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Abstract Based on the error analysis of Extended Filon Method (EFM), we present
an adaptive Filon method to calculate highly oscillatory integrals. The main idea is
to allow interpolation points depend upon underlying frequency in order to mini-
mize the error. Typically, quadrature error need be examine in two regimes. Once
frequency is large, asymptotic behaviour dominates and we need to choose interpo-
lation points accordingly, while for small frequencies good choice of interpolation
points is similar to classical, non-oscillatory quadrature. In this paper we choose
frequency-dependent interpolation points according to a smooth homotopy function
and the accuracy is superior to other EFMs. The basic algorithm is presented in the
absence of stationary points but we extend it to cater for highly oscillatory integrals
with stationary points. The presentation is accompanied by numerical experiments
which demonstrate the power of our approach.

1 Introduction

The focus of this paper is on the computation of the highly oscillatory integral

Iω [ f ] =
∫ 1

−1
f (x)eiωg(x)dx, (1)

where f ,g ∈ C∞[−1,1] and ω ≥ 0 is the frequency. Since this integral abounds in
mathematics and computational engineering and standard quadrature methods fail
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to calculate it well, it has been subjected to very active research effort in the last two
decades. This has resulted in a significant number of efficient quadrature methods,
such as the asymptotic expansion and Filon methods [6, 7], Levin’s method [8, 9],
numerical steepest descent [5] and complex Gaussian quadrature [1, 2].

Each of these method has its own advantages and disadvantages and it would be
rash to proclaim one as the definite approach to the integration of (1). They require
the availability of different information (e.g., Filon methods and complex Gaussian
quadrature require the computation of moments, numerical steepest descent relies
on practical computation of steepest-descent paths in the complex plane) and might
have critical shortcomings in some situations (Levin’s method cannot work in the
presence of stationary points and explicit asymptotic expansions are exceedingly
difficult once (1) is generalised to multivariate setting – a setting in which nothing
is known of complex Gaussian quadrature).

Popularity of Filon-type methods owes much to their simplicity and flexibility.
We just need to replace f by an interpolating polynomial and, assuming that mo-
ments

∫ 1
−1 xmeiωg(x)dx, m≥ 0, are explicitly available, the new integral can be com-

puted easily. The make-or-break issue, however, is the location of suitable interpo-
lation points. The basic imperative is to select interpolation points that ensure good
behaviour for large ω , and this is entirely governed by asymptotic analysis. Let us
recap some basic facts from [6]. Assume first that there are no stationary points, i.e.
that g′ 6= 0 in [−1,1]. Letting p̃ be the interpolating polynomial, the error can be
expanded into asymptotic series,

Iω [p̃]− Iω [ f ] = Iω [p̃− f ] (2)

∼ −
s−1

∑
m=0

1
(−iω)m+1

[
σm[p̃− f ](1)

g′(1)
eiωg(1)− σm[p̃− f ](−1)

g′(−1)
eiωg(−1)

]
+O

(
ω
−(s+1)

)
,

where

σ0[h](x) = h(x), σm[h](x) =
d
dx

σm−1[h](x)
g′(x)

, m≥ 1.

Moreover, σm[h](x) is a linear combination (with coefficients depending on deriva-
tives of g) of h( j)(x), j = 0, . . . ,m [7]. It immediately follows that the Hermite-type
interpolation conditions

p̃( j)(1) = f ( j)(1), p̃( j)(−1) = f ( j)(−1), j = 0,1, · · · ,s−1, (3)

imply that the error is ∼ O(ω−s−1) for ω � 1. The outcome is the (plain-vanilla)
Filon method,

QF,s,0
ω [ f ] =

∫ 1

−1
p̃(x)eiωg(x)dx.

