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Abstract

The computation of the Schrödinger equation featuring time-dependent po-
tentials is of great importance in quantum control of atomic and molecular pro-
cesses. These applications often involve highly oscillatory potentials and require
inexpensive but accurate solutions over large spatio-temporal windows. In this
work we develop commutator-free Magnus expansions whose exponentiation via
Lanczos iterations is significantly cheaper than that for traditional Magnus ex-
pansions. At the same time, and unlike most competing methods, we simplify
integrals instead of discretising them via quadrature at the outset – this gives
us the flexibility to handle a variety of potentials, being particularly effective in
the case of highly oscillatory potentials, where this strategy allows us to consider
significantly larger time steps.
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Poland.
‡Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory

Quarter, Woodstock Rd, Oxford OX2 6GG, UK and Trinity College, University of Oxford, Broad
Street, Oxford OX1 3BH, UK.

1



2 A. Iserles, K. Kropielnicka & P. Singh

1 Introduction

We consider the linear, time-dependent Schrödinger equation (TDSE) for a single
particle moving in a time-varying electric field,

∂u(x, t)

∂t
= i

∂2u(x, t)

∂x2
− iV (x, t)u(x, t), x ∈ R, t ≥ 0, (1.1)

where the complex-valued wave function u = u(x, t) is given with an initial condition
u(x, 0) = u0(x). Here V (x, t) is a real-valued, time-dependent electric potential, and
we are working in atomic units, where Planck’s constant is scaled to one (h̄ = 1).

These equations are of great practical importance since they allow us to study the
behaviour of particles under the influence of changing electrical field. As our ability to
manipulate electric fields becomes more refined, including the shaping of laser pulses,
unprecedented quantum control of atomic and molecular systems is becoming possible
(Shapiro & Brumer 2003). Optimal control of quantum systems is among the many
challenges that require highly accurate and computationally inexpensive solutions of
this equation, often involving highly oscillatory potentials over large spatio-temporal
windows

1.1 Existing approaches

Time-dependent potentials significantly complicate matters insofar as numerical solu-
tions are concerned. Typically the solution of (1.1) involves a truncation of the Magnus
expansion, which is an infinite series of nested integrals of nested commutators, as we
will see in this section.

Traditional methods for solving (1.1) usually commence with spatial discretisation,

u′(t) = i(K2 −DV (·,t))u(t), t ≥ 0, (1.2)

where the vector u(t) ∈ CM represents an approximation to the solution at time t,
u(0) = u0 is derived from the initial conditions, while K2 and DV (·,t) are M ×M
matrices which represent (discretisation of) second derivative and a multiplication by
the interaction potential V (·, t), respectively.

Magnus expansions. The system of ODEs (1.2), which is of the form

u′(t) = A(t)u(t), t ≥ 0, (1.3)

with A(t) = i(K2 −DV (·,t)), can be solved via the Magnus expansion (Magnus 1954),

u(t) = eΘ(s,t)u(s), (1.4)

where Θ(s, t) ∈ uM (C) is a time-dependent M ×M matrix whose exponential evolves
the solution from time s to t. The Magnus expansion Θ(s, t) is obtained as an infinite
series

∑∞
k=1 Θ[k](s, t) with each Θ[k](s, t) composed of k nested integrals and k − 1

nested commutators (see expressions below).
In practice, we work with finite truncations of the Magnus series,

Θm(s, t) =

m∑
k=1

Θ[k](s, t),
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and propagate the solution in suitably small time steps h,

un+1 = eΘm(tn,tn+h)un,

in order to keep the truncation error low. For the sake of simplicity, we analyse only
the first step,

u1 = eΘm(h)u0, (1.5)

writing Θm(h) = Θm(0, h), for short1. The first few terms of Θm(h) are

Θ[1](h) =

∫ h

0

A(ξ1)dξ1,

Θ[2](h) = −1

2

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]
dξ1,

Θ[3](h) =
1

12

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1

+
1

4

∫ h

0

[∫ ξ1

0

[∫ ξ2

0

A(ξ3)dξ3, A(ξ2)

]
dξ2, A(ξ1)

]
dξ1.

Remark 1 In this paper we exclusively use the so called power-truncated Magnus
expansion, see (Iserles, Nørsett & Rasmussen 2001) and (Iserles, Munthe-Kaas,
Nørsett & Zanna 2000). These truncations posses, for a sufficiently smooth opera-
tor A, several crucial features: (1) fewer components of Magnus expansion (Θ[k](h))
are required to obtain desired accuracy of truncations, (2) such truncations are time-
symmetric, (3) since any analytic time-symmetric map Sh can be represented in the
form Sh = eFh , where Fh is expandable in odd powers of h only, these Magnus ex-
pansions are odd in h. The last property not only leads to a gain of order of overall
approximation, but also allows using fewer Gauss–Legendre quadrature points to keep
the expected order of approximation. These advantages will be expounded in the sequel.

Exponential midpoint rule. The simplest method in this family results from
letting Θ1(h) = Θ[1](h),

u1 = eΘ1(h)u0 = exp

(∫ h

0

A(ξ)dξ

)
u0 = exp

(
ihK2 − i

∫ h

0

DV (ξ)dξ

)
u0.

