈ Z

}
in the Hilbert space L2(Ω), and the corresponding eigenvalues are a2k2, k ∈
Z. Because of the isomorphism between L2 and l2, the operator A induces a
corresponding operator on l2 (see, e.g. [6,25]). Consequently, the functions (4)
induce the operator

φj(tA) : L2(Ω)→ L2(Ω)

for j ∈ Z+ and t0 ≤ t ≤ T :

φj(tA)v(x) =
∞∑

k=−∞

v̂kφj(ta
2k2)eikx for v(x) =

∞∑
k=−∞

v̂ke
ikx. (5)

We next show that the above operators are bounded. To this end, we first derive
the norm of the function in L2(Ω), which in the frequency space becomes

‖v‖2 = 2π
∞∑

k=−∞

|v̂k|2,

[40]. It now follows from the definition of operator norm that

‖φj(tA)‖2∗ = sup
‖v‖6=0

‖φj(tA)v‖2

‖v‖2 ≤ sup
t0≤t≤T

|φj(ta2k2)|2 ≤ γ2j , (6)

where ‖·‖∗ is the Sobolev norm ‖·‖L2(Ω)←L2(Ω), γj are the bounds of the functions
|φj(x)| for j = 0, 1, 2, . . . and x ≥ 0. For example,

‖φ0(tA)‖2∗ ≤ 1 and ‖φ1(tA)‖2∗ ≤ 1.
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We now define u(t) as the function that maps x to u(x, t), u(t) := [x 7→ u(x, t)],
and formulate the system (1–2) as an abstract second-order ordinary differential
equation on the infinity-dimensional function space L2(Ω),{

u′′(t) +Au(t) = f
(
u(t)

)
, t0 < t ≤ T,

u(t0) = ϕ1(x), u′(t0) = ϕ2(x).
(7)

Following the above discussion, we are now in a position to present an integral
formula for the nonlinear Klein–Gordon equation (1–2). The solution of the ab-
stract ordinary differential equations (7) can be characterized by the following
operator-variation-of-constants formula.

Theorem 1 The solution of (7) and its derivative satisfy the following operator-
variation-of-constants formula

u(t) =φ0

(
(t− t0)2A

)
u(t0) + (t− t0)φ1

(
(t− t0)2A

)
u′(t0)

+

∫ t

t0

(t− ζ)φ1

(
(t− ζ)2A

)
f
(
u(ζ)

)
dζ,

u′(t) =− (t− t0)Aφ1

(
(t− t0)2A

)
u(t0) + φ0

(
(t− t0)2A

)
u′(t0)

+

∫ t

t0

φ0

(
(t− ζ)2A

)
f
(
u(ζ)

)
dζ,

(8)

for t0 ≤ t ≤ T , where φ0

(
(t− t0)2A

)
and φ1

(
(t− t0)2A

)
are bounded operators.

Proof Applying the Duhamel Principle to equations (1) or (7) yields[
u(t)
u′(t)

]
= exp

(
(t− t0)

[
0 I
−A 0

])[
u(t0)
u′(t0)

]
+

∫ t

t0

exp

(
(t− ζ)

[
0 I
−A 0

])[
0

f
(
u(ζ)

) ]dζ,
whereby (8) follows by expanding the exponential operator. ut

Remark 1 For the nonlinear Klein–Gordon equations, the nonlinear integral equa-
tion (8) reflects the variations of the solution with time t and is helpful in deriving
and analysing novel numerical integration methods for the nonlinear Klein–Gordon
equations. However, for f(u) = 0 (1) becomes identical to the homogenous wave
equation {

utt − a2∆u = 0, t0 < t ≤ T, x ∈ Ω,

u(x, t0) = ϕ1(x), ut(x, t0) = ϕ2(x).

The formula (8) can integrate exactly the homogeneous linear wave equation and
gives its closed-form solution.

3 A symmetric, arbitrarily high–order time integration formula

In this section, keeping the eventual discretisation in mind and applying a two-
point Hermite interpolation to the formula (10), we develop a class of arbitrarily
high order and symmetric time integration formulæ in the infinite-dimensional
Hilbert space L2(Ω). We commence with few useful preliminaries.
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Lemma 1 The bounded functions (4) satisfy∫ 1

0

(1− z)φ1

(
(1− z)2A

)
zjdz = j!φj+2(A), j ∈ Z+,∫ 1

0

φ0

(
(1− z)2A

)
zjdz = j!φj+1(A), j ∈ Z+.

(9)

Proof The proof of the Lemma 1 can be found in [48]. ut

Corollary 1 For every m,n ∈ Z+ the operators (5) obey∫ 1

0

(1− z)m+1φ1

(
(1− z)2A

)
zndz =

m∑
i=0

Cim(−1)m−i(m+ n− i)!φm+n−i+2(A),

∫ 1

0

(1− z)mφ0

(
(1− z)2A

)
zndz =

m∑
i=0

Cim(−1)m−i(m+ n− i)!φm+n−i+1(A),

where Cim =
(
m
i

)
is the binomial symbol.

Proof The two sets of identities can be derived easily from Lemma 1. ut

Following from Theorem 1, the solution of (7) and of its derivative at a time
point tn+1 = tn +∆t, n ∈ Z+, are

u(tn+1) =φ0

(
V
)
u(tn) +∆tφ1

(
V
)
u′(tn) +∆t2

∫ 1

0

(1− z)φ1

(
(1− z)2V

)
f̃(z)dz,

u′(tn+1) =−∆tAφ1

(
V
)
u(tn) + φ0

(
V
)
u′(tn) +∆t

∫ 1

0

φ0

(
(1− z)2V

)
f̃(z)dz,

(10)
where V = ∆t2A and f̃(z) = f

(
u(tn + z∆t)

)
.

Before presenting our time integration formula, we first focus our attention on
efficient integrators for approximating the nonlinear integrals

I1 :=

∫ 1

0

(1− z)φ1

(
(1− z)2V

)
f̃(z)dz,

I2 :=

∫ 1

0

φ0

(
(1− z)2V

)
f̃(z)dz.

(11)

Typically the function f(u) is nonlinear, and only its values at the endpoints can be
used in the construction of efficient numerical approximations. We thus interpolate
f̃(z) by a two-point Hermite interpolation pr(z) of degree 2r + 1 [19,39].

Lemma 2 Suppose that f̃ ∈ C2r+2
(
[0, 1]

)
. Then there exists a Hermite interpo-

lating polynomial pr(z) of degree 2r + 1

pr(z) =
r∑
j=0

[
βj(z)f̃

(j)(0) + (−1)jβj(1− z)f̃ (j)(1)
]

(12)

with

βj(z) =
zj

j!
(1− z)r+1

r−j∑
s=0

Csr+sz
s (13)
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satisfying the interpolation conditions

p(j)r (0) = f̃ (j)(0), p(j)r (1) = f̃ (j)(1), j = 0, 1, 2, . . . , r.

Moreover, the error on [0, 1] is given by

Rr = f̃(z)− pr(z) = (−1)r+1zr+1(1− z)r+1 f̃
(2r+2)(ξ)

(2r + 2)!
, ξ ∈ (0, 1). (14)

Replacing f̃(z) in (11) by the Hermite interpolation pr(z) where f̃(z) = f
(
u(tn+

z∆t)
)

and f̃ (j)(z) = ∆tjf
(j)
t

(
u(tn + z∆t)

)
, we obtain

Ĩr1 =
r∑
j=0

∆tj
[
I1[βj(z)]f

(j)
t

(
u(tn)

)
+ (−1)jI1[βj(1− z)]f (j)

t

(
u(tn+1)

)]
,

Ĩr2 =
r∑
j=0

∆tj
[
I2[βj(z)]f

(j)
t

(
u(tn)

)
+ (−1)jI2[βj(1− z)]f (j)

t

(
u(tn+1)

)]
.

