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Abstract

We study asymptotic expansions, Filon-type methods and complex-valued Gaus-
sian quadrature for highly oscillatory integrals with power-law and logarithmic sin-
gularities. We show that the asymptotic behaviour of the integral depends on the
integrand and its derivatives at the singular point of the integrand, the stationary
points and the endpoints of the integral. A truncated asymptotic expansion achieves
an error that decays faster for increasing frequency. Based on the asymptotic analysis,
a Filon-type method is constructed to approximate the integral. Unlike the asymp-
totic method, the Filon method achieves high accuracy for both small ω and large
ω. The complex-valued quadrature involves interpolation at the zeros of polynomials
orthogonal to a complex weight function. Numerical results indicate that the complex-
valued Gaussian quadrature achieves the highest accuracy when the three methods are
compared.
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1 Introduction

We shall consider two kinds of highly oscillatory singular integrals as follows

I[f ] =

∫ b

0
x−αf(x)eiωg(x)dx (1.1)

and

I[f ] =

∫ b

0
log xf(x)eiωg(x)dx, (1.2)

∗The corresponding author.
†The work is supported by the Projects of International Cooperation and Exchanges NSFC-RS (Grant
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where, f and g are sufficiently smooth functions, |ω| is large and α ∈ (0, 1).

Such integrals occur, for example, in the computation of integral equations with sin-

gular kernels and are ubiquitous in electromagnetic calculations [17, 18]. Our placement

of the singularity at the origin is for convenience only, e.g.∫ b

a
|x− c|−αf(x)eiωg(x)dx

=

∫ c−a

0
x−αf(c− x)eiωg(c−x)dx+

∫ b−c

0
x−αf(c+ x)eiωg(c+x)dx,

where c ∈ (a, b).

We note in passing that the computation of singular highly oscillatory integrals has

been already considered in literature [1, 8, 9, 15, 19]. The purpose of this paper is to

bring to bear on this problem the full power of modern machinery for the computation of

smooth highly oscillatory integrals.

Before we embark on our analysis, it is interesting to investigate what can be achieved

by a simple change of variable in (1.1), x = t1/(1−α). This results in

I[f ] =
1

1− α

∫ b1−α

0
f
(
t1/(1−α)

)
eiωg(t1/(1−α))dt.

In principle, we could have asymptotically expanded an integral in the above form except

that, unless 1/(1 − α) is an integer, this may introduce new singularities at the origin

and the outcome is probably more complicated than our subsequent analysis for (1.1).

However, if α = (m− 1)/m, m ≥ 2, then

I[f ] = m

∫ b1/m

0
f(tm)eiωg(tm)dt.

In other words, a weak singularity at the origin is equivalent to a stationary point subject

to the above change of variables. This can easily be seen for the simple oscillator g(x) = x:

the ‘price’ of eliminating the singularity is a more complicated oscillator, g(tm), with an

(m− 1)-fold stationary point at the origin.

For a general value of α ∈ (0, 1), however, the setting is more complicated. In the case

of an oscillator g(x) = xp, p ∈ N, where it is known that∫ b

0
f(x)eiωxpdx ∼ O(ω−1/p),

it is possible to prove directly from the transformed integral using the asymptotic approach

of [13] that ∫ b

0
x−af(x)eiωxpdx ∼ O(ω−(1−a)/p).

We do not pursue this approach further because asymptotic expansions and numerical

methods based on the original formulation (1.1) are in our experience simpler.

Insofar as the integral (1.1) is concerned, in the case of a fractional α < 0 we have a

proper integral and the Filon-type approach of [13] is applicable, but only up to a point,

since the integrand therein is not C∞[0, b] and we cannot expand asymptotically beyond

b−αc. However, once we can deal with the singular case, the case of α < 0 can be

accommodated.
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The logarithmic oscillatory integral features in electromagnetic shielding problems [9]

and acoustic scattering at high frequencies[4]. The traditional boundary element method

for solving high-frequency acoustic scattering problems suffers from excessive computa-

tional costs since polynomial basis functions cannot describe the characteristics of the

oscillatory solution accurately at high frequencies. To remedy this, there exist some high-

frequency discretization methods, such as the hybrid numerical-asymptotic boundary ele-

ment methods [4] and the partition of unity boundary element methods (PU-BEM) [21].

These methods employ basis functions with oscillatory characteristics to approximate the

oscillatory solution. Another method is the Filon-Clenshaw-Curtis method in [7]. In

particular, consider PU-BEM method for a boundary integral equation,

u(p)

2
+

∫
Γ

[
∂G(p, q)

∂n(q)
− αG(p, q)

]
u(q)dΓq =

∫
Γ
βG(p, q)dΓ(q) + ui(p), (1.3)

where G is the Green’s function, Γ is the scatterer boundary and ui is the incident plane

wave. The source point is p ∈ Γ. The Robin boundary condition

∂u

∂n
= αu+ β,

is assumed. The boundary line Γ is partitioned into Ne elements and each element e is

mapped onto the parametric space ξe ∈ [−1, 1). The Partition of Unity expansion for the

potential at a point q on each element is

u(ξe(q)) =

J∑
j=1

M∑
m=1

Nj(ξe)e
iωdm·qAejm, (1.4)

where J is the number of nodes on the element, Nj is the usual Lagrangian polynomial

shape function for node j, dm is the unit vector describing the direction of propagation

of the m-th plane wave in a set of M plane waves. Applying (1.4) to discretize (1.3), we

obtain several oscillatory integrals e.g.

− iα

4

∫ 1

−1
H

(1)
0 (ωr)Nj(ξ)e

iωdm·q(ξe)J̄(ξe)dξe.

The numerical steepest descent method was successfully applied for this integral in [10] to

reduce the computational effort. To design an effective quadrature method, we are more

interested in the asymptotic analysis of this kind of integral. Note that as the distance r

goes to zero, the Hankel function behaves as

H
(1)
0 (ωr) ∼ 2i

π
log(ωr),

referenced from the website http://dlmf.nist.gov/10.7. This results in the requirement

for asymptotic analysis of a highly oscillatory integral with a logarithmic singularity.

Integrals of the form ∫ b

0
f(x)eiωg(x)dx, ω � 1,

where f and g are sufficiently smooth functions, appear in a very wide range of applica-

tions and their computation by conventional quadrature methods is exceedingly expensive

and inefficient: essentially, the number of quadrature points must be O(ω) [5] and this is

prohibitive for large ω. Unlike traditional quadrature methods, based upon local Taylor
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expansions, a new type of highly oscillatory quadrature algorithms – asymptotic expan-

sions and Filon-type methods introduced by Iserles and Nørsett [12, 13], Levin methods

[16, 20] and the numerical steepest descent methods of Huybrechs and Vandewalle [11]

– excel in the presence of high oscillation. All such methods are based upon asymptotic

expansions and their accuracy scales like O(ω−p−1) for some p ≥ 1. In other words, their

precision increases with growing frequency. Furthermore, the complex-valued Gaussian

quadrature studied in [2, 6] can obtain an optimal asymptotic order. The existing theory

of highly oscillatory quadrature, however, does not extend to the presence of singular inte-

grands. Therefore, it is necessary to study the asymptotic properties of highly oscillatory

singular integrals.

The theme of this paper is the development of efficient quadrature schemes for integrals

of the form of (1.1) and (1.2). This is not a straightforward generalisation of standard

theory. All modern highly oscillatory quadrature methods, whether Filon-type, Levin-

type, computational stationary phase or their combinations, are based upon an asymptotic

expansion of the solution in inverse (but not necessarily integer) powers of ω. Although,

as we demonstrate in the sequel, this can be extended to the current setting, the extension

is nontrivial because the weak singularity at the origin interacts with other aspects of the

asymptotic expansion.

We explore three typical quadrature schemes for highly oscillatory integration. Their

asymptotic properties and related expansions are formulated in Section 2. Based on this

analysis, Filon methods are constructed in Section 3. Both sections are accompanied by

relevant numerical examples. Section 4 displays the numerical results of the complex-

valued Gaussian quadrature.

