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Abstract

Fast approximation of functions on the real line is a key to a long list of
applications, not least to the use of spectral methods for PDEs with Cauchy
boundary conditions: our particular interest is in equations of quantum mechan-
ics, when the solution behaves like a linear combination of wave packets. A
longstanding goal is to approximate such functions with either Hermite polyno-
mials or Hermite functions. In this paper we present such an algorithm, yet claim
that Hermite expansions are unsuitable in the case of wave packets. Instead we
recommend stretched Fourier expansions, an intermediate stage in our Hermite
expansion algorithm. Although functions under consideration are not periodic,
we prove that stretched Fourier expansions converge at a spectral speed once the
‘window’ of approximation is suitably chosen.

1 Motivation

Spectral methods are an extraordinarily effective tool in the computation of partial
differential equations (PDEs) and the reason is twofold. Firstly, orthogonal expansions
of sufficiently smooth functions converge very rapidly. Given for the sake of simplicity
a linear PDE Lu = f (where L contains space, and perhaps also time, derivatives)

we approximate u ≈
∑n−1
m=0 amϕm, where Φ = {ϕm}m≥0 is a dense orthogonal system

in the underlying Hilbert space H. The unknowns are a0, . . . , an−1 and they can
be expressed as a solution of an n × n linear algebraic system. Because of rapid
convergence, we can choose relatively modest value of n, rendering the solution fairly
affordable.

Secondly, for several important orthogonal systems Φ and an arbitrary h ∈ H, we
can compute the first n coefficients ĥm, such that h =

∑∞
m=0 ĥmϕm, in O(n log2 n)

operations.
The most important example is H = L2

per[−π, π], the set of square-integrable
functions in [−π, π] with periodic boundary conditions. In that case, setting ϕ2m(x) =
eimx and ϕ2m+1(x) = e−imx, m ≥ 0 (in other words, a Fourier expansion) we can
compute the first n coefficients with Fast Fourier Transform (FFT) in O(n log2 n)
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operations. This can be easily extended to expansions in Chebyshev polynomials Tm,
m ≥ 0, whose closure is L2[−1, 1], thereby allowing for Dirichlet boundary conditions.
Other polynomial expansions are based in the main on first expanding in Chebyshev
polynomials, subsequently converting to another polynomial orthogonal basis: in order
of increased generality Legendre polynomials (Hale & Townsend 2016, Iserles 2011,
Potts, Steidl & Tasche 1998), ultraspherical polynomials (Cantero & Iserles 2012)
and Jacobi polynomials (Wang & Huybrechs 2014). (One should also mention an
alternative means of computing a Legendre expansion in O

(
n(log2 n)2

)
operations

using the fast multipole method (Alpert & Rokhlin 1991).)
The main purpose of this paper is to extend the realm of orthogonal systems whose

first n coefficients can be computed rapidly to the real line. Many PDEs are originally
stated in Rd with Cauchy boundary conditions. Yet, for the purpose of numerical
solution they are often restricted to a compact domain Ω ⊂ Rd, a procedure that
requires a great deal of ingenuity: Dirichlet-to-Neumann maps, absorbing or reflecting
boundary conditions etc. In particular, we are motivated by equations of quantum
mechanics in the semiclassical regime. A typical example (and the primary motivation
for this work) is the time-dependent linear Schrödinger equation

∂u

∂t
= iε∆u− iε−1V (x, t)u, (1.1)

where u = u(x, t) with x ∈ Rd, t ≥ 0 and ε > 0 is a small parameter. The equation
(1.1) describes the motion of a particle in an electric field governed by the potential V .
Solving (1.1), the domain is usually restricted to [−a, a]d, accompanied by periodic
boundary conditions, and the standard justification rests upon three assumptions.
Firstly, quantum systems typically persist in a semiclassical regime only for limited
time; secondly, practical methods can be employed only for short time; and, thirdly,
typical solution is a linear combination of Hagedorn wave packets

exp

(
i

2ε
(x− x0)>PQ−1(x− x0) +

i

ε
p>(x− x0)

)
, (1.2)

where P and Q are d × d complex nonsingular matrices such that Q>P = P>Q and
Q∗P − P ∗Q = 2iI: hence PQ−1 is complex symmetric and ImPQ−1 = (QQ∗)−1

Hermitian and positive definite (Faou, Gradinaru & Lubich 2009, Jin, Markowich &
Sparber 2011, Lasser & Troppmann 2014). Moreover, the initial condition is a linear
combination of a small number of wave packets. Therefore, the solution is highly
localised and remains so for some time. Provided that a > 0 is large enough, it
matters little what are the boundary conditions at ±a and the most convenient course
of action is to impose periodicity.

The first two assumptions are challenged by recent developments in quantum con-
trol and in numerical analysis. Firstly, it is possible to manipulate and control particles
by a judicious use of short-burst laser pulses (Kosloff, Rice, Gaspard, Tersigni & Tan-
nor 1998, Shapiro & Brumer 2003) and, secondly, a new breed of numerical methods
allows for effective computation of (1.1) for very long time intervals (Bader, Iserles,
Kropielnicka & Singh 2014, Bader, Iserles, Kropielnicka & Singh 2016). The practical
consequence is that, unless a > 0 is very large (thereby increasing the cost), sooner
or later the solution is likely to break down due to boundary effects. The standard
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remedy, replacing a Fourier by a Chebyshev basis, is not open to us because an essen-
tial structural feature of (1.1), which must be preserved under discretisation, is the
conservation of L2 norm, and this cannot be done with any polynomial basis.1 A far
better course of action is to abandon altogether the restriction to [−a, a]d and solve
(1.1) in Rd. This was the original motivation for this paper but we mention in passing
that many other PDEs, not just in quantum mechanics, are ideally solved in Rd.

The most obvious basis in R (which can be extended to Rd by tensor products)
consists of Hermite polynomials Hm: each Hm is a polynomial of degree m,

〈Hm,Hn〉P = 0, m 6= n, where 〈f, g〉P =

∫ ∞
−∞

f(x)ḡ(x)e−x
2

dx (1.3)

and 〈Hm,Hm〉P = π1/22mm! (DLMF 2016, 18.3). Alternatively, we might contemplate
Hermite functions

ψm(x) =
(−1)m

(π1/22mm!)1/2
e−x

2/2Hm(x), m ≥ 0 (1.4)

(Fedoryuk 2001). It follows at once from (1.3) that

〈ψm, ψn〉F =

{
1, m = n,

0, m 6= n,
where 〈f, g〉F =

∫ ∞
−∞

f(x)ḡ(x) dx

is the standard inner product on L2(R). The choice of Hermite functions is natural in
the context of quantum mechanics because ψ′′n + (2m+ 1− x2)ψm = 0, therefore they
are eigenfunctions of the Schrödinger operator with harmonic potential. Even more
importantly in our context, since (letting ψ−1 ≡ 0)

ψ′m =
(m

2

)1/2
ψm−1 −

(
m+ 1

2

)1/2

ψm+1, m ≥ 0,

their differentiation matrix is skew symmetric and tridiagonal. (Clearly, the differen-
tiation matrix of Hermite – or any other – polynomials cannot be skew symmetric.)
Skew symmetry of a differentiation matrix confers important advantages for numerical
stability and conservation of energy (Hairer & Iserles 2016). Another welcome feature
of Hermite functions is that they are uniformly bounded: according to the Cramér
inequality |ψm(x)| ≤ Kπ−1/4, where K ≈ 1.0864, for all m ≥ 0 and x ∈ R (Szegő
1955). Finally, Hermite function expansions converge for a large set of functions of
interest (Boyd 1980).

