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Time-domain modelling of interconnects with highly oscillatory sources

Abstract

Purpose
The paper explores a new approach for time-domain modelling of interconnects
with highly oscillatory modulated sources.
Design/methodology/approach
The paper employs an asymptotic method in conjunction with the Green’s func-
tion of the Telegrapher’s Equations. The Green’s function is expressed as a
series of rational functions in the Laplace domain and these are converted to
pole-residue form thereby enabling time-domain implementation.
Findings
The results indicate that the method is accurate for modelling interconnects
when widely-varying frequencies are present in the sources.
Originality/value
The technique is important in circuit design for assessing signal integrity and in
electromagnetic compatibility testing.

Keywords: Transmission-lines, Time-domain models, Electrical circuits, Modu-
lated signals.

1 Introduction

Modelling of interconnects is important in circuit design as signal integrity may be
seriously degraded owing to interconnect effects such as signal delay, distortion and
attenuation. Numerous approaches have been proposed for modelling interconnects
—see (Achar 2011) for an overview. With ever rising frequencies, interconnects can
no longer be modelled as short circuits or with lumped segment models. In addition,
the ability to model nonuniform interconnects is becoming more and more impor-
tant as package interconnects on printed circuit boards can have varying geometries
(Antonini 2012). In addition, they have many applications in the microwave field
(Yamamoto, Azakami & Itakura 1967). However, while transmission-line behaviour
is best described in the frequency domain and while some frequency-domain mod-
elling approaches such as (Moreno, Gómez, Naredo & Guardado 2005) and (Nagaoka
& Ametani 1988) have been proposed, in practice, time-domain models are generally
employed in circuit simulators for ease of interconnection with nonlinear elements. In
addition, some frequency-domain models become complex when handling non-uniform
transmission lines (Tang & Mao 2008). Some time-domain approaches for nonuni-
form interconnects are the two-step perturbation technique in (Chernobryvko, De
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Zutter & Vande Ginste 2014), the finite-difference time-domain technique in (Afrooz
& Abdipour 2012), the time-step integration method in (Tang & Mao 2008), the Lax-
Wendroff difference method in (Dou & Dou 2011), the implicit Wendroff method in
(Branč́ık & Ŝevč́ık 2011) and (Branč́ık 2011), the finite element method of (Jurić-
Grgić, Lucić & Bernadić 2015) and the spectral methods of (Antonini 2012). In
this paper, an approach is proposed for the case when the signals on the intercon-
nects have widely-varying frequency content and as such present major challenges for
numerical simulation. Meeting the Courant-Friedrich Lewy condition for the Finite
Difference Time-Domain method would require very small time steps. Making sim-
plifying assumptions regarding the nature of the input between time steps would lead
to inaccuracies for such signals unless the time step was very small. Issues regarding
the choice of time step also arise in employing a basic finite element method. The
goal is to adapt models for the efficient simulation of modulated signals or signals
with widely-varying frequency content on interconnects. This is important in electro-
magnetic compatibility testing (Afrooz & Abdipour 2012) and communication system
analysis.

The proposed technique employs the concepts presented in (Altinbaçsak, Condon,
Deaño & Iserles 2013) in conjunction with that in (Antonini 2012) and in related
works by its author. The paper is concerned with modulated signals on interconnects
and thus widely-varying frequency content is present.

2 Oscillatory sources on uniform transmission lines

2.1 The general framework

The Telegrapher’s Equations for a multi-conductor transmission line are

∂xv(x, t) = −Ri(x, t)−L∂ti(x, t)
∂xi(x, t) = −C∂tv(x, t) + is(x, t)

Eliminating i(x, t) and rearranging yields

∂2xv(x, t) = LC∂2t v(x, t) +RC∂tv(x, t)−Ris(x, t)−L∂tis(x, t) x ∈ [0, l], t ≥ 0.