Before we commence with our asymptotic analysis, we first define the generalised

moments of I[f ] in (1.1) and (1.2)

µj(α, ω) =

∫ b

0
xj−αeiωg(x)dx,

νj(ω) =

∫ b

0
xj log xeiωg(x)dx.

2 Asymptotic analysis of highly oscillatory integrals with
power-law and logarithmic singularities

In this section we are concerned with the asymptotic analysis of highly oscillatory power-

law integrals (1.1) and logarithmic integrals (1.2). Given that the presence of the station-

ary point determines the result of asymptotic analysis, we will present the theory first

without and subsequently with stationary points.

2.1 Asymptotic analysis of power-law singularity

We commence with the case g′(x) 6= 0 for the integral (1.1) before extending to more

complicated oscillation with stationary points. In contrast to the non-singular oscillatory

integral [13], our first step is to examine the behaviour of the moment function µ(α, ω)

which constitutes an important part for the asymptotic analysis. Firstly, the moment
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function is bounded,

|µ0(α;ω)| =
∣∣∣∣∫ b

0
x−αeiωg(x)dx

∣∣∣∣ ≤ ∫ b

0
x−αdx =

b1−α

1− α
.

To get a sharper upper bound, we separate the interval of integration into∫ b

0
x−αeiωg(x)dx =

∫ ε

0
x−αeiωg(x)dx+

∫ b

ε
x−αeiωg(x)dx,

where a small number ε > 0 will be set momentarily. Different choices of ε determine

different upper bounds and in the next lemma we choose an optimal value of ε to get the

least upper bound.

Lemma 1. Given ω � 1 and g′(x) 6= 0, x ∈ [0, b], the zeroth moment function µ0(α;ω)

satisfies

|µ0(α;ω)| =
∣∣∣∣∫ b

0
x−αeiωg(x)dx

∣∣∣∣ ∼ O(ω−(1−α)).

Proof. Assume a small number ε > 0. We write the moment in the form∫ b

0
x−αeiωg(x)dx =

∫ ε

0
x−αeiωg(x)dx+

∫ b

ε
x−αeiωg(x)dx.

The first integral on the right side is O
(
ε1−α

)
. The remaining integral is non-singular and

can be calculated using integration by parts,∫ b

ε
x−αeiωg(x)dx =

1

iω

[
b−α

g′(b)
eiωg(b) − ε−α

g′(ε)
eiωg(ε)

]
− 1

iω

∫ b

ε

d

dx

(
x−α

g′(x)

)
eiωg(x)dx ∼ O

(
ω−1ε−α

)
.

Together then, the integral is bounded by O
(
ε1−α

)
+ O

(
ω−1ε−α

)
. We take ε = ω−1 to

get the desired result.

It directly follows from Lemma 1 that∣∣∣∣∫ b

0
x−αf(x)eiωg(x)dx

∣∣∣∣ ≤ C1ω
−(1−α), (2.1)

where f is a sufficiently smooth function and the constant C1 is related to the upper bound

of f .

Based on (2.1), we deduce the following theorem.

Theorem 2. Assume that g′(x) 6= 0. Then for s ∈ N and ω � 1, the first 2s terms of the

asymptotic expansion of I[f ] are

QAs [f ] ∼ µ0(α;ω)

s−1∑
k=0

1

(−iω)k
σk[f ](0)−

s∑
k=1

1

(−iω)k
σk−1[f ](b)− σk−1[f ](0)

bαg′(b)
eiωg(b)

for every smooth function f , where

σ0[f ](x) = f(x),

σk+1[f ](x) = xα
d

dx

σk[f ](x)− σk[f ](0)

xαg′(x)
, k ≥ 0.

The corresponding truncation error is

I[f ]−QAs [f ] ∼ O
(
ω−s−(1−α)

)
. (2.2)
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Proof. Firstly, use subtraction to remove the singularity of x−α,∫ b

0
x−αf(x)eiωg(x)dx

= f(0)

∫ b

0
x−αeiωg(x)dx+

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx

= f(0)µ0(α;ω) +

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx

= f(0)µ0(α;ω) + I2,

where µ0(α;ω) is bounded in (2.1) and

I2 =

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx.

The first term in the expansion of I2 is determined from

I2 =

∫ b

0
x−α[f(x)− f(0)]eiωg(x)dx =

1

iω

∫ b

0

f(x)− f(0)

xαg′(x)
deiωg(x)

=
1

iω

f(b)− f(0)

bαg′(b)
eiωg(b) − 1

iω

[
lim
x→0

f(x)− f(0)

xαg′(x)

]
eiωg(0)

− 1

iω

∫ b

0

d

dx

f(x)− f(0)

xαg′(x)
eiωg(x)dx

=
1

iω

f(b)− f(0)

bαg′(b)
eiωg(b)

− 1

iω

∫ b

0
x−α

f ′(x)g′(x)− [f(x)− f(0)][αg
′(x)
x + g′′(x)]

g′2(x)
eiωg(x)dx

provided that the function f(x)−f(0)
xαg′(x) is continuous and that lim

x→0

f(x)−f(0)
xαg′(x) = 0. Since

σk−1(x)− σk−1(0)

xαg′(x)
|x=0 = lim

x→0

σk−1(x)− σk−1(0)

xαg′(x)
= 0,

we deduce the remaining terms using integration by parts,

I[f ] ∼ µ0(α;ω)
s−1∑
k=0

1

(−iω)k
σk[f ](0)−

s∑
k=1

1

(−iω)k
σk−1[f ](b)− σk−1[f ](0)

bαg′(b)
eiωg(b)

+
1

(−iω)s

∫ b

0
x−ασs[f ](x)eiωg(x)dx.

The result (2.2) follows.

In particular, in the most important case of the Fourier oscillator g(x) = x and ω � 1,

we have∫ b

0
x−αf(x)eiωxdx ∼ µ0(α;ω)

s−1∑
k=0

1

(−iω)k
σk[f ](0)−

s∑
k=1

1

(−iω)k
σk−1(b)− σk−1(0)

bα
eiωb,

where

σk(x) =

∞∑
j=0

(j + k − α) · · · (j + 2− α)(j + 1− α)

(j + k)!
f (j+k)(0)xj ,

6



σk(0) =
(k − α) · · · (2− α)(1− α)

k!
f (k)(0).

Also in the case of a stationary point, the key to asymptotic analysis is repeated

integration by parts. Once the function g′(x) = 0 at one or more points in [0, b], the

character of the asymptotic analysis depends on the stationary points, the endpoints and

the order of the singularity. Assume for simplicity that the integral (1.1) possesses just a

single stationary point at ξ ∈ [0, b]. The extension to the case of more stationary points

is fairly straightforward. In addition, we only explore the asymptotic analysis for ξ = 0

since in the case ξ 6= 0 the integration can be re-arranged in this form. To start with, we

analyse the asymptotic order of the moment µj(α;ω) based on the method of stationary

phase [3, p. 279].

Lemma 3. Suppose that ω � 1 and g′(x) has an r order stationary point at the point 0,

that is g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0, then

|µj(α;ω)| =
∣∣∣∣∫ b

0
xj−αeiωg(x)dx

∣∣∣∣ ∼ O (ω−min( j+1−α
r+1

,1)
)
. (2.3)

Proof. We separate µj into two terms:∫ b

0
xj−αeiωg(x)dx =

∫ ∞
0
−
∫ ∞
b

.

Using integration by parts, the second integral on the right behaves as∫ ∞
b

xj−αeiωg(x)dx ∼ O
(
ω−1

)
,

since it is a proper integral without a stationary point in the interval [b,∞].