It is typical to approximate
∫ h

0
DV (ξ)dξ = D∫ h

0
V (ξ)dξ by taking the value of V at the

middle of the integral,
∫ h

0
V (ξ)dξ ≈ hV (h/2), and concluding with an application of

the Strang splitting,

u1 = exp
(

1
2 ihK2

)
exp
(
−ihDV (h/2)

)
exp
(

1
2 ihK2

)
u0. (1.6)

1The corresponding solution for any step eΘm(tn,tn+h)un can be obtained by replacing A(ζ) by
A(tn + ζ) in the Magnus expansion.
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This method, called the exponential midpoint rule, is well known and has been used
for a long while (Tal-Ezer, Kosloff & Cerjan 1992).

Quadrature accuracy. We note that the first truncation, Θ1, carries an error of
O
(
h3
)

(Iserles et al. 2000). Ideally it should be combined with an O
(
h3
)

quadrature.
However, since the power truncated Magnus expansion is time-symmetric, its expo-
nential is extendable in only odd powers of h (Iserles et al. 2001). Thus even when we
combine it with an O

(
h2
)

Gauss–Legendre quadrature (freezing the potential at the

midpoint), the error is O
(
h3
)

since the O
(
h2
)

terms vanish. (More genarally, in our

approach an O
(
h2n
)

accuracy quadrature method will automatically be considered to

have an accuracy of O
(
h2n+1

)
, which results in fewer quadrature points). Subsequent

to freezing of the potential, we perform a O
(
h3
)

Strang splitting and thus conclude

that the method (1.6) has a local error of O
(
h3
)
.

Higher order truncations of the Magnus expansion. Once higher order
accuracy is desired (Tal-Ezer et al. 1992, Kormann, Holmgren & Karlsson 2008), we
need to consider higher order truncations of the Magnus expansion such as

Θ2(h) =

∫ h

0

A(ξ1)dξ1 −
1

2

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]
dξ1 = Θ(h) +O

(
h5
)
.

Higher order truncations necessarily involve nested integrals of nested commutators.
The nested integrals here need to be approximated using quadrature formulæ of accu-
racy O

(
h5
)
. However, as mentioned before, it suffices to consider the Gauss–Legendre

quadrature at only two nodes: τk = h
2 (1± 1/

√
3). This results in the method

u1 = exp
(
h
2 (A(τ−1) +A(τ1)) +

√
3h2

12 [A(τ−1), A(τ1)]
)
u0.

For the Schrödinger equation (1.1), this translates to

u1 = exp
(

ihK2 − ihV + h2
√

3h2

12 [K2, Ṽ ]
)
u0.

where V = V (τ−1)+V (τ1)
2 and Ṽ = V (τ−1)− V (τ1).

Splitting the exponential of Magnus expansions. The exponential of Θ2

needs to be evaluated up to an accuracy of O
(
h5
)
. The second-order Strang splitting,

eΘ2(h) = e
1
2 ihK2 e−

1
2 ihDV eh

2
√

3h2

12 [K2,DṼ ] e−
1
2 ihDV e

1
2 ihK2 +O

(
h3
)
,

therefore, does not suffice. Instead we require the fourth order Yoshida splitting,
obtained by composing three order-two Strang splittings.

When the exponent to be split consists of two components, the number of expo-
nentials in an order-2m Yoshida splitting grows as 2 × 3m−1 + 1. Here, we need to
approximate the exponential of higher order Magnus truncations, Θm, which feature
an increasingly larger number of terms. Consequently the number of exponentials in
the Yoshida splitting for Magnus expansions grows even more rapidly.

Moreoever, we are left with the problem of evaluating the exponential of commu-
tators such as [K2,DṼ ] which are expensive to compute and do not posses a structure
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that allows for an easy exponentiation. In higher-order methods such as Θ3 we start
encountering commutators in a nested form.

Magnus–Lanczos schemes. An alternative approach for approximating the ex-
ponential of the Magnus expansion is via Lanczos iterations (Gallopoulos & Saad
1992), leading to the popular Magnus–Lanczos schemes. This is, arguably, a more
flexible approach since we only require a method for computing matrix–vector prod-
ucts of the form Θnv in each Lanczos iteration.

Nevertheless the exponential growth resulting from the presence of nested com-
mutators is inevitable. Moreover, the highly promising superlinear decay of error in
the case of the Lanczos method for approximating the matrix exponential is not seen
until the number of iterations is larger than the spectral radius of Θm(h) (Hochbruck
& Lubich 1997), which is very large unless the time step h is suitably small.

Commutator-free, integral-free quasi-Magnus methods. To avoid the ex-
ponential growth of cost due to presence of nested commutators, many attempts have
been made at deriving schemes that are entirely commutator-free. These usually pro-
ceed by replacing nested integrals in the Magnus expansion by some quadratures or
Taylor expansions of V at the outset, subsequently seeking a commutator-free ex-
ponential splitting that adequately approximates the exponential of the discretised
Magnus expansion. Since the Magnus expansion does not appear explicitly in these
schemes, they are referred to as quasi-Magnus.

For example in (Alvermann & Fehske 2011), instead of the exponential of Mag-
nus expansion, authors derive an alternative numerical propagator for Schrödinger
equations. Namely a product of exponentials of linear combinations of various values
of Hamiltonian operator (more precisely, values of Hamiltonian operator are taken
in Gauss-Legendre quadrature points). Blanes, Casas & Thalhammer (2017), on the
other hand, investigate the commutator-free expansion for differential equations of
both, parabolic and hyperbolic equations, also providing stability and error analysis.