(15)

Here f
(j)
t

(
u(t)

)
denotes the jth derivative of f

(
u(t)

)
with respect to t.

Using the Brikhoff–Hermite quadrature formula (cf. [17,29,37]), we elucidate
the coefficients I1[βj(z)], I2[βj(z)], I1[βj(1− z)] and I2[βj(1− z)]: defined below:

I1[βj(z)] :=

∫ 1

0

(1− z)φ1

(
(1− z)2V

)
βj(z)dz

=

r−j∑
s=0

r+1∑
i=0

(−1)r−i+1Csr+sC
i
r+1

(r + s+ j − i+ 1)!

j!
φr+s+j−i+3

(
V
)
,

(16)

I2[βj(z)] :=

∫ 1

0

φ0

(
(1− z)2V

)
βj(z)dz

=

r−j∑
s=0

r+1∑
i=0

(−1)r−i+1Csr+sC
i
r+1

(r + s+ j − i+ 1)!

j!
φr+s+j−i+2

(
V
)
,

(17)

I1[βj(1− z)] :=

∫ 1

0

(1− z)φ1

(
(1− z)2V

)
βj(1− z)dz

=

r−j∑
s=0

r+j∑
i=0

(−1)s+j−iCsr+sC
i
s+j

(r + s+ j − i+ 1)!

j!
φr+s+j−i+3

(
V
)
,

(18)

I2[βj(1− z)] :=

∫ 1

0

φ0

(
(1− z)2V

)
βj(1− z)dz

=

r−j∑
s=0

r+j∑
i=0

(−1)s+j−iCsr+sC
i
s+j

(r + s+ j − i+ 1)!

j!
φr+s+j−i+2

(
V
)
.

(19)

Boundedness follows at once,

‖I1[βj(z)]‖∗ ≤ max
0≤z≤1

|βj(z)| ≤ 1 and ‖I1[βj(1− z)]‖∗ ≤ max
0≤z≤1

|βj(1− z)| ≤ 1,

‖I2[βj(z)]‖∗ ≤ max
0≤z≤1

|βj(z)| ≤ 1 and ‖I2[βj(1− z)]‖∗ ≤ max
0≤z≤1

|βj(1− z)| ≤ 1.

Let un ≈ u(tn) and µn ≈ u′(tn). Using above analysis and the formula (10), we
present the following time integration formula for the abstract ODEs (7).
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Definition 1 Our time integrator for the abstract ODEs (7) is defined by

un+1 =φ0

(
V
)
un +∆tφ1

[
V
)
µn +

r∑
j=0

∆tj+2
(
I1[βj(z)]f

(j)
t (un)

+ (−1)jI1[βj(1− z)]f (j)
t (un+1)

]
,

µn+1 =−∆tAφ1

[
V
)
un + φ0

(
V
)
µn +

r∑
j=0

∆tjm1
(
I2[βj(z)]f

(j)
t (un)

+ (−1)jI2[βj(1− z)]f (j)
t (un+1)

]
,

(20)

where I1[βj(z)], I2[βj(z)], I1[βj(1− z)] and I2[βj(1− z)] have been defined by (16–
19), respectively.

Theorem 2 Suppose that f
(
u(·, t)

)
∈ C2r+2([t0, T ]) and f

(2r+2)
t

(
u(x, ·)

)
∈ L2(Ω).

Subject to local assumptions on un = u(tn), µn = u′(tn), local error bounds of the
time integration formula (20) are

‖u(tn+1)− un+1‖ ≤ C1∆t
2r+4 and ‖u′(tn+1)− µn+1‖ ≤ C2∆t

2r+3, (21)

where the constants C1 and C2 are

C1 =
(r + 2)!(r + 1)!

(2r + 2)!(2r + 4)!
max
t0≤t≤T

‖f (2r+2)
t

(
u(t)

)
‖

and

C2 =

[
(r + 1)!

]2
(2r + 2)!(2r + 3)!

max
t0≤t≤T

‖f (2r+2)
t

(
u(t)

)
‖.

Proof It follows from (10) and (20) that

u(tn+1)− un+1 = ∆t2
∫ 1

0

(1− z)φ1

(
(1− z)2V

)(
f
(
u(tn + z∆t)

)
− pr(z)

)
dz, (22)

and

u′(tn+1)− µn+1 = ∆t

∫ 1

0

φ0

(
(1− z)2V

)(
f
(
u(tn + z∆t)

)
− pr(z)

)
dz. (23)

Noting that f̃ (j)(z) = ∆tjf
(j)
t

(
u(tn + z∆t)

)
, and using Lemma 2, we have

f
(
u(tn + z∆t)

)
− pr(z) = ∆t2r+2zr+1(1− z)r+1 f

(2r+2)
t

(
u(tn + ξn∆t)

)
(2r + 2)!

. (24)

Finally, inserting (24) into (22) and (23) yields

‖u(tn+1)− un+1‖ ≤ ∆t2r+4 ‖f
(2r+2)
t

(
u(tn + ξn∆t)

)
‖

(2r + 2)!

∫ 1

0

(1− z)r+2zr+1dz

≤ C1∆t
2r+4,
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and

‖u′(tn+1)− µn+1‖ ≤ ∆t2r+3 ‖f
(2r+2)
t

(
u(tn + ξn∆t)

)
‖

(2r + 2)!

∫ 1

0

(1− z)r+1zr+1dz

≤ C2∆t
2r+3,

completing the proof. ut

The Klein–Gordon equation (1) is time symmetric and a most welcome fea-
ture of (20) is that it preserves time symmetry. As a first step, let us introduce
some useful properties of the operator-valued functions φ0, φ1 and the coefficients
defined by (16–19) in the following two lemmas.

Lemma 3 The bounded operators φ0(A) and φ1(A) defined by (5) satisfy

φ2
0(A) +Aφ2

1(A) = I, (25)

where A is an arbitrary positive semi-definite operator or matrix.

Lemma 4 The coefficients I1[βj(z)], I2[βj(z)], I1[βj(1−z)] and I2[βj(1−z)] from
(20) satisfy

φ0(V)I1[βj(z)]− φ1(V)I2[βj(z)] = −I1[βj(1− z)],
Vφ1(V)I1[βj(z)] + φ0(V)I2[βj(z)] = I0[βj(1− z)],

(26)

where βj(z) j = 0, 1, . . . , r are defined by (13) and V = ∆t2A and A an arbitrary
positive semi-definite operator or matrix.

Proof It follows from the definitions of I1[βj(z)] and I2[βj(z)] that

φ0(V)I1[βj(z)]− φ1(V)I2[βj(z)]

=

∫ 1

0

(
(1− z)φ0(V)φ1

(
(1− z)2V

)
− φ1(V)φ0

(
(1− z)2V

))
βj(z)dz

=

∫ 1

0

(
zφ0(V)φ1(z2V)− φ1(V)φ0(z2V)

)
βj(1− z)dz

=−
∫ 1

0

(1− z)φ1

(
(1− z)2V

)
βj(1− z)dz = −I1[βj(1− z)].

The second formula of (26) can be proved in a similar way and we skip the details.
ut

We are now in a position to prove time symmetry of (20).