To obtain the essential behaviour of the first integral on the right, we expand the

function g(x) in a Taylor series

g(x) ∼
r∑

m=0

g(m)(0)

m!
xm +

g(r+1)(x)

(r + 1)!
xr+1 + · · · = g(r+1)(ξ)

(r + 1)!
xr+1

for some ξ ∈ [0, x], since g(m)(0) = 0, m = 0, 1, · · · , r, and g(r+1)(0) 6= 0. This gives∫ ∞
0

xj−αeiωg(x)dx ∼
∫ ∞

0
xj−αe

iω
g(r+1)(ξ)
(r+1)!

xr+1

dx.

Then we rotate the contour of integration from the real-x axis by an angle π
2(r+1) if

g(r+1)(ξ) > 0 and make the substitution

x = e
iπ

2(r+1)

[
(r + 1)!u

ωg(r+1)(ξ)

]1/(r+1)

,

where u is real (we rotate by an angle −π
2(r+1) if g(r+1)(ξ) < 0 with x = e

−iπ
2(r+1)

[
(r+1)!u

ω|g(r+1)(ξ)|

]1/(r+1)
).

This yields∫ ∞
0

xj−αe
iω
g(r+1)(ξ)
(r+1)!

xr+1

dx ∼ Cω−
j+1−α
r+1

∫ ∞
0

e−uu
1
r+1
−1du
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∼ Cω−
j+1−α
r+1 Γ

(
1

r + 1

)
∼ O

(
ω−

j+1−α
r+1

)
.

Comparing the two orders, it follows that

|µj(α;ω)| ∼ O
(

max
(
ω−

j+1−α
r+1 , ω−1

))
.

Thus, the exponent min
(
j+1−α
r+1 , 1

)
is the right one. This completes the proof of (2.3).

Based on Lemma 3, it follows that∣∣∣∣∫ b

0
x−αf(x)eiωg(x)dx

∣∣∣∣ ≤ C2ω
− 1−α
r+1 , (2.4)

where the constant C2 is related to the bound of the smooth function f as ω →∞.

We commence from the simple case r = 1 and next progress to a general r ≥ 1.

Theorem 4. Assume that g′(0) = 0, g′′(0) 6= 0 and g′(x) 6= 0, x ∈ (0, b]. For every

smooth function f and ω � 0, it is true that

I[f ] ∼ µ0(α;ω)

s−1∑
k=0

ρk[f ](0)

(−iω)k
+ µ1(α;ω)

s−1∑
k=0

ρ′k[f ](0)

(−iω)k

−
s∑

k=1

1

(−iω)k
ρk−1[f ](b)− ρk−1[f ](0)− ρ′k−1[f ](0)b

bαg′(b)
eiωg(b) (2.5)

with the error of O
(
ω−s−(1−α)/2

)
, where

ρ0[f ](x) = f(x),

ρk[f ](x) = xα
d

dx

[
ρk−1[f ](x)− ρk−1[f ](0)− ρ′k−1[f ](0)x

xαg′(x)

]
, k ≥ 1.

When s→∞ we obtain the asymptotic expansion of I[f ].

Proof. Subtracting out the singularity, it is true that

I[f ] =

∫ b

0
x−αf(x)eiωg(x)dx

=

∫ b

0
x−α[f(x)− f(0)− f ′(0)x+ f(0) + f ′(0)x]eiωg(x)dx

= f(0)

∫ b

0
x−αeiωg(x)dx+ f ′(0)

∫ b

0
x1−αeiωg(x)dx

+

∫ b

0
x−α[f(x)− f(0)− f ′(0)x]eiωg(x)dx.

Insofar as the third integral is concerned, we use integration by parts to deduce that∫ b

0
x−α[f(x)− f(0)− f ′(0)x]eiωg(x)dx

=
1

iω

∫ b

0

f(x)− f(0)− f ′(0)x

xαg′(x)
deiωg(x)

=
1

iω

[
f(b)− f(0)− f ′(0)b

bαg′(b)
eiωg(b) − lim

x→0

f(x)− f(0)− f ′(0)x

xαg′(x)
eiωg(0)

]
8



−
∫ b

0
x−αρ1[f ](x)eiωg(x)dx,

where

ρ0[f ](x) = f(x),

ρ1[f ](x) = xα
d

dx

[
ρ0[f ](x)− ρ0[f ](0)− ρ′0[f ](0)x

xαg′(x)

]
,

lim
x→0

f(x)− f(0)− f ′(0)x

xαg′(x)
= 0.

Therefore,

I[f ] = ρ0[f ](0)µ0(α;ω) + ρ′0[f ](0)µ1(α;ω)

+
1

iω

ρ0[f ](b)− ρ0[f ](0)− ρ′0[f ](0)b

bαg′(b)
eiωg(b) − 1

iω

∫ b

0
x−αρ1[f ](x)eiωg(x)dx.

Similarly, the general form can be obtained by induction

I[f ] ∼ µ0(α;ω)
s−1∑
k=0

ρk[f ](0)

(−iω)k
+ µ1(α;ω)

s−1∑
k=0

ρ′k[f ](0)

(−iω)k

−
s∑

k=1

1

(−iω)k
ρk−1[f ](b)− ρk−1[f ](0)− ρ′k−1[f ](0)b

bαg′(b)
eiωg(b)

+
1

(−iω)s

∫ b

0
x−αρs[f ](x)eiωg(x)dx,

with

ρk[f ](x) = xα
d

dx

[
ρk−1[f ](x)− ρk−1[f ](0)− ρ′k−1[f ](0)x

xαg′(x)

]
.

Using (2.4), we deduce the proof of (2.5).

Integrals with higher-order stationary points are important and common in applica-

tions [22]. The asymptotic expansion in Theorem 4 can be readily extended to the case of

g(x) having a single stationary point of order r ≥ 1 at 0, in other words

0 = g(0) = g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0

and g′(x) 6= 0 for x ∈ (0, b]. If g(0) 6= 0, we transform the integral into the form

I[f ] =

∫ b

0
x−αf(x)eiωg(x)dx = eiωg(ξ)

∫ b

0
x−αf(x)eiω[g(x)−g(ξ)]dx.

Consequently, setting

ρ0[f ](x) = f(x),

ρk+1[f ](x) = xα
d

dx

ρk[f ](x)−
r∑
j=0

ρ
(j)
k [f ](0)

j! xj

xαg′(x)
, k ≥ 0,
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we obtain the general form for the asymptotic expansion,

I[f ] ∼
r∑
j=0

µj(α;ω)

j!

s−1∑
k=0

ρ
(j)
k [f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k

ρk−1[f ](b)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j! bj

bαg′(b)
, (2.6)

the remainder term being O
(
ω−(s+ 1−α

r+1
)
)

.

As we have shown in our analysis, the method QA,s[f ] can reduce the asymptotic error

very effectively indeed when ω →∞. However, it does not work for a small ω. We consider

the integral without stationary points∫ 1

0
x−αf(x)eiωxdx (2.7)

where f(x) = (1 + x)−1 and α = 1
2 , which also will be considered as the test example

without stationary points for the Filon method and complex-valued Gaussian quadrature,

which will be considered in the sequel. The truncated expansion for s = 1, 2, 3 are

QA,1[f ](ω) = µ0(α, ω) +
i

2ω
eiω,

originating in f(0), f(1);

QA,2[f ](ω) = QA,1[f ](ω) + µ0(α, ω)
−i

2ω
+

eiω

2ω2
,

originating in f(0), f ′(0), f(1), f ′(1);

QA,3[f ](ω) = QA,2[f ](ω) + µ0(α, ω)
−3

4ω2
− 7i

8ω3
eiω,

originating in f(0), f ′(0), f ′′(0), f(1), f ′(1), f ′′(0),

and their asymptotic error is O
(
ω−s−

1
2

)
. In Fig. 2.1 we depict the magnitude of the

error, log
∣∣QA,s[f ]− I[f ]

∣∣, s = 1, 2, 3. As we mentioned, the error blows up near ω = 0

and deceases rapidly when ω > 10. In addition, it is noted that inclusion of more terms

in the expansion produces a better error order.

