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1. Introduction. The term ‘master equation’ goes back at least as far as the12

work of Kac in the middle of the twentieth century [26, page 105], and the sub-13

ject of master equations admits a Feynman–Kac stochastic path integral formulation14

[43]. The general principle of a governing equation emerging from ensemble averages15

goes back much further in the history of statistical mechanics, including the kinetic16

theories of Boltzmann and, earlier, of Bernoulli in the 1700s. Generalised master17

equations can cater to some form of memory and therefore be non-Markovian but the18

most common interpretation of master equations is as Markov processes. Perhaps the19

first application of the eponymous Markov process was Andrei Markov’s model of a20

poem, “Eugeny Onegin,” as a Markov chain, which he presented in 1913 in St Peters-21

burg. Other famous applications include Shannon’s Information Theory and Google’s22

PageRank to find order in the information on the World Wide Web [22]. Choosing23

the simplest examples, we describe applications to exclusion processes and chemical24

processes, although the computational methods we present have wider applicability.25

1.1. Models of isomerisation. The same chemical species can sometimes ex-26

ist in two distinct molecular forms, S1 and S2, and can reversibly convert from one27

form, or isomer, to the other in a process named isomerisation: S1 ←→ S2. A math-28

ematical model involves two rate constants (this terminology is common, but in our29

examples the rate ‘constants’ are often time-dependent), c1(t) associated with the30

forward reaction S1
c1−→ S2, and c2(t) for the backward reaction S1

c2←− S2.31

A hierarchy of three mathematical frameworks for modelling chemical reactions32

is provided by the reaction rate equations (RRE), the chemical Langevin equation,33

and the chemical master equation (CME). Typically when all species are present in34

high concentrations, the deterministic reaction rate equations are a good model at a35

macroscopic scale, but if some species are present in small numbers of molecules then36

often the discrete and stochastic CME is a more appropriate model at a mesoscopic37

scale [31, 9, 37]. Stochastic differential equations such as the Langevin equation for38

isomerisation [14] and their corresponding Fokker–Planck partial differential equations39

provide models at scales that are intermediate between those of the deterministic rate40

equations and the discrete and stochastic master equations.41
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2 ARIEH ISERLES AND SHEV MACNAMARA

The reaction rate equations for this model of isomerisation are the two ordinary42

differential equations (ODEs)43

d

dt
[S1] = −c1(t)[S1] + c2(t)[S2],

d

dt
[S2] = +c1(t)[S1]− c2(t)[S2], (1)44

where [Si] indicates the concentration (molecules per unit volume) of species i.45

The master equation for this model is a continuous time, discrete state Markov46

process for which a linear system of ODEs, p′ = Ap, describes the evolution of the47

associated probability distribution p. The ith state records the integer number of48

molecules of each species, and the probability of this state is recorded in the ith entry49

of the vector p. In a small time dt, the probability mass that flows from state j to50

a different state i is approximately given by Aijdt. The matrix A has nonnegative51

off-diagonals and zero column sum, and is thus a graph Laplacian. As an example, if52

we start with N molecules of species S1 and zero molecules of S2, then there are N+153

states, (i,N − i) for i = 0, . . . , N , where state i has i molecules of S1. If our initial54

condition has all probability concentrated on state (0, N), then our initial probability55

vector is p(0) = (0, 0, . . . , 1)>. With rates c1(t) = 1 + f(t) and c2(t) = 1 − f(t), the56

probability vector evolves according to the linear ODE (2), introduced below, which57

is the CME for isomerisation.58

“Generally, the CME has such extremely high dimension that it cannot be handled59

analytically or computationally” [20]. In this article we focus on some exceptions.60

A large class of important and solvable models, including isomerisation, arise when61

reaction rates are linear as a function of the state [25]. For this special class of models62

we have exact agreement between the average value of the stochastic CME model63

and the solution of the corresponding deterministic reaction rate equations. (Usually64

these models agree only approximately.) The exact solution to the CME (2) for our65

isomerisation example is a binomial distribution, where the time-varying parameter in66

the binomial distribution comes from the solution to the corresponding RRE (1). This67

makes it an ideal candidate for demonstrating novel applications of Magnus methods,68

which as we will see, reveal finer structure in the master equations.69

1.2. A master equation for isomerisation with explicitly time-varying70

rates. We are concerned with the linear ODE71

d

dt
p =

[
A[0] +A[1]f(t)

]
p, p(0) = p0 ∈ RN+1, (2)72

involving two matrices A[0] and A[1] defined by, for k, ` = 0, . . . , N ,73

A
[0]
k,` =


−N, k = `,
`, k = `− 1,
N − `, k = `+ 1,
0, otherwise;

A
[1]
k,` =


N − 2`, k = `,
`, k = `− 1,
−N + `, k = `+ 1,
0, otherwise.

(3)74

The A[0] matrix is remarkably close to the ‘clement’ matrix in the MATLAB gallery,75

which has a zero main diagonal but is otherwise the same.76

If −1 ≤ f(t) ≤ 1 then A = A[0] + A[1]f(t) has the usual properties of a graph77

Laplacian matrix (sometimes called the infinitesimal generator of the Markov pro-78

cess). In that case (2) is a master equation, which was originally simulated for the79

special case f(t) = sin t [27]. Here, we generalize. It turns out (2) has a truly mirac-80

ulous structure.81
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2. The Magnus expansion. The matrix exponential is essentially the solution82

of a linear ODE when the coefficient matrix is constant, i.e.83

d

dt
p = Ap with solution p(t) = exp(tA)p(0). (4)84

When the matrix varies in time, A = A(t), the solution is no longer simply the matrix85

exponential, but it can still be expressed in an exponential form. We write86

d

dt
p = A(t)p with solution p(t) = exp(Ω(t))p(0). (5)87

Here, the Magnus expansion [34] tells us how to find the crucial matrix Ω(t) as an88

infinite series, namely89

Ω(t) =

∫ t

0

A(s)ds− 1

2

∫ t

0

[∫ s

0

A(r)dr,A(s)

]
ds+ . . . . (6)90

All higher order terms in the expansion can be generated recursively by integration91

and commutation, thus involving commutators as a factor. The commutator of two92

matrices is, as usual, [A,B] ≡ AB−BA. In the special case that the matrix commutes93

with itself for all time, i.e. [A(t1),A(t2)] ≡ 0, those commutators are all zero so the94

expansion simplifies to Ω(t) =
∫ t
0
A(s)ds, agreeing with our intuition from the scalar95

case. This expansion, which is valid for all sufficiently small times t, was originally96

motivated by applications in quantum mechanics where it was derived by an analogy97

with Cauchy–Picard iteration in the 1950s. For a long time it remained merely a98

theoretical tool, and it was only nearing the turn of the century that it was fashioned99

into an effective computational tool [24].100

A remarkable correspondence between terms in the Magnus expansion and rooted,101

binary trees (elucidated in [24, equation (4.10)]) allows (6) to be written as102