(2.1)

where R, L and C are the per unit length resistance, inductance and capacitance
matrices of the transmission line. The matrices are of size N × N, when there are
N + 1 conductors in the multiconductor transmission line, one of which is the refer-
ence. v(x, t) and i(x, t) are the voltage and current vectors at position x at time t,
respectively. The length of the line is l and is(x, t) are the per unit length current
sources. We assume that currents are only injected into the system at x = 0 and
x = l.
Let the current source consist of a modulated signal:

isx(x, t) =

∞∑
n=−∞

isxn(x, t)einωt t ≥ 0,
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isx(x, t) = is0(t)δ(x) + isl(t)δ(x− l),

is0(t) =

∞∑
n=−∞

is0n(t)einωt t ≥ 0,

isl(t) =

∞∑
n=−∞

isln(t)einωt t ≥ 0.

We assume for simplicity that the functions, is0n(t) and isln(t) are all analytic. More-
over, we assume that the functions is0n(t) and isln(t) decay sufficiently rapidly for
|n| � 1, rendering the infinite sum convergent. ω is the frequency of the high-frequency
carrier signal.

We seek a solution of (2.1) of the form

v(x, t) =

∞∑
n=−∞

vn(x, t)einωt t ≥ 0, x ∈ [0, l]. (2.2)

Substituting (2.2) into (2.1) and separating frequencies results in

LC
(
∂2t vn(x, t) + 2inω∂tvn(x, t)− n2ω2vn(x, t)

)
+RC (∂tvn(x, t) + inωvn(x, t))

= ∂2xvn(x, t) +Risxn(x, t) +Linωisxn(x, t) +L∂tisxn(x, t) x ∈ [0, l], t ≥ 0.

(2.3)

2.2 The computation of vn(x, t)

To compute vn(x, t), we convert equation (2.3) to the Laplace domain and rearrange.

∂2xVn(x, s)− s2LCVn(x, s)− s(RC + 2inωLC)Vn(x, s)

−(RCinω −LCn2ω2)Vn(x, s) = −RIsxn(x, s)−LinωIsxn(x, s)− sLIsxn(x, s)

or

∂2xVn(x, s) = γ2(s)Vn(x, s) + bn(x, s) (2.4)

where

γ2(s) = s2LC + s(RC + 2inωLC) + (RCinω − n2ω2LC)

and

bn(x, s) = −RIsxn(x, s)−LinωIsxn(x, s)− sLIsxn(x, s).
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The solution to (2.4) is

Vn(x, s) =

∫ l

0

Gn(x, x′, s)bn(x′, s)dx′

where Gn(x, x′, s) is the Green’s function for (2.4).
Gn(x, x′, s) can be expanded as

Gn(x, x′, s) =
∞∑
m=0

am(x′, s)φm(x)

where am is the matrix of amplitude coefficients.

As the currents at x = 0 and x = l are treated as sources, the voltages satisfy homo-
geneous Neumann-type boundary conditions. Consequently, the set of eigenfunctions
φm(x) satisfy the following differential equation subject to Neumann boundary con-
ditions

d2

dx2
φm(x) + λmφm(x) = 0

Hence, the eigenvalues and eigenfunctions are

λm =
(mπ
l

)2
, φm = Am cos

mπx

l

where

Am =

√
1

l
, m = 0,

Am =

√
2

l
, m > 0.

The Green’s function for (2.4) is a solution of the equation

d2

dx2
Gn(x, x′, s)− γ2(s)Gn(x, x′, s) = δ(x, x′)IN (2.5)

where δ(x, x′) is the 1-D Dirac delta function and where IN is the identity matrix
of dimension N . We substitute the expansion for Gn(x, x′, s) into (2.5), multiply by
φk(x) and integrate from 0 to l. Since∫ l

0

φm(x)φk(x)dx = δm,k,
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it follows that[
−λmIN − γ2(s)

]
am(x′, s) =

[
−(
mπ

l
)2IN − γ2(s)

]
am(x′, s) = φm(x′)IN ,

hence

am(x′, s) = −
[
γ2(s) +

(mπ
l

)2
IN

]−1
φm(x′)IN .