Theorem 3 The time integration formula (20) is symmetric with respect to the
time variable.
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Proof Exchanging un+1 ↔ un, µn+1 ↔ µn and replacing ∆t by −∆t in formula
(20) yield

un =φ0

(
V
)
un+1 −∆tφ1

(
V
)
µn+1

+
r∑
j=0

∆tj+2
{

(−1)jI1[βj(z)]f
(j)
t (un+1) + I1[βj(1− z)]f (j)

t (un)
}
,

(27)

µn =∆tAφ1

{
V
)
un+1 + φ0

(
V
)
µn+1

−
r∑
j=0

∆tj+1
(

(−1)jI2[βj(z)]f
(j)
t (un+1) + I2[βj(1− z)]f (j)

t (un)
}
.

(28)

Combining φ0(V)× (27) +∆tφ1(V)× (28), we have

un+1 =φ0

(
V
)
un +∆tφ1

(
V
)
µn

−
r∑
j=0

∆tj+2
{

(−1)j
(
φ0(V)I1[βj(z)]− φ1(V)I2[βj(z)]

)
f
(j)
t (un+1)

+
(
φ0(V)I1[βj(1− z)]− φ1(V)I2[βj(1− z)]

)
f
(j)
t (un)

}
.

(29)

Similarly, −∆tAφ1(V)× (27) + φ0(V)× (28) results in

µn+1 =−∆tAφ1

(
V
)
un + φ0

(
V
)
µn

+
r∑
j=0

∆tj+1
{

(−1)j
(
Vφ1(V)I1[βj(z)] + φ0(V)I2[βj(z)]

)
f
(j)
t (un+1)

+
(
Vφ1(V)I1[βj(1− z)] + φ0(V)I2[βj(1− z)]

)
f
(j)
t (un)

}
.

(30)

Applying Lemma 4 to (29) and (30) yields the statement of the theorem. ut

4 Stability of the fully discrete scheme

In this section we show the stability of our methods, once the differential operator
A is replaced by a suitable matrix A. Throughout this section ‖ · ‖ presents both
the vector 2-norm and the matrix 2-norm (the spectral norm).

Suppose that the perturbed problem of (7) is{
v′′(t) +Av(t) = f

(
v(t)

)
, t ∈ [t0, T ],

v(t0) = ϕ1(x) + ϕ̃1(x), v′(t0) = ϕ2(x) + ϕ̃2(x),
(31)

where ϕ̃1 and ϕ̃2 are perturbation functions. Letting η(t) = v(t) − u(t) and sub-
tracting (7) from (31), we obtain{

η′′(t) +Aη(t) = f
(
v(t)

)
− f

(
u(t)

)
, t ∈ [t0, T ],

η(t0) = ϕ̃1(x), η′(t0) = ϕ̃2(x).
(32)

In general, we prefer to approximate operator A by a symmetric and positive
semi-definite differential matrix A, since this assists in structure preservation. In
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that case there exist an orthogonal matrix P and a diagonal matrix Λ with non-
negative diagonal such that

A = P>ΛP.

We let D = P>Λ
1
2P , hence A = D2. The bounded operators φj(t

2A) are replaced
by the matrix functions φj(t

2A). Similarly, we also have

‖φj(t2A)‖ =

√
λmax

(
φ2
j (t

2A)
)
≤ γj , j ∈ Z+. (33)

In what follows, we will analyse the stability for the time-stepping method
(20). We assume that

ηn ≈ η(tn), ζn ≈ η′(tn) and vn ≈ v(tn), wn ≈ v′(tn).

Applying our method to (32), we obtain

ηn+1 =φ0

(
V
)
ηn +∆tφ1

(
V
)
ζn +

r∑
j=0

∆tj+2
{
I1[βj(z)]

[
f
(j)
t (vn)

− f (j)
t (un)

]
+ (−1)jI1[βj(1− z)]

[
f
(j)
t (vn+1)− f (j)

t (un+1)
]}
,

ζn+1 =−∆tAφ1

(
V
)
ηn + φ0

(
V
)
ζn +

r∑
j=0

∆tj+1
{
I2[βj(z)]

[
f
(j)
t (vn)

− f (j)
t (un)

]
+ (−1)jI2[βj(1− z)]

[
f
(j)
t (vn+1)− f (j)

t (un+1)
]}
,

(34)

where V = ∆t2A, I1[βj(z)], I2[βj(z)], I1[βj(1− z)] and I2[βj(1− z)] are defined by
(16–19), respectively. Likewise, we have

‖I1[βj(z)]‖ ≤ max
0≤z≤1

|βj(z)| ≤ 1 and ‖I1[βj(1− z)]‖ ≤ max
0≤z≤1

|βj(1− z)| ≤ 1,

‖I2[βj(z)]‖ ≤ max
0≤z≤1

|βj(z)| ≤ 1 and ‖I2[βj(1− z)]‖ ≤ max
0≤z≤1

|βj(1− z)| ≤ 1.

We rewrite the schemes (34) in a matrix-vector form,[
Dηn+1

ζn+1

]
=Ω

[
Dηn

ζn

]
+

r∑
j=0

∆tj+1

∫ 1

0

Ωj(z)dz

[
0

f
(j)
t (vn)− f (j)

t (un)

]

+
r∑
j=0

(−1)j∆tj+1

∫ 1

0

Ωj(1− z)dz
[

0

f
(j)
t (vn+1)− f (j)

t (un+1)

]
,

(35)

where

Ω =

[
φ0(V ) ∆tDφ1(V )

−∆tDφ1(V ) φ0(V )

]
(36)

and

Ωj(z) = βj(z)

[
φ0((1− z)2V ) ∆t(1− z)Dφ1((1− z)2V )

−∆t(1− z)Dφ1((1− z)2V ) φ0((1− z)2V )

]
. (37)

Before embarking on stability analysis, we first investigate the spectral norm
of matrices Ω and Ωj(z) for j = 0, 1, . . . , r.
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Lemma 5 Assume that A is a symmetric and positive semi-definite matrix and
that V = ∆t2A. Then the spectral norms of matrices Ω and Ωj(z) satisfy

‖Ω‖ = 1 and ‖Ωj(z)‖ = |βj(z)| ≤ 1, z ∈ [0, 1], j = 0, 1, . . . , r. (38)

Proof According to Lemma 3 and formulæ (36) and (37), it is trivial that

Ω>Ω = I2M×2M and Ω>j (z)Ωj(z) = β2
j (z)I2M×2M . (39)

Therefore

‖Ω‖ = 1 and ‖Ωj(z)‖ = |βj(z)| ≤ 1, z ∈ [0, 1], j = 0, 1, . . . , r,

and the lemma follows. ut

4.1 Linear stability analysis

In this subsection we focus our attention on analysing the stability of our methods
for f(u) = u. In this case

f
(2k)
t

(
u(t)

)
= (I −A)ku(t) f

(2k+1)
t

(
u(t)

)
= (I −A)ku′(t), k ∈ Z+. (40)

Lemma 6 Assume that A is a symmetric matrix. Then

‖(I −A)k‖ ≤
(
1 + ρ(A)

)k
, k ∈ Z+,

where ρ(A) is the spectral radius of A.