Ω(t) =

∞∑
m=0

∑
τ∈Tm

∫ t

0

α(τ)Gτ (x) dx. (7)103

All terms in the expansion are identified with a rooted, binary tree in the set of Magnus104

trees, denoted ∪mTm. In this correspondence vertical lines correspond to integration105

and joining trees corresponds to commutation. Here is the four-step recipe.106

1. Tm is the set of Magnus trees with m vertical lines.107

2. The only member of T0 is s .108

3. τ → Gτ is a mapping from Magnus trees to matrices. Specifically, G• = A109

and, given m ≥ 1, any τ ∈ Tm can be represented in the form110

τ = s@@��sτ1 τ2

, τ1 ∈ Tm1 , τ2 ∈ Tm2 , m1 +m2 = m− 1. (8)111

In that case112

Gτ (t) =

[∫ t

0

Gτ1(x) dx,Gτ2(t)

]
.113

4. α : τ → Q is a mapping from Magnus trees to rational numbers. Specifically,114
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4 ARIEH ISERLES AND SHEV MACNAMARA

α(•) = 1 and, for any τ ∈ Tm for m ≥ 1, with Bs denoting Bernoulli numbers,115

τ = s@@��sη1 s@@��sη2 s@@��s sηs

p p p p
⇒ α(τ) =

Bs
s!

s∏
j=1

α(ηj).116

In general, this procedure elegantly expresses the Magnus expansion (7) as117

Ω(t) ss − 1

2
ss@@��

s ss
+

1

12
ss@@��

s ss
@@��
s ss

+
1

4
ss@@��

s ss@@��s ss

− 1

8
ss@@��

s ss@@��s ss@@��s ss

− 1

24
ss@@��

s ss
@@��
s ss@@��s ss

118

− 1

24
ssQQ �
�

s ss@@��s ss
@@��
s ss

− 1

24
ss@@��

s ss@@��s ss
@@��
s ss

+ · · · .119

2.1. A special property of isomerisation matrices. Recognising the follow-120

ing special property (confirmed by an easy matrix multiplication)121

[A[0], A[1]] = −2A[1] (9)122

usefully simplifies our Magnus expansion. This simple form of the commutator (9)123

is fundamental because the Magnus expansion is constructed as a linear combination124

of terms that can be obtained from A(t) = A[0] +A[1]f(t) using only integration and125

commutation. It thus resides in the free Lie algebra F generated by A[0] and A[1]. In126

light of (9), that F is127

F(A[0], A[1]) = Span {A[0], A[1]}. (10)128

In other words, although in general the Magnus expansion of the solution may re-129

quire many terms, the Magnus expansion of (2) for isomerisation is simply a linear130

combination of the form1 Ω(t) = σ[0](t)A
[0] + σ[1](t)A

[1]!131

2.2. A Magnus expansion of isomerisation. We now specialize the general132

form of the expansion (7) to our application of isomerisation (2), for which133

• A[0] + f(t)A[1].134

1Indeed, more is true. A Lie algebra g is solvable if there exists M ≥ 0 such that g[M ] = {0},
where g[0] = g and g[k+1] = [g[k], g[k]]. By (9), dimF [1] = 1 so it is a commutative algebra and
F [2] = {0}. The algebra is solvable!
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PSEUDOSPECTRA AND MASTER MAGNUS 5

By following the four step algorithm near (8), we find the first few terms in the series135

(6) and the corresponding trees are136

ss :

∫ t

0

A(x) dx = tA[0] +

∫ t

0

f(x) dxA[1],137

ss@@��
s ss

:

∫ t

0

∫ x1

0

[A(x2),A(x1)] dx2 dx1138

=

∫ t

0

[
x1f(x1)−

∫ x1

0

f(x2) dx2

]
dx1[A[0], A[1]]139

= 2

∫ t

0

(t− 2x)f(x) dxA[1]
140

and so on. Note we made use of (9) for the commutator to simplify the expressions.141

Moreover, a matrix commutes with itself so some terms are zero, such as142

ssQQ �
�

s ss@@��s ss
@@��
s ss

:

[
2

∫ t

0

(t− 2x)f(x) dxA[1],−2

∫ t

0

[f(t)− f(x)] dxA[1]

]
= O.143

We claim that for τ ∈ Tm, m ≥ 1, necessarily Gτ is a scalar multiple of A[1], i.e.144

Gτ (t) = στ (t)A[1].145

We already know from (9) and (10) that our Magnus expansion is of the form146

σ[0](t)A
[0] + σ[1](t)A

[1]. In view of the first few trees above, our claim immediately147

implies σ[0](t) = t. Having now found σ[0], it remains only to find σ[1], so to simplify148

notation, we drop the subscript from now on and let σ = σ[1].149

The proof of the claim is by induction. For m = 1 there is only one Magnus tree,150

τ = s@@��s ss
⇒ Gτ (t) = −2

∫ t

0

[f(t)− f(x)] dxA[1].151

Therefore στ (t) = −2
∫ t
0
[f(t)− f(x)] dx.152

Consider next m ≥ 2 and (8). If m1,m2 ≥ 1 then, by the induction assumption,153

both Gτ1 and Gτ2 are scalar multiples of A[1] and we deduce that Gτ ≡ O. There are154

two remaining possibilities: either m1 = 0, m2 = m − 1 or m1 = m − 1, m2 = 0. In155

the first case156

τ = s@@��ss τ2

, (11)157

so Gτ (t) =
[
tA[0] +

∫ t
0
f(x) dxA[1], στ2(t)A[1]

]
= tστ2(t)[A[0], A[1]] = −2tστ2(t)A[1],158

and στ (t) = −2tστ2(t).159

Finally, for m1 = m− 1 and m2 = 0, we have160

τ = s@@��s sτ1

(12)161
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6 ARIEH ISERLES AND SHEV MACNAMARA

for which Gτ (t) =
[∫ t

0
στ1(x) dxA[1], A[0] + f(t)A[1]