Once g′ vanishes somewhere in [−1,1], the oscillation of the integrand slows
down in the vicinity of that point and the behaviour of (1) changes. In particular, the
asymptotic expansion (2) is no longer valid. For example, if g′(c) = 0, g′′(c) 6= 0,
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for c ∈ (−1,1) and g′(x) 6= 0 elsewhere in [−1,1], then

Iω [p̃− f ] ∼ µ0(ω)
∞

∑
m=0

σ̃m[p̃− f ](c)
(−iω)m (4)

−
∞

∑
m=0

1
(−iω)m+1

{
σ̃m[p̃− f ](1)− σ̃m[p̃− f ](c)

g′(1)
eiωg(1)

− σ̃m[p̃− f ](−1)− σ̃m[p̃− f ](c)
g′(−1)

eiωg(−1)
}
,

where

µ0(ω) =
∫ 1

−1
eiωg(x)dx = O(ω−1/2)

and

σ̃m[h](x) = h(x), σ̃m[h](x) =
d
dx

σ̃m−1[h](x)− σ̃m−1[h](c)
g′(x)

, m≥ 1

[7]. Note that the functions σ̃m are C∞[−1,1], since the singularity at x = c is re-
movable. This removable singularity is the reason why, while σm[h](x) is a linear
combination of h( j)(x), j = 0, . . . ,m, for x ∈ [−1,1]\{c}, at x = c we have a linear
combination of h( j)(c), j = 0, . . . ,2m. The clear implication is that once, in addition
to (3), we also impose the interpolation conditions

p̃( j)(c) = f ( j)(c), j = 0,1, . . . ,2s−2,

the plain-vanilla Filon method bears an error of Õ(ω−s−1/2) for ω � 1.
For reasons that will become apparent in the sequel, it is important to consider

also the case when c is at an endpoint: without loss of generality we let c = −1. In
that case (4) need be replaced by

Iω [p̃− f ] ∼ µ0(ω)
∞

∑
m=0

σ̃m[p̃− f ](−1)
(−iω)m

−
∞

∑
m=0

1
(−iω)m+1

{
σ̃m[p̃− f ](1)− σ̃m[p̃− f ](−1)

g′(1)
eiωg(1)

− σ̃ ′m[p̃− f ](−1)
g′′(−1)

eiωg(−1)
}

and σ̃ ′m(−1) is a linear combination of h( j)(−1), j = 0, . . . ,2m+1 [3].
A plain-vanilla Filon method can be also implemented in a derivative-free man-

ner, e.g. when the derivatives of f are unknown or not easily available. In that case
we need to replace derivatives by finite differences with an O(ω−1) spacing and this
procedure does not lead to loss of asymptotic accuracy [6]. In particular, in place of
(3), we may interpolate at the points
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Fig. 1 The left: the interpolation points of (5) with s = 5, k = 1, · · · ,4, θ = 1
5 and ω ∈ [0,20];

The right: the logarithm of the error of both Filon methods, (3) (green) and (5) (black), for f (x) =
(1+ x+ x2)−1, g(x) = x, s = 2 and ω ∈ [0,200].

−1+
θk

ω +1
, 1− θk

ω +1
, k = 0, . . . ,s−1, (5)

where the denominator ω + 1 ensures that the interpolation points do not blow up
near ω = 0, while 0 < θ < (s− 1)−1 implies that the interpolation points are all
distinct and live in [−1,1].

As an example, consider f (x) = (1+ x+ x2)−1, g(x) = x in (1). In Fig. 1.1 we
plot on the left the interpolation points (5) with s = 5 . The errors committed by
Filon methods for s = 2 (hence with an asymptotic error decay of O(ω−3)) based
on (3) and (5) are displayed on the right in logarithmic scale. As can be seen, that
the points (5) are equidistant at ω = 0 and bunch at the endpoints when ω increases.
The derivative-free Filon method (5) has essentially the same good behaviour as (3)
for large ω .

The addition of extra interpolation points to (3) (or, for that matter, (5)) can be
highly beneficial in reducing an error committed by a Filon method. Specifically, in
the g′ 6= 0 case, we choose distinct inner nodes c1, . . . ,cν ∈ (−1,1) and impose that
2s+ν interpolation conditions

p( j)(1) = f ( j)(1), p( j)(−1) = f ( j)(−1), j = 0,1, · · · ,s−1,
p(ck) = f (ck), k = 1, · · · ,ν . (6)

This is the Extended Filon Method (EFM),

QF,s,ν
ω [ f ] =

∫ 1

−1
p(x)eiωg(x)dx

that has been carefully analysed in [3, 4]. Different choices of internal nodes result
in different behaviour for small ω ≥ 0 or in greater simplicity in implementation
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Fig. 2 The logarithmic error log10 |Q
F,2,0
ω [ f ]− I[ f ]| (green, the top) and log10 |Q