Figure 2.1: The error log
∣∣QA,s[f ]− I[f ]

∣∣ with x−
1
2 and g(x) = x. The colours are navy

blue (the top), dark red (the middle) and dark green (the bottom) for s = 1, 2, 3.

We now consider the same example but with an order-1 stationary point. I.e. calculate

the integral ∫ 1

0
x−αf(x)eiωx2dx (2.8)

10



where f(x) = (1 + x)−1, α = 1
2 . Throughout the whole paper, this integral will be

calculated as an example with a stationary point to illustrate the performance of different

numerical quadratures. We truncate the expansion in Theorem 4 as QA,s[f ], s = 1, 2, 3

with the asymptotic error O
(
ω−s−

1
4

)
,

QA,1[f ](ω) = µ0(α, ω)− µ1(α, ω)− i

4ω
eiω,

originating in f(1), f (j)(0), j = 0, 1;

QA,2[f ](ω) = QA,1[f ](ω) +
i

4ω
µ0(α, ω)− 3i

4ω
µ1(α, ω) +

eiω

4ω2
,

originating in f(1), f ′(1), f (j)(0), j = 0, · · · , 3;

QA,3[f ](ω) = QA,2[f ](ω) +
−5

16ω2
µ0(α, ω) +

21

16ω2
µ1(α, ω) +

31i

64ω3
eiω,

originating in f(1), f ′(1), f ′′(1), f (j)(0), j = 0, · · · , 5.

Fig. 2.2 demonstrates the error order of the asymptotic expansion for different terms.

Similar error behaviour has been observed in Figs 2.1 and 2.2 and stationary point does

not deteriorate the performance of the asymptotic method, provided that we subtract the

singularity originating in both the stationary point and singular points.

Figure 2.2: The error log
∣∣QA,s[f ]− I[f ]

∣∣ with x−
1
2 and g(x) = x2, for s = 1 (navy blue,

the top), 2 (dark red, the middle), 3 (dark green, the bottom).

2.2 Asymptotic analysis for logarithmic singularity

Our second instance of a singular oscillatory integral originates in the logarithmic singu-

larity (1.2). Our analysis is similar to the case of power-law singularity, hence we present

it with greater brevity. As before, we commence with the case g′ 6= 0, x ∈ [0, 1]. In that

case

I[f ] =

∫ b

0
log xf(x)eiωg(x)dx

=

∫ b

0
log x [f(x)− f(0)] eiωg(x)dx+ f(0)

∫ b

0
log xeiωg(x)dx

=

∫ b

0
log x [f(x)− f(0)] eiωg(x)dx+ f(0)ν0,

11



where

νk =

∫ b

0
xk log xeiωg(x)dx, k ≥ 0.

On the interval [0, b], the function log x [f(x)− f(0)] is non-singular and analytic. Define

σ0[f ](x) = f(x),

σ1[f ](x) =
d

dx

[
σ1[f ](x)− σ0[f ](0)

g′(x)

]
,

...

σk+1[f ](x) =
d

dx

[
σk[f ](x)− σk[f ](0)

g′(x)

]
.

Using integration by parts, we obtain

I[f ] =

∫ b

0
log x [f(x)− f(0)] eiωg(x)dx+ f(0)ν0

= f(0)ν0 +
1

iω

∫ b

0
log x

(f(x)− f(0))

g′(x)
deiωg(x)

= f(0)ν0 +
1

iω

[
log x

f(x)− f(0)

g′(x)

]
eiωg(x)

∣∣∣∣b
0

− 1

iω

∫ b

0

f(x)− f(0)

xg′(x)
eiωg(x)dx

− 1

iω

∫ b

0
log xσ1[f ](x)eiωg(x)dx.

Iterating the procedure results in the asymptotic expansion

I[f ] = ν0(ω)

s−1∑
k=0

σk[f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k
log b (σk−1[f ](b)− σk−1[f ](0))

g′(b)

+

s∑
k=1

1

(−iω)k

∫ b

0

σk−1[f ](x)− σk−1[f ](0)

xg′(x)
eiωg(x)dx

+
1

(−iω)s

∫ b

0
log xσs[f ](x)eiωg(x)dx, (2.9)

provided that

lim
x→0

[
log x

(σk−1[f ](x)− σk−1[f ](0))

g′(x)

]
= 0.

Note that there are non-singular highly oscillatory integrals which appear in the expansion.

Before determining the asymptotic order of (2.9), we need to estimate first the behaviour

of the zeroth moment. The following lemma clarifies this issue.

Lemma 5. Given ω � 1 and g′(x) 6= 0, x ∈ [0, b], the function ν0(ω) satisfies

|ν0(ω)| =
∣∣∣∣∫ b

0
log xeiωg(x)dx

∣∣∣∣ ∼ O (ω−1 logω
)
.

Proof. Consider a small positive number ε→ 0 and separate this integral into two parts∫ b

0
log xeiωg(x)dx =

∫ ε

0
+

∫ b

ε
,

12



where ∫ b

ε
log xeiωg(x)dx ∼ O

(
ω−1 log ε

)
and ∣∣∣∣∫ ε

0
log xeiωg(x)dx

∣∣∣∣ ≤ −∫ ε

0
log xdx ∼ O (ε log ε) .

Comparing both error bounds, an optimal upper bound is O
(
ω−1 logω

)
, letting ε =

ω−1.

It follows immediately that∫ b

0
log xf(x)eiωg(x)dx ∼ O

(
ω−1 logω

)
.

For the expansion (2.9), truncating after the first s terms, the error is O
(
ω−(s+1) logω

)
.

Note however that the nonsingular oscillatory integrals in the asymptotic expansion (2.9)

must be calculated with an error which is consistent with the above asymptotic decay. We

denote the number of the truncation terms in the nonsingular oscillatory integral by Lk
which depends on the index k. These oscillatory integrals without logarithmic integrands

are expanded by the asymptotic expansion in [13] as∫ b

0

σk−1[f ](x)− σk−1[f ](0)

xg′(x)
eiωg(x)dx

∼ −
Lk−1∑
`=0

1

(−iω)`+1

[
γk−1,`[f ](b)

g′(b)
eiωg(b) −

γk−1,`[f ](0)

g′(0)
eiωg(0)

]
(2.10)

with a truncation error of O(ω−Lk−1), where

γk−1,0[f ](x) =
σk−1[f ](x)− σk−1[f ](0)

xg′(x)
,

γk−1,1[f ](x) =
d

dx

γk−1,0[f ](x)

g′(x)
,

...

γk−1,`[f ](x) =
d

dx

γk−1,`−1[f ](x)

g′(x)
.

Inserting (2.10) into the expansion (2.9) yields the complete asymptotic expansion,

I[f ] ∼ ν0(ω)

s−1∑
k=0

σk[f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k
log b (σk−1[f ](b)− σk−1[f ](0))

g′(b)

−
s∑

k=1

1

(−iω)k

Lk−1∑
`=0

1

(−iω)`+1

[
γk−1,`[f ](b)

g′(b)
eiωg(b) −

γk−1,`[f ](0)

g′(0)
eiωg(0)

]

−
s∑

k=1

1

(−iω)k
O
(
ω−(Lk+1)

)
+O

(
ω−(s+1) logω

)
. (2.11)

To ensure an error of O(ω−s−1 logω), the index Lk must satisfy the inequality

Lk ≥ s− k.
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Next, we intend to derive the asymptotic analysis for the more complicated oscillatory

case with stationary points. If the stationary point is ξ 6= 0, we can separate the integral

into two parts ∫ b

0
log xf(x)eiωg(x)dx =

∫ ξ/2

0
+

∫ b

ξ/2
. (2.12)

The first integral on the right-hand side of (2.12) can be approximated by the formula

(2.9). The asymptotic analysis for the second integral on the right-hand side of (2.12)

can be found in [13]. Therefore, in the following subsection, we only concentrate on the

situation in which 0 is the stationary point,

g(0) = g′(0) = g(2)(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0.