This results in

G(x, x′, s) = −
∞∑
m=0

[
γ2(s) +

(mπ
l

)2
IN

]−1
A2
m

[
cos
(mπx

l

)
cos

(
mπx′

l

)]
.

Hence, the voltages at x = 0 and x = l are

Vn(0, s) =

∫ l

0

G(0, x′, s) (−R− sL−Linω) Isxn(x′, s)dx′

= G(0, 0, s)(−R− sL−Linω)Is0n(s) +G(0, l, s)(−R− sL−Linω)Isln(s)

=

∞∑
m=0

[
γ2(s) + (

mπ

l
)2IN

]−1
A2
m×

((R+ sL+Linω)Is0n(s) + cos(mπ)(R+ sL+Linω)Isln(s)) ,

Vn(l, s) =

∫ l

0

G(l, x′, s)(−R− sL−Linω)Isxn(x′, s)dx′

= G(l, 0, s)(−R− sL−Linω)Is0n(s) +G(l, l, s)(−R− sL−Linω)Isln(s)

=

∞∑
m=0

[
γ2(s) + (

mπ

l
)2IN

]−1
A2
m ×

((R+ sL+Linω) cos(mπ)Is0n(s) + (R+ sL+Linω)Isln(s)) ,

respectively. Thus, the matrix representation for the nth terms in the expansion in
(2.2) in the Laplace domain is[

Vn(0, s)
Vn(l, s)

]
=

[
Zn11(s) Zn12(s)
Zn21(s) Zn22(s)

] [
Is0n(s)
Isln(s)

]
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where

Zn11(s) =

∞∑
m=0

[
γ2(s) +

(mπ
l

)2
IN

]−1
A2
m [R+Linω + sL] ,

Zn12(s) =

∞∑
m=0

(−1)m
[
γ2(s) +

(mπ
l

)2
IN

]−1
A2
m [R+Linω + sL] ,

Zn21(s) =

∞∑
m=0

(−1)m
[
γ2(s) +

(mπ
l

)2
IN

]−1
A2
m [R+Linω + sL] ,

Zn22(s) =

∞∑
m=0

[
γ2(s) +

(mπ
l

)2
IN

]−1
A2
m [R+Linω + sL] .

Each Znij(s) is expressed as a sum of rational functions in s, hence the time-domain
response can be determined by converting the representation into a state-space rep-
resentation. The number of terms in the summations is set in practice to Nmod and
this number is determined by the accuracy requirements.

Once each term vn(x, t) is determined, the overall response can be determined as

v(x, t) =

∞∑
n=−∞

vn(x, t)einωt.

2.3 Example 1

Consider a transmission line of length 0.3m. The per-unit parameters are L =
50nH/m, C = 100pF/m and R = 2Ω/m. Let the input current source be a modulated
sine wave

Is(t) = sin(ω1t) sin(ωt) t ≥ 0

where ω1 = 200π rad/s is the frequency of the slowly-varying signal that modulates
the high-frequency signal. ω = 2π × 106 rad/s is the frequency of the high-frequency
carrier signal.
Fig. 2.1 shows the absolute value of the terms in Zn11(s) for the given parameters
at f = 100Hz as a function of m and confirms that the terms decay rapidly with
m. Fig. 2.2 depicts the voltage at the sending-end of the open-circuit transmission
line. The dotted line is the result from the proposed method with Nmod set equal to
50. The solid line is the result obtained from an accurate numerical inverse Laplace
transform analysis (Wilcox 1978). The Z or Y-parameters of the transmission line
are formed in the Laplace domain and the required voltage in the Laplace domain
is determined based on the boundary conditions. This is then converted to the time
domain using the numerical inverse Laplace transform. However, what is important
to note is that to simulate the system for a longer interval of time requires a very large
number of discretization steps for the numerical inverse Laplace transform. The time-
step must be small enough to capture the high frequency. This results in a very large
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Figure 2.1: The decay of the terms forming Zn11(s) as a function of m.