F,2,8
ω [ f ]− I[ f ]|

(blue, the bottom) for f (x) = (1+x+x2)−1, g(x) = x, s = 2, ω ∈ [0,30] (the left) and ω ∈ [0,500]
(the right).

although, for large ω , the rate of asymptotic decay of the error is always O(ω−s−1).
In particular, [3] examined two choices of internal nodes: Zeros of the Jacobi poly-
nomial P

(s,s)
ν and Clenshaw–Curtis points. In the first instance we have the best-

possible behaviour for ω = 0 and in the second the coefficients are substantially
simpler and, for large ν can be evaluated in just O(ν logν) operations.

Regardless of the choice of internal nodes, the leading term of the asymptotic
error can be expressed as

QF,s,ν
ω [ f ]− Iω [ f ] (7)

∼ − 1
(−iω)s+1

[
f (s)(1)− p̃(s)(1)

g′s+1(1)
eiωg(1)− f (s)(−1)− p̃(s)(−1)

g′s+1(−1)
eiωg(−1)

]
+O

(
ω
−s−2).

Similar formula applies in the presence of stationary points: quadrature error is re-
duced to interpolation error at the endpoints and stationary points. This error, in
turn, can be analysed very precisely using the Peano Kernel Theorem [3] and the
decrease in asymptotic error (as distinct to the asymptotic rate of decay of the error)
can be very substantial.

To illustrate this we revisit the example from Fig. 1.1. Logarithmic errors of
plain-vanilla Filon and EFM with Jacobi points are displayed in Fig 1.2 with s = 2
and ν = 8. It can be observed that the different rates of decay between plain-vanilla
Filon and EFM. For small ω , EFM is definitely superior by design, while as ω

increases both of them decay as the asymptotic order O
(
ω−3

)
but EFM has much

smaller error.
Based on the above research, it is legitimate to ask what is the optimal choice of

internal nodes. In reality, these are two questions. If we are concerned with choosing



6 Jing Gao and Arieh Iserles

the same nodes for all ω then the two main choices in [3] are probably the best:
if ‘optimal’ means the least uniform error then Jacobi wins but once we wish to
optimize computation then Clenshaw–Curtis is the optimal choice. However, the
situation is entirely different once the cks are allowed to depend on ω . Now the
answer is clear at the ‘extremities’:

• For ω = 0 the optimal choice is Legendre points, lending themselves to classical
Gaussian quadrature;

• For ω � 1 the optimal choice maximizes the asymptotic rate of error decay,
whereby (5) emerges as the natural preference.

The challenge, though, is to bridge ω = 0 with ω � 1, and this forms the core of
this paper.

In Section 2 we discuss different choices of homotopy functions, connecting
Gaussian weights for ω = 0 and points (5) for ω � 1 in the absence of station-
ary points. Numerical experiments are provided to illustrate the effectiveness of the
adaptive method. The adaptive approach to the Filon method is extended in Section 3
to the case of stationary points. Finally, in Section 4 we discuss the advantages and
limitations of this approach.

2 Adaptive Filon method without stationary points

2.1 The construction of ω-dependent interpolation points

Throughout this section we assume that (1) has no stationary points, i.e. that g′ 6= 0
in [−1,1]. We define the vector function c(ω) = {ck(ω)}2s−1

k=0 as Filon homotopy
once it obeys the following conditions:

1. Each ck is a piecewise-smooth function of ω ≥ 0;
2. ck(0) = ξ

(2s)
k+1 , the (k+1)st zero of the Legendre polynomial P2s (in other words,

the (k+1)st Gauss–Legendre point), arranged in a monotone order;
3.

ck(ω) =


−1+

θk
ω +1

, k = 0, . . . ,s−1,

1− θ(2s− k−1)
ω +1

, k = s, . . . ,2s−1
+O(ω−2), ω � 1,

where 0 < θ < (s−1)−1;
4. For every ω ≥ 0

−1≤ c0(ω)< c1(ω)< · · ·< c2s−1(ω)≤ 1.

In other words, c is a vector of s trajectories connecting Gauss–Legendre points with
(5), all distinct and living in [−1,1].
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Fig. 3 The functions κ j , j = 1,2,3,4.