]
= −

∫ t
0
στ1(x) dx[A[0], A[1]]162

= 2
∫ t
0
στ1(x) dxA[1] and στ (t) = 2

∫ t
0
στ1(x) dx. This completes the proof of163

Theorem 2.1. The Magnus expansion for isomerisation (2) is of the form164

Ω(t) = tA[0] + σ(t)A[1] (13)165

for a function σ which has been described above in a recursive manner.166

Next, we will explicitly find the function σ of (13) in the Theorem, and thus find167

the Magnus expansion of isomerisation. We do not present all steps in the derivations168

to come. Theorem (2.1) and the steps leading to it were deliberately chosen for169

presentation partly because this quickly gives a good sense of the style of arguments170

needed in this area, while still being very accessible. The steps required in our other171

proofs follow a similar pattern, albeit more detailed.172

2.3. Constructing the trees. In general, when we want to find the Magnus173

trees, we can follow the four-step algorithm near (8). That always works. Often174

though, particular applications allow simplifications, as we now use our application175

to illustrate. The main question to be answered for this example is how to connect176

the coefficients α(τ) to the trees in the situations of (11) and of (12).177

The situation for (12) is trivial: since s = 1, we have178

α(τ) =
B1

1!
α(τ1) = −1

2
α(τ1).179

It is more complicated in the situation of (11). There we have180

τ2 = s@@��sη1 s@@��sη2 s@@��s sηs

p p p p
⇒ τ = s@@��ss s@@��sη1 s@@��sη2 s@@��s sηs

p p p p
181

Therefore182

α(τ2) =
Bs
s!

s∏
j=1

α(ηj), α(τ) =
Bs+1

(s+ 1)!

s∏
j=1

α(ηj).183

Hence, to summarize184

s = 1 : α(τ2) = −1

2
α(η1), α(τ) =

1

12
α(η1) = −1

6
α(τ2);185

s even : Bs+1 = 0 ⇒ α(τ) = 0;186

s ≥ 3 odd : Bs = 0 ⇒ α(τ2) = 0.187

This is a moment to comment on the mechanisms giving rise to some of our188

simplifications. Not all Magnus trees feature — with nonzero coefficients — in the189

expansion (7). There are two mechanisms that explain this: (i) The coefficient α(τ)190

is zero; or (ii) στ ≡ 0, because a matrix commutes with itself and τ originates in trees191

τ1 and τ2 such that Gτk(t) = στk(t)A[1], for k = 1, 2. There is an important difference192

between these two situations. For the first mechanism, while we do not include the193
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PSEUDOSPECTRA AND MASTER MAGNUS 7

tree τ in (7), we must retain it for further recursions. In the second mechanism,194

though, if a tree is zero then all its ‘children’ are zero too.195

The long-and-short is that in every Tm, m ≥ 1 we have 2m−1 trees (some with a196

zero coefficient). What we really have is a binary ‘super-tree’197

τ?
��

����

HH
HHHj

τ0 τ1






�

J
J
JĴ







�

J
J
JĴ

τ00 τ10 τ01 τ11

�
���

A
AAU

�
���

A
AAU

�
���

A
AAU

�
���

A
AAU

τ000 τ100 τ110 τ010 τ001 τ101 τ011 τ111

. . . and so on.

198

The rule is: Each move ‘left’ (i.e. in the 0 direction – the subscripts are binary strings)199

corresponds to ‘scenario’ (11); Each move ‘right’ corresponds to ‘scenario’ (12). Now200

that we have simplified our system for dealing with the trees, we are ready to proceed201

to find σ.202

2.4. An explicit formula for σ. As we have seen, except for T0, every τ ∈ Tm203

leads to an expression of the form στ (t)A[1]. For example, setting f̃(x) = xf ′(x),204

T1 : τ? = s@@��s ss
⇒ στ? = −2

∫ t

0

f̃(x) dx, α(τ?) = −1

2
.205

By continuing to find these trees, we see a pattern emerge: For any τ ∈ Tm, m ≥ 1,206

our στ (t) is of the form στ (t) =
∫ t
0
Kτ (t, x)f̃(x) dx for some kernel Kτ . To find the207

kernels, it is convenient for τ ∈ Tm, m ≥ 2, to work with208

τ = s@@��s ss
@@
ss p p p p s@@��

�s ss
@@
s sη

r
ti
m
es

︷ ︸︸ ︷

(14)209

Let r ∈ {0, 1, . . . ,m− 2} and η ∈ Tm−r. Straightforward computation shows that210

η  Kη(t, x), sη  ∫ t

x

Kη(y, x) dy, s@@��s sη

 2

∫ t

x

Kη(y, x) dy.211

This pattern motivates arguments by induction, for (14), that lead to212

Kτ (t, x) = 2(−2t)r
∫ t

x

Kη(y, x) dy, α(τ) =
Br+1

(r + 1)!
α(η). (15)213

We left out one exceptional case, namely τ = τ0. In that case the representation (14)214

is still true but η ∈ T0, so is not associated with a kernel. However, easy computation215

confirms that Kτ0
(t, x) = −2(−2t)m−1, α(τ0) = Bm

m! .216
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8 ARIEH ISERLES AND SHEV MACNAMARA

Now that we have the kernels, we sum them. Let Θm(t, x) =
∑
τ∈Tm

α(τ)Kτ (t, x),217

for m ∈ N. For example, Θ1(t, x) ≡ 1 and Θ2(t, x) = − 2
3 t + x. Next, let Θ(t, x) =218 ∑∞

m=1 Θm(t, x). After some recursion we are led to the Volterra-type equation219

t(1− e−2t)

1− 2t− e−2t
Θ(t, x) =

∫ t

x

Θ(y, x) dy − 1, (16)220

with solution221

Θ(t, x) = − exp

(
−4

∫ t

x

1− y − (1 + y)e−2y

(1− e−2y)(1− 2y − e−2y)
dy

)
1− 2x− e−2x

x(1− e−2x)
dξ. (17)222

Finally, we integrate the contribution of the individual στ s, scaled by α(τ), from223

each tree, for all Magnus trees: σ(t) =
∫ t
0

∑∞
m=0

∑
τ∈Tm

α(τ)στ (ξ) dξ =
∫ t
0
f(x) dx+224 ∫ t

0

∑∞
m=1

∑
τ∈Tm

α(τ)
∫ ξ
0
Kτ (ξ, x)f̃(x) dxdξ. Swapping integration and summation,225

we have σ(t) =
∫ t
0
f(x) dx +

∫ t
0
xf ′(x)

∫ t
x

Θ(ξ, x) dξ dx. Substituting (16), we attain226

our desired goal: σ(t) =
∫ t
0
f(x) dx+

∫ t
0
xf ′(x)

[
t(1−e−2t)
1−2t−e−2t Θ(t, x) + 1

]
dx, or227

σ(t) = tf(t) +
t(1− e−2t)