Let us assume that the moments νj can be calculated explicitly. Since the function f is

an analytic function, we use the subtraction technique again to remove the logarithmic

singularity,

I[f ] =

∫ b

0
log xf(x)eiωg(x)dx

=
r∑
j=0

f j(0)

j!
νj(ω) +

∫ b

0
log x

f(x)−
r∑
j=0

f j(0)

j!
xj

 eiωg(x)dx.

Therefore, integrating by parts, we have

1

iω

∫ b

0
log x

f(x)−
r∑
j=0

fj(0)
j! xj

g′(x)
deiωg(x) =

1

iω

log x

f(x)−
r∑
j=0

fj(0)
j! xj

g′(x)
eiωg(x)


∣∣∣∣∣∣∣∣∣
b

0

− 1

iω

∫ b

0

d

dx

log x

f(x)−
r∑
j=0

fj(0)
j! xj

g′(x)

 eiωg(x)dx.

Iterating this process results in an asymptotic expansion,

I[f ] ∼
s−1∑
k=0

r∑
j=0

νj
j!

ρ
(j)
k [f ](0)

(−iω)k
−

s∑
k=1

eiωg(b)

(−iω)k
log b

g′(b)

ρk−1[f ](b)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j!
bj



+
s∑

k=1

1

(−iω)k

∫ b

0

ρk−1[f ](x)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

xg′(x)
eiωg(x)dx+

1

(−iω)s
I[ρs[f ](x)],

(2.13)

where

ρ0[f ](x) = f(x), ρk[f ](x) =
d

dx


ρk−1[f ](x)−

r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

g′(x)

, k ≥ 1,
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and

lim
x→0

ρk[f ](x)−
r∑
j=0

ρjk[f ](0)

j! xj

g′(x)
= 0.

Prior to determining the error involved in truncating the expansion, we need to examine

the behaviour of the generalized moments νj .

Lemma 6. Let g satisfy g(0) = g′(0) = · · · = g(r)(0) = 0, g(r+1)(0) 6= 0. Then

|νj(ω)| =
∣∣∣∣∫ b

0
xj log xeiωg(x)dx

∣∣∣∣ ∼ O(ω− j+1
r+1 logω

)
, j ≤ r, (2.14)

|νj(ω)| ∼ O
(
ω−1

)
. j > r, (2.15)

Proof. Firstly, since g(x) is an analytic function, it may be written as a Taylor series about

x = 0,

g(x) =

r∑
m=0

g(m)(0)

m!
xm +

g(r+1)(τ)

(r + 1)!
xr+1 =

g(r+1)(τ)

(r + 1)!
xr+1,

where τ ∈ [0, x]. Substitute this series into the formula for νj .

Secondly, it is required to prove (2.14). Similarly to the proof of Lemma 3, assume a

small positive number ε > 0 and decompose the integral of νj into two parts

νj(ω) =

∫ ε

0
+

∫ b

ε
,

where ∫ b

ε
xj log xe

iω
g(r+1)(τ)

(r+1)!
xr+1

dx ∼ O
(
ω−1εj−r log ε

)
,

since xr+1 is a non-singular function in [ε, b]. For the first integral on the right, we deduce

that ∣∣∣∣∫ ε

0
xj log xeiωg(x)dx

∣∣∣∣ ≤ ∫ ε

0
xj log xdx =

∫ ε

0
xjd(x log x− x)

∼ O
(
εj+1 log ε

)
.

Comparing the two error bounds, we determine the error bound to be O
(
ω−

j+1
r+1 logω

)
by

equating ω−1εj−r = εj+1. This implies that ε = ω−
1
r+1 .

When j > r, the formula (2.15) can be derived by integration by parts

νj(ω) =

∫ b

0
xj log xeiωg(x)dx =

1

iω

∫ b

0

xj log x

g′(x)
d
(

eiωg(x)
)

=
1

iω

[
xj log x

g′(x)
eiωg(x)

]∣∣∣∣b
0

−O
(
ω−

3
2

)
∼ O

(
ω−1

)
.
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From Lemma 6, the asymptotic order of the expansion in (2.13) is O
(
ω−(s+ 1

r+1) logω
)

.

Hence, the oscillatory integrals in (2.13) without a singularity must be expanded with

higher asymptotic order. Setting

ηk−1,0[f ](x) =

ρk−1[f ](x)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j! xj

xg′(x)
,

ηk−1,1[f ](x) =
d

dx


ηk−1,0[f ](x)−

r−1∑
n=0

η
(n)
k−1,0[f ](0)

n! xn

g′(x)

,
...

ηk−1,`+1[f ](x) =
d

dx


ηk−1,`[f ](x)−

r−1∑
n=0

η
(n)
k−1,`[f ](0)

n! xn

g′(x)

,
we have∫ b

0
ηk−1,0[f ](x)eiωg(x)dx =

Lk−1∑
`=0

1

(−iω)`

r−1∑
n=0

µn(0, ω)

n!
η

(n)
k−1,`[f ](0)

−
Lk∑
`=1

1

(−iω)`


ηk−1,`−1[f ](x)−

r−1∑
n=0

η
(n)
k−1,`−1[f ](0)

n! xn

g′(x)
eiωg(x)


∣∣∣∣∣∣∣∣∣
b

0

+
1

(−iω)Lk

∫ b

0
ηk−1,Lk [f ](x)eiωg(x)dx. (2.16)

Based on the result in [13], the error order of the integral on the left side of (2.16) is

O(ω−Lk−
1
r+1 ), given that µ0 ∼ O(ω−

1
r+1 ).

Considering the expansions (2.13) and (2.16), we get the asymptotic expansion for the

integral (1.2) with an order-r stationary point at x = 0,

I[f ] ∼
s−1∑
k=0

1

(−iω)k

r∑
j=0

νj
j!
ρ

(j)
k [f ](0)−

s∑
k=1

eiωg(b)

(−iω)k
log b

g′(b)

ρk−1[f ](b)−
r∑
j=0

ρ
(j)
k−1[f ](0)

j!
bj


+

s∑
k=1

1

(−iω)k

Lk−1∑
`=0

1

(−iω)`

r−1∑
n=0

µn(0, ω)

n!
η

(n)
k−1,`[f ](0)

−
s∑

k=1

1

(−iω)k

Lk∑
`=1

1

(−iω)`


ηk−1,`−1[f ](x)−

r−1∑
n=0

η
(n)
k−1,`−1[f ](0)

n! xn

g′(x)
eiωg(x)


∣∣∣∣∣∣∣∣∣
b

0

+
s∑

k=1

1

(−iω)k
O
(
ω−Lk−

1
r+1

)
+O

(
ω−s−

1
r+1 logω

)
. (2.17)

To maintain the asymptotic order of O
(
ω−s−

1
r+1 logω

)
, the index Lk should be chosen so

that Lk ≥ s− k.
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As an example of the asymptotic expansion method for the logarithmic highly oscilla-

tory integral, consider the integral∫ 1

0
log xf(x)eiωxdx, (2.18)

where f(x) = (1+x)−1. The expansion (2.11) is truncated to s = 1, 2, 3 with the associated

asymptotic error O
(
ω−s−1 logω

)
. The expansions are

QA,1[f ](ω) = ν0(ω),

QA,2[f ](ω) = QA,1[f ](ω)− i

ω
ν0(ω) +

− eiω

2 + 1

ω2
,

QA,3[f ](ω) = QA,2[f ](ω) +
−2

ω2
ν0(ω) +

i
(

eiω

4 − 1
)

ω3
+

i
(

3
4eiω − 2

)
ω3

.

Fig. 2.3 displays the error for the asymptotic methods QA,s, s = 1, 2, 3 with increasing ω.

Again, inclusion of more terms results in a reduced error.

Figure 2.3: The error, log
∣∣QA,s[f ]− I[f ]

∣∣, as a function of ω with g(x) = x. The colours
are navyblue (the top), darkred (the middle) and darkgreen (the bottom) for s = 1, 2, 3.