Unfortunately, both Hermite polynomials and Hermite functions have major draw-
backs. Hermite polynomials become rapidly large for large m or |x|:

H2m(0) = (−1)m
(2m)!

m!
, Hm(x) ∼ (2x)m, |x| � 1

1It is possible to use ultraspherical polynomials while conserving energy (Townsend & Olver 2015),
but this does not coexist with other crucial features of the methods from (Bader et al. 2014, Bader
et al. 2016).
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(DLMF 2016, 18.5.13). Therefore, even once expansion coefficients decay very rapidly,
the expansion itself, being a sum of products of very small and very large numbers,
is numerically unstable. Hermite functions are stable, since the ψms are uniformly
bounded, yet both expansions have another downside insofar as wave packets are
concerned. To get a general impression what we can expect from Hermite expansions
of wave packets, we have considered a function

f(x) = e−x
2

cos(20x)

– it oscillates within the envelope yet this oscillation is relatively mild insofar as (1.2)
is concerned. The function is displayed in Fig. 1.1 in the interval [−10, 10].

Figure 1.1: The wave packet f(x) = e−x
2

cos(20x).

We have expanded f in normalised Hermite polynomials

Ȟm(x) =
Hm(x)

(π1/22mm!)1/2
, m ≥ 0,

(hence 〈Ȟm, Ȟm〉P ≡ 1 and the system is orthonormal – compare with (1.4)) and in

Hermite functions. The even coefficients, f̂Pm and f̂Fm, respectively, are displayed in
logarithmic scale in Fig. 1.2. (The odd coefficients are nil, since f is an even function.)
It is clear that the coefficients range across many orders of magnitude and it is equally
clear that we require quite a large number of coefficients for convergence. We reiterate
that this f is just a toy example: in reality oscillation is likely to be significantly more
rapid, with obvious implication on the rate of convergence.

Instead of either Hermite polynomials or functions, we advocate in this paper an
alternative approach, that of stretched Fourier expansions. Before we explain this
(fairly simple) idea, in Fig. 1.3 we display (in a similar manner to Fig. 1.2) stretched
Fourier expansion coefficients greater than 10−20: it is clear that there are far fewer
of them and that the convergence occurs at spectral speed! This advantage grows
rapidly with more rapid oscillation.

A stretched Fourier expansion is a standard Fourier expansion scaled to an interval
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Figure 1.2: log10 |f̂Pm| (on the left) and log10 |f̂Fm| for even m and coefficients greater
than 10−20 in magnitude.

Figure 1.3: log10 |f̂λm| for stretched Fourier expansion with λ ≈ 6.5044 and coefficients
greater than 10−20 in magnitude.

[−λ, λ], with a carefully chosen λ > 1, in other words

f(x) =

∞∑
m=−∞

f̂λmeiπmx/λ, where f̂λm =
1

2λ

∫ λ

−λ
f(x)e−iπmx/λ dx, m ∈ Z.

Needless to say, the truncated expansion can be computed fast with FFT.

5



Figure 1.4: log10 |f̂λn | for f(x) = e−x
2/2 cos(x2 − x) with λ = 15.

The obvious objection to this procedure is that f is in general not periodic. Thus,
even if f ∈ C∞(R), all we can hope for is linear decay of the coefficients, i.e. |f̂λm| ≈
c/|m| for |m| � 1 and some c > 0. Like many statements in mathematics, this is
entirely true but, in the current context, totally misleading. . .

Examine again Fig. 1.3: the coefficients decay at spectral speed, essentially |f̂λm| ≈
c e−β|m|

2

for sufficiently large |m| and c, β > 0. This is not a paradox! Spectral
decay does not persist for ever but, once it stops, the coefficients are negligibly small
and can be disregarded. The secret lies in f decaying rapidly (as, for example, wave
packets do!) for |x| � 1. To illustrate this point, we consider in Fig. 1.4 the function

e−x
2/2 cos(x2 − x) in the ‘window’ [−λ, λ], where λ = 15. The coefficients commence

by decaying at a spectral speed, and they do so until they are ≈ 10−53 in magnitude:
only then they behave ‘according to the theory’. Given that 10−53 is well beyond
the accuracy required in real-life numerical computation, to all practical intents and
purposes the coefficients decay at a spectral speed!

In Section 2 we analyse this ‘sombrero effect’, a name originating in the shape
of the curve in Fig. 1.4, for different types of functions that exhibit rapid decay for
|x| � 1 and discuss how to choose λ adroitly, to ensure that we approximate spectrally
fast within a relevant range. A subtle side issue is the effect on the Discrete Fourier
Transform (DFT) calculation of Fourier coefficients of trading off periodicity for rapid
decay. In Appendix A we demonstrate that within the spectral decay regime the DFT
error is also exponentially small.

Section 3 shows how to ‘lift’ a stretched Fourier expansion to an expansion in
either Hermite polynomials or Hermite functions. Although we have argued that such
expansions are probably unsuitable for calculations of wave packets and quantum
phenomena, this does not mean that they have no place in numerical analysis. For
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example, expansion in Hermite polynomials is critical in computations involving fast
Gauss transform (Greengard & Strain 1991). We are not aware of any reasonable
numerical algorithm for the computation of general Hermite expansions except for a
laborious (and very expensive) use of Hermite integration with suitably large number
of points, hence the work of Section 3 might be of an interest. Finally, in Section 4
we revisit the results of this paper and sketch challenges for future work.