1− 2t− e−2t

∫ t

0

xf ′(x)Θ(t, x) dx. (18)228

Here we used integration by parts,
∫ t
0
xf ′(x) dx = tf(t) −

∫ t
0
f(x) dx. With (17),229

everything is now explicit. Combining σ in (18) with Theorem (2.1), we have now230

found the (complete!) Magnus expansion of isomerisation.231

Note that (18) is bounded for all t ≥ 0, because t(1 − e−2t)/(1 − 2t − e−2t) is232

bounded2 for all t ∈ R. As a consequence, the Magnus series (13) for isomerisation233

converges for every t ≥ 0. That is a significant finding for isomerisation, because in234

general the Magnus series is only convergent for small times.235

There is further significance. Our own exposition of the Magnus expansion here236

also explains the intriguing numerical evidence appearing in earlier work that time-237

steps larger than the Moan–Niesen sufficient condition for convergence of the Magnus238

expansion can be taken while still maintaining good accuracy with Magnus-based nu-239

merical methods [27, Figure 1]. That good experience of taking larger time steps with240

Magnus-based methods has previously been reported in numerous numerical studies241

in the context of the Schrödinger equation, and was eventually carefully explained by242

Hochbruck and Lubich [23]. We are also seeing it here in a novel context of master243

equations, although our explanation via the Magnus expansion shows that same good244

experience in this novel context is for completely different reasons.245

2.5. A role for automorphisms. Theorem (2.1) and (18) tell us the answer246

to the question of the matrix Ω(t) in the Magnus expansion. Ultimately, we want the247

solution (5). For that, we need the exponential, exp(Ω(t)). This is an opportunity to248

show how automorphisms can simplify exponentials arising in master equations.249

Let P be the (N + 1)× (N + 1) persymmetric identity: Pi,j = 1 if j = N − i, and250

is zero otherwise. Note P ∈ O(N + 1)∩ Sym(N + 1) so P is an orthogonal involution:251

P−1 = P> = P and P 2 = I. Matrix multiplication confirms the useful properties252

PA[0]P = A[0], PA[1]P = −A[1]. (19)253

2Actually, it is analytic.
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PSEUDOSPECTRA AND MASTER MAGNUS 9

Being an orthogonal involution, P defines an inner automorphism on gl(N + 1),254

namely ι(B) = PBP for B ∈ gl(N + 1). Following [36], we let k = {B ∈ gl(N + 1) :255

ι(B) = B} and p = {B ∈ gl(N + 1) : ι(B) = −B} be the fixed points and anti-fix256

points of the automorphism ι. Here is a list of the three main features of our general257

strategy. First, in the Generalised Cartan Decomposition, gl(N + 1) = k ⊕ p. That258

is, given B ∈ gl(N + 1), we split it into 1
2 [B+ ι(B)] ∈ k and 1

2 [B− ι(B)] ∈ p. Second,259

here k is a subalgebra of gl(N + 1), while p is a Lie triple system: [k, k], [p, p] ⊆ k and260

[k, p], [p, k] ∈ p. Third, letting B = k+ p where k ∈ k and p ∈ p, we have (and we will261

apply this form to our example momentarily)262

etB = eXeY ,263

where X ∈ k, Y ∈ p have the Taylor expansion264

X = tp− 1

2
t2[p, k]− 1

6
t3[k, [p, k]] + t4

(
1

24
[p.[p, [p.k]]]− 1

24
[k, [k, [p, k]]]

)
(20)265

+ t5
(

7

360
[k, [p, [p, [p, k]]]]− 1

120
[k, [k, [k, [p, k]]]]− 1

180
[[p, k], [p, [p, k]]]

)
266

+ t6
(
− 1

240
[p, [p, [p, [p, [p, k]]]]] +

1

180
[k, [k, [p, [p, [p, k]]]]]267

− 1

720
[k, [k, [k, [k, [p, k]]]]] +

1

720
[[p, k], [k, [p, [p, k]]]]268

+
1

180
[[p, [p, k]], [k, [p, k]]]

)
+O

(
t7
)
,269

Y = tk − 1

12
t3[p, [p, k]] + t5

(
1

120
[p, [p, [p, [p, k]]]] +

1

720
[k, [k, [p, [p, k]]]] (21)270

− 1

240
[[p, k], [k, [p, k]]]

)
+O

(
t7
)
.271

Now, let k = A[0] and p = A[1] so by (9), [p, k] = 2p. Look again at (20) and272

(21). Each term necessarily contains the commutator [p, k]. Suppose that, except for273

this commutator, the term contains at least one additional p. Then, necessarily, it is274

zero. The reason is there must be a sub-term of the form [p, [k, [k, [. . . , [k, [p, k]] · · · ]]]].275

Beginning from the inner bracket, we replace [p, k] by 2p, so [k, [p, k]] = −4p, and so276

on, until we reach the outermost commutator: up to a power of 2, it will be [p, p] = 0,277

proving our assertion. We deduce that the only terms surviving in (20), except for the278

first, are of the form (where in this line we are also introducing an adjoint operator279

notation adr+1
k , to simplify expressions with nested commutators)280

[

r≥0 times︷ ︸︸ ︷
k, [k, · · · , k, [p, k]]] = −adr+1

k p = (−1)r2r+1p281

so282

X = −
∞∑
r=1

tr

r!
adr−1k p =

1− e−2t

2
p. (22)283

Insofar as Y is concerned, things are even simpler. While p features an odd284

number of times in X (because X ∈ k), Y ∈ p implies that p features there an even285

number of times. Except for the leading term, it features at least twice, and each286

such term must vanish, so287

Y = tk. (23)288
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Of course, what we really need to compute is exp(Ω(t)) = exp(tA[0] +σ(t)A[1]) =289

etB = eXeY . For that, we keep (23) intact (hence Y = tA[0]), but t in (22) need be290

replaced by σ(t)/t (which is not problematic since σ(0) = 0), i.e.291

X =
1

2

[
1− exp

(
−2σ(t)

t

)]
A[1].292

Thus automorphisms have simplified the required exp(tA[0] + σ(t)A[1]) to computing293

exponentials of A[0] and of A[1] separately. Those come from the spectral decomposi-294

tion, which we set about finding next.295

3. Spectra and pseudospectra of isomerisation matrices.296

3.1. Spectral decomposition of A[0]. We wish to determine the eigenvalues297

and eigenvectors of A[0]. They are essentially given by [10, Theorem 2.1]. Here we298

provide an alternative proof and a formula for the eigenvectors.299

Theorem 3.1. The spectrum of A[0] is300

{−2r : r = 0, 1, . . . , N}.301

Moreover, an (unnormalised) eigenvector corresponding to the eigenvalue −2r, for302

r = 0, . . . , N , is303

vm = (−1)m
(
r

m

)
2F1

[
−N + r,−m;
r −m+ 1;

− 1

]
, m = 0, . . . , r, (24)304

vm = (−1)r
(
N − r
m− r

)
2F1

[
−N +m,−r;
m− r + 1;