Proof An immediate consequence of the definition of the spectral norm:

‖(I −A)k‖ =
√
λmax

(
(I −A)2k

)
≤ (1 + max

1≤j≤M
|λj |)k =

(
1 + ρ(A)

)k
,

where λj are the eigenvalues of A. ut

Theorem 4 Let the operator A be approximated by a symmetric and positive
semi-definite differential matrix A and suppose that the sufficiently small time
stepsize ∆t satisfies ∆t2

(
1 + ρ(A)

)
≤ 1 with ∆t ≤ [4(r + 1)]−1. Then

‖ηn‖ ≤ exp
(
2(4r + 5)T

)(
‖ϕ̃1‖+

√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
,

‖ζn‖ ≤ exp
(
2(4r + 5)T

)(
‖ϕ̃1‖+

√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
,

where ϕ̃l =
(
ϕ̃l(x0), ϕ̃l(x1), . . . , ϕ̃l(xM−1)

)>
, while ϕ̃l(xi) are the values of the

perturbation functions ϕ̃l, l = 1, 2, at the grid points {xi}M−1
i=0 .
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Proof It follows from the first formula in (34) and from (35) that

‖ηn+1‖ ≤ ‖ηn‖+∆t‖ζn‖+
r∑
j=0

∆tj+2(‖f (j)
t (vn)− f (j)

t (un)‖

+ ‖f (j)
t (vn+1)− f (j)

t (un+1)‖
)
,

and

√
‖Dηn+1‖2 + ‖ζn+1‖2 ≤

√
‖Dηn‖2 + ‖ζn‖2 +

r∑
j=0

∆tj+1(‖f (j)
t (vn)− f (j)

t (un)‖

+ ‖f (j)
t (vn+1)− f (j)

t (un+1)‖
)
.

Summing up the above and using (40), we obtain

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2 ≤ ‖ηn‖+

√
‖Dηn‖2 + ‖ζn‖2 +∆t‖ζn‖

+∆t(1 +∆t)
r∑
j=0

∆tj‖(I −A)[
j
2
]‖
(
‖ηn‖+ ‖ζn‖+ ‖ηn+1‖+ ‖ζn+1‖

)
.

(41)

Applying Lemma 6 to inequality (41), we have

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2 ≤ ‖ηn‖+

√
‖Dηn‖2 + ‖ζn‖2 +∆t‖ζn‖

+∆t(1 +∆t)
r∑
j=0

∆tj
(
1 + ρ(A)

)[ j
2
](‖ηn‖+ ‖ζn‖+ ‖ηn+1‖+ ‖ζn+1‖

)
.

Since the stepsize satisfies ∆t2
(
1 + ρ(A)

)
≤ 1,

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2

≤
[
1 +

∆t(4r + 5)

1− 2∆t(r + 1)

] (
‖ηn‖+

√
‖Dηn‖2 + ‖ζn‖2

)
.

Moreover, ∆t ≤ [4(r + 1)]−1, consequently

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2

≤
[
1 + 2(4r + 5)∆t

](
‖ηn‖+

√
‖Dηn‖2 + ‖ζn‖2

)
.

An inductive argument yields

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2

≤ exp
(
2(4r + 5)T

)(
‖ϕ̃1‖+

√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
and the proof is complete. ut
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4.2 Nonlinear stability analysis

Following the method of proof for the linear case, we now analyse the stability of
our methods for nonlinear problems. Our main assumptions are as follows.

Assumption 1 Both (7) and (31) possess sufficiently smooth solutions and f :
D(A)→ R is sufficiently Fréchet differentiable in a strip along the exact solution.

It is known from [47, Chap. 3] that

f
(k)
t

(
u(t)

)
=

∑
t̃∈SENTf

k+2

α(t̃)F(t̃)
(
u(t), u′(t)

)
, (42)

where SENTf = {τ2} ∪
{
t̃ = [t̃1, . . . , t̃m]2 : t̃i ∈ SENT

}
and SENT is the set

of special extended Nyström trees is defined in [47], α(t̃) is the number of pos-
sible monotonic labellings of an extended Nyström tree t̃, and F(t̃)

(
u, u′

)
is the

corresponding elementary differential.

Assumption 2 dkf(u)/duk : D(A)→ R for k = 0, 1, 2, . . . , r are locally Lipschitz
continuous in a strip along the exact solution u. Thus, there exist real numbers

L(R, ρ(A)b
k
2
c) such that

‖F(t̃)
(
v(t), v′(t)

)
−F(t̃)

(
w(t), w′(t)

)
‖

≤L(R, ρ(A)b
k
2
c)
(
‖v(t)− w(t)‖+ ‖v′(t)− w′(t)‖

)
, ∀t̃ ∈ SENTfk+2,

for all t ∈ [t0, T ] and max
(
‖v− u(t)‖, ‖w− u(t)‖, ‖v′ − u′(t)‖, ‖w′ − u′(t)‖

)
≤ R.

We next enunciate the statement on nonlinear stability.

Theorem 5 Subject to Assumptions 1 and 2 and to the sufficiently small time
stepsize satisfying

∆t2L(R, ρ(A)) ≤ 1 and ∆t
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃) ≤ 1

4
,

approximating the operator A by a symmetric and positive semi-definite matrix A,
we obtain the following stability results,

‖ηn‖ ≤ exp
(

2T
(
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
))(
‖ϕ̃1‖+

√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
,

‖ζn‖ ≤ exp
(

2T
(
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
))(
‖ϕ̃1‖+

√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
,

where ϕ̃l =
(
ϕ̃l(x0), ϕ̃l(x1), . . . , ϕ̃l(xM−1)

)>
and ϕ̃l(xi) are the values of the per-

turbation functions ϕ̃l, l = 1, 2, at the spatial grid points {xi}M−1
i=0 .
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Proof It follows from the first formula in (34) and from (35) that

‖ηn+1‖ ≤‖ηn‖+∆t‖ζn‖+
r∑
j=0

∆tj+2[‖f (j)
t (vn)− f (j)

t (un)‖

+ ‖f (j)
t (vn+1)− f (j)

t (un+1)‖
]
,√

‖Dηn+1‖2 + ‖ζn+1‖2 ≤
√
‖Dηn‖2 + ‖ζn‖2 +

r∑
j=0

∆tj+1(‖f (j)
t (vn)− f (j)

t (un)‖

+ ‖f (j)
t (vn+1)− f (j)

t (un+1)‖
)
.

(43)
Summing up (43) and inserting (42) into the right-hand side, we obtain

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2 ≤ ‖ηn‖+∆t‖ζn‖+

√
‖Dηn‖2 + ‖ζn‖2

+∆t(1 +∆t)
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tj
[
‖F(t̃)(vn, wn)−F(t̃)(un, µn)‖

+ ‖F(t̃)(vn+1, wn+1)−F(t̃)(un+1, µn+1)‖
]
.

(44)

On the other hand, using Assumption 2 on the right-hand side of (44) yields

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2 ≤ ‖ηn‖+∆t‖ζn‖+

√
‖Dηn‖2 + ‖ζn‖2

+∆t(1 +∆t)
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tjL(R, ρ(A)b
j
2
c)
(
‖ηn‖+ ‖ζn‖+ ‖ηn+1‖+ ‖ζn+1‖

)
.

(45)
The time stepsize ∆t satisfies ∆t2L(R, ρ(A)) ≤ 1, hence inequality (45) leads to

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2

≤

{
1 +

∆t
[
1 + 4

∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃)

]
1− 2∆t

∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃)

}(
‖ηn‖+

√
‖Dηn‖2 + ‖ζn‖2

)
.

Moreover, ∆t
∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃) ≤ 1

4 , therefore

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2

≤
[
1 + 2∆t

(
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
)](
‖ηn‖+

√
‖Dηn‖2 + ‖ζn‖2

)
.

An inductive argument yields

‖ηn+1‖+
√
‖Dηn+1‖2 + ‖ζn+1‖2

≤ exp
(

2T
(
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
))(
‖ϕ̃1‖+

√
‖Dϕ̃1‖2 + ‖ϕ̃2‖2

)
,

completing the proof. ut
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5 Convergence of the fully discrete scheme

As is well known, convergence of the classical methods for linear partial differential
equations is governed by the Lax equivalence theorem: convergence equals consis-
tency plus stability [27]. Our methods are obviously consistent, and the stability
of the fully discrete scheme for linear problems has been proved in Subsection 4.1.
Therefore, the convergence of our method for linear problems can be obtained
by applying the Lax equivalence theorem. However, the Lax equivalence theorem
need not be valid for nonlinear problems.