Commutator-free, integral-free Magnus–Zassenhaus splittings. In (Bader,
Iserles, Kropielnicka & Singh 2016) a commutator-free integral-free numerical integra-
tor was proposed for Schrödinger equation in the semiclassical regime. Once again,
these proceed via discretisation of the integrals in the Magnus expansion. However,
unlike quasi-Magnus methods where commutators are eliminated, these work by solv-
ing the commutators in the Lie algebra of anti-commutators, subsequently exploting
the idea of the symmetric Zassenhaus asymptotic splittings (Bader, Iserles, Kropiel-
nicka & Singh 2014) for exponentiation. These have been shown to be highly effective
in the semiclassical regime.

1.2 Main contributions

In this work we present commutator-free Magnus–Lanczos methods that

1. retain all the advantages of Magnus expansions and Lanczos methods,

2. are free of nested commutators (and the associated growth in cost),

3. feature non-nested anti-commutators which preserve skew-Hermiticity of the ex-
pansion (thus unitarity of solution and stability of the discretised method),
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4. preserve the integrals intact until the very last moment of the algorithm (this
enables more flexibility, higher accuracy and often lower cost while dealing with
numerical integration),

5. feature fewer nested integrals (due to identities (2.11) and (2.12)). Our or-
der six methods, for instance, feature only twice-nested integrals instead of the
quadruply-nested integrals that feature in a standard Magnus expansion – not
only is this beneficial for numerical quadrature, but it also makes analytic and
asymptotic approximation easier.

As discussed previously, standard Magnus expansions feature nested commutators.
When we need to compute Θmv in each Lanczos iteration, these nested commutators
result in the cost of Θmv growing exponentially in m. The absence of nested commu-
tators in our commutator-free Magnus expansions results in the cost of Θmv growing
linearly in m.

Moreover, we are able to do this while keeping integrals intact, resulting in methods
that are highly flexible – not only it is possible to approximate the integrals through
any quadrature method, but we may also use exact integrals for potentials whenever
possible. This proves particularly effective in the case of potentials with high temporal
oscillations where we no longer require a severe depression of time steps.

As it has been noted in (Hochbruck & Lubich 2002), the (spectral) size of Magnus
expansions turns out to be smaller than naive commutator bounds suggest. This is
important since it has consequences for the number of Lanczos iterations required for
sufficient accuracy, the size of time steps and overall accuracy. In the current paper this
becomes directly evident in a constructive way when developing our commutator-free
Magnus expansions.

1.3 Organisation of the paper

Section 2 is devoted to the derivation of commutator-free Magnus expansions. Mag-
nus expansions for the Schrödinger equation evolve in the Lie algebra generated by
∂2
x and V (·). However, as it will be pointed out in Subsection 2.1, a straightforward

simplification of commutators of these operators using the chain rule results in the
loss of unitarity of the solution upon discretisation. One of the novelties of our ap-
proach is working in the algebra of anti-commutators, which leads to the preservation
of skew-Hermitian structure and stability of the scheme. The procedure for deriving
commutator-free Magnus expansions is presented in Subsections 2.2–2.6. In Subsec-
tions 2.7 and 2.8 we present concrete order four and order six Magnus expansions, Θ2

and Θ4, respectively (methods (2.21) and (2.28)).
Section 3 deals with the implementation of our method. In Section 3.1 we provide

some details concerning spatial discretisation. Section 3.2 deals with the evaluation of
derivatives and integrals of the potential appearing in the Magnus expansion. While
various alternatives are possible at this stage, a particular option – namely, finite dif-
ferences for derivatives and Gauss–Legendre quadrature with three knots for integrals
– is outlined in greater detail (expressions 3.3–3.8). In Section 3.3 we discuss the im-
plementation of Lanczos iterations (achieved via (3.9)) for numerical exponentiation
of the Magnus expansion and the number of Fast Fourier Transforms (FFTs) required
per iteration.
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Numerical examples are provided in Section 4, while in the last section we briefly
summarise our results.

2 Commutator-free Magnus expansion

In contrast to the traditional approach of resorting to spatial discretisation of (1.1),
which leads to the system of finite dimensional ODEs (1.2) followed by the Magnus
expansion (1.4), we begin straight away with a Magnus expansion of (1.1) while keeping
the underlying operators intact.

In numerically solving (1.1), consistently with standard practice we impose periodic
boundary conditions on a finite interval I ⊆ R. We further assume throughout that
the interaction potential V (·, t) and the wavefunction u(·, t) are sufficiently smooth.
For the purpose of this paper and for simplicity sake we assume that they belong to
C∞p (I;R) and C∞p (I;C), respectively, the spaces of real valued and complex valued
smooth periodic functions over I, but our results extend in a straightforward manner
to functions of lower smoothness (the regularity constraints will depend on the desired
order of the method being derived).

Considering (1.1) as an evolutionary PDE evolving in a Hilbert space, say H =
L2(I;C), and suppressing the dependence on x,

∂tu(t) =
(
i∂2
x − iV (t)

)
u(t), u(0) = u0 ∈ H, (2.1)

is seen to be of the ‘ODE-like’ form

∂tu(t) = A(t)u(t), u(0) = u0 ∈ H, (2.2)

with A(t) = i∂2
x − iV (t). The operator A(t) belongs to u(H), the Lie algebra of

(infinite-dimensional) skew-Hermitian operators acting on the Hilbert space H. Its
flow is, therefore, unitary and resides in U(H) – the Lie group of unitary operators.