For the stationary-point case, we consider the same integral but with g(x) = x2,∫ 1

0
log xf(x)eiωx2dx. (2.19)

The asymptotic expansion terms are calculated based on formula (2.17) for s = 1, 2, 3,

QA,1[f ](ω) = ν0(ω)− ν1(ω),

QA,2[f ](ω) = QA,1[f ](ω) +
i

2ω
ν0(ω)− i

ω
ν1(ω) +

i

2ω
µ0(0, ω) +

− eiω

8 + 1
4

ω2
,

QA,3[f ](ω) = QA,2[f ](ω)− 3

4ω2
ν0(ω) +

2

ω2
ν1(ω)− 1

ω2
µ0(0, ω)

+
i
(
−3eiω

32 + 1
4

)
ω3

+
i
(
−7eiω

32 + 1
2

)
ω3

.

17



The order of the error is O
(
ω−s−

1
2 logω

)
, s = 1, 2, 3. As evident from Fig. 2.4, the

appropriate asymptotic expansion method for the logarithmic oscillatory integral with

stationary points results in an error that reduces with increasing ω. However, it blows up

when ω approaches to 0. Again, inclusion of more terms increases accuracy.

Figure 2.4: The error, log
∣∣QA,s[f ]− I[f ]

∣∣, as a function of ω with g(x) = x2. The navy blue
(the top), dark red (the middle) and dark green (the bottom) corresponds to s = 1, 2, 3,
respectively.

3 The Filon method for singular highly oscillatory integrals

3.1 The Filon method for power-law singularity

A popular alternative to the asymptotic expansion is a Filon-type method. The essence of

the technique is to interpolate the non-oscillatory function f(x) subject to interpolation

conditions that are determined by the asymptotic expansion. Given interpolation nodes

c1 = 0 < c2 < · · · < cν = b with multiplicities m1,m2, · · · ,mν ∈ N, respectively, we

approximate f(x) by a Hermite interpolatory polynomial pn(x) =
∑n

m=0 dmx
m, n =∑ν

`=1m` − 1. We determine the coefficients dm by solving the system of equations

p(j)
n (c`) = f (j)(c`), ` = 1, · · · , ν; j = 0, 1, · · · ,m` − 1.

The Filon method is defined as

QF [f ] =

∫ b

0
x−αpn(x)eiωg(x)dx =

n∑
m=0

dmI[xm],

where I[xm] is the moment function.

Theorem 7. Let ν ≥ 2, c0 = 0, cν = b, min{m1,mν} ≥ s, then

I[f ]−QF [f ] ∼ O(ω−s−(1−α)).

Proof. Let r(x) = f(x)− pn(x).

I[r(x)] ∼ µ0(α;ω)
s−1∑
k=0

σk[r](0)

(−iω)k
−

s∑
k=1

1

(−iω)k
σk−1[r](b)− σk−1[r](0)

bαg′(b)
eiωg(b)

18



+
1

(−iω)s

∫ b

0
x−ασs[r](x)eiωg(x)dx

in which the functional σk[r], whose form we recall from the proof of Theorem 2,

σ0[f ](x) = f(x),

σk+1[f ](x) = xα
d

dx

σk[f ](x)− σk[f ](0)

xαg′(x)
, k ≥ 0,

is determined from the error function r(x). If

σk[r](0) = 0, σk[r](b) = 0, k = 0, 1, · · · , s− 1, (3.1)

then the error is O
(
ω−s−(1−α)

)
.

Next we determine what are the requirements to meet these conditions. Following

from its definition, σ1[f ](0) depends on f ′(0).

Let

f(x) =

∞∑
j=0

f (j)(0)

j!
xj , g(x) =

∞∑
j=0

g(j)(0)

j!
xj , σk[f ](x) =

∞∑
j=0

σ
(j)
k [f ](0)

j!
xj

Since σk[f ](x) is an analytic function,

σ2[f ](x) =
(1− α)σ′1[f ](0)

g′(0)
+O(x)

which indicates that σ2[f ](0) is determined by f ′(0), f ′′(0). Similarly, σk[f ](0) is a linear

combination of f ′(0), f ′′(0), · · · , f (k)(0). In addition, for x 6= 0, it may be shown easily

that each σk[f ](x), is a linear combination of f(x), f(0), f ′(x), f ′(0), · · · , f (k−1)(x),

f (k−1)(0), f (k)(x). Therefore, the conditions in (3.1) are met if

r(0) = r′(0) = · · · = r(s−1)(0) = 0,

r(b) = r′(b) = · · · = r(s−1)(b) = 0.

Hence, by setting

p(j)
n (c`) = f (j)(c`), ` = 1, · · · , ν; j = 0, 1, · · · ,m` − 1.

the conditions in 3.1 follow and the error is therefore O
(
ω−s−(1−α)

)
.

Once x = 0 is an order-r stationary point for the integral, the Filon method is con-

structed based on the expansion in (2.6).

Theorem 8. Given ν ≥ 2 and c0 = 0, cν = b. Let m1 ≥ s(r + 1) and mν ≥ s, then

I[f ]−QF [f ] ∼ O
(
ω−s−

1−α
r+1

)
.

Proof. Substituting r(x) = f(x) − pn(x) into (2.6), it is observed that if ρ
(j)
k [r](0) = 0,

k = 0, · · · , s − 1, j = 0, · · · , r and ρk[r](b) = 0, k = 0, 1, · · · , s − 1, then the error is

O
(
ω−s−

1−α
r+1

)
. We examine in detail the calculation of ρk[f ](x) in (2.6) and show that it

depends on f(x), f ′(x), · · · , f (k)(x), x 6= 0. Let

f(x) =

∞∑
j=0

f (j)(0)

j!
xj , g(x) =

∞∑
j=r+1

g(j)(0)

j!
xj ,
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then

ρ1[f ](x) = xα
d

dx

f(x)−
r∑
j=0

f (j)(0)
j! xj

xαg′(x)

=

∞∑
j=r

f (j+1)(0)
j! xj

∞∑
j=r

g(j+1)(0)
j! xj

− α

∞∑
j=r+1

f (j)(0)
j! xj

∞∑
j=r+1

gj(0)
(j−1)!x

j

−

[
∞∑

j=r+1

f (j)(0)
j! xj

][
∞∑

j=r−1

g(j+2)(0)
j! xj

]
[
∞∑
j=r

g(j+1)(0)
j! xj

][
∞∑
j=r

g(j+1)(0)
j! xj

] .

It follows that

ρ1[f ](0) =

(
1− r + α

r + 1

)
f (r+1)(0)

g(r+1)(0)
.

Moreover,

ρ
(1)
1 [f ](0) = lim

x→0

ρ1[f ](x)− ρ1[f ](0)

x

is a linear combination of f (r+1)(0) and f (r+2)(0). We thus deduce that ρ
(j)
1 [f ](0) depends

on f (`), ` = r+1, r+2, · · · , r+1+j. Similarly, assuming ρ1[f ](x) =
∞∑
j=0

ρ
(j)
1 [f ](0)
j! xj , ρ2[f ](0)

is determined by ρ
(r+1)
1 [f ](0), that is, the derivatives f (`), ` = r + 1, r + 2, · · · , 2(r + 1)

determine the value of ρ2[f ](0). Also the r-th order derivative ρ
(r)
2 [f ](0) is related to

f (`), ` = r + 1, r + 2, · · · , 2(r + 1) + r. Thus, we conclude that ρk[f ](0) involves f (`),

` = r+ 1, r+ 2, · · · , k(r+ 1) and ρ
(j)
k [f ](0) includes f (`), ` = r+ 1, r+ 2, · · · , k(r+ 1) + j.