In this section, we analyse the convergence of the fully discrete scheme for
nonlinear problems. Subject to suitable assumptions on smoothness and spatial
discretisation strategies, the original continuous system (1) or (7) can be discretised
as the following,{

U ′′(t) +AU(t) = f
(
U(t)

)
+ δ(∆x), t ∈ [t0, T ],

U(t0) = ϕ1, U ′(t0) = ϕ2,
(46)

where U(t) =
(
u(x0, t), u(x1, t), . . . , u(xM−1, t)

)>
, A is a positive semi-definite

differential matrix and ϕl =
(
ϕl(x0), ϕl(x1), . . . , ϕl(xM−1)

)>
, l = 1, 2.

Let δ(∆x) be the truncation error produced by approximating the spatial dif-
ferential operator A with a positive semi-definite matrix A. For example, once we
replace the spatial derivative by the classical forth-order finite difference method
(see, e.g. [5,34]), the truncation error δ(∆x) is ‖δ(∆x)‖ = O(∆x4).

Applying the time integration formula (20) to (46) results in

U(tn+1) =φ0(V )U(tn) +∆tφ1(V )U ′(tn) +
r∑
j=0

∆tj+2
{
I1[βj(z)]f

(j)
t

(
U(tn)

)
+ (−1)jI1[βj(1− z)]f (j)

t

(
U(tn+1)

)}
+Rn,

U ′(tn+1) =−∆tAφ1(V )U(tn) + φ0(V )U ′(tn) +
r∑
j=0

∆tj+1
{
I0[βj(z)]f

(j)
t

(
U(tn)

)
+ (−1)jI0[βj(1− z)]f (j)

t

(
U(tn+1)

)}
+ rn,

(47)

where Rn =
(
Rn1 , . . . , R

n
M

)>
and rn =

(
rn1 , . . . , r

n
M

)>
are truncation errors,

Rnj =(−1)r+1∆t2r+4 f
(2r+2)
t

(
u(xj , tn + ξn∆t)

)
(2r + 2)!

∫ 1

0

(1− z)r+2φ1

(
(1− z)2V

)
zr+1dz

+∆t2
∫ 1

0

(1− z)φ1

(
(1− z)2V

)
δj(∆x)dz

and

rnj =(−1)r+1∆t2r+3 f
(2r+2)
t

(
u(xj , tn + ξn∆t)

)
(2r + 2)!

∫ 1

0

(1− z)r+1φ0

(
(1− z)2V

)
zr+1dz

+∆t

∫ 1

0

φ0

(
(1− z)2V

)
δj(∆x)dz
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respectively. Under suitable assumptions of smoothness, the errors Rnj and rnj can
be bounded,

|Rnj | ≤
(r + 2)!(r + 1)!

(2r + 2)!(2r + 4)!
max
t0≤t≤T

max
x∈Ω̄
|f (2r+2)
t

(
u(x, t)

)
|∆t2r+4 +

∆t2

2
|δj(∆x)|,

(48)
and

|rnj | ≤
(
(r + 1)!

)2
(2r + 4)!(2r + 3)!

max
t0≤t≤T

max
x∈Ω̄
|f (2r+2)
t

(
u(x, t)

)
|∆t2r+3 +∆t|δj(∆x)|. (49)

Disregarding the small terms Rn and rn in (47) and letting unj ≈ u(xj , tn),
µnj ≈ ut(xj , tn), we obtain the fully discrete scheme

un+1 =φ0(V )un +∆tφ1(V )µn +
r∑
j=0

∆tj+2
{
I1[βj(z)]f

(j)
t (un)

+ (−1)jI1[βj(1− z)]f (j)
t (un+1)

}
,

µn+1 =−∆tAφ1(V )un + φ0(V )µn +
r∑
j=0

∆tj+1
{
I0[βj(z)]f

(j)
t (un)

+ (−1)jI0[βj(1− z)]f (j)
t (un+1)

}
.

(50)

We consider from first principles the convergence of the fully discrete scheme
(50) for nonlinear problems. To this end, we let enj = u(xj , tn) − unj and ωnj =
ut(xj , tn) − µnj for j = 1, 2, . . . ,M—in other words, en = U(tn) − un and ωn =
U ′(tn)− µn. Subtracting (50) from (47) and inserting exact initial conditions, we
obtain a recurrence for the errors,

en+1 =φ0(V )en +∆tφ1(V )ωn +
r∑
j=0

∆tj+2
{
I1[βj(z)]

[
f
(j)
t (U(tn))

− f (j)
t (un)

]
+ (−1)jI1[βj(1− z)]

[
f
(j)
t (U(tn+1))− f (j)

t (un+1)
]}

+Rn,

ωn+1 =−∆tAφ1(V )en + φ0(V )ωn +
r∑
j=0

∆tj+1
{
I0[βj(z)]

[
f
(j)
t (U(tn))

− f (j)
t (un)

]
+ (−1)jI0[βj(1− z)]

[
f
(j)
t (U(tn+1))− f (j)

t (un+1)
]}

+ rn,

(51)
with the initial conditions e0 = 0, ω0 = 0.

In order to analyse convergence we use the Gronwall inequality.

Lemma 7 (see, e.g. [42]) Let λ be positive, ak, bk, k ∈ Z+, be nonnegative and
assume further that

ak ≤ (1 + λ∆t)ak−1 +∆tbk, k ∈ Z+.

Then

ak ≤ exp(λk∆t)
(
a0 +∆t

k∑
m=1

bm
)
, k ∈ N.
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Theorem 6 Subject to Assumptions 1 and 2, and supposing that u(x, t) satisfies
suitable smoothness assumptions, if the time stepsize ∆t satisfies

∆t2L
(
R, ρ(A)

)
≤ 1 and ∆t

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃) ≤ 1

4
,

then there exists a constant C such that

‖en‖ ≤ CT exp
(

2T
(
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
)(
∆t2r+2 + ‖δ(∆x)‖

)
,

‖ωn‖ ≤ CT exp
(

2T
(
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
)(
∆t2r+2 + ‖δ(∆x)‖

)
.

Proof We rewrite the system (51) in a compact form,[
Den+1

ωn+1

]
= Ω

[
Den

ωn

]
+

r∑
j=0

∆tj+1

∫ 1

0

Ωj(z)dz

[
0

f
(j)
t

(
U(tn)

)
− f (j)

t (un)

]

+
r∑
j=0

(−1)j∆tj+1

∫ 1

0

Ωj(1− z)dz
[

0

f
(j)
t

(
U(tn+1)

)
− f (j)

t (un+1)

]
+

[
DRn

rn

]
,

(52)
where Ω and Ω(z) were defined in (36) and (37), respectively.

Taking the l2 norm on both sides of the first formula in (51) and (52) and
summing up the outcome, we obtain

‖en+1‖+
√
‖Den+1‖2 + ‖ωn+1‖2 ≤ ‖en‖+∆t‖ωn‖+

√
‖Den‖2 + ‖ωn‖2

+∆t(1 +∆t)
r∑
j=0

∆tj
[
‖f (j)
t

(
U(tn)

)
− f (j)

t (un)‖+ ‖f (j)
t

(
U(tn+1)

)
− f (j)

t (un+1)‖
]

+ ‖Rn‖+
√
‖DRn‖2 + ‖rn‖2.