Unitary evolution of the wave function u(t) under this flow is fundamental to quan-
tum mechanics. Preservation of this property under discretisation is very important
and we seek appropriate geometric numerical integrators to guarantee it. This comes
about naturally once we work in the correct Lie-algebraic framework. As we note
later, unitarity also guarantees stability of a consistent numerical scheme.

For a general equation of the form (2.2) where A(t) resides in a Lie algebra g, the
solution for the flow can be formally written in the form of a Magnus expansion,

u(h) = eΘ(h)u(0), (2.3)

which differs from (1.4) in the sense that the Magnus expansion Θ is in general an
infinite-dimensional and unbounded operator, not a matrix.

Remark 2 Convergence of the Magnus expansion, in the finite dimensional case is
only guaranteed for sufficiently small time steps (Moan & Niesen 2008). In principle,
this becomes problematic when we consider Magnus expansions of undiscretised and
unbounded operators.
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Rigorous analysis in the context of PDEs, such as the Schrödinger equation has
been carried out by (Hochbruck & Lubich 2002) who show that when Magnus expan-
sions of unbounded operators are considered in a formal sense, the concrete methods
based on these approaches do demonstrate the expected order of convergence.

Pursuing a similar strategy, it is possible to derive rigorous error bounds for the
Magnus expansion based methods presented in this manuscript. However, since this
analysis involves development of additional theory that could obscure the presentation
of the proposed methods, it will be beyond the scope of our investigations. Here we
refer the curious reader to Chapter 9. of (Singh 2017).

2.1 The algebra of anti-commutators

The vector field in the Schrödinger equation (2.1) is a linear combination of the action
of two operators, ∂2

x and the multiplication by the interaction potential V (t), for any
t ≥ 0. Since the Magnus expansion requires nested commutation, the focus of our
interest is the Lie algebra generated by ∂2

x and V (·),

F = LA{∂2
x, V (·)},

i.e. the linear-space closure of all nested commutators of ∂2
x and V (·).

Simplifying commutators. To simplify commutators we could study their action
on functions. For example, using the chain rule we find,

[∂2
x, V ]u = ∂2

x(V u)− V (∂2
xu) = (∂2

xV )u+ 2(∂xV )∂xu,

which implies that [∂2
x, V ] = (∂2

xV ) + 2(∂xV )∂x. Similarly, we conclude that

[∂2
x, [∂

2
x, V ]] = (∂4

xV ) + 4(∂3
xV )∂x + 4(∂2

xV )∂2
x,

[V, [∂2
x, V ]] = −2(∂xV )2.

Note that we have ignored here the dependence on the time variable since the deriva-
tives are only in the spatial variable.

Loss of skew-Hermiticity. Simplifying commutators in this way, we can, in
principle, get rid of all nested commutators occurring in the (truncated) Magnus
expansion of the undiscretised operators. It is only after this stage that we would resort
to spatial discretisation. Proceeding in this way, however, we break an important
structural property – upon discretisation, such a commutator-free Magnus expansion
is no longer skew-Hermitian and thus its exponential is no longer unitary.

To illustrate the loss of unitarity, let us consider the two differential operators:
[∂2
x, V ] and (∂2

xV )+2(∂xV )∂x. Spatial discretisation transforms these two analytically
identical operators to [K2,DV ] and D∂2

xV
+ 2D∂xVK1, respectively. Assuming that Kn

is skew-symmetric for odd n and symmetric for even n (i.e. the skew-symmetry of
∂x is preserved under discretisation) and DV is symmetric (note that V is real-valued
and DV represents multiplication by V ), the commutator [K2,DV ] is skew-symmetric.
However, the second expression, subject to discretisation, is no longer skew-symmetric.
A similar problem is encountered in the discretisation of [∂2

x, [∂
2
x, V ]] following the

simplification of the commutator.
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The loss of skew-symmetry in the simplification of [∂2
x, V ] (and skew-Hermiticity

in general) is a cause for concern on two accounts: firstly, the exponential of a Mag-
nus expansion which features terms like [∂2

x, V ] (Θ2, for instance) is no longer uni-
tary, which is highly undesirable insofar as the physics is concerned; secondly, since
D∂2

xV
+2D∂xVK1 has (large) real eigenvalues, its exponential blows up, which is highly

undesirable from the numerical point of view. This blowup can be extreme even in
the simplest of cases (see Figure 2.1).

10−6 10−5 10−4 10−3 10−2 10−1 100100

101

102

103

104

t

‖e
x
p

(t
A

)‖
2

[K2,DV ]

D∂2
xV + 2D∂xV K1

Figure 2.1: The two equivalent forms [∂2
x, V ] and (∂2

xV ) + 2(∂xV )∂x, lead to two
different discretisations, [K2,DV ] and D∂2

xV
+ 2D∂xVK1. While the exponential of the

former is unitary, the exponential of the latter blows up.

The Lie algebra of anti-commutators. In the methods presented here we
circumvent the problem by working with anti-commutators, that is the differential
operators of the form

〈f〉k := 1
2

(
f ◦ ∂kx + ∂kx ◦ f

)
, k ≥ 0, f ∈ C∞p (I;R), (2.4)

which are inherently symmetrised. The action of this differential operator on u, for
example, is

〈f〉k u = 1
2

(
f∂kxu+ ∂kx(fu)

)
and the discretisation of this operator is

〈f〉k ; 1
2 (DfKk +KkDf ) . (2.5)

It is a very simple process to verify that the discretisation of 〈f〉k is skew-Hermitian
for odd k and Hermitian for even k. This is the reason why the choice of algebra of
anti-commutators 〈·〉k seems to be optimal for our purposes.