− 1

]
, m = r, . . . , N. (25)305

where kF` is the generalized hypergeometric function.306

Proof. By definition, λ is an eigenvalue of A[0] and v 6= 0 a corresponding eigen-307

vector if and only if308

(N + 1−m)vm−1 − (N + λ)vm + (m+ 1)vm+1 = 0, m = 0, . . . , N, (26)309

with the boundary conditions v−1 = vN+1 = 0. One way to arrive at the theorem is310

to let311

V(t) :=

N∑
m=0

vmt
m

312

and establish V = (1 + t)N+λ/2(1 − t)−λ/2 using (26). Then impose conditions on λ313

to ensure V is a polynomial of degree N . The exact details of the eigenvectors v can314

come by expanding (1 + t)N+λ/2(1− t)−λ/2.315

Incidentally, (24)–(25) reveal symmetry. Denoting the eigenvector corresponding316

to the eigenvalue −2r by v[r], we have: v
[r]
N−m = (−1)m−rv

[N−r]
m , m = 0, . . . , N.317

What else can we say about the eigenvector matrix V = [v0],v[1], . . . ,v[N ]]?318

Computer experiments seem to demonstrate the remarkable result V 2 = 2NI, hence319

V −1 = 2−NV (27)320

and this is true: for brevity we omit the proof. More importantly, having the spectral321

decomposition and having V −1, we now have the exponential, exactly:322

etA
[0]

=
1

2N
V Λ(t)V, where Λ(t) = diag

(
1, e−2t, e−4t, · · · , e−2Nt

)
.323
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It is tempting to compute matrix exponentials via diagonalization. In general, this is324

not necessarily a good numerical choice, even in situations where the spectral decom-325

position is cheaply available. An issue is that the condition number of the eigenvector326

matrix can be very large, as happens here3 — κ(V ) grows quickly with N . Also,327

expressions such as e−2Nt are at risk of underflow error.328

3.2. A Jordan form of A[1]. Unlike A[0], the matrix A[1] is not diagonalizable.329

It can still be usefully factorized in330

Theorem 3.2. The Jordan form of A[1] is331

A[1] = WEW−1, (28)332

where E is the standard shift matrix, with Ei,j = 1 if j = i+ 1 and is zero otherwise,333

while W is a lower-triangular matrix,334

Wm,n =


0, m ≤ n− 1,

(−1)m−n

n!

(
N − n
m− n

)
, m ≥ n,

m, n = 0, . . . , N.335

An immediate consequence of this Jordan form (28) is that A[1] is nilpotent.336

Proof. The Jordan form (28) is equivalent to A[1]W = WE and the latter is easier337

to check. The matrix WE is easy to find because E is the shift matrix: each column338

of W is shifted rightwards, the Nth column disappears, and the zeroth column is339

replaced by zeros, so340

(WE)m,n =

{
0, n = 0,
Wm,n−1, n = 1, . . . , N.

341

We proceed to evaluate A[1]W and demonstrate that it is the same.342

For every m,n = 0, . . . , N (and with A
[1]
0,−1 = A

[1]
N,N+1 = 0) we have343

(A[1]W )m,n = A
[1]
m,m−1Wm−1,n +A[1]

m,mWm,n +A
[1]
m,m+1Wm+1,n.344

For n ≥ m + 2 this obviously vanishes. For n = m + 1, A
[1]
m,m+1Wm+1,m+1 = 1

m! =345

Wm,m is all that survives, and for n = m346

A[1]
m,mWm,m +A

[1]
m,m+1Wm+1,m = −mN + 1−m

m!
=

{
0, m = 0,
Wm,m−1, m ≥ 1.

347

Finally, for n ≤ m− 1 all three terms are nonzero and their sum is348

(−N +m− 1)
(−1)m−1−n

n!

(
N − n

m− 1− n

)
+ (N − 2m)

(−1)m−n

n!

(
N − n
m− n

)
349

+ (m+ 1)
(m+ 1− n)

n!

(
N − n

m+ 1− n

)
350

=
(−1)m−nn(N − n+ 1)!

n!(m− n+ 1)!(N −m)!
=

{
0, n = 0,
Wm,n−1, n ≥ 1

351

3In hindsight, such poor conditioning of the eigenvector matrix was to be expected because
A[0] exhibits a humongous pseudospectrum. The best case scenario is when eigenvectors form an
orthogonal basis (consistent with our intuition from numerical linear algebra that orthogonal matrices
have the ideal condition number of 1), as happens in the real symmetric case. Pseudospectra measures
the departure of a nonnormal matrix from that good orthogonal case. Our example has eigenvectors
in Theorem 3.1 that are far from orthogonal.
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Fig. 1. An ‘almond eye:’ Pseudospectrum [42] of a 500 × 500 example of the A[0] matrix,
defined in (3), as computed by Eigtool [45]. Contours of the minimum singular value, smin(zI−A),
are displayed on a log scale.

and we are done.352

Next, we set about applying our newly found Jordan form to find the matrix353

exponential. Let C = diag (0!, 1!, 2!, · · · , N !) be a diagonal matrix and354

Zm,n =


0, m ≤ n− 1,

(−1)m−n
(
N − n
m− n

)
, m ≥ n,

m, n = 0, . . . , N.355

As is trivial to verify, W = ZC−1, so A[1] = ZC−1ECZ−1. Equally trivial to verify356

is that Z−1 is given by357

Z−1 = Z̃m,n :=


0, m ≤ n− 1,(
N − n
m− n

)
, m ≥ n,

m, n = 0, . . . , N.358

Consequently, A[1] = ZC−1ECZ̃. We have proved359

Theorem 3.3. The matrix exponential is, in an explicit form,360

etA
[1]

= ZC−1etECZ̃. (29)361

3.2.1. Evaluating the exponential via (29). Let u ∈ RN+1 (again, indexed362

from zero). We wish to compute y = Z̃u. A näıve approach would require O
(
N2
)

363

flops but herewith an algorithm that accomplishes this in just O
(
N2
)

additions, with-364

out requiring multiplications!365

For reasons that become clear, it is useful to indicate N explicitly in the notation,366

i.e. y[N ] = Z̃ [N ]u[N ]. Start by observing that367

y[N ]
m =

m∑
n=0

(
N − n
m− n

)
un, m = 0, . . . , N368
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Fig. 2. The ‘athletics track:’ Pseudospectrum [42] of the A[1] matrix, defined in (3), as com-
puted by Eigtool [45]. Top: 30× 30. Bottom: 500× 500.