Figure 2.2: The voltage at the sending-end of the open-circuit transmission line.
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Figure 2.3: The voltage at the sending-end of the open-circuit transmission line on a
longer time interval.

number of time steps to simulate even one cycle of the low-frequency information
signal. However, with the proposed method, this is avoided as the high-frequency
carrier is separated out. Hence, the greater the efficiency of the proposed method.
Fig. 2.3 shows the same voltage waveform on a longer time interval.

2.4 Example 2

The second example is that when a non-linearity is present. A non-linear resistor is
present at the sending end of the transmission line. In addition, there is a resistor of
1Ω in parallel with it. The equation governing the nonlinear resistor is

i(t) = 0.2v2(t)

Fig. 2.4 depicts the voltage at the sending-end of the open-circuit transmission line.
The dotted line is the result from the proposed method with Nmod set equal to 1.
The solid line is the result obtained from an implementation of the Wendroff method
similar to that in (Branč́ık & Ŝevč́ık 2011). The source current for this example is

Is(t) = sin(ω1t) sin(ωt) t ≥ 0

where ω1 = 200π rad/s and ω = 2π×106 rad/s. The length of the line is 0.003m. The
per unit length parameters are L = 50nH/m, C = 100pF/m and R = 200Ω/m.

It should be noted that a nonlinearity results in coupling of the various vn and in
modes. This results in coupled nonlinear differential equations. However, the high-
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frequency signals are still separated from the low-frequency components so the gains
in efficiency remain.

Figure 2.4: The voltage at the sending-end of the open-circuit transmission line when
a nonlinearity is present.

3 Non-uniform transmission lines

In general, apart from a few special cases such as a linear variable non-uniform trans-
mission line (Lu 1997), there are no exact solutions for non-uniform transmission lines.
Several methods have been proposed: (Tang & Mao 2007), (Manfredi, De Zutter &
Vande Ginste 2016), (Khalaj-Amirhosseini 2006), (Jurić-Grgić et al. 2015), (Afrooz
& Abdipour 2012), (Antonini 2012) and many more. In this work, we adapt the ap-
proach presented for uniform lines in the above section for non-uniform transmission
lines. The starting point is again the Telegrapher’s Equations. In the Laplace domain,
they are written as

d

dx
V (x, s) = −R(x)I(x, s)− sL(x)I(x, s)

d

dx
I(x, s) = −sC(x)V (x, s) + Is(x, s)
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Eliminating I(x, s) and rearranging yields

d2

dx2
V (x, s)− (s2L(x)C(x) + sR(x)C(x))V (x, s)

−(R(x) + sL(x))−1
d

dx
(R(x) + sL(x))

d

dx
V (x, s) = −(R(x) + sL(x))Is(x, s)

(3.1)

where R(x), L(x) and C(x) are the per unit length parameter matrices.

Now as for the uniform case, the proposed form of the solution is

v(x, t) =
∑
n

vn(x, t)einωt t ≥ 0, x ∈ [0, l]. (3.2)

Hence, the equation for each nth mode is

d2

dx2
Vn(x, s)−L(x)C(x)

[
s2 + 2inωs− n2ω2

]
Vn(x, s)

− [sC(x)R(x) + inωC(x)R(x)]Vn(x, s)

−(R(x) + sL(x) +L(x)inω)−1
d

dx
(R(x) + sL(x) +L(x)inω)

d

dx
Vn(x, s)

= −(R(x) + sL(x) +L(x)inω)Isn(x, s)

(3.3)

The solution to 3.3 is

Vn(x, s) = −
∫ l

0

Gn(x, x′, s)(R(x′) + sL(x′) +L(x′)inω)Isn(x′, s)dx′

where Gn(x, x′, s) is the Green’s function.

Determination of the eigenvalues and eigenfunctions for 3.3, even if possible, is chal-
lenging (Antonini 2012). However, if the degree of non-uniformity is relatively small
as is required so that only TEM mode propagation exists, the non-uniform line may
be considered as a perturbation of the uniform line. Therefore, as in the method of
(Antonini 2012), the eigenfunctions and eigenvalues that were used for the uniform
line shall also be employed for the non-uniform interconnect.