Moreover, the commutators of these symmetrised differential operators can be



10 A. Iserles, K. Kropielnicka & P. Singh

solved using the following rules,

[〈f〉1 , 〈g〉0] = 〈f(∂xg)〉0 , (2.6)

[〈f〉1 , 〈g〉1] = 〈f(∂xg)− (∂xf)g〉1 ,
[〈f〉2 , 〈g〉0] = 2 〈f(∂xg)〉1 ,
[〈f〉2 , 〈g〉1] = 〈2f(∂xg)− (∂xf)g〉2 −

1
2

〈
2(∂xf)(∂2

xg) + f(∂3
xg)
〉

0
,

[〈f〉2 , 〈g〉2] = 2 〈f(∂xg)− (∂xf)g〉3 +
〈
2(∂2

xf)(∂xg)− 2(∂xf)(∂2
xg) + (∂3

xf)g − f(∂3
xg)
〉

1
,

[〈f〉3 , 〈g〉0] = 3 〈f(∂xg)〉2 −
1
2

〈
3(∂xf)(∂2

xg) + f(∂3
xg)
〉

0
,

[〈f〉4 , 〈g〉0] = 4 〈f(∂xg)〉3 − 2
〈
3(∂xf)(∂2

xg) + f(∂3
xg)
〉

1
.

There is rich algebraic theory underlying these anti-commutators (including a gen-
eral formula for (2.6)) which feature in a separate publication (Singh 2015). In prin-
ciple, however, the above rules can be verified by application of the chain rule.

Remark 3 Note that, by definition (2.4),

1. these brackets are linear, so that 〈2f(∂xg)− (∂xf)g〉2 = 2 〈f(∂xg)〉2−〈(∂xf)g〉2,

2. 〈f〉0 = f ; and

3. 〈1〉2 = ∂2
x.

With this new notation in place and using (2.6), we can now simplify commutators
to anti-commutators,

[i∂2
x, iV ] = −[〈1〉2 , 〈V 〉0] = −2 〈∂xV 〉1 ,

[iV, [i∂2
x, iV ]] = −i[〈V 〉0 , [〈1〉2 , 〈V 〉0]] = 2i

〈
(∂xV )2

〉
0
,

[i∂2
x, [i∂

2
x, iV ]] = −i[〈1〉2 , [〈1〉2 , 〈V 〉0]] = i

〈
∂4
xV
〉

0
− 4i

〈
∂2
xV
〉

2
.

Straightforward discretisations of these operators preserve the symmetries that are
crucial for preserving unitarity.

2.2 The expansion for the Schrödinger equation

Using the approach introduced in the previous section, commutators in the Magnus
expansion, Θ(h) =

∑∞
k=1 Θ[k](h), can be expanded in terms of anti-commutators:

Θ(h) =
∑∞
k=0 ik+1 〈fk〉k. Since A(t) = i∂2

x − iV (t) = i 〈1〉2 − i 〈V (t)〉0, the first term

of the Magnus expansion is the integral Θ[1](h) =
∫ h

0
A(h) dζ,

Θ[1](h) = ih 〈1〉2 − i

∫ h

0

〈V (ζ)〉0 dζ = ih 〈1〉2 − i

〈∫ h

0

V (ζ) dζ

〉
0

. (2.7)

Note that the integrals here are in time, while differential operators are in space. Along
with linearity of the brackets and integrals, this observation allows us to exchange
brackets and integrals.
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The first non-trivial term. Θ[2](h), is simplified as

Θ[2](h) = − 1
2

∫ h

0

∫ ζ

0

[A(ξ), A(ζ)] dξ dζ

= − 1
2

∫ h

0

∫ ζ

0

[i 〈1〉2 − i 〈V (ξ)〉0 , i 〈1〉2 − i 〈V (ζ)〉0] dξ dζ

= − 1
2

∫ h

0

∫ ζ

0

[〈1〉2 , 〈V (ζ)〉0] + [〈V (ξ)〉0 , 〈1〉2] dξ dζ

= −

(∫ h

0

ζ 〈∂xV (ζ)〉1 dζ −
∫ h

0

∫ ζ

0

〈∂xV (ξ)〉1 dξ dζ

)

= −

〈∫ h

0

ζ(∂xV (ζ)) dζ −
∫ h

0

∫ ζ

0

(∂xV (ξ)) dξ dζ

〉
1

. (2.8)

Higher order terms. Similarly, using (2.6), we can simplify higher nested com-
mutators in the Magnus expansion. For instance,

Θ[3,1](h) =
1

12

∫ h

0

[∫ ξ1

0

A(ξ2)dξ2,

[∫ ξ1

0

A(ξ2)dξ2, A(ξ1)

]]
dξ1,

which occurs as a part of Θ[3](h), is simplified to

Θ[3,1](h) = 1
3 i

〈∫ h

0

ζ2(∂2
xV (ζ)) dζ −

∫ h

0

ζ

∫ ζ

0

(∂2
xV (ξ)) dξ dζ

〉
2

+ 1
6 i

〈∫ h

0

ζ(∂xV (ζ))