(53)

On the other hand, inserting (42) into the right-hand side of (53) and employing
Assumption 2 leads to

‖en+1‖+
√
‖Den+1‖2 + ‖ωn+1‖2 ≤ ‖en‖+∆t‖ωn‖+

√
‖Den‖2 + ‖ωn‖2

+∆t(1 +∆t)

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tjL
(
R, ρ(A)b

j
2
c)(‖en‖+ ‖ωn‖+ ‖en+1‖

+ ‖ωn+1‖
)

+ ‖Rn‖+
√
‖DRn‖2 + ‖rn‖2.

(54)

Since ∆t2L
(
R, ρ(A)

)
≤ 1, inequality (54) results in

‖en+1‖+
√
‖Den+1‖2 + ‖ωn+1‖2

≤

{
1 +

∆t
[
1 + 4

∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃)

]
1− 2∆t

∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃)

}(
‖en‖+

√
‖Den‖2 + ‖ωn‖2

)
+

1

1− 2∆t
∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃)

(
‖Rn‖+

√
‖DRn‖2 + ‖rn‖2

)
.
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Once the time stepsize ∆t also satisfies ∆t
∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃) ≤ 1

4 , we obtain

‖en+1‖+
√
‖Den+1‖2 + ‖ωn+1‖2 ≤ 1 + 2∆t

[
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
]

(
‖en‖+

√
‖Den‖2 + ‖ωn‖2

)
+ 2
(
‖Rn‖+

√
‖DRn‖2 + ‖rn‖2

)
.

(55)

Note that truncation errors Rnj and rnj satisfy (48) and (49), respectively. Thus,
there exists a constant C such that

‖Rn‖+
√
‖DRn‖2 + ‖rn‖2 ≤ C∆t

(
∆t2r+2 + ‖δ(∆x)‖

)
.

Applying the Gronwall inequality (Lemma 7) to (55) results in

‖en‖+
√
‖Den‖2 + ‖ωn‖2 ≤ exp

(
2n∆t

(
1 + 4

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
)

×
[
‖e0‖+

√
‖De0‖2 + ‖ω0‖2 + Cn∆t

(
∆t2r+2 + ‖δ(∆x)‖

)]
.

and the theorem follows. ut

6 Spatial discretisation

The symmetric and arbitrarily high order time-stepping formulæ (20) have been
presented in operatorial terms in the infinite-dimensional Hilbert space L2(Ω).
To render them into proper numerical algorithms, we must replace the differen-
tial operator A with an suitable differential matrix A. Recalling our stability and
convergence analysis, we approximate the differential operator A by a positive
semi-definite matrix A. Fortunately, there exists a great body of research investi-
gating the replacement of spatial derivatives of nonlinear system (1) with periodic
boundary conditions (2), and it is easy to find positive semi-definite differentiation
matrices in this setting.

In this section, we mainly consider the following spatial discretisations.

1. Symmetric finite difference (SFD) (see, e.g. [5])

Finite difference methods are obtained when approximating a function by local
polynomial interpolation. Its derivatives are then approximated by differentiat-
ing this local polynomial, where ‘local’ refers to the use of nearby grid points to
approximate the function or its derivative at a given point. In general, a finite
difference approximation is of moderate order. As an example, we approximate
the operator A by the differential matrix

Asfd =
a2

12∆x2



30 −16 1 1 −16
−16 30 −16 1 1

1 −16 30 −16 1
. . .

. . .
. . .

. . .
. . .

1 −16 30 −16 1
1 1 −16 30 −16
−16 1 1 −16 30


M×M

.
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The approximation is of order four and the circulant Asfd is clearly positive semi-
definite.

2. Fourier spectral collocation (FSC) (see, e.g. [22,40])

Spectral methods are global in character and the computation at any given point
depends not only on the information at neighbouring points, but on the entire
domain. While the topic of spectral methods is very wide, we focus our attention
on spectral collocation. One way of introducing it is as a limit of ‘wrapped around’
symmetric finite differences of increasing order [22]. Alternatively, the solution is
interpolated on an equidistant grid by trigonometric polynomials. The entries of
the second-derivative Fourier differentiation matrix Afsc = (akj)M×M are given
by

akj =


(−1)k+j

2
a2 sin−2

( (k − j)π
M

)
, k 6= j,

a2
(M2

12
+

1

6

)
, k = j.

(56)

The main appeal of spectral methods is that they exhibit spectral convergence to
A: the error decays for C∞ functions faster than O(M−α) ∀α > 0 for sufficiently
large M . Moreover, the differential matrix Afsc is positive semi-definite.

Fig. 1 displays spectral radii for the differential matrices Asfd and Afsc. On the
left we show the spectral radius of Asfd and Afsc as a function of M . On the right,
letting ∆t = 2π

M ,M = 10i for i = 1, 2, . . . , 40, we plot ∆t2ρ(A)—it is compelling

that this quantity is constant, i.e. that ρ(A) = O(∆t−2).

0 100 200 300 400
0

1

2

3

4
x 10

4

M=i*10, 1=1,2,...,40

ρ
(A

)

 

 

ρ(A
sfd

)

ρ(A
fsc

)

(a)

0 100 200 300 400
0

4

8

12

16

M=i*10, 1=1,2,...,40

∆
 t

2
ρ
(A

)

 

 

∆ t
2
ρ(A

sfd
)

∆ t
2
ρ(A

fsc
)

(b)

Fig. 1 Plots of of ρ(A) and ∆t2ρ(A) for the differential matrices Asfd and Afsc for M =
10i, i = 1, 2, . . . , 40.

We have already noted that energy conservation (3) is an important property
of nonlinear Klein–Gordon equations (1–2). Approximating the operator A by a
positive semi-definite differential matrix A, there is a discrete energy conservation
law,

Ẽ(t) =
∆x

2
‖u′(t)‖+

∆x

2
‖Du(t)‖2 +∆x

M∑
j=1

V
(
uj(t)

)
≡ Ẽ(t0), (57)
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where the norm ‖ · ‖ is the standard vector 2-norm and ∆x = 2π/M is the spatial
grid size. This can be regarded as an approximate energy (a semi-discrete energy)
of the original continuous system. Therefore, in our numerical experiments we will
also test the effectiveness of our methods to preserve (57).

7 Waveform relaxation and its convergence

In previous sections we have derived and analysed a fully discrete scheme for (1–
2) and presented its properties. However, the scheme (50) is implicit and must be
solved by iteration. In this section we introduce a waveform relaxation method as a
suitable iterative scheme. Cf. [28,31,35,45,46] for waveform relaxation in different
contexts.

Based on the notation in (42), we first rewrite the fully discrete scheme (50),



un+1 =φ0

(
V
)
un +∆tφ1

(
V
)
µn +

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tj+2

×
[
I1[βj(z)]F(t̃)(un, µn) + (−1)jI1[βj(1− z)]F(t̃)(un+1, µn+1)

]
,

µn+1 =−∆tAφ1

(
V
)
un + φ0

(
V
)
µn +

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tj+1

×
[
I1[βj(z)]F(t̃)(un, µn) + (−1)jI1[βj(1− z)]F(t̃)(un+1, µn+1)

]
,

where I1[βj(z)], I2[βj(z)], I1[βj(1 − z)], and I2[βj(1 − z)] have been defined in
(16–19). We launch waveform relaxation by setting un+1

[0] = φ0

(
V
)
un +∆tφ1

(
V
)
µn,

µn+1
[0] = −∆tAφ1

(
V
)
un + φ0

(
V
)
µn,

(58)

and subsequently iterate



un+1
[m+1] =un+1

[0] +

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tj+2 {I1[βj(z)]F(t̃)(un, µn

+ (−1)jI1[βj(1− z)]F(t̃)(un+1
[m] , µ

n+1
[m] )

}
,

µn+1
[m+1] =µn+1

[0] +

r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tj+1 {I1[βj(z)]F(t̃)(un, µn)

+(−1)jI1[βj(1− z)]F(t̃)(un+1
[m] , µ

n+1
[m] )

}
(59)

for m ∈ Z+.