2 Fourier expansion of stretched functions

2.1 The sombrero lemmas

Given f ∈ C∞(R) and λ > 1, we Fourier expand f in the interval [−λ, λ]. In other
words, the Fourier coefficients are

f̂λm =
1

2λ

∫ λ

−λ
f(x)e−imπx/λ dx =

1

2

∫ 1

−1

f(λx)e−imπx dx, m ∈ Z. (2.1)

This is the moment to remind the reader that Fourier expansions are a very power-
ful and popular tool in scientific computing because a Fourier integral, under fairly
generous conditions, can be computed to exponential accuracy by a Discrete Fourier
Transform: using the Fast Fourier Transform (FFT), this ‘costs’ just O(N log2N)

operations for computation of f̂λm, −N + 1 ≤ m ≤ N (Henrici 1979).
Making no assumptions whatsoever on periodicity, all we can say by this stage

about the asymptotic behaviour of the sequence {f̂λm}∞m=−∞ is that there exists cλ > 0,
which depends on f , such that

|f̂λm| ∼
cλ
|m|

, |m| � 1. (2.2)

While formally true, this is misleading, provided that f decays sufficiently rapidly for
large |x|. To make our case we call in evidence Figs 1.4 and 2.1. Thus, Fig. 2.1 reports
the size of Fourier coefficients for three functions: the first is entire, the second is
analytic with poles at ±i and the third analytic with a single pole at +i. The first plot
is similar to Fig. 1.4: the coefficients decay at higher-than-exponential speed until they
hit a ‘floor’, along which the decay is consistent with (2.2) with c15 ≈ 1.71 × 10−49.
In the middle figure f is meromorphic and the decay of the |fλm|s is exponentially fast
until it hits the ‘floor’: this time c15 ≈ 1.99 × 10−53. Finally, the function on the
right has a singularity at the upper half plane only. Now the decay is exponential
for m � −1 and super-exponential for m � 1 – until again we hit the ‘floor’, this
time at c15 ≈ 2.92 × 10−51. Note that the different values of c15 are in the same
ballpark, indicating that the dependence of cλ is mainly on the size of λ, rather than
on a specific function f .

Our observations are presented in four lemmas, in an increasing extent of smooth-
ness of the function f .

Lemma 1 Let λ > 1 and f ∈ CN [−λ, λ] be given, where N ≥ 1. Then

|f̂λm| ≤
1

2πm

N−1∑
`=0

(
λ

πm

)̀
δ +

(
λ

πm

)N
κ, m 6= 0, (2.3)
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Figure 2.1: log10 |fλm| for (from the left) f(x) = e−x
2/2(cosx + x2 sinx), f(x) =

e−x
2/2/(1 + x2) and f(x) = e−x

2/2/(1 + ix), all with λ = 15.

where κ = ‖f (N)‖∞ = maxx∈[−λ,λ] |f (N)(x)| and

δ = max
j=0,...,N−1

max{|f (j)(−λ)|, |f (j)(λ)|}.

Proof Trivial. By repeated integration by parts we have

f̂λm = − (−1)m

2λ

N−1∑
`=0

(
λ

iπm

)`+1

[f (`)(λ)− f (`)(−λ)]

+
1

2λ

(
λ

iπm

)N ∫ λ

−λ
f (N)(x)e−iπmx/λ dx

and the lemma follows by easy majorization. 2

The importance of (2.3) is that the upper bound is composed of two terms: for
|m| > λ/π they are

1−
(
λ
πm

)N
2(πm− λ)

δ and

(
λ

πm

)N
κ.

The second term decays rapidly, like O
(
m−N

)
, while the first term is small once f

and its derivatives are small at ±λ.
We can formulate a sharper result for an analytic f .

Lemma 2 Given r > 0, suppose that an analytic function f : [−λ, λ] → C can be
continued analytically to the closed rectangle

Sr = {z ∈ C : Re z ∈ [−λ, λ], Im z ∈ [−r, r]}.

Define

σ = max
x∈[−λ,λ]

max{|f(x−ir)|, |f(x+ir)|} and ρ = max
y∈[−r,r]

max{|f(−λ+iy)|, |f(λ+iy)|}.

Then
|f̂λm| ≤ σe−(πr/λ)|m| +

ρ

π|m|
, m 6= 0. (2.4)

8



Proof The boundary of Sr is a union of six contours,

Γ±1 = {−λ± iy : 0 ≤ y ≤ r}, Γ±2 = {x± ir : −λ ≤ x ≤ λ}

and
Γ±3 = {λ± iy : 0 ≤ y ≤ r}.

Let m ≥ 1. By the Cauchy integral theorem,

f̂m = I1 + I2 + I3, where Ij =
1

2λ

∫
Γ−
j

f(z)e−iπmz/λ dz, j = 1, 2, 3.

(We need to endow the Γ−j s with orientation, but this makes no difference to our
argument because we consider only absolute values of the Ijs.) But

|I1| ≤
1

2λ

∫ r

0

|f(−λ− iy)|e−πmy/λ dy ≤ ρ

2πm
,

|I2| ≤
1

2λ

∫ λ

−λ
|f(x− ir)|e−πmy/λ dx ≤ σe−πmr/λ,

|I3| ≤
1

2λ

∫ r

0

|f(λ− iy)|e−πmy/λ dy ≤ ρ

2πm
.

Adding the above yields (2.4).
For m ≤ −1 we repeat the exercise except that we swap the Γ+

j s for Γ−j s. 2

We define

f̌λm =
1

2λ

∫ ∞
−∞

f(x)e−πimx/λ dx, m ∈ Z

– in other words the range of integration is extended to the entire real line.

Lemma 3 Suppose that f(z) = e−αz
2

g(z), where α > 0 and g is entire and uniformly
bounded in (−∞,∞). Set

cn = max
z∈S̃rn

|g(z)|, rn =
π|n|
λα

,

where S̃r = {z ∈ C : |Im z| ≤ r}. Then

|f̌λm| ≤
π1/2cn
2α1/2λ

exp

(
−π

2m2

4λ2α

)
, |m| ≤ n (2.5)

and the decay of Fourier coefficients in this range is super-exponential.

Proof We have

f̌λm =
1

2λ

∫ ∞
−∞

g(x) exp

(
−αx2 − πimx

λ

)
dx

=
exp
(
−π

2m2

4αλ2

)
2λ

∫ ∞
−∞

g(x) exp

(
−
(
α1/2x+

πim

2α1/2λ

)2
)

dx

=
1

2α1/2λ
exp

(
−π

2m2

4αλ2

)∫ ∞
−∞

g

(
x

α1/2
− πim

2αλ

)
e−x

2

dx.
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Consequently,

|f̌λm| ≤
cm

2α1/2λ
exp

(
−π

2m2

4αλ2

)∫ ∞
−∞

e−x
2

dx =
π1/2cm
2α1/2λ

exp

(
−π

2m2

4αλ2

)
and (2.5) follows because cm = c|m| and the cms form a monotonically increasing
sequence for m ≥ 0. 2

Corollary 1 Suppose that instead of being entire, g is analytic in the closed upper
half plane {z ∈ C : Im z ≥ 0}. Then (2.5) holds for −n ≤ m ≤ 0. By the same token,
if g is analytic in the closed lower half plane, (2.5) is valid for 0 ≤ m ≤ n.

The proof of the corollary is a direct consequence of the proof of Lemma 3. Note
that similar result is applicable to Lemma 2, with identical proof.

Lemma 4 Suppose that f(z) = e−αz
2

g(z), where α > 0 and g is entire. Then, for
every n ≥ 1 it is true that

|f̂λm| ≤
π1/2cn
2α1/2λ

exp

(
−π

2m2

4αλ2

)
+

c0
π1/2αλ2

e−αλ
2

, |m| ≤ n. (2.6)

Proof We have

f̂λm = f̌λm −
1

2λ

∫ −λ
−∞

f(x)e−πimx/λ dx− 1

2λ

∫ ∞
λ

f(x)e−πimx/λ dx.