∫ ζ

0

(∂xV (ξ)) dξ dζ −
∫ h

0

(∫ ζ

0

(∂xV (ξ)) dξ

)2

dζ

〉
0

− 1
12 i

〈∫ h

0

ζ2(∂4
xV (ζ)) dζ −

∫ h

0

ζ

∫ ζ

0

(∂4
xV (ξ)) dξ dζ

〉
0

. (2.9)

2.3 Simplification of integrals

After simplifying terms in the Magnus expansion we arrive at expressions such as (2.8)
and (2.9), where each integral is of the form

IS,f(h) =

∫
S
f(ξ) dξ,

where f(ξ) =
∏s
j=1 fj(ξj) for some function fj , and S is an s-dimensional polytope

of the special form,

S = {ξ ∈ Rs : ξ1 ∈ [0, h], ξl ∈ [0, ξml
], l = 2, 3, . . . , s}, (2.10)
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where ml ∈ {1, 2, . . . , l − 1}, l = 2, 3, . . . , s. For details about the types of polytopes
of integration appearing in the Magnus expansion see (Iserles et al. 2000).

The special form of these polytopes and the integrands obtained after expanding
the commutators, allows us to simplify the terms of the Magnus expansion further.
Integration by parts leads us to the following identities:∫ h

0

f1(ξ1)

(∫ ξ1

0

f2(ξ2)dξ2

)
dξ1 =

∫ h

0

f2(ξ1)

(∫ h

ξ1

f1(ξ2)dξ2

)
dξ1, (2.11)

∫ h

0

f1(ξ1)dξ1

(∫ ξ1

0

f2(ξ2)dξ2

)(∫ ξ1

0

f3(ξ3)dξ3

)
dξ1 (2.12)

=

∫ h

0

(∫ h

ξ3

f1(ξ1)dξ1

)(
f2(ξ3)

∫ ξ3

0

f3(ξ2)dξ2 + f3(ξ3)

∫ ξ3

0

f2(ξ2)dξ2

)
dξ3.

In our simplifications, (2.8) and (2.9), we have already encountered integrals over a

triangle such as
∫ h

0

∫ ζ
0
(∂xV (ξ)) dξ dζ and

∫ h
0
ζ
∫ ζ

0
(∂2
xV (ξ)) dξ dζ. We can reduce these to

integrations over a line by applying the first identity with f1(ξ1) = 1, f2(ξ2) = ∂xV (ξ2)
and f1(ξ1) = ξ1, f2(ξ2) = ∂xV (ξ2), respectively. Integration over the pyramid in∫ h

0

(∫ ζ
0
(∂xV (ξ)) dξ

)2

dζ is similarly reduced using the second identity with f1(ξ1) = 1,

f2(ξ2) = ∂xV (ξ2), f3(ξ3) = ∂xV (ξ3).

Remark 4 The use of identities (2.11) and (2.12) is what allows us to reduce the
complexity of the integrals in our commutator-free Magnus expansions. In particular,
our order-six method in Subsection 2.8 features integrals over a triangle instead of
integrals over four-dimensional polytopes that are typical in the usual order-six Magnus
expansions.

Remark 5 Although it might be possible to develop general formalism for extending
these observations to higher dimensional polytopes appearing in the Magnus expan-
sion, the two identities presented here suffice for all results presented in our work.
Deducing similarly useful identities for reduction of nested integrals in any specific
high dimensional polytope should also be possible and would be a very helpful result.

2.4 A proposed commutator-free Magnus expansion

After simplification of commutators and applications of the integration identities (2.11)
and (2.12), the Magnus expansion Θ3, for instance, reduces to the sum of the following
terms,

Θ[1](h) = ih∂2
x − i

∫ h

0

V (ζ) dζ, (2.13)

Θ[2](h) = −2

〈∫ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

, (2.14)
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Θ[3,1](h) = − 1
6 i

∫ h

0

∫ ζ

0

(2h− 3ζ) (∂xV (ζ))(∂xV (ξ)) dξ dζ

− 1
6 i

〈∫ h

0

(
h2 − 3ζ2

)
(∂2
xV (ζ)) dζ

〉
2

, (2.15)

Θ[3,2](h) = 1
2 i

∫ h

0

∫ ζ

0

(ζ − 2ξ) (∂xV (ζ))(∂xV (ξ)) dξ dζ

+ 1
2 i

〈∫ h

0

(
h2 − 4hζ + 3ζ2

)
(∂2
xV (ζ)) dζ

〉
2

, (2.16)

where Θ[3,2](h) refers to the second part of Θ[3]. Here and in the sequel we prefer
to express 〈f〉1 as f and 〈1〉2 as ∂2

x to avoid an excessively pedantic and longwinded
notation.

Remark 6 The term Θ[2](h) = −2
〈∫ h

0

(
ζ − h

2

)
(∂xV (ζ)) dζ

〉
1

might seem to be O
(
h2
)

at first sight. A closer look at the special form of the integrand, however, shows that
the term is, in fact, O

(
h3
)
. To observe this, consider V (ζ) expanded about 0, so that

V (ζ) = V (0)+
∑∞
k=1 ζ

kV (k)(0)/k!. Note that the h2 term
∫ h

0

(
ζ − h

2

)
(∂xV (0)) dζ van-

ishes. Similar care has to be exercised throughout the simplifications while analysing
size. We refer the reader to (Iserles et al. 2000) for a more general analysis of such
gains of powers of h, which occurs in specific terms of the Magnus expansion due to
their structure.