We next analyse the convergence of the algorithm (58–59).
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Theorem 7 Let f satisfy Assumptions 1 and 2. Subject to the conditions

∆t2L(R, ρ(A)) ≤ 1 and ∆t(1 +∆t)
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃) < 1,

the iterative procedure (58–59) is convergent.

Proof Subject to Assumptions 2 and (59), it is true that

‖un+1
[m+1] − u

n+1
[m] ‖

≤∆t2
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tjL(R, ρ(A)b
j
2
c)
(
‖un+1

[m] − u
n+1
[m−1]‖+ ‖µn+1

[m] − µ
n+1
[m−1]‖

)
,

‖µn+1
[m+1] − µ

n+1
[m] ‖

≤∆t
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)∆tjL(R, ρ(A)b
j
2
c)
(
‖un+1

[m] − u
n+1
[m−1]‖+ ‖µn+1

[m] − µ
n+1
[m−1]‖

)
.

Summing up the above expression and noting that ∆t2L(R, ρ(A)) ≤ 1 results in

‖un+1
[m+1] − u

n+1
[m] ‖+ ‖µn+1

[m+1] − µ
n+1
[m] ‖

≤∆t(1 +∆t)
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)
(
‖un+1

[m] − u
n+1
[m−1]‖+ ‖µn+1

[m] − µ
n+1
[m−1]‖

)
.

An inductive argument yields

‖un+1
[m+1] − u

n+1
[m] ‖+ ‖µn+1

[m+1] − µ
n+1
[m] ‖

≤

∆t(1 +∆t)
r∑
j=0

∑
t̃∈SENTf

j+2

α(t̃)


m(
‖un+1

[1] − u
n+1
[0] ‖+ ‖µn+1

[1] − µ
n+1
[0] ‖

)
.

The condition ∆t(1 +∆t)
∑r
j=0

∑
t̃∈SENTf

j+2
α(t̃) < 1 leads to

lim
m→+∞

(
‖un+1

[m+1] − u
n+1
[m] ‖+ ‖µn+1

[m+1] − µ
n+1
[m] ‖

)
= 0. (60)

and the iterative procedure (58–59) is convergent. ut

8 Numerical experiments

In this section, we derive two practical time integration formulæ and use them to
illustrate the solution of two nonlinear wave equations.

As the first example of a symmetric time-stepping integrator for (1–2), we take
r = 1 in (12–13), and this results in

β0(z) = (1− z)2(1 + 2z), β1(z) = z(1− z)2 (61)
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–the corresponding time integration formula is determined by (61) and (16–19)
and denoted by Brik1.

As the second example, letting r = 2 in (12–13), we have

β0(z) = (1− z)3(1 + 3z+ 6z2), β1(z) = z(1− z)3(1 + 3z), β2(z) =
1

2
z2(1− z)3,

(62)
and denote the corresponding time integration formula determined by (62) and
(16–19) by Brik2.

For comparison we briefly describe a number of standard finite difference
schemes and the method-of-lines schemes for the nonlinear Klein–Gordon equation
(see, e.g. [4,16,42]), which we use with very small steps as our reference solution.

1. Standard finite difference schemes

Let unj be the approximation of u(xj , tn), j = 0, 1, . . . ,M, n = 0, 1, . . . , N , and
introduce standard central difference operators

δ2t u
n
j =

un+1
j − 2unj + un−1

j

∆t2
and δ2xu

n
j =

unj+1 − 2unj + unj−1

∆x2
.

We consider three frequently used finite difference schemes to discretise (1–2):

• A explicit finite difference scheme Expt-FD

δ2t u
n
j − a2δ2xunj = f(unj );

• Semi-implicit finite difference scheme Simpt-FD

δ2t u
n
j −

a2

2

(
δ2xu

n+1
j + δ2xu

n−1
j

)
= f(unj );

• Compact finite difference scheme Compt-FD(
I +

∆x2

12
δ2x

)
δ2t u

n
j −

a2

2

(
δ2xu

n+1
j + δ2xu

n−1
j

)
=
(
I +

∆x2

12
δ2x

)
f(unj ).

2. Method-of-lines schemes

Method-of-lines approximations for (1–2) separate between two stages, first space
and then time discretisation. We approximate the spatial differential operator A
to obtain a semi-discrete scheme of the form u′′(t) + Au(t) = f

(
u(t)

)
, where A

is a symmetric and positive semi-definite matrix. Subsequently, we use an ODE
solver to deal with the semi-discrete scheme. The time integrators we select for
comparison are

• Gauss2s4: the two-stage Gauss method of order four from [21];
• RKN3s4: the three-stage Runge–Kutta–Nyström method of order four from

[21];
• IRKN2s4: the two-stage implicit symplectic Runge–Kutta–Nyström method of

order four derived in [43];
• ERKN3s4: the three-stage extended Runge–Kutta–Nyström method of order

four presented in [47];
• SV: classical Strömer–Verlet formula [21];
• ISV: improved Strömer–Verlet formula given in [48].
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For the time integrators Brik1 and Brik2 derived in this paper we use the
tolerance 10−15 and choose m = 2 in the waveform relaxation algorithm (58–59),
which means just one iteration at each step. Therefore, these two methods can be
implemented at lower cost. It should be noted that when the error of a method
under consideration is very large for some ∆t, we do not plot the corresponding
points in efficiency curves.

Problem 1 We consider the nonlinear Klein–Gordon equation

∂2u(x, t)

∂t2
− a2 ∂

2u(x, t)

∂x2
+ au(x, t)− bu3(x, t) = 0,

in the region (x, t) ∈ [−10, 10]× [0, T ] with the initial conditions

u(x, 0) =

√
2a

b
sech(λx), ut(x, 0) = cλ

√
2a

b
sech(λx) tanh(λx),

where λ =
√
a/(a2 − c2) and a, b, a2 − c2 > 0. The exact solution of Problem 1 is

given by

u(x, t) =

√
2a

b
sech(λ(x− ct)).

The real parameter
√

2a/b represents the amplitude of a soliton which travels
with velocity c. The potential function is V (u) = au2/2− bu4/4 [34]. We use the
parameters a = 0.3, b = 1 and c = 0.25 which are similar to those in [34].

In Figs 2 and 3, we integrate the Problem 1 on the region (x, t) ∈ [−10, 10]×
[0, 10] using the time integrator Brik2, coupled with the fourth-order symmetric
finite difference (SFD) and Fourier spectral collocation (FSC). The error graphs
are shown there with the stepsize ∆t = 0.01 and several values of M . Numerical
results demonstrate that the accuracy of the spatial discretisation is consistent
with our theory. It is evident that Fourier spectral collocation method is superior..

(a) M=200 (b) M=400 (c) M=800

Fig. 2 The errors for Problem 1 obtained by combining the time integrator Brik2 with the
fourth-order finite difference spatial discretisation for ∆t = 0.01 with M = 200, 400 and 800.