However, ∣∣∣∣∫ ∞
λ

f(x)e−πimx/λ dx

∣∣∣∣ ≤ c0 ∫ ∞
λ

e−αx
2

dx =
c0
α1/2

∫ ∞
α1/2λ

e−x
2

dx.

Since ∫ ∞
t

e−x
2

dx ≤ e−t
2

π1/2(1 + t)
, t ≥ 0,

(DLMF 2016, 7.8.3), we deduce that∣∣∣∣∫ ∞
λ

f(x)e−πimx/λ dx

∣∣∣∣ ≤ c0
π1/2α1/2

· e−αλ
2

1 + α1/2λ
≤ c0
π1/2αλ

e−αλ
2

.

Since an identical bound applies to
∣∣∣∫ −λ−∞ f(x)e−πimx/λ dx

∣∣∣, (2.6) follows upon division

by 2λ. 2

In line with Corollary 1, (2.6) holds for 0 ≤ m ≤ n if g is analytic for Im z ≤ 0
and for −n ≤ m ≤ 0 if analyticity occurs for Im z ≥ 0. This is illustrated by the
the third graph in Fig. 2.1. Since g(z) = (1 + ix)−1 has a pole at +i but is analytic
in the lower half plane, its positive coefficients display super-exponential decay, while
negative coefficients, governed by Lemma 2, decay exponentially – in both cases, until
they hit the ‘floor’.
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Compare (2.3), (2.4) and (2.6). In each case, in the relevant range m0 ≤ |m| ≤ n,
we have

|f̂λm| ≤ pn,m + qne−τn,m , (2.7)

where pn is very small, while τn,m > 0 and the τn,ms form a monotonically increasing
(in |m|) sequence: specifically

1. f ∈ CN [−λ, λ]: m0 =
⌈
λ
π

⌉
,

pn,m =
1−

(
λ
πm

)N
2(πm− λ)

max
j=0,...,N−1

|f (j)(±λ)|, qn ≡ ‖f (N)‖∞, τn,m = −N log
λ

πm
;

2. f analytic in |Re z| ≤ λ, |Im z| ≤ r: m0 = 1 and

pn,m =
max|y|≤r |f(±λ+ iy)|

π|m|
, qn = max

|x|≤λ
|f(x± ir)|, τn,m =

πrm

λ
;

3. f entire, f(z) = e−αz
2

g(z) with α > 0: m0 = 0 and

pn,m =
c0e−αλ

2

π1/2αλ2
, qn =

π1/2cn
2α1/2λ

, τn,m =
π2m2

4αλ2
.

2.2 Choosing a good λ

How to choose a good λ? Fig. 2.2 displays the size of stretched Fourier coefficients for
the same wave packet e−x

2/2 sin(30x) and three values of λ. Evidently, two processes
are in competition:

• The smaller λ, the faster the convergence; but

• The larger λ, spectral rate of decay persists for longer.

Therefore we need to choose λ large enough to ensure that rapid decay of coefficients
takes place in the entire range of desired accuracy – but not much larger!

Figure 2.2: log10 |f̂λm| for the wave packet f(x) = e−x
2/2 sin(30x) and λ = 10, 15, 20.
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Good choice of λ depends on f , yet we wish, using the previous subsection, to
reduce this dependence to few essential features of f – essentially, its rate of decay
for |x| � 1 and its smoothness. For example, if f(z) = g(z)e−αz

2

, where α > 0 and g

is entire, it follows from our analysis that we need to render e−αλ
2

/(αλ2) sufficiently
small. But

e−αλ
2

αλ2
= ε ⇒ αλ2eαλ

2

=
1

ε
⇒ αλ2 = W(ε−1),

where W is the Lambert W-function (DLMF 2016, 4.13.1), the principal branch of the
inverse function of WeW = x. We deduce that a good choice of λ is

λ =

[
W(ε−1)

α

]1/2
. (2.8)

Following the same logic, once f is analytic in |Im z| ≤ r, we might choose λ as
the least positive solution of the equation

max
|y|≤r

|f(±λ+ iy)| = ε. (2.9)

Unless |f | grows very rapidly for |±λ+iy|, it is sufficient (and far easier) to let λ be the
least positive solution of max{|f(−λ)|, |f(λ)|} = ε. Finally, if f ∈ CN (R) (inclusive of
the case f ∈ C∞(R)), we may choose λ as the least positive solution of the equation

max
j=0,...,N−1

|f (j)(±λ)| = ε (2.10)

– if N =∞ we restrict the range of j in (2.10) to a finite set.
The choices (2.8)–(2.10) are not optimal and typically λ is marginally too large.

Yet, they represent a good rule of a thumb in the implementation of our approach.
Our results help not just in identifying a good λ but also restricting a priori the

range of m ∈ Z such that |f̂λm| > ε – these are the only values which need be used in
our computations. Once a function is analytic in Sr, (2.4) implies that we need ms so
that roughly exp(−πr|m|/λ) > ε, i.e.

|m| < −λ log ε

πr
. (2.11)

By the same token, for f(x) = e−αx
2

g(x) with an entire g, it follows from (2.6) that

a good range of ms is such that exp
(
−π

2m2

4λ2α

)
> ε, hence

|m| < 2λ

π
[−α log ε]

1/2
. (2.12)

In practice it is always safe to err on the side of caution and take slightly larger range
of ms. Moreover, whether we are using (2.11) or (2.12), once using FFT to compute
Fourier coefficients we might need to round up the range to the nearest power of 2.

To illustrate our narrative, we have computed stretched Fourier expansions of six
functions, in each case imposing ε = 10−20 and choosing λ accordingly:

12



Figure 2.3: The decay of coefficients, drawn in log10 scale, for the six examples.

1. f(x) = e−x2/2

1+i sin x , a meromorphic function with poles at −i log(
√

2 − 1) + 2πk,

k ∈ Z, λ =
[
2W(1020)

]1/2 ≈ 9.1986;

2. f(x) = e−x2

1+i sin x , similar to the previous example except with much more rapid

decay, λ =
[
W(1020)

]1/2 ≈ 6.5044;

3. f(x) = e−x
2/2 log(1 + 1

2eix), analytic for Im z > − log 2 and with branch cuts at
π(2k + 1) + iy, y < − log 2, k ∈ Z, again λ ≈ 9.1986;

4. f(x) = exp
(
−x

2

2 −
1
x2

)
, a C∞(R) function. λ as before;

5. f(x) = 1
1+x20 , a meromorphic function which tends fast, yet sub-exponentially

to zero for |x| � 1, with λ as the zero of 1
1+λ20 = 10−20, λ ≈ 10.0000;

6. The C5(R) function

f(x) = sgn(x) e−x
2/2

[
1−6x2+x4

2
log(1+x2)+

7

2
x2− 25

12
x4−4x(1−x) arctanx

]
,

λ = [−2 log 10−20]1/2 ≈ 9.5971.
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Figure 2.4: The decay of coefficients, drawn in log10 scale, for further, slowly-
convergent two examples.