Gn(x, x′, s) =

∞∑
m=0

am(x′, s)φm(x),

where as before the eigenvalues and eigenfunctions are

λm =
(mπ
l

)2
,

φm = Am cos
mπx

l
.
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The Green’s function for 3.3 is a solution of the equation

d2

dx2
Gn(x, x′, s)

−
(
L(x)C(x)

[
s2 + 2inωs− n2ω2

]
+C(x)R(x) [s+ inω]

)
Gn(x, x′, s)

− (R(x) + sL(x) +L(x)inω)−1
d

dx
(R(x) + sL(x) +L(x)inω)

d

dx
Gn(x, x′, s)

= δ(x, x′)IN .

(3.4)

We substitute the expansion forGn(x, x′, s) into (3.4), multiply by φk(x) and integrate
from 0 to l. This results in

∞∑
m=0

[−λkIN +Kk,m(s) +Hk,m(s)]am(x′, s) = φk(x′)IN

where

Kk,m(s) =∫ l

0

−(L(x)C(x)
[
s2 + 2inωs− n2ω2

]
+C(x)R(x) [s+ inω])φk(x)φm(x)dx,

Hk,m(s) =∫ l

0

−φk(x)(R(x) + sL(x) +L(x)inω)−1
d

dx
(R(x) + sL(x) +Linω)

d

dx
φm(x)dx.

The number of eigenfunctions is limited to Nmod. This number is set in practical
simulations to achieve a specified accuracy requirement.

Nmod∑
m=0

[−λkIN +Kk,m(s) +Hk,m(s)]am(x′, s) = φk(x′)IN (3.5)

Equation (3.5) is enforced for k = 0..Nmod, resulting in

[−λ+K(s) +H(s)]a(x′, s) = L(s)a(x′, s) = φ(x′) (3.6)

where

λ = diag(λ0IN , ..., λNmod
IN ),

a(x′, s) = [a0,a1, ...,aNmod ]
T
,

φ = [φ0(x′)IN , φ1(x′)IN , ..., φNmod
(x′)IN ]

T
.

The solution can be formed by diagonalising L(s)

L(s) = Q(s)α(s)Q(s)−1.
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The diagonal elements α(s) can be approximated by a polynomial in s over the fre-
quency range of interest. In the uniform case,

αuniformj = µLC
(
s2 + 2inωs− n2ω2

)
+ µCR(s+ inω) +

j2π2

l2
,

where µLC and µRC are the eigenvalues of the N ×N matrices LC and RC. Bearing
this in mind, and remembering that the non-homogeneity is considered as a pertur-
bation of the homogeneous case, the selected form of approximating polynomial may
be set as αj(s) = αuniformj

(s) + cj where cj is a constant fitted at a low frequency.

This enables the inverse of L(s), denoted Li(s), to be expressed as

Li(s) =

N×Nmod+1∑
j=0

1

αj
Qj(Qj

−1
)T ,

.
Hence,

a(x′, s) =

N×Nmod+1∑
j=0

1

αj
QjQj

−Tφ(x′)

The Green’s function is

G(x, x′, s) =

Nmod∑
m=0

am(x′, s)φm(x) =

Nmod∑
m=0

Nmod∑
j=0

Li
m,j(s)φj(x

′)φm(x),

where Li
m,j(s) is the (m, j)th N ×N block of Li. Then Vn(x, s) is obtained as

Vn(x, s) =∫ l

0

Nmod∑
m=0

Nmod∑
j=0

Li
m,j(s)φj(x

′)φm(x) [−(R(x′) +L(x′)inω + sL(x′))Isxn(x′, s)] dx′.