A convenient way to construct Filon homotopy is by choosing any piecewise-
smooth weakly monotone function κ such that κ(0) = 1, κ(ω) = O(ω−2) (or
smaller) for ω � 1 (therefore limω→∞ κ(ω) = 0), and setting

ck(ω) = ξ
(2s)
k+1 κ(ω)+ϕk(ω)[1−κ(ω)], k = 0, . . . ,2s−1, (8)

where

ϕk(ω) =


−1+

θk
ω +1

, k = 0, . . . ,s−1,

1− θ(2s− k−1)
ω +1

, k = s, . . . ,2s−1.

It is easy to prove that conditions 1–4 are satisfied and (8) is a Filon homotopy.
To illustrate our argument and in search for a ‘good’ Filon homotopy, we consider

four functions κ ,

a. κ1(ω) = Heaviside(10−ω), where

Heaviside(y) =

{
1, y≥ 0,

0, y < 0

is the Heaviside function;
b. κ2(ω) = (1+ω2)−1;
c. κ3(ω) = 2/

[
1+ exp

(
log4(1+ω)

)]
;

d. κ4(ω) = cos
(

π

2
et/2−1

256+et/2

)
.

Fig. 3 displays the four functions κ but perhaps more interesting is Fig. 4, where
we depict the homotopy curves ck(ω) for the four choices of κ and s = 8. κ1 essen-
tially stays put at Gauss–Legendre points until ω = 10 and then jumps to the points
(5), while κ4 represents a smooth approximation to κ1. κ2 and κ3 abandon any mem-
ory of Gauss–Legendre points fairly rapidly, implicitly assuming very early onset of
asymptotic behaviour in the integral (1).

To gain basic insight into the differences among the functions κ j, we have applied
them to the evaluation of the integral
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Fig. 4 Homotopy curves for the functions κ j , j = 1,2,3,4 and s = 8.

∫ 1

−1

eiωxdx
1+ x+ x2 (9)

using ten function evaluations and letting θ = 1/s. To set the stage, in Fig. 5 we
have calculated the integral using five different Extended Filon–Jacobi methods:
(1) s = 1, ν = 8; (2) s = 2, ν = 6; (3) s = 3, ν = 4, (4) s = 4, ν = 2 and (5) s = 5,
ν = 0. The error (to logarithmic scale) is displays separately for ω ∈ [0,20] and
ω ∈ [0,200].

So far, the figure is not very surprising and we recall from the previous section
that “large s, small ν” strategy is better for ω � 1, while “small s, large ν” wins
for small ω � 0. However, let us instead solve (10) with adaptive Filon, using one
of the four κ j functions above. Again, we need to distinguish between small and
large ω and the corresponding plots are Fig. 6 and Fig. 7 respectively. It is clear that
for large ω there is little to distinguish adaptive Filon from EPS with s = 5 (which
is also plain Filon): everything in this regime is determined by asymptotic analysis
and the only relevant observation is that nothing of essence is lost once we replace

Fig. 5 Errors for EFJ, applied to (9), with ten function evaluations: s varies in shades of blue
between 1 (light) and 5 (dark), with ν = 10−2s.
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Fig. 6 Errors for adaptive Filon, applied to (9), with ten function evaluations, θ = 1
5 , ω ∈ [0,20]

and κ j , j = 1,2,3,4 (top left to bottom right).

derivatives by suitable finite differences. The big difference is for small ω ≥ 0,
before the onset of asymptotics. At ω = 0 all four methods use Gauss–Legendre
points and the error beats even EFJ with ν = 8, which corresponds to Lobatto points.
However, the errors for κ2 and κ3 deteriorate rapidly and this is explained by the
homotopy curves in Fig. 4, because interpolation points very rapidly move to their
‘asymptotic regime’. κ1 and κ4 and much better, except that κ1 has an ungainly jump
at ω = 10, a consequence of its discontinuity, while κ4 seems to be the winner.
Similar outcome is characteristic to all other numerical experiments that we have
undertook.