Our first observation is that our choice of λ is often (but not always!) fairly
conservative and the ‘floor’ is typically lower than at −20. The rate of decay is
typically exponential (corresponding to a straight line in the figure) because most
functions are meromorphic, except that the third function is analytic in a half plane,
while the fourth function, which is C∞, decays slower than exponentially (yet faster
than the reciprocal of any polynomial).

Needless to say, once f is not CN or fails to decay sufficiently fast for |x| � 1, the
entire construction is bound to collapse. Thus, in Fig. 2.4 on the left we have computed
the size of the Fourier coefficients for f(x) = |x|e−x2/2 with λ ≈ 9.1986. Although the
function decays very rapidly, the singularity at the origin is sufficient to slow down
Fourier coefficients to linear decay: we hit the ‘floor’ from the very beginning. In other
instances, while the function exhibits all the right smoothness, its slow rate of decay
means that the least value of λ is not realistic. In Fig. 2.4 on the right we display the
size of the coefficients for f(x) = 1/(1 + x4) and the arbitrarily-chosen λ = 100: the
decay is linear. To obtain the ‘sombrero effect’ we would need, using our approach, to
take λ ≈ 105 (for ε = 10−20) which is completely impractical.

3 Connection coefficients and Hermite expansions

Let P = {pm}m≥0 and Q = {qm}m≥0 be two polynomial bases such that deg pm =
deg qm = m. Then there exist numbers ak,m, 0 ≤ k ≤ m, such that

qm(x) =

m∑
k=0

am,kpm(x), k = 0, . . . ,m n ≥ 0. (3.1)

These numbers are called connection coefficients of the two polynomial sequences
(Ismail 2005). (This should not be confused with connection coefficients in the context
of differential geometry and Riemannian manifolds (Abraham & Marsden 1978).) For

14



example

Pm(x) =
1

22m−1

bm/2c∑
k=0

(
2k

k

)(
2m− 2k

m− k

)
Tm−2k(x),

where, for even m, the coefficient for k = m/2 need be halved. Connection coefficients
allow us to convert an expansion in P into an expansion in Q for m = 0, . . . , n at the
cost of O

(
n2
)

operations – less if the coefficients am,k decay rapidly for growing k and
we wish to evaluate the new expansion to given accuracy.

In our case we wish to re-express a Fourier expansion in [−λ, λ] into an expansion
in either Hermite polynomials or Hermite functions. Neither Fourier coefficients nor
Hermite functions are polynomials yet all we need is to allow the sum in (3.1) be
over all integers, hoping that the coefficients decay sufficiently rapidly to allow for
truncation. Thus,

eiπkx/λ =

∞∑
m=0

aPk,mHm(x) =

∞∑
m=0

aFk,mψm(x), k ∈ Z.

Recalling the Fourier expansion of (sufficiently smooth) f in the window [−λ, λ],

f(x) =

∞∑
k=−∞

f̂λk exp

(
iπkx

λ

)
,

we denote the corresponding expansions in Hermite polynomials and functions by

f(x) =

∞∑
m=0

f̂PmHm(x) and f(x) =

∞∑
m=0

f̂Fmψm(x)

respectively and note that (subject to very mild conditions on f , allowing interchange
of infinite sums)

f̂Pm =

∞∑
k=−∞

f̂λk a
P
k,m, f̂Fm =

∞∑
k=−∞

f̂λk a
F
k,m, m ≥ 0. (3.2)

The analysis in the sequel can be unified by letting Ψ
(β)
m (x) = e−βx

2

Hm(x), β ∈
[0, 1

2 ], and seeking an expansion in the orthogonal basis {Ψ(β)
n }n≥0 with respect to the

inner product 〈f, g〉 =
∫∞
−∞ f(x)g(x)e−(1−2β)x2

dx: Hermite polynomials and functions

correspond to β = 0 and β = 1
2 respectively. However, it is probably clearer to

distinguish the two cases.
Here we used the analytic extension of the basis functions eiπkx/λ of the stretched

Fourier expansion over [−λ, λ] to the real line, which amounts to a periodic modifica-
tion of the original function. However, the Hermite polynomials together with their
weight and the Hermite functions are rapidly decaying, so that for the typical ranges
of λ and Hermite indices m = 0, . . . , n this effect is negligible.

If this assumption fails, one can e.g. use the extension eiπkx/λ1[−λ,λ], where the
recurrence relations (3.4) and (3.7) can be derived from the three-term recurrence
relation of the Hermite polynomials. However, in our setting it complicates the analysis
without any additional benefit.
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3.1 Hermite polynomials

Lemma 5 For every m ≥ 0 and k ∈ Z it is true that

aPk,m =
1

m!

(
iπk

2λ

)m
exp

(
−
(
πk

2λ

)2
)
. (3.3)

Proof Substituting the Fourier expansion and interchanging integration and sum-
mation for sufficiently smooth f ,

f̂Pm =
π−1/2

2mm!

∫ ∞
−∞

f(x)Hm(x)e−x
2

dx =
π−1/2

2mm!

∫ ∞
−∞

( ∞∑
k=−∞

f̂λk eiπkx/λ

)
Hm(x)e−x

2

dx

=
1

2mm!π1/2

∞∑
k=−∞

f̂λk

∫ ∞
−∞

eiπkx/λ−x2

Hm(x) dx,

therefore

aPk,m =
1

2mm!π1/2

∫ ∞
−∞

eiπkx/λ−x2

Hm(x) dx, m ∈ Z, m ≥ 0.

We next form the generating function

Ak(t) :=

∞∑
m=0

aPk,mt
m =

1

π1/2

∫ ∞
−∞

eiπkx/λ−x2
∞∑
m=0

Hm(x)

m!

(
t

2

)m
dx.

A generating function for Hermite polynomials is

∞∑
m=0

Hm(x)

m!
tm = e2xt−t2

(DLMF 2016, 18.12.15), therefore, changing variables as appropriate,

Ak(t) =
1

π1/2

∫ ∞
−∞

eiπkx/λ−x2

ext−t
2/4 dx

= π−1/2 exp

(
iπkt

2λ
− π2k2

4λ2

)∫ ∞
−∞

exp

(
−
(
x− t

2
− πik

2λ

)2
)

dx

= π−1/2 exp

(
iπkt

2λ
− π2k2

4λ2

)∫ ∞
−∞

e−x
2

dx = exp

(
iπkt

2λ
− π2k2

4λ2

)
.

Therefore

aPk,m =
1

m!

∂mAk(t)

∂tm t=0
=

1

m!

(
iπk

2λ

)m
exp

(
−π

2k2

4λ2

)
and the lemma is true. 2

Note that aPk,0 = exp
(
−π2k2/(4λ2)

)
and

aPk,m+1 =
iπk

2λ(m+ 1)
aPk,m, m, k ≥ 0, (3.4)
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Figure 3.1: log10 |aPk,m| for m = 0, 3, 6, . . . , 27 (darker shade denotes larger m) and
λ = 9.1986.

allowing for rapid calculation of the coefficients.
The coefficients aPk,m decay very rapidly. Their magnitude is displayed in logarith-

mic scale in Fig. 3.1 and it is evident that, for any stipulated accuracy, just a finite
(and fairly small) number of coefficients need be calculated: the larger λ, the more
coefficients.