To compare our methods with classical finite difference and method-of-lines
schemes, we integrate the problem in the region (x, t) ∈ [−10, 10] × [0, 10] with
different time stepsizes ∆t and the numbers of the spatial nodal values M . The
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(a) M=100 (b) M=200 (c) M=400

Fig. 3 The errors for Problem 1 obtained by combining the time integrator Brik2 with Fourier
spectral collocation method for ∆t = 0.01 with M = 200, 400 and 800.
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Fig. 4 The efficiency curves for Problem 1: (a) comparison with standard finite difference
schemes, (b) comparison with method-of-lines schemes.

numerical results are shown in Fig. 4. We compare our methods with the standard
finite difference schemes with stepsizes ∆t = 0.01 × 23−j for j = 0, 1, 2, 3 and
M = 1000 for the finite difference schemes Expt-FD, SImpt-FD and Compt-FD,
M = 800 for Brik1-SFD and Brik2-SFD and M = 400 for Brik1-FSC and Brik2-FSC.
Global error GE = ‖u(tn)− un‖∞ are plotted to logarithmic scale in Fig. 4(a).

In comparison with the method-of-lines schemes, we discretise the spatial
derivative by Fourier spectral collocation method with fixed M = 400 and in-
tegrate the Klein–Gordon equation with ∆t = 0.2/2j for j = 0, 1, 2, 3. The effi-
ciency curves (accuracy versus the computational cost measured by the number
of function evaluations required by each method) are shown in Fig. 4(b).

In conclusion, Fig. 4 demonstrates that Brik1 and Brik2, combined with Fourier
spectral collocation, enjoy much better accuracy and are more practical than main
methods in the literature.

Fig. 5 displays the error in the semi-discrete energy conservation law, EH =
|Ẽ(t) − Ẽ(t0)|, as a function of the time-step. It can be observed there that the
error of Brik1 is ≈ 10−10, while that of Brik2 is ≈ 10−12.
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Fig. 5 Discrete energy conservation by Brik1 and Brik2 with the spatial discretisation by
Fourier spectral collocation with M = 800 up to T = 40, using ∆t = 0.02.

Problem 2 We consider the sine-Gordon equation

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) + sin(u(x, t)) = 0

in the region −20 ≤ x ≤ 20, 0 ≤ t ≤ T , subject to the initial conditions

u(x, 0) = 0, ut(x, 0) = 4sech(x/
√

1 + c2)/
√

1 + c2,

where κ = 1/
√

1 + c2. The exact solution is

u(x, t) = 4 arctan
(
c−1 sin(ct/

√
1 + c2)sech(x/

√
1 + c2)

)
.

This is the well-known breather solution of the sine-Gordon equation and repre-
sents a pulse-type structure of a soliton. The parameter c is the velocity and we
choose c = 0.5. The potential function is V (u) = 1 − cos(u). Problem 2 is inte-
grated by Brik2, coupled either with the fourth-order symmetric finite difference
SFD or Fourier spectral collocation FSC. The error graphs are shown in Figs 6
and 7 with ∆t = 0.01 and several values of M . They demonstrate how the ac-
curacy of the spatial discretisation varies with M , and also indicate that FSC is
decisively superior to SFD.

Efficiency curves are displayed in Fig. 8. To compare our methods with a
standard finite difference scheme, in Fig. 8 (a) we integrate the problem ∆t =
0.04, 0.03, 0.02, 0.01. We use M = 1000 for the finite difference scheme Expt-FD,
SImpt-FD and Compt-FD, M = 400 for the Brik1-SFD and Brik2-SFD and M = 200
for the Brik1-FSC and Brik2-FSC.

In Fig. 8(b) we compare our methods with method-of-lines schemes The prob-
lem is integrated over the time interval [0, 40] with fixed M = 200 and time step-
sizes ∆t = 0.4/2j for j = 0, 1, 2, 3. It can be observed that the time integrators
Brik1 and Brik2, coupled with the Fourier spectral collocation, are again superior.

Numerical results in Fig. 9 represent the error of the semi-discrete energy
conservation law. It can be seen that the error is bounded. The errors obtained by
Brik1 and Brik2 reach the magnitudes of 10−7 and ≈ 10−10 respectively.
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(a) M=100 (b) M=200 (c) M=400

Fig. 6 The error for the sine-Gorden equation, blending the time integrator Brik2 with fourth-
order finite difference spatial discretisation for ∆t = 0.01 and M = 100, 200, 400.

(a) M=50 (b) M=100 (c) M=200

Fig. 7 The errors blending the time integrator Brik2 with Fourier spectral method for ∆t =
0.01 and M = 50, 100, 200.

9 Conclusions and a discussion

In this paper we have derived and analysed a novel class of time-stepping methods
for the nonlinear Klein–Gordon equation (1–2). These new methods are based on
the operator-variation-of-constants formula (8), introduced on the Hilbert space
L2(Ω). It is an implicit method. A class of time integration formulæ (20) has been
designed by applying a two-point Hermite interpolation to nonlinear integrals that
feature in the operator-variation-of-constants formula. It has been shown that such
formulæ can have arbitrarily high order and be symmetric. We have also discussed
the choice of the positive semi-definite differential matrix to approximate the spa-
tial differential operator. Sstability and convergence for the fully discrete scheme
have been proved in both linear and nonlinear settings. The fully discrete scheme
is implicit and and we have solved it with the waveform relaxation algorithm (58–
59) and analysed its convergence. Numerical experiments carried out in this paper
clearly demonstrate that the new methods are decisively superior to both standard
finite difference and method-of-lines schemes.

The methodology presented in this paper can be extended to a range of other
nonlinear wave equations. Some of the more immediate possibilities of extensions
of our work are
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Fig. 8 Efficiency curves for Problem 2: (a) comparison with standard finite difference schemes,
(b) comparison with method-of-lines schemes.
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Fig. 9 Energy conservation by Brik1 and Brik2, both blended with FSC, using M = 200,
∆t = 0.02 and T = 100.

1. High dimensional problems. Although the equation (1) is univariate, our method
can be extended to Klein–Gordon equations in a moderate number d of space
dimensions,

utt − a2∆u = f(u), t0 ≤ t ≤ T, x ∈ [−π, π]d, (63)

where u = u(x, t) and ∆ =
∑d
i=1

∂2

∂x2
i
, with periodic boundary conditions. A

large dimension d requires combining our time integration formula (20) with other
spatial approximate techniques, such as sparse grids [10] or discrete FFT [8,9].

2. Neumann and Dirichlet boundary problems. In this paper we only consider
the problems (1) equipped with periodic boundary conditions (2). Our approach
can be extended to problems with Neumann and Dirichlet boundary conditions
in the domain Ω = [0, π]d. To this end we might discretise space with discrete
Fast Sine Transformation for Dirichlet boundary conditions and discrete Fast Co-
sine Transformation for the Neumann boundary case. Such transforms have been
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heavily studied in this context [36]. We expect to report related new work in the
near future.

3. Our approach also can be directly applied to the computation of the the damped
nonlinear Klein–Gordon equation{

utt + α(x)ut − β∆u+ u+ f ′(u) = 0, (x, t) ∈ Ω× [t0,+∞),

u(x, t0) = ϕ1(x), ut(x, t0) = ϕ2(x), x ∈ Ω̄,
(64)

where Ω is a C1 domain in Rd, β represents the amplitude of the diffusion and
the damper α : Ω→ [0,∞) is effective uniformly about the spatial infinity,

α(x) ≥ 0, α ∈ L∞(Ω), lim inf
|x|→∞

α(x) > 0.

The damper α(x) need satisfy appropriate conditions which guarantee that the
total energy defined by

E(t) =

∫
Ω

[
|ut|2 + |∇u|2 + |u|2 + 2f(u)

]
dx

decays uniformly.
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