2.5 Time symmetry and even-indexed methods

The Magnus expansions we use here are the power truncated Magnus expansions of
(Iserles et al. 2000). Their accuracy, by design, is,

Θp(h) = Θ(h) +O
(
hp+2

)
, p = 2q, q ∈ Z (2.17)

These expansions are odd in h due to time symmetry of the flow (Iserles & Nørsett
1999, Iserles et al. 2000, Iserles et al. 2001). Even-indexed methods of this form
consequently gain an extra power of h,

Θp(h) = Θ(h) +O
(
hp+3

)
, p = 2q, q ∈ Z. (2.18)

Thus, Θ2(h) = Θ(h) + O
(
h5
)

and Θ3(h) = Θ(h) + O
(
h5
)

are both fourth order
commutator-free Magnus expansions. Ideally, we should only use even indexed versions
since we gain extra accuracy without additional cost.

2.6 A simplifying notation

The algebraic workings become increasingly convoluted once we start dealing with
larger nested commutators and integrals. Here it becomes helpful to introduce a
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notation for the integrals on the line,

µj,k(h) =

∫ h

0

B̃kj (h, ζ)V (ζ) dζ, (2.19)

and integrals over a triangle,

Λ [f ]a,b(h) =

∫ h

0

∫ ζ

0

f(h, ζ, ξ) [∂axV (ζ)]
[
∂bxV (ξ)

]
dξ dζ, (2.20)

where B̃ is a rescaling of Bernoulli polynomials (Abramowitz & Stegun 1964, Lehmer
1988),

B̃j(h, ζ) = hjBj (ζ/h) .

2.7 Fourth order commutator-free Magnus expansions

With this new notation in place, the Magnus expansions Θ2(h) and Θ3(h) can be
presented more concisely,

Θ2(h) =

O(h)︷ ︸︸ ︷
ihε∂2

x − iε−1µ0,0(h)−

O(h3)︷ ︸︸ ︷
2 〈∂xµ1,1(h)〉1, (2.21)

Θ3(h) = Θ2(h) +

O(h4)︷ ︸︸ ︷
iε−1Λ [ψ]1,1(h) + 2iε

〈
∂2
xµ2,1(h)

〉
2
, (2.22)

where

ψ(h, ζ, ξ) = ζ − ξ − h
3 .

As noted in Section 2.5, both of these are fourth-order expansions.

Remark 7 Since the jth rescaled Bernoulli polynomial scales as O
(
hj
)
, we expect

µj,k(h) = O
(
hjk+1

)
. Since the integral of the Bernoulli polynomials vanishes,

∫ h

0

Bj(h, ζ) dζ = 0, (2.23)

however, the term µj,1(h) gains an extra power of h and is O
(
hj+2

)
.

In general, for a polynomial pn(h, ζ, ξ) featuring only degree-n terms in h, ζ and
ξ, the linear (integral) functional (2.20) is O

(
hn+2

)
. However, the integral of ψ over

the triangle vanishes, ∫ h

0

∫ ζ

0

ψ(h, ζ, ξ) dξ dζ = 0, (2.24)

lending an extra power of h to terms featuring Λ [ψ]a,b(h).
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2.8 Sixth order commutator-free Magnus expansions

Arbitrarily high order commutator-free Magnus expansions can be derived by following
the procedure described in the preceding sections. The order six commutator-free
Magnus expansion, Θ4(h), for instance, is

Θ4(h) =

O(h)︷ ︸︸ ︷
ih∂2

x − iµ0,0(h)−

O(h3)︷ ︸︸ ︷
2 〈∂xµ1,1(h)〉1 +

O(h4)︷ ︸︸ ︷
iΛ [ψ]1,1(h) + 2i

〈
∂2
xµ2,1(h)

〉
2

+

O(h4)︷ ︸︸ ︷
1
6

〈
Λ [ϕ1]1,2(h) + Λ [ϕ2]2,1(h)

〉
1

+

O(h5)︷ ︸︸ ︷
1
6

〈
Λ [φ1]1,2(h) + Λ [φ2]2,1(h)

〉
1

+

O(h5)︷ ︸︸ ︷
4
3

〈
∂3
xµ3,1(h)

〉
3

+

O(h4)︷ ︸︸ ︷
1
4 i∂4

xµ2,1(h) = Θ(h) +O
(
h7
)
, (2.25)

where

ϕ1(h, ζ, ξ) = h2 − 4hξ + 2ζξ, (2.26)

ϕ2(h, ζ, ξ) = (h− 2ζ)2 − 2ζξ,

φ1(h, ζ, ξ) = h2 − 6hζ + 6hξ + 6ζξ + 3ζ2 − 12ξ2,

φ2(h, ζ, ξ) = h2 − 6hζ + 6hξ − 6ζξ + 5ζ2.

Remark 8 Integrals of φj vanish over the triangle,∫ h

0

∫ ζ

0

φj(h, ζ, ξ) dξ dζ = 0, j = 1, 2, (2.27)

lending an extra power of h to the functionals wherever φjs appear. No similar obser-
vation about ϕjs can be made and they have been kept separate in (2.25) from the Λ
terms featuring φj simply since they lead to terms of different orders. For purposes of
computing, however, they can be combined.