For a specific coefficient f̂Pm we fix m and form the sum over k. Looking at Fig. 3.1
shows that only few terms are relevant. Treating k > 0 as a continuous variable, we
find that

d2 log |aPkm|
dk2

= −m
k2
− π

2λ2
≤ − π2

2λ2
,

which shows strict uniform concavity. Hence for any prescribed precision ε there are
only finitely many indices not satisfying |ak,m| ≤ ε|aK,m| where |aK,m| is the largest
coefficient. Moreover, the number of relevant coefficients is bounded uniformly in m.
To find the relevant coefficients let

hm(x) =
ym

m!
e−y

2

,

therefore aPk,m = hm(πk/(2λ)). The function hm has maxima at ±ym = ±(m/2)1/2

and, using twice the Stirling formula,

hm(±ym) =
1

m!

(m
2

)m/2
e−m/2 ≈ 1

2m+1/2Γ
(
m
2 + 1

)
decreases very rapidly as a function of m. The maximal value of hm helps us to choose
the range ofms necessary to ‘intercept’ all |aPk,m| > ε: the rule of the thumb is to choose
0 ≤ m ≤ m? such that hm?(ym?) ≈ ε. Computer experimentation demonstrates that
an almost perfect fit is

m?(ε) ≈
(

0.7321 + 1.4174 log
1

ε

)4/5

. (3.5)
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3.2 Hermite functions

The derivation of the coefficients aFk,m is similar to their polynomial counterparts but
it is convenient first to compute

ãFk,m =
1

2mm!π1/2

∫ ∞
−∞

eiπmx/λ−x2/2Hm(x) dx

and subsequently let
aFk,m = (−1)m(2mm!)1/2π1/4ãFk,m.

Lemma 6 For every m ≥ 0 and k ∈ Z it is true that

aFk,m =
imπ1/4

2(m−1)/2(m!)1/2
Hm

(
πk

λ

)
exp

(
−π

2k2

2λ2

)
. (3.6)

Proof Let

Bk(t) :=

∞∑
m=0

ãFk,mt
m =

1

π1/2

∫ ∞
−∞

eiπkx/λ−x2/2
∞∑
m=0

Hm(x)

m!

(
t

2

)m
dx.

Using twice a generating function for Hermite polynomials,

Bk(t) =
1

π1/2

∫ ∞
−∞

eiπkx/λ−x2/2ext−t
2/4 dx =

et
2/4

π1/2

∫ ∞
−∞

exp

(
iπk(x+ t)

λ
− 1

2
x2

)
dx

= 21/2 exp

(
−π

2k2

2λ2
+

iπkt

λ
+

1

4
t2
)

= 21/2 exp

(
−π

2k2

2λ2

)
exp

(
2

(
πk

λ

)(
it

2

)
−
(

it

2

)2
)

= 21/2 exp

(
−π

2k2

2λ2

) ∞∑
m=0

1

m!
Hm

(
πk

λ

)(
it

2

)m
and (3.6) follows. 2

Applying the three-term recurrence relation

Hm+1(x) = 2xHm(x)− 2mHm−1(x)

(DLMF 2016, 18.9) to (3.6) we obtain a rapid method for the evaluation of the aFm,ks,
namely

aFm+1,k =
iπk

(2m+ 2)1/2λ
aFk,m +

(
m

m+ 1

)1/2

aFk,m−1, (3.7)

a counterpart of (3.4). Unfortunately, the aFk,ms decay very slowly indeed (a counter-
part of Fig. 3.1 would have been of little use), yet according to a pattern, displayed
in Fig. 3.2. Essentially, until |k| becomes fairly large, |aFk,m| = O(1), while oscillating
rapidly. Only when |k| � 1 the coefficients decrease very fast indeed.
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Figure 3.2: log10 |aFm,k| for λ ≈ 9.1985 and (from left) m = 100, 500 and 1000.

To look further into the behaviour of the aFk,ms for large m and fixed k, we employ
the asymptotic formula

Hm(y) ∼ (2b(m+ 1)/2c)!
(b(m+ 1)/2c)!

ey
2/2 cos

(
(2m+ 1)1/2y − πm

2

)
, m� 1

(DLMF 2016, 18.15.27). Using the Stirling formula we deduce from (3.7) after tedious,
yet simple algebra that

|aFk,m| ∼
2

m1/4
cos

(
π(2m+ 1)1/2k

λ
− πm

2

)
, m� 1.

On the other hand, for fixed m and large |k| we exploit Hm(x) ≈ (2x)m, |x| � 1, to
argue that

|aFk,m| ≈
π1/42(m+1)/2

(m!)1/2

(
kπ

λ

)m
exp

(
−π

2k2

2λ2

)
|k| � 1,

and this becomes very small for large |k| because the exponential term always wins.
We should not be surprised by the clearly inferior behaviour of the aFk,ms in com-

parison to the aPk,ms. The latter might well be much smaller but they multiply Hermite
polynomials, which rapidly become very large, while Hermite function coefficients al-
ways multiply the uniformly bounded ψms.

3.3 Attenuated connection coefficients

The conclusion to the last two subsections is, on the face of it, disappointing. The con-
nection coefficients of Hermite polynomials decay rapidly, yet the polynomials them-
selves grow, while the connection coefficients of the uniformly-bounded Hermite func-
tions stubbornly resist getting small as m increases – if at all, they are O(1) for an

increasing range of ks. The entire idea of first deriving the f̂λk s by FFT and then using
(3.2) to produce Hermite coefficients clearly appears to be the wrong approach.
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Figure 3.3: Attenuated connection coefficients, all with λ = 9.1986: on the
left the log10 |ǎPk,m| for m = 0, 3, 6, . . . , 27 and on the left log10 |ǎFk,m| for m =
0, 100, 200, . . . , 1000. Darker shade denotes larger m. In the top row we attenuate

by exp
(
−πr|k|λ

)
, r = 1, and in the bottom row by exp

(
− π2k2

4αλ2

)
, α = 1

2 .

But is it? In the analysis of Subsections 3.1–2 we have disregarded the fact that
Fourier coefficients f̂λm themselves decay rapidly. For example, once f is analytic in
the strip |Im z| ≤ r, we know from (2.4) that within the ‘sombrero range’ (hence

disregarding the negligible ‘floor’) |f̂λk | ≤ c exp
(
−πrλ |k|

)
. Therefore the truncation

rule is to stop once

exp
(
−πr
λ
|k|
)
|aXk,m| < ε,

where X is either P or F. Likewise, if f is entire then (2.6) implies that |f̂λk | ≤
c exp

(
− π2k2

4αλ2

)
, hence the termination rule is exp

(
− π2k2

4αλ2

)
|aXk,m| < ε.