Another interpretation of κ4 is that it tends to represent for every ω the best
outcome for any EPJ with the same number of function evaluations. In other words,
denoting the error of EFJ with ν = 10−2s by e[s]ω and the error of adaptive Filon by
ẽω , we plot in Fig. 8

log10

∣∣∣min{|e[ j]ω | : j = 1, . . . ,5}
∣∣∣ and log10 |ẽω |.
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Fig. 7 Errors for Adaptive Filon, applied to (9), with ten function evaluations, θ = 1
5 , ω ∈ [0,200]

and κ j , j = 1,2,3,4 (top left to bottom right).

For larger values of ω the two curves overlap to all extents and purposes. For small
ω , though, adaptive Filon is better than the best among the different EFJ schemes
– the difference is directly attributable to Gauss–Legendre points being superior to
Lobatto points.

The function κ4 is a special case of

κa,b(ω) = cos
(

π

2
eat −1
b+ eat

)
, (10)

using a = 1
2 and b = 256. In general, any κa,b with small a > 0 and large b > 0

obeys the conditions for a Filon homotopy and, in addition, exhibits favourable be-
haviour – essentially, it is a smooth approximation to a Heaviside function, allowing
for Gauss–Legendre points seamlessly segueing into (5), a finite-difference approx-
imation of derivatives at the endpoints.
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Fig. 8 A comparison between adaptive Filon (orange) and the pointwise best scheme among dif-
ferent EFJ methods (dark blue).

What is the optimal function κ? Clearly, this depends on the functions f and g, as
does the pattern of transition from ‘small ω’ to asymptotic behaviour. Our choice,
κ 1

2 ,256, is in our experience a good and practical compromise.

2.2 The adaptive Filon algorithm

Let us commence by gathering all the threads into an algorithm. Given the integral
(1) (without stationary points) and a value of ω ,

1. Compute the interpolation points c0, . . . ,c2s−1 using θ = 1/s, (8) and κ = κ 1
2 ,256

given by (10).
2. Evaluate the polynomial p̃ of degree 2s−1 which interpolates f at c0, . . . ,c2s−1.
3. Calculate

QAF,s
ω [ f ] =

∫ 1

−1
p̃(x)eiωg(x)dx. (11)

Proposition 1. The asymptotic error of the adaptive Filon method QAF,s
ω [ f ] is

O
(
ω−s−1

)
.

Proof. For a fixed ω , adaptive Filon is a special case of EFM with derivatives at the
endpoints replaced by suitable finite differences – we already know from [6] that
this is consistent with the stipulated asymptotic behaviour. ut

Alternatively, we can prove the proposition acting directly on the error term (7),
this has the advantage of resulting in an explicit expression for the leading error
term.

Needless to say, Proposition 1 represents just one welcome feature of adaptive
Filon. The other is that it tends to deliver the best uniform behaviour for all ω ≥ 0.
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3 Stationary points

Let us suppose that g′ vanishes at r ≥ 1 points in [−1,1]. We split the interval
into subintervals Ik such that in each Ik = [αk,βk] there is a single stationary point
residing at one of the endpoints – it is trivial to observe that there are at lease
max{1,2r− 2} and at most 2r such subintervals. We use a linear transformation
to map each Ik to the interval [−1,1] so that the stationary point resides at −1:

Stationary point at αk : x→ 2x− (βk +αk)

βk−αk
,

Stationary point at βk : x→−2x− (βk +αk)

βk−αk
.

We thus reduce the task at hand into a number of computations of (1) with a single
stationary point at x =−1.

In the sequel we assume that −1 is a simple stationary point, i.e. that g′(−1) = 0
and g′′(−1) 6= 0. The extension of our narrative to higher-order stationary points is
straightforward.

We commence with the EFM method and recall from [3] its asymptotic expan-
sion,

Iω [ f ] ∼ µ0(ω)
∞

∑
m=0

ρm[ f ](−1)
(−iω)m −

∞

∑
m=0

1
(−iω)m+1

[
ρm[ f ](1)−ρm[ f ](−1)

g′(1)
eiωg(1)

− ρ ′m[ f ](−1)
g′′(−1)

eiωg(−1)
]
, (12)

where

µ0(ω) =
∫ 1

−1
eiωg(x)dx,

ρ0[ f ](x) = f (x) ρm[ f ](x) =
d
dx

ρm−1[ f ](x)−ρm−1[ f ](−1)
g′(x)

, m≥ 0.