(no need to place superscripts on un). Therefore, for m = 0, . . . , N − 1,369

y[N ]
m + y

[N ]
m+1 =

m∑
n=0

(
N − n
m− n

)
un +

m+1∑
n=0

(
N − n

m+ 1− n

)
un =

m+1∑
n=0

(
N + 1− n
m+ 1− n

)
un370

= y
[N+1]
m+1 .371

Rewrite this as372

y[N ]
m = y

[N−1]
m−1 + y[N−1]m , m = 0, . . . , N − 1 (30)373

(in the case m = 0 of course y
[N ]
0 = y

[N−1]
0 = u0, so the above is consistent with374

y
[N ]
−1 = 0.) Now proceed from y

[0]
0 = u0 and then, for M = 1, 2, . . . , N , add375

y[M ]
m = y

[M−1]
m−1 + y[M−1]m , m = 0, . . . ,M − 1,376

y
[M ]
M =

M∑
n=0

un = y
[M−1]
M−1 + uM .377

and we are done.378

Of course, similar reasoning applies also to a product y = Zu. The only difference379

vis-á-vis (30) is that now y
[N ]
m = y

[N−1]
m − y[N−1]m−1 , m = 0, . . . , N − 1, therefore the380

recursion steps are381

y[M ]
m = y[M−1]m − y[M−1]m−1 , m = 0, . . . , N − 1,382

y
[M ]
M =

M∑
m=0

(−1)M−nun = −y[M−1]M−1 + uN .383
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Having dealt with the Z̃u and the Zu components, we are left only with the384

C−1etEC portion of (29). We address that now. It is trivial that385

(etE)m,n =


tn−m

(n−m)!
, m = 0, . . . , n,

0, m = n+ 1, . . . , N.

386

Therefore (cf. (29))387

(C−1etEC)m,n =


(
n

m

)
tn−m m = 0, . . . , n,

0, m = n+ 1, . . . , N.

388

Let us pause to reflect on the exact exponentials that we have just found. We389

expect the solution to our model of isomerisation to be a binomial distribution [25].390

In general, that means we expect a linear combination of the columns of the solution391

matrix exp(Ω(t)) to be a binomial distribution, when the weights in that linear com-392

bination likewise come from a binomial distribution. Perhaps the simplest example is393

that the first column of the solution of (2) must be a binomial distribution.394

As an example, set e0 = (1, 0, . . . , 0)> and compute the leading column, eqA
[1]

e0 =395

Z(C−1eqEC)Z̃e0. Note that (Z̃e0)m = Z̃m,0 =
(
N
m

)
. So [(C−1eqEC)Z̃e0]m =396 (

N
m

)∑N−m
n=0

(
N−m
n

)
tn =

(
N
m

)
(1 + q)N−m and after some simplifications,397

(eqA
[1]

e0)m = [Z(C−1eqEC)Z̃e0] = (−1)m
(
N

m

)
qm(1 + q)N−m.398

We are seeing on the right that the binomial distribution survives the first term in399

X(t) = etA
[0]

eqA
[1]

e0, where q = σ(t)/t. Thus, the explicit forms of our exponentials400

that we have derived allow us to confirm the ‘binomial stays binomial’ theorem [25].401

3.3. Pseudospectra. Having established exact analytic formulæ for spectral402

decomposition, we are now in a good position to compare exact spectra to numerical403

estimates of the pseudospectra [42]. Two striking contrasts between the numerically404

computed eigenvalues and the exact eigenvalues are worth pointing out.405

First, we proved the matrix A[1] is nilpotent: exact eigenvalues are precisely zero.406

Nonetheless, A[1] has an enormous pseudospectrum, and standard numerical methods407

lead to wrongly computed non-zero eigenvalues of a large magnitude.408

Second, we found the eigenvalues of A[0] in Theorem 3.1, and they are purely real.409

(Indeed, the same ideas described by Trefethen and Embree [42] also show our A[0] is410

similar to a real symmetric matrix, so even before Theorem 3.1, we knew eigenvalues411

had to be real.) However, standard numerical methods to compute the eigenvalues412

wrongly produce complex numbers (!) with very large imaginary parts.413

The reason for the numerical errors in computing the eigenvalues is that the414

eigenvalues of these matrices are very sensitive to small perturbations. That phe-415

nomenal sensitivity is often characterised by the pseudospectra. For ε > 0, the ε-416

pseudospectrum is the region of the complex plane, z ∈ C, where the norm of the417

resolvent is large: ||(zI −A)−1|| > 1/ε. In the 2-norm, this is equivalent to the region418

where the minimum singular value, smin, is small: smin(zI −A) < ε.419

The pseudospectrum of the convection-diffusion operator is known to be signifi-420

cant [38], and master equations are closely related to convection-diffusion, suggesting421

they will also exhibit interesting pseudospectra. Indeed, the matrices that arise in our422
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Fig. 3. The ‘seed pod:’ Pseudospectrum [42] of a 1513×1513 finite section of the singly infinite
matrix associated with a totally asymmetric exclusion process (TASEP) with 6 particles beginning
in a ‘step’ initial configuration [8, Figure 9, q=0], as computed by Eigtool [45].

applications of master equations to isomerizaiton exhibit an humongous pseudospec-423

tra. They are examples of the class of twisted Toeplitz matrices and operators, which424

have recently been understood to exhibit a distinctive pseudospectra, captivating more425

general interest [41].426

Figure 1 displays the pseudospectrum for A[0] and Figure 2 displays the pseu-427

dospectrum for A[1]. These are numerical estimates based on the algorithms underly-428

ing eigtool. In future work it may be possible to analytically bound the region of the429

complex plane where the pseudospectra is large. For example, the pseudospectra of430

the convection-diffusion operator has been shown to be approximately bounded by a431

parabola [38], and such knowledge of this bounded region has recently been exploited432

to develop effective contour integral methods based on inverse Laplace transform tech-433

niques. Usually the idea of such methods is to choose a contour that stays away from434

the eigenvalues. That works well for real symmetric matrices. But if the operator has a435

significant pseudospectrum, then more is required: the contour must stay safely away436

from regions where the resolvent ||(zI − A)−1|| is large. The figures here show some437

diversity in pseudospectra. This might inspire research into a computational method438

that is adaptive: instead of requiring detailed knowledge of the pseudospectrum in439

advance, we require computational methods that adapt the contour of integration so440

as to control ||(zI −A)−1|| to be, say, O(1).441

4. Discussion. Master equations and especially their applications will continue442

to occupy new directions in scientific computation for some time [33]. There is al-443

ways the challenge of high dimensions, for instance. Here is an incomplete list of444

contemporary topics where activity is growing fast.445

4.1. Matrix functions of graph Laplacians. A general framework for models446

of biochemical kinetics has recently been elucidated in terms of graph Laplacians [16].447

A simple example of a graph Laplacian on a line of nodes appears in [39], and, like448

the matrix exponential, it has been shown that a Mittag-Leffler function [15] of a449
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graph Laplacian matrix is also a stochastic matrix [32]. All of this suggests research450

into non-Markovian generalisations of Gillespie-like stochastic simulation algorithms451

allowing waiting times not exclusively drawn from an exponential distribution [30].452