Denoting attenuated connection coefficients by ǎXk,m, where X ∈ {P,F}, Fig. 3.3
displays their size for these two different attenuation procedures. It is clear that,
employing this extra information on the rate of decay of Fourier coefficients reduces
drastically the number of connection constants that need be computed in an im-
plementation of (3.2). In the case of Hermite polynomials the uniform concavity is
preserved and typically even more terms can be discarded, while for Hermite functions
this makes all the difference between an infeasible algorithm and one which, although
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not very fast, is at least implementable.

3.4 Toward a Hermite solver

The road leading from expressions (3.3) and (3.6) to an algorithm for the computation

of f̂Xm, m = 0, . . . , n, to given accuracy ε > 0 is clear. First we need to compute a
stretched Fourier expansion by FFT with 2M points for a sufficiently large M . The
choice of M is governed by whether we want an Hermite polynomial or functional
expansion (M should be much larger for an expansion in Hermite functions), by the
nature of the function f (its smoothness and its rate of decay for |x| � 1) and,
of course, M needs to be a highly composite integer to allow for the use of FFT.
Altogether, this step costs O(M log2M) operations.

Once f̂λk , −M + 1 ≤ k ≤M , are available, we compute the connection coefficients
aXk,m, using either (3.4) or (3.7), for k in the above range and m = 0, . . . , n. Note that
we do not need all these coefficients, as is clear from Fig. 3.3, just the coefficients for
which the attenuated coefficients (which we never compute but which always exist in
the background!) are larger than ε and, upon better understanding of Fig. 3.3, we
can reduce the cost. Finally, we compute

f̂Pm ≈
M∑

k=−M+1

f̂λk a
P
k,m or f̂Fm ≈

M∑
k=−M+1

f̂λk a
F
k,m, m = 0, . . . , n

at the cost of O(Mn).
In the case of Hermite polynomials, we can find for a prescribed precision ε a

constant K such that only K terms are needed. This reduces the problem to a fast
algorithm in O(M log2M +Kn) operations.

For a sufficiently decaying function f , we can also consider the expansion of f(x)ex
2

into Hermite polynomials as a way to compute the expansion into Hermite functions.
In fact, one can use natural intermediate scales with f(x)eβx

2

, see (Dietert 2016).
Even though this gives a fast algorithm for sufficiently decaying functions, the

discussion of the maximum of hm at the end of section 3.1 shows that we need ∼M2

Hermite coefficients to approximate a function we can approximate with M stretched
Fourier coefficients.

4 Conclusions

In this paper we have introduced a simple approach, based on stretched Fourier ex-
pansions, to approximate functions on the real line (and, by implication, on Rd for
reasonably small d ≥ 1). While this approach can be used as a first step toward the
computation of an expansion in Hermite functions or Hermite polynomials, there are
good reasons to believe that in most settings it is preferable to use stretched Fourier
expansions in the first place.

This methodology is particularly powerful in quantum calculations in the semiclas-
sical regime, since the solution is usually a linear combination of wave packets (1.2).
While this can be a basis for a numerical method (Faou et al. 2009, Lasser & Tropp-
mann 2014), other methods do not attempt to model the evolution of wave packets
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explicitly (Bader et al. 2014, Lubich 2008) but wave packets should be always at the
back of our mind while solving dispersive equations. In particular, solving such equa-
tions with spectral methods, it is a sound policy to represent the underlying solution
in a basis which represents well linear combinations of wave packets.

This is the place to mention that a solution of quantum equations (and, in greater
generality, dispersive equations) is not simply a linear combination with time-dependent
coefficients of the same wave packets. The matrices P and Q and the vector p in (1.2)
are time dependent. Moreover, wave packets can form, reform, change amplitude, com-
bine and split: in quantum scattering, for example, a wave packet splits into typically
very large number of separate wave packets, each of different amplitude and frequency,
scattering in diverse directions. Practical implementation of stretched Fourier basis
in this setting is considerably more complicated than just finding the least eigenvalue
of ImPQ−1 and using it to identify good λ using (2.8).

A simple policy is to confine the solution t any time t ≥ 0 to a ‘window’ [a−(t), a+(t)]
once exponentially-small terms are disregarded: one policy might be to identify a±(t),
translate linearly into [−[a+(t) − a−(t)]/2, [a+(t) − a−(t)]/2] and set λ = [a+(t) −
a−(t)]/2. The precise implementation mechanism is a matter for future research,
while bearing in mind the competing imperatives of choosing λ = λ(t) large enough
so that all the ‘significant action’ is confined to [−λ, λ], yet small enough to ensure
more rapid convergence of stretched Fourier expansion.

Figure 4.1: The size of stretched Fourier coefficients for (4.1) using λ ≈ 9.1986 (on
the left) and λ ≈ 6.5044.

A more sophisticated approach is available once f is a known linear combination
of wave packets, of the form (for simplicity, in one dimension)

f(x) =

L∑
`=1

κ`e
−α`(x−γ`)2ϕ`(x),
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where α1, . . . , αL > 0. In a sufficiently large interval the decay of f is determined by
the least α` and the latter serves as a good rule of thumb in choosing λ using (2.8)
– all this provided that the γ`s do not differ drastically, otherwise we might need to
enlarge the window. As a simple example, consider

f(x) =
1

4
e−x

2/2 sin(30x) + e−(x−1)2 cos(100x). (4.1)

In Fig. 4.1 we have displayed log10 |fλm| for ε = 10−20 and two choices of λ: the first

implied by the e−x
2/2 term and the second by the e−x

2

term. After initial stage (fairly
long, because of rapid oscillation) both settle down to a ‘floor’. For the first case we
indeed recover 10−20 accuracy but the second choice, while converging faster, ‘hits the
floor’ at ≈ 10−13. This is the right order of magnitude, e−λ

2/2/(λ2/2) ≈ 3 × 10−11,
but well short of the desired accuracy.

Insofar as expansions in Hermite polynomials and functions are concerned, a prac-
tical algorithm based on the work of Section 3 requires a great deal of further fine
tuning. Recall that connection coefficients for Hermite polynomials decay rapidly but
the computation of connection coefficients for Hermite functions requires a procedure
paying heed to their attenuation – a procedure which is also beneficial for Hermite
polynomials. This requires taking the nature of f – its smoothness and rate of de-
cay for |x| � 1 – into account, both to fashion sensible truncation rules in (3.2) and
minimise the cost.