Hence, setting

r(`)(0) = 0, ` = 0, 1, · · · , (s− 1)(r + 1) + r,

r(`)(b) = 0, ` = 0, 1, · · · , s− 1,

which is equivalent to setting

ρ
(j)
k [r](0) = 0, k = 0, · · · , s− 1, j = 0, · · · , r ρk[r](b) = 0, k = 0, 1, · · · , s− 1

and the theorem follows.

Since the error in approximating the analytic function f(x) by the polynomial pn(x)

is small when ω = 0, a Filon-type method can approximate the integral for all ω ≥ 0,

unlike the asymptotic expansion method. In addition, the Filon-type method can attain

the same asymptotic error order as the asymptotic expansion for large ω so the Filon

method is deemed superior.

To illustrate the theoretical analysis, we consider again the example (2.7) and construct

the Filon-type method as follows

QF,1[f ](ω) = −µ1(α, ω)

2
+ µ0(α, ω),

with f(0) = pn(0), f(1) = pn(1);

QF,2[f ](ω) = −µ3(α, ω)

4
+

3µ2(α, ω)

4
− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, 1, f (j)(1) = p(j)

n (1), j = 0, 1;
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QF,3[f ](ω) = −µ5(α, ω)

8
+
µ4(α, ω)

2
− 7µ3(α, ω)

8
+ µ2(α, ω)

− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, 1, 2, f (j)(1) = p(j)

n (1), j = 0, 1, 2.

We display the error log10

∣∣QF,s − I∣∣ in Fig. 3.1, for s = 1, 2, 3. As we can see, unlike in

Fig. 2.1, the error does not blow up when ω is near 0 while when ω →∞, the error of the

Filon method behaves better than that of the asymptotic method with the same s.

Figure 3.1: The error, log
∣∣QF,s[f ]− I[f ]

∣∣, as a function of ω with g(x) = x, for s = 1
(navy blue, the top), 2 (dark red, the middle) and 3 (dark green, the bottom).

Next we consider the same integral with g(x) = x2. Again, three Filon methods are

presented as

QF,1[f ](ω) =
µ2(α, ω)

2
− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, · · · , 1, f(1) = pn(1);

QF,2[f ](ω) =
µ5(α, ω)

−4
+

3µ4(α, ω)

4
− µ3(α, ω) + µ2(α, ω)− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, · · · , 3, f (j)(1) = p(j)

n (1), j = 0, 1;

QF,3[f ](ω) =
µ8(α, ω)

8
− µ7(α, ω)

2
+

7µ6(α, ω)

8
− µ5(α, ω) + µ4(α, ω)− µ3(α, ω)

+ µ2(α, ω)− µ1(α, ω) + µ0(α, ω),

with f (j)(0) = p(j)
n (0), j = 0, · · · , 5, f (j)(1) = p(j)

n (1), j = 0, 1, 2.

The error log10

∣∣QF,s − I∣∣ is plotted in Fig. 3.2, for s = 1, 2, 3. Note that the error of

the Filon method is substantially smaller than the asymptotic method for both small and

large ω.

3.2 The Filon method for logarithmic singularity

Consider the logarithmic integral without a stationary point.

QF [f ] =

∫ b

0
log x pn(x)eiωg(x)dx =

n∑
m=0

dmI[xm],
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Figure 3.2: The error, log
∣∣QF,s[f ]− I[f ]

∣∣, as a function of ω with g(x) = x2. The colours
are navy blue (the top), dark red (the middle) and dark green (the bottom) for s = 1, 2, 3.

Theorem 9. Suppose that g′(x) 6= 0 within [0, b]. Then

I[f ]−QF [f ] ∼ O
(
ω−s−1 logω

)
,

for q ≥ 2, where c1 = 0, cq = b, m1 ≥ s, mq ≥ s.

Proof. In the asymptotic expansion (2.11), for every k ≥ 0, p = 0, · · · , k,

σk[f ](x) =
k∑
p=0

σk,p(x)f (p)(x) + σ0,p(x)f(0),

where σk,k(x) 6= 0 and σk,p is a combination of derivatives of g(x). We compute

γk−1,0[f ](x) =
k−1∑
p=0

σk−1,p(x)f (p)(x)− σk−1,p(0)f (p)(0)

xg′(x)
+ [σ0,p(x)− σ0,p(0)]f(0),

γk−1,1[f ](x) =
d

dx

(
γk−1,0[f ](x)

g′(x)

)
.

Hence, we deduce that σs−1[f ](b) and γs−1,`[f ](b) are a linear combination of f (j)(b),

j = 0, · · · , s− 1. Also σs−1[f ](0) and γs−1,`[f ](0) can be expressed in terms of the f (j)(0),

j = 0, 1, · · · , s − 1. Hence, with nodes cj and multiplicities mj , j = 1, 2, · · · , q, if we

substitute the error function r(x) = f(x) − pn(x) into the asymptotic expansion, the

result is an error of O
(
ω−(s+1) logω

)
.

We consider the same example as in (2.18). The interpolation function pn(x) is formed

in a similar manner to that in Section 3.1 except that µm(α, ω) is replaced by νm(ω),

defined in (??). In the plot of Fig. 3.3, we depict the error function log |QF,s − I|, s = 1

(navy blue), 2(dark red), 3(dark green). The plots of the error function are in accordance

with the error order O
(
ω−s−1 logω

)
.

Now we consider the case where stationary points are present.

Theorem 10. Given q ≥ 2. Let c1 = 0, cq = b, m1 ≥ s(r + 1) and mq ≥ s, then

I[f ]−QF [f ] ∼ O
(
ω−(s+ 1

r+1) logω
)
,
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Figure 3.3: The error, log
∣∣QF,s[f ]− I[f ]

∣∣, as a function of ω with g(x) = x and ω ∈ [1, 100].
Navy blue (the top), dark red (the middle) and dark green (the bottom) correspond to
s = 1, 2, 3 respectively.

where

QF [f ] =

n∑
m=0

dmI[xm].

Proof. Consider a first-order stationary point at x = 0. We need to analyse the relation-

ships among ρk−1[f ](x), ηk−1,`−1[f ](x), f and its derivatives in (2.17). Based on the defini-

tions, it can be deduced that ρk−1[f ](b) is a combination of f (j)(b), j = 0, 1, · · · , k−1. Sim-

ilarly, ηk−1,`−1[f ](b) is also determined from f (j)(b), j = 0, 1, · · · , k+ `−2 for k = 1, · · · , s
and ` = 1, · · · , Lk, Lk = s− k+ 1. Thus, the values of ρk−1[f ](b) and ηk−1,`−1[f ](b) in the

asymptotic expansion depend upon f (j)(b), j = 0, 1, · · · , s− 1.

Now consider the endpoint x = 0. Let

f(x) =
∞∑
j=0

f (j)(0)

j!
xj , g(x) =

∞∑
j=r+1

g(j)(0)

j!
xj .

Incorporating this into the definition of ρk yields

ρ1[f ](0) =
d

dx


∞∑

j=r+1

f (j)(0)
j! xj

∞∑
j=r

g(j+1)(0)
j! xj


∣∣∣∣∣∣∣∣∣
0

=
f (r+1)(0)

(r + 1)g(r+1)(0)
,

which implies that ρ
(k)
1 [f ](0) depends on f (j)(0), j = r + 1, r + 2, · · · , r + 1 + k. Since

ρ2[f ](0) =
ρ

(r+1)
1 [f ](0)

(r + 1)g(r+1)(0)
,

it follows that ρ2[f ](0) is a linear combination of f (j)(0), j = r + 1, r + 2, · · · , 2(r + 1).

An immediate consequence is that ρk−1[f ](0) is a combination of f (j)(0), j = r + 1, r +

2, · · · , (k − 1)(r + 1). In addition,

ηk−1,0[f ](0) =

∞∑
j=r+1

ρ
(j)
k−1[f ](0)

j! xj

∞∑
j=r+1

g(j)(0)
(j−1)!x

j

∣∣∣∣∣∣∣∣∣
0

=
ρ

(r+1)
k−1 [f ](0)

(r + 1)g(r+1)(0)
,
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in which ρ
(r+1)
k−1 [f ](0) depends on f (j)(0), j = r+ 1, r+ 2, · · · , k(r+ 1). Applying the same

technique to ηk−1,1[f ], we observe that ηk−1,1[f ](0) depends linearly on η
(r)
k−1,0[f ](0) and

η
(r+1)
k−1,0[f ](0) which involves a linear combination of f (j)(0), j = r+1, r+2, · · · , (k+1)(r+1).