It is known that if we generalise (4) to a Caputo fractional derivative of order453

0 < α < 1, dα/dtα, then the matrix exponential is generalised to the Mittag-Leffler454

function Eα, so that (4) becomes dαp/dtα = Ap with solution p(t) = Eα(tαA)p(0).455

This is assuming the coefficient matrix is constant. However, if we allow a time-varying456

matrix, A = A(t), and generalise (5) to dαp/dtα = A(t)p, then an important open457

question arises: how do we generalise the Magnus expansion of the solution? There458

is certainly some work in the literature on discrete constructions of continuous-time459

random walks and their generalised master equations aimed at accommodating time-460

varying rates. Nevertheless, the authors are not aware of a fractional generalisation of461

the Magnus expansion. Given the current interest in fractional processes and processes462

with memory, such a generalisation of the Magnus expansion would seem a timely463

contribution, and would presumably also suggest a fractional generalisation of the464

Baker–Campbell–Hausdorff formula as a special case.465

4.2. Products of matrix exponentials. When matrices commute, a product466

of exponentials has an especially simple form. Evans, Sturmfels & Uhler recently467

showed how to successfully exploit this property for master equations governing birth-468

death processes [12].469

This computational approach has the potential for wider applications to master470

equations where tensor structures involving shift operators often arise. So let us revisit471

(2) to find, explicitly, solutions (without Wilhelm Magnus and without Sophus Lie)472

in a way that generalises and suggests connections to products of exponentials. To473

generalise (2), consider linearly independent matrices, A and B, such that474

[A,B] = aA+ bB (31)475

for some a, b ∈ R, not both zero, and the differential equation476

X ′ = [α(t)A+ β(t)B]X, t ≥ 0, X(0) = I. (32)477

Here α and β are given scalar functions.478

We wish to prove the solution of (32) can be expressed in the form479

X(t) = eρA(t)AeρB(t)B , (33)480

where ρA and ρB are scalar functions obeying a certain ODE. Obviously, ρA(0) =481

ρB(0) = 0.482

Assume (without loss of generality) that b 6= 0. Differentiating (33) and substi-483

tuting into (32), we have X ′ = eρAA(ρ′AA + ρ′BB)eρBB = (αA + βB)eρAAeρBB and,484

multiplying on the right by e−ρBB , we have485

(ρ′A − α)AeρAA + ρ′BeρAAB − βBeρAA = O. (34)486

A proof by induction using (31) shows487

BAm = (A+ bI)mB − a

b
A[Am − (A+ bI)m], m ∈ Z+. (35)488

Consequently, BeρAA =
∑∞
m=0

ρmA
m!BA

m =
∑∞
m=0

ρmA
m! (A+bI)mB− a

bA
∑∞
m=0

ρmA
m! [A

m−489

(A+bI)m] = ebρAetAB− a
b (1−ebρA)AeρAA. Now substitute into (34), (ρ′A−α)AeρAA+490
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ρ′BeρAAB − βebρAetAB + a
bβ(1 − ebρA)AetA. Separating between AeρAA and eρAAB491

above, we obtain two ODEs for ρA and ρB ,492

ρ′A = α− a

b
β(1− ebρA), ρA(0) = 0, (36)493

ρ′B = βebρA , ρB(0) = 0, (37)494

reducing the computation of ρA to a scalar ODE and of ρB to quadrature.495

Specialising to master equations, α ≡ 1, β = f , a = 0 and b = −2, so (36)496

becomes ρA(t) = t and ρB(t) =
∫ t
0

e−2τf(τ) dτ. Putting (37) in (36), we obtain ρ′A =497

α− a
bβ+ a

b ρ
′
B . Multiplication by b and integration implies the integral bρA(t)−aσ(t) =498

b
∫ t
0
α(τ) dτ − a

∫ t
0
β(τ) dτ.499

Can all this be (further) generalised, beyond two exponentials? We now suggest500

the answer to this question is affirmative although applications form the subject of501

ongoing research. Indeed what we have done thus far is to exemplify precisely the502

Wei–Norman approach of expressing the solution of a linear ODE using canonical503

coordinates of the second kind [44]. Specifically, let A : R+ → g, where g is a Lie504

algebra, dim g = d, and consider the ODE505

X ′ = A(t)X, t ≥ 0, X(0) = I. (38)506

Let P = {P1, P2, . . . , Pd} be a basis of g. Wei & Norman [44] prove that for sufficiently507

small t > 0 there exist functions g1, g2, . . . , gd such that508

X(t) = eg1(t)P1eg2(t)P2 · · · egd(t)Pd . (39)509

This is the situation we have in (2) or, with greater generality, in (32): P1 = A,510

P2 = B and, because of (31), the dimension of the free Lie algebra spanned by A and511

B is d = 2. Interestingly enough, this example does not feature in [44].512

Coordinates of the second kind have been used extensively in the theory of Lie-513

group integrators [24] where it always followed an organising principle that also shows514

promise for master equations. Specifically, the assumption was – unlike our simple515

d = 2 example – that d is large (e.g. that g is the special orthogonal group of matrices516

SO(n), say, or the special linear group of matrices SL(n)) and the basis P selected so517

that it is easy to evaluate the exponentials exp(gkPk) (e.g., using root space decom-518

position) [6].519

4.3. Pseudospectra of master equations. This is a subject worthy of more520

attention. For example, we have shown here that even simple isomerisation mod-521

els exhibit a highly non-trivial pseudospectra. We conjecture that Michaelis–Menten522

enzyme kinetics and a whole host of other important models in biology also exhibit523

significant pseudospectra [30, 33]. In the usual model of Michaelis–Menten kinetics, a524

catalytic enzyme E reversibly forms a complex intermediate C with a substrate S, that525

is eventually irreversibly converted to a product P , viz. S +E ↔ C → P +E. There526

is a need for visualisations of the pseudospectrum of such Michaelis-Menten kinetics,527

for example. Another open question is how the pseudospectrum of the usual model528

compares to the pseudospectrum of a more reasonable model suggested by Gunawar-529

dena to repent for the “Original Thermodynamic Sin” of including the irreversible530

reaction C → P + E [17].531

As a demonstration of this topic going far beyond merely the isomerisation ex-532

amples that we have studied here, we have also computed here in Figure 3 the pseu-533

dospectrum of the totally asymmetric exclusion process (TASEP) [8, Figure 9]. If all534
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that is observed in the picture of the pseudospectrum is merely some ‘ε−balls,’ centred535

around each eigenvalue, and well-separated, then the situation is not interesting. For536

that is simply the picture we would expect for a well-behaved real symmetric matrix537

anyway. To be interesting, more complex behaviour is required. It is too early to tell538

for the TASEP, but our preliminary numerical picture here in Figure 3 suggests it539

will turn out to be worthwhile pursuing. The figure depicts the case with six particles540

and we can already discern the beginnings of some interesting interactions emerging.541