It is evident from Fig. 3.3 that, upon attenuation, connection coefficients behave
fairly predictably. In particular, the ǎFk,ms tend to lie asymptotically on certain simple
curves. It should not be difficult to analyse further this phenomenon using asymptotic
expansions of Hermite polynomials. Yet, this being marginal to the main concerns of
this paper, we leave it to further research.
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A Discrete Fourier Transform and stretched Fourier
expansions

One of the reasons for the extraordinary power of spectral methods is that, once the
function F is periodic and analytic in an open complex strip surrounding the interval
[−1, 1], the Discrete Fourier Transform (DFT)

F̃m,N =
1

2N

N∑
k=−N+1

F

(
k

N

)
ω−mk2N , −N + 1 ≤ m ≤ N, (A.1)

where ωM = exp(2πi/M) is the Mth primitive root of unity, is an extraordinarily
good approximation to the Fourier coefficient F̃m. More precisely, there exist c, σ > 0
such that for N � 1

|F̃m,N − F̂m| ≤ c e−σN , −N + 1 ≤ m ≤ N

(Henrici 1979). To complete our case for stretched Fourier expansions as a viable
approximation tool on the real axis, we demonstrate in this appendix that this expo-
nentially-small bound remains basically true once F (x) = f(λx), |f(±λ)| is small and
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Figure A.1: Quadrature errors for f(x) = e−x
2/2/

(
1 + x+ x2

)
with λ =

√
2W(1020)

and N = 512. On the left log10 |F̂m| and on the right log10 |F̂m,N − F̂m| for standard
(dashed line) and centred (dot-dashed line) coefficients.

the choice of λ and N is such that we are within the conditions for the ‘sombrero
phenomenon’ from Section 2.

While the standard quadrature points still produce reasonable results in practical
experiments, it is favourable to replace (A.1) by centred quadrature points,

F̃m,N =
1

2N

N∑
k=−N+1

F

(
k − 1

2

N

)
ω
−m(k− 1

2 )

2N , −N + 1 ≤ m ≤ N. (A.2)

On a very practical level, it consistently gives somewhat better results in our numerical
tests, cf. Fig A.1. Mathematically, spectral speed of convergence is maintained, while
centred points allow for an easy proof of the decay of quadrature error, which cannot
be easily adapted to standard DFT (A.1). Needless to say, exactly like standard DFT,
(A.3) can be computed by Fast Fourier Transform in O(N logN) operations.

Let F be analytic in an open strip about [−1, 1]. Therefore its Fourier expansion
is convergent,

∞∑
`=−∞

F̂` eπi`x = F (x), x ∈ (−1, 1).

Substituting into (A.3), we find the aliasing

F̂m,N =
1

2N

N∑
k=−N+1

∞∑
`=−∞

F̂` ω
(`−m)(k− 1

2 )

2N =
1

2N

N∑
k=−N+1

∞∑
`=−∞

F̂m+` ω
`(k− 1

2 )

2N

=

∞∑
`=−∞

F̂m+`
ω
−l/2
2N

2N

N∑
k=−N+1

ω`k2N =

∞∑
`=−∞

(−1)`F̂m+2`N ,
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because

1

2N

N∑
k=−N+1

ω`k2N =

{
1, ` = 0 mod 2N,

0, otherwise.

Thus the error is
F̂m,N − F̂m =

∑
` 6=0

F̂m+2`N (A.3)

Once F is periodic, this automatically proves the decay because Fourier coefficients
converge (at least) exponentially fast. Yet, in our case F (x) = f(λx) is not periodic,
while F (±1) is very small.

Lemma 7 Suppose that the function f obeys the conditions of Lemma 2. Then, with
the notation of that lemma,

|F̂m,N − F̂m| ≤
ρ

π

4N

4N2 −m2
+

4σ

eπNr/λ − 1
, |m| ≤ N − 1. (A.4)

Proof Our starting point is the explicit expression (A.3) of the error,

|F̂m,N − F̂m| ≤

∣∣∣∣∣
∞∑
`=1

(−1)`F̂m+2`N

∣∣∣∣∣+

∣∣∣∣∣
∞∑
`=1

(−1)`F̂m−2`N

∣∣∣∣∣
and we proceed by establishing uniform bounds on the finite sums with n+ 1 terms∣∣∣∣∣

n∑
`=1

(−1)`F̂m+2`N

∣∣∣∣∣ and

∣∣∣∣∣
n∑
`=1

(−1)`F̂m−2`N

∣∣∣∣∣ .
From the definition of the Fourier coefficients we find

n∑
`=1

(−1)`F̂m+2`N =
1

2λ

∫ λ

−λ
f(z) e−iπ(m+2N)z/λ

n−1∑
`=0

(
−e−iπ2Nz/λ

)`
dz

=
1

2λ

∫ λ

−λ
f(z) e−iπ(m+2N)z/λ 1−

(
−e−iπ2Nz/λ

)n
1 + e−iπ2Nz/λ

dz

We deform the integration to the contour ∂Sr along its lower part Γ− = ∪3
j=1Γ−j .

Thus, for any n,∣∣∣∣∣
n∑
`=1

(−1)`F̂m+2`N

∣∣∣∣∣ ≤ 1

2λ

∫
Γ−
|f(z)|

∣∣∣e−iπ(m+2N)z/λ
∣∣∣ · ∣∣∣∣∣1−

(
−e−iπ2Nz/λ

)n
1 + e−iπ2Nz/λ

∣∣∣∣∣dz
Looking at the path integral in greater detail, we find

1

2λ

∫
Γ−
1

|f(z)|
∣∣∣e−iπ(m+2N)z/λ

∣∣∣ · ∣∣∣∣∣1−
(
−e−iπ2Nz/λ

)n
1 + e−iπ2Nz/λ

∣∣∣∣∣dz
≤ ρ

2λ

∫ r

0

e−π(m+2N)y/λ

∣∣∣∣∣1−
(
−e−π2Ny/λ

)n
1 + e−π2Ny/λ

∣∣∣∣∣dy
≤ ρ

2π(2N +m)
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– likewise, the integral along Γ−3 yields the same bound. For the remaining part

1

2λ

∫
Γ−
2

|f(z)|
∣∣∣e−iπ(m+2N)z/λ

∣∣∣ ∣∣∣∣∣1−
(
−e−iπ2Nz/λ

)n
1 + e−iπ2Nz/λ

∣∣∣∣∣ dz ≤ 2σ
e−π(m+2N)r/λ

1− e−π2Nrλ
.

Hence this shows that for |m| ≤ N∣∣∣∣∣
∞∑
`=1

(−1)`F̂m+2`N

∣∣∣∣∣ ≤ ρ

π(2N +m)
+

2σ

eπNr/λ − 1
.

The second sum is likewise deformed along the upper contour ∪3
j=1Γ+

j and can be
similarly bounded by∣∣∣∣∣

∞∑
`=1

(−1)`F̂m−2`N

∣∣∣∣∣ ≤ ρ

π(2N −m)
+

2σ

eπNr/λ − 1
.

The bound (A.4) follows. 2

Using the quadrature rule (A.1), we find along Γ±1 and Γ±3 the term∣∣∣∣∣1−
(
e−π2Ny/λ

)n
1− e−π2Ny/λ

∣∣∣∣∣
instead of ∣∣∣∣∣1−

(
−e−π2Ny/λ

)n
1 + e−π2Ny/λ

∣∣∣∣∣ ,
which we cannot control uniformly over n.

As we assume a rapidly decaying function along the real axis, we can under suit-
able extra assumptions control the error in (A.1) by the result for (A.3) up to some
additional boundary terms.
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