We recall that µ0(ω) =
∫ 1
−1 eiωg(x)dx ∼ O(ω−1/2) and that σm[ f ](1) is a linear

combination of f ( j)(1), j = 0, . . . ,m, while σm[ f ]′(−1) is a linear combination of
f ( j)(−1), j = 0, . . . ,2m+ 1. Putting all this together, we need to impose the inter-
polation conditions

p(k)(−1) = f (k)(−1), k = 0, . . . ,2s, (13)

p(k)(1) = f (k)(1), k = 0, . . . ,s−1,

to ensure that the error of (12) is O(ω−s−1). (Alternatively, we can interpolate at
−1 up to j = 2s− 1, resulting in an asymptotic error of O(ω−s−1/2) – we do not
pursue this route here.) Alternatively to (13) (and the proof is identical to the case
when stationary points are absent), we can take a leaf off (5) and interpolate at
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ϕk(ω) = −1+
θk

ω +1
, k = 0, . . . ,2s, (14)

ϕk = 1− θ(3s− k)
ω +1

, k = 2s+1, . . . ,3s, (15)

where θ < 2/(3s−1) ensures that all interpolation points are distinct, with a poly-
nomial p̃ of degree 3s. This gives a derivative-free Filon á la [6]. To extend this
to adaptive Filon we need to use (8) again, blending the ϕks with Gauss–Legendre
points and employing κ = κ 1

2 ,256. The outcome is no longer symmetric, as demon-
strated in Fig. 9, but this should cause no alarm.

Fig. 9 Homotopy curves for (1) s = 3 and θ = 2/9 and (2) s = 4 and θ = 1
6 .

The construction of adaptive Filon proceeds exactly along the same lines as when
stationary points are absent. All that remains is to present a numerical example:
instead of 9, we consider ∫ 1

−1

eiω(x+1)2
dx

1+ x+ x2 (16)

and present the counterparts of Figs 2.3–6, except that we plot only the results for
κ = κ4 = κ 1

2 ,256. All figures compare an implementation with 13 function evalua-
tions.

It is vividly clear from Figs 3.2–4 that, again, adaptive Filon represents the best of
all worlds: for small ω is it as good as Gaussian quadrature, for large ω it matches
plain Filon and in the intermediate interval it converts smoothly and seamlessly
between these two regimes.
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Fig. 10 Errors for EFJ, applied to (16), with 13 function evaluations: s varies between 1 (light) and
4 (dark), with ν = 12−3s. The colours correspond to different values of s: the larger s, the darker
the colour.

Fig. 11 Errors for adaptive Filon, applied to (16), with 13 function evaluations.

4 Conclusions

In this paper, we have developed an adaptive Filon method for the computation of
a highly oscillatory integral with or without stationary points. The main feature of
this method is that it optimises the choice of interpolation points between different
oscillatory regimes.

Is adaptive Filon the best-possible implementation of the ‘Filon concept’, a
method for all seasons? Not necessarily! To define ‘best’ we must first define the
purpose of the exercise. If the main idea is to compute (1) for a small number of
values of ω and we cannot say in advance whether these values live in a highly
oscillatory regime (or if we wish a method which is by design good uniformly for
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Fig. 12 A comparison between adaptive Filon (orange) and the pointwise best scheme among
different EFJ methods (dark blue) for 13 function evaluations.

al ω ≥ 0) then adaptive Filon definitely holds the edge in comparison to other im-
plementations of the Filon method, in particular to Extended Filon. However, the
method is not competitive once we require the computation of a very large num-
ber of integrals, for many different values of ω . The reason is simple. Conventional
Filon methods use interpolation points which are independent of ω , hence we need
to compute the values of f (or its derivatives) and form an interpolating polynomial
just once: it can be reused by any number of values of ω . Adaptive Filon, though,
re-evaluates f afresh for every ω and subsequently forms a new interpolating poly-
nomial. Thus, increased accuracy and better uniform behaviour are offset by higher
cost.

Numerical methods must be always used with care and claims advanced on their
behalf must be responsible. Adaptive Filon is probably optimal in the scenario when
just few values of (1) need be computed but considerably more expensive once a
multitude of computations with different values of ω is sought.
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