Such examples of TASEP models have found applications to single molecule studies542

of RNA polymerase and protein synthesis. More generally exclusion processes have543

witnessed a renaissance of mathematical interest, partly in relation to exactly inte-544

grable probabilistic systems, the Kardar–Parisi–Zhang (KPZ) universality class, and545

the KPZ stochastic partial differential equation [7, 18].546

Random Matrix Theory [11] connects to master equations. For example, an impor-547

tant limiting distribution associated with the TASEP master equation is the famous548

Tracy–Widom distribution for the biggest eigenvalue of a large, random Hermitian549

matrix [7]. Although less in the sense of the chemical master equation (at least so550

far but that could change) and more in the physicists’ sense of Wigner and Freeman551

Dyson, random matrix theory is also playing a role in recent studies of random graph552

Laplacians. The resulting distributions are very similar to the standard Gaussian553

ensembles but the special algebraic properties of graph Laplacians do lead to peculiar554

discrepancies that persist for large matrix dimension N [40]. Interestingly, the Matrix-555

Tree Theorem, which gives a formula for the stationary distribution (and confirmation556

of positivity) of such master equations in terms of sums of positive off-diagonal entries,557

seems yet to be exploited in this random matrix context.558

4.4. The Magnus expansion and Kurtz’s random time-change repre-559

sentation. Denote the forward rate by αf (x(s), s) = c1(s)n1 and the backward rate560

by αb (x(s), s) = c2(s)n2. Here n1 and n2 are the number of molecules of S1 and S2,561

respectively. The Kurtz random time-change representation [28] of the sample paths562

corresponding to our master equation (2) with initial state x(0) is563

x(t) = x(0) +

(
−1
+1

)
Y1

(∫ t

0

αf (x(s), s) ds

)
+

(
+1
−1

)
Y2

(∫ t

0

αb (x(s), s) ds

)
.564

At absolute time t, this stochastic equation has two internal time frames: Tj =565 ∫ t
0
αj(x(s), s)ds, j = 1, 2. Here, Y1 and Y2 are independent, unit-rate Poisson pro-566

cesses but dependencies arise through the rates in these internal time-frames. Thus567

Kurtz and Magnus offer two different representations of the same solution, when568

rates are time-varying. Although much work has appeared on each representation569

separately, there has been almost no work exploring connections. Such connections570

would perhaps allow probabilistic interpretations of the Magnus expansion.571

More generally time-varying rates are one way to model extrinsic noise, so meth-572

ods that can accommodate time-varying rates, such as Magnus expansions described573

here, may find wider applications [19, 21]. Exploring the robustness of master equa-574

tions to perturbations, including time-varying perturbations, might bring together575

methods from Magnus-like approaches, pseudospectral studies, and perhaps even576

stochastic operator approaches [11].577

Kurtz’s representation has also inspired multi-level Monte Carlo (MLMC) meth-578

ods to be adapted from the setting of SDEs to the setting of master equations, and in579

turn this has led to MLMC methods for estimating the sensitivity [3]. It will be inter-580

esting to see if adjoint methods for sensitivity estimates in the setting of continuous581

This manuscript is for review purposes only.



PSEUDOSPECTRA AND MASTER MAGNUS 19

SDEs such as the methods for which Giles and Glasserman won Risk ‘Quant-of-the-582

Year’ [13] are likewise adaptable to the discrete setting of master equations [27].583

4.5. Preserving positivity. Moler and Van Loan discuss more than nineteen584

dubious ways for computing the matrix exponential [35]. When such methods are585

applied to the important class of graph Laplacian matrices — as arise in all master586

equations and Markov processes, and for which the matrix exponential is provably587

nonnegative and indeed a stochastic matrix — a fundamental question is: do these588

numerical methods preserve nonnegativity? For example, does MATLAB’s expm func-589

tion preserve positivity when applied to a graph Laplacian matrix? This question590

seems especially ripe for research in relation to Krylov-like approximations, Padé-591

like approximations with scaling and squaring, and recent methods of Al-Mohy and592

Higham (which are currently the basis of expm in MATLAB) [1, 2].593

We found the complete Magnus expansion for our isomerisation model. Being594

the full and exact Magnus expansion, it respects the original properties of the system,595

such as maintaining positivity. Numerical methods in other contexts are often derived596

by truncation of the Magnus expansion, to a certain prescribed order. In general,597

truncation of the Magnus expansion does not result in the same properties as a graph598

Laplacian, so positivity is no longer guaranteed. (Although if we are willing to settle599

for second-order accuracy, then it is possible to truncate so as to maintain these600

desirable properties.) The issue is that the commutator of two graph Laplacians is601

not in general a graph Laplacian; it may have negative off-diagonal entries. This602

observation is motivating ongoing research whose roots are in geometric numerical603

integration — a subject usually concerned with maintaining equalities — to allow the604

preservation of inequalities, such as preserving positivity.605

More generally it has been known for a long time in the context of ODEs that606

standard numerical methods such as Runge–Kutta methods, usually do not preserve607

positivity unless they are of first order accuracy [5]. This also presents a contemporary608

challenge for Monte Carlo simulation of the sample paths of master equations: the609

widely used tau-leap methods and other analogues of the Euler method or of the610

Euler–Maruyama method, cannot be guaranteed to preserve positivity. This challenge611

is motivating much current research appearing on approximations that are able to612

maintain positivity in these settings, as exemplified in the Kolmogorov Lecture at the613

most recent World Congress In Probability and Statistics [29].614

5. Conclusions. Pafnuty Chebyshev was an academic parent of Markov and615

today the world has come full circle with Chebyshev polynomials being a useful basis616

for numerical solvers of Markovian master equations in the quantum world [4]. Here617

the adjective ‘master’ is not used in the sense of an overlord; rather it is in the sense618

of an ensemble averaging principle that emerges at larger scales from the collective619

behaviour of the mob of microscopic particles, each following their own random walk.620

Edelman and Kostlan take such a walk on “the road from Kac’s matrix to Kac’s621

polynomials,” and our own matrix examples A[0] and A[1] of (3) also lie at the end622

of that road, being almost the “Kac matrix” (as named by Olga Taussky and John623

Todd) and “anti-Kac matrix” [10]. These matrices have served us well as wonderful624

running examples to illustrate new directions in master equation research. Kac did625

not foresee our applications to isomerisation, nor the way those isomerisation master626

equations are so naturally amenable to Magnus expansions. Similarly, these and other627

applications that we have surveyed, such as the inchoate subject of the pseudospectra628

of master equations, no doubt have a bright future that we have yet to fully imagine.629
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