More generally, it is deduced that ηk−1,`[f ](0) is related to f (j)(0), j = r+1, r+2, · · · , (k+

`)(r + 1) and η
(n)
k−1,`[f ](0) is related to f (j)(0), j = r + 1, r + 2, · · · , (k + `)(r + 1) + n.

Hence, once we substitute the error function r(x) = f(x)− pn(x) into the asymptotic

expansion (2.17), the theorem follows.

Our example is (2.19). We form the interpolation polynomial pn with νm(ω) instead

of µm(α, ω). The plot in Fig. 3.4 displays the logarithmic error of Filon methods QF,1,

QF,2 and QF,3. As indicated in Theorem 10, the asymptotic order O
(
ω−(s+ 1

2
) logω

)
and

the numerical results are in agreement with this.

Figure 3.4: The error, log
∣∣QF,s[f ]− I[f ]

∣∣, as a function of ω for the highly oscillatory
integral with g(x) = x2 and ω ∈ [1, 100]. The colours navy blue, dark red, dark green
correspond to s = 1 (the top), 2 (the middle), 3 (the bottom) respectively.

4 Complex-valued Gaussian quadrature

A powerful alternative to standard methods of quadrature for highly oscillatory functions

is complex-valued Gaussian quadrature, whereby eiωg(x)dx is the underlying measure. This

approach has been analysed in great detail in [6] for the regular integral
∫ 1
−1 f(x)eiωxdx.

In this section, we are concerned with complex-valued Gaussian quadrature for singular

highly oscillatory integrals of the form

I[f ] =

∫ b

0
f(x)h(x)eiωg(x)dx, ω � 1,

where h(x) = x−α or h(x) = log x is weakly singular at x = 0 and f(x) is an analytic

function. We seek an n-point Gaussian quadrature formula

I[f ] ∼
n∑
j=1

wjf(xj) = QG,n[f ](ω)
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where xj , j = 1, · · · , n are the zeros of a monic orthogonal polynomial Pωn (x) of degree n

on [0, b] with the complex weight function h(x)eiωg(x),∫ b

0
Pωn (x)xjh(x)eiωg(x)dx = 0, j = 0, · · · , n− 1, n ∈ Z+,

and wj are the corresponding weights.

We first construct Pωn (x). To do this, consider the Hankel matrix formed with µj for the

power singularity and νj for the logarithmic singularity.

Hn =


µ0 µ1 · · · µn
µ1 µ2 · · · µn+1
...

...
...

µn µn+1 · · · µ2n

,

hn = detHn, n ∈ N.

Then the orthogonal polynomial Pωn (x) is formed from [14]

Pωn (x) =
1

hn−1
det


µ0 µ1 · · · µn−1 1
µ1 µ2 · · · µn x
...

...
...

...
µn µn+1 · · · µ2n−1 xn

.
The properties of polynomials orthogonal with respect to the complex weight eiωx are

discussed in detail in [2, 6]. In this paper, we are concerned with the accuracy of complex

Gaussian quadrature when it is applied to the singular highly oscillatory integrals and we

compare it to the Filon method.

Pωn (xj) = 0, j = 1, . . . , n
n∑
j=1

wjf(xj) = QG,n[f ](ω), (4.1)

where the wights can be found by solving the linear system

n∑
j=1

wjx
k
j = I[xk], k = 0, . . . , n− 1.

We do not analyse complex-valued Gaussian quadrature but note in passing that even the

simplest non-singular case, g(x) = x, requires extensive mathematical machinery, since we

are outside the conditions of the classical theory of Gaussian quadrature [6], while there

is no theory for the general case without singularities.

To compare complex-valued quadrature to the Filon methods, we set n equal to the

number of the interpolation conditions of the Filon method and consequently, both meth-

ods will involve the same number of evaluations of the function f(x).

4.1 Numerical experiments for the power-law singularity

We apply the complex-valued Gaussian quadrature to the integrals in (2.7) and (2.8) and

depict the error log10

∣∣QG,n[f ]− I[f ]
∣∣ in Fig. 4.1. The case without stationary points is
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Figure 4.1: log10

∣∣QG,n[f ](ω)− I[f ](ω)
∣∣ as a function of ω for the integral with a power-law

singularity. The left: g(x) = x. The colours are navy blue (the top), dark red and dark
green (the bottom) for n = 2, 4, 6; The right: g(x) = x2 and the same colour scheme for
n = 3, 6, 9.

on the left of Fig. 4.1 while the case of 1 stationary point is on the right. We set n = 2, 4

on the left and n = 3, 6 on the right of Fig. 4.1. When n = 2, we obtain the two zeros

of P2(x) = 0. Thus the quadrature in (4.1) involves two function evaluations. Counting

function evaluations, this is equivalent to QF,1, which involves two function evaluations at

x = 0 and x = 1. However, when the results in Fig. 4.1 are compared to those in Fig. 3.1,

it can be seen that the error of QG,2 is considerably smaller than the error of QF,2. Thus,

the method is significantly more accurate than a Filon method that uses the same number

of function evaluations. Similarly, although QG,4 involves the same number of function

evaluations as QF,2, its accuracy is greater than QF,3. Now consider the case with a

stationary point. We examine the result for n = 3. The number of function evaluations

for QG,3 is equivalent to QF,1 as both involves evaluating the function at three points.

However, when the result in Fig. 4.1 is compared to that in Fig. 3.2, the size of the error

is similar to that of QF,3 clearly indicating its superior accuracy for the same number of

function evaluations. Similar conclusions can be drawn for n = 6.

4.2 Numerical experiments for a logarithmic singularity

We calculate the integrals in (2.18) and (2.19). The logarithmic errors log10

∣∣QG,n − I[f ]
∣∣

are displayed in Fig. 4.2. The cases n = 2, 4 for g(x) = x are on the left and the cases of

n = 3, 6 for g(x) = x2 on the right. The difference between the precision of the complex-

valued Gaussian quadrature and Filon method is again striking. Complex-valued Gaussian

quadrature delivers substantially higher accuracy for the same number of function evalua-

tions. However, it should be noted that in complex quadrature there is the additional cost

of the computation of the orthogonal polynomial and its zeros. In other words, the simple

comparison of function evaluations is incomplete, because it disregards the considerably

higher price tag of linear algebra for complex-valued Gaussian quadrature.
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Figure 4.2: log10

∣∣QG,n[f ](ω)− I[f ](ω)
∣∣ as a function of ω for the integral with a logarith-

mic singularity. The left plot: g(x) = x. The colours are navy blue (the top), dark red
and dark green (the bottom) for n = 2, 4, 6; The right: g(x) = x2 and the same colour
scheme for n = 3, 6, 9.

5 Conclusions

In this paper we have presented three methods for the computation of oscillatory inte-

grals with logarithmic and power-law singularities. The first is a truncated asymptotic

expansion. While this method is accurate for high frequencies, it fails for low frequencies.

The second is a Filon-type method. It overcomes the problems at low frequencies and

numerical results indicate its superiority vis-á-vis the asymptotic expansion method. The

third method is complex-valued Gaussian quadrature. While there is no extant theory for

this approach, numerical results indicate that it achieves the greatest asymptotic order

and the best behaviour for small ω ≥ 0.

The main thrust of this paper is in demonstrating that existing theory of highly oscil-

latory quadrature can be extended to the singular scenario, although this requires great

care and attention to detail. Once correct quadrature methods are employed, singular

highly oscillatory integrals can be approximated by affordable and precise computations.
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