Since

Isxn(x, s) = Is0n(s)δ(x) + Isln(s)δ(x− l),

Vn(x, s) =

Nmod∑
m=0

Nmod∑
j=0

Li
m,j(s)φm(x)×

[
−Aj(R(0) +L(0)inω + sL(0)) −Aj(−1)j(R(l) +L(l)inω + sL(l))

] [Is0n(s)
Isln(s)

]
.
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Therefore, the matrix representation for each mode n is[
Vn(0, s)
Vn(l, s)

]
=

[
Zn11(s) Zn12(s)
Zn21(s) Zn22(s)

] [
Is0n(s)
Isln(s)

]
, (3.7)

where

Zn11(s) = −
Nmod∑
m=0

Nmod∑
j=0

A2
mL

i
m,j(s) [(R(0) +L(0)inω + sL(0))] ,

Zn12(s) = −
Nmod∑
m=0

Nmod∑
j=0

A2
m(−1)jLi

m,j(s) [(R(l) +L(l)inω + sL(l))] ,

Zn21(s) = −
Nmod∑
m=0

Nmod∑
j=0

A2
m(−1)mLi

m,j(s) [(R(0) +L(0)inω + sL(0))] ,

Zn22(s) = −
Nmod∑
m=0

Nmod∑
j=0

A2
m(−1)m+jLi

m,j(s) [(R(l) +L(l)inω + sL(l))] .

Note that Am = Aj . As for the uniform case, the rational functions can be
converted directly to pole-residue form and then converted to the time domain.

3.1 Example 1

The example is a single line of length 0.3m. The per unit length inductance varies
as L(x) = L0e−αx and the per unit length capacitance varies as C(x) = C0eαx.
L0 = 50nH/m and C0 = 100pF/m. The resistance varies as R(x) = R0e−αx and
R0 = 10Ω/m. α = 4. The input is

Is(t) = sin(ω1t) sin(ωt) t ≥ 0

ω1 = 200π and ω = 2π × 106. Fig. 3.1 depicts the voltage at the sending-end of the
open-circuit transmission line. The dotted line is the result from the proposed method
with Nmod = 50. The solid line is the result when the transmission line is modelled in
very fine uniform segments (100 sections) and the time-domain response is obtained
using the numerical inverse Laplace transform. The result for a longer simulation is
shown in Fig. 3.2. The red dotted line is the result from the proposed method. As
for the uniform line, a very large number of time steps is required to simulate such
a result using the numerical inverse Laplace transform. This number is determined
by the high-frequency carrier unlike the proposed method where the high-frequency
carrier is separated out.

3.2 Example 2

The second example is a coupled exponential line. The parameters are similar to those
in (Manfredi et al. 2016) and are

L0 =

[
171.4 18.65
18.65 171.4

]
nH/m, C0 =

[
65.7 −7.15
−7.15 65.7

]
pF/m, R0 =

[
10 0
0 10

]
Ω/m.
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Figure 3.1: The voltage at the sending-end of the open-circuit transmission line.

Figure 3.2: The voltage at the sending-end of the open-circuit transmission line on a
longer time interval.
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L(x) = L0e−αx, C(x) = C0eαx, R(x) = R0e−αx.

The line is 0.2m in length. The source current is again sin(ω1t) sin(ωt) with ω1 = 200π,
ω = 2π×106 and α = 8. Fig. 3.3 shows the voltage at the sending end of the energised
line when all of the other terminals are open-circuit. The dotted line is the result
from the proposed method with Nmod = 50 and the solid line is the result when the
transmission line is modelled in very fine uniform segments (100 sections) using the
numerical inverse Laplace transform. The result for a longer simulation is shown in
Fig. 3.4.

Figure 3.3: The voltage at the sending-end of the open-circuit coupled transmission
line.

4 Conclusion

The paper has described a technique for forming a time-domain model for an inter-
connect when highly oscillatory modulated sources are present. The method separates
the low-frequency information signal from the high-frequency carrier signal and this
enables efficiencies to be gained. Results have highlighted the efficacy of the method
for simulating modulated signals on both uniform and non-uniform interconnects. Re-
sults are validated by comparison with accurate results obtained using the numerical
inverse Laplace Transform for linear cases and the Wendroff method for a nonlinear
example. The method is important for circuit and system design and testing when
signals with widely-varying frequency content are present.
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Figure 3.4: The voltage at the sending-end of the open-circuit coupled transmission
line on a longer time interval.
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