The linearity of the brackets means that Θ4(h) can be rewritten in the form,

Θ4(h) = θ0 + 〈θ1〉1 + 〈θ2〉2 + 〈θ3〉3 (2.28)

where

θ0 = −iµ0,0(h) + iΛ [ψ]1,1(h) + 1
4 i∂4

xµ2,1(h), (2.29)

θ1 = −2∂xµ1,1(h) + 1
6Λ [ϕ1 + φ1]1,2(h) + 1

6Λ [ϕ2 + φ2]2,1(h),

θ2 = ih+ 2i∂2
xµ2,1(h),

θ3 = 4
3∂

3
xµ3,1(h).
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Written in this form, it is clearly evident that Θ4 is free of nested commutators
and is composed of a very small number of anti-commutators. In fact, the number
of anti-commutators grows linearly with the order of accuracy. As we see in the
following section, this makes a significant difference to the cost of our methods when
compared to standard Magnus–Lanczos schemes (which feature nested commutators
and consequently a cost that grows exponentially with order).

Remark 9 Note that, for potentials of the form V (x, t) = V0(x) + f(t)x, the terms
involving µ1,1(h), µ2,1(h) and µ3,1(h) all vanish.

3 Commutator-free Magnus–Lanczos methods

In the previous section we proposed the commutator-free Magnus expansion. The
next step consists in numerically approximating the exponential of this expansion
(1.5), which is a challenging problem itself. We will show how Lanczos iterations can
be much cheaper when combined with the commutator-free versions of the Magnus
expansion. In this section we present some details of implementation and highlight
some crucial features of our schemes.

3.1 Spatial discretisation.

In principle, our methods can be combined with any spatial discretisation strategy,
provided the discretisation of ∂nx is symmetric for even n and skew-symmetric for odd
n. Here we resort to spectral collocation due to its high accuracy. Having imposed
periodic boundaries on I, we use equispaced grids with N points. Since we work with
values at the grid points, multiplication by the function V (or, in general, function f)
is discretised as an N ×N diagonal matrix DV (or Df ) with values of V (or f) at the
grid points along the diagonal. The differentiation matrices Kk are symmetric for even
k and skew-symmetric for odd k, just as we have assumed throughout. Additionally,
spectral collocation results in Kk being an N × N circulant. Consequently, it is
diagonalisable via Fourier transform,

Kk = F−1DckF ,

where ck is the symbol of Kk and F is the N ×N Fourier transform matrix.
Since ‖Df‖2 ≤ ‖f‖∞, the matrix Df does not scale with N . On the other hand, it

can be verified that Kk scales as Nk. As previously noted in (2.5), the operator 〈f〉k is
discretised as 1

2 (DfKk +KkDf ). Consequently, upon discretisation, 〈f〉k also scales
as Nk. We write Kk = O

(
Nk
)

and, abusing notation somewhat, 〈f〉k = O
(
Nk
)
.

The order-four Magnus expansion Θ2(h), with a local error O
(
h5
)
, discretises to

the form

Θ2(h) ; −iε−1Dµ0,0(h) −
(
D∂xµ1,1(h)K1 +K1D∂xµ1,1(h)

)
+ ihεK2, (3.1)

while the discretisation of the order-six Magnus expansion Θ4(h) with local error
O
(
h7
)

is

Θ4(h) ; Dθ0 + 1
2 (Dθ1K1 +K1Dθ1)+ 1

2 (Dθ2K2 +K2Dθ2)+ 1
2 (Dθ3K3 +K3Dθ3) . (3.2)



Commutator-free Magnus–Lanczos methods 17

3.2 Evaluation of integrals and derivatives of the potential.

Before we use (3.1) or (3.2) in a practical algorithm, however, we are still left with the
task of approximating functions such as µ0,0(h), ∂xµ1,1(h), Λ [ψ]1,1(h) and Λ [ϕ1 + φ1]1,2(h)
at the grid points, which are hidden in θi in the case of Θ4. These feature both inte-
grals and derivatives of the potential. In some cases, it might be possible to evaluate
some or all of these analytically. In other cases, however, these can be approximated
by a combination of quadrature methods and finite difference differentiation2.

We note that since the derivatives and the integrals are in space and time, respec-
tively, they can be exchanged. Thus the optimal strategy might involve evaluating
derivatives first in some cases and integrals first in others. The optimal strategy could
also depend on the relative resolutions of temporal and spatial grids. A more chal-
lenging scenario is when the temporal grid is coarser than the spatial grid, h = (∆x)σ

for some 0 < σ ≤ 1 (in other words, we consider larger time steps). For the sake of
simplicity, we follow a fixed strategy of evaluating the derivatives of the potential first.

Derivatives. The various derivatives of V that we need to approximate here, ∂xV ,
∂2
xV , ∂3

xV and ∂4
xV , require differentiation to different degrees of accuracy. Consider

∂xµ1,1(h). Due to (2.23),
∫ h

0
B̃1(h, ζ)f(ζ) dζ is O

(
h3
)

for any f . Let KFD,n
k be the

finite difference differentiation matrix approximating ∂kx up to an error of (∆x)n.
Assuming h = ∆x, if we approximate ∂xV to an accuracy of O

(
(∆x)4

)
= O

(
h4
)

via

KFD,4
1 V , the integral

∫ h
0
B̃1(h, ζ)KFD,4

1 V (ζ) dζ approximates ∂xµ1,1(h) to the required

accuracy of O
(
h7
)
. When we consider a coarser temporal grid with h =

√
∆x, say,

the lower accuracy (and lower cost) differentiation matrix KFD,2
1 suffices.

Similar considerations show that we need to approximate ∂2
xV to an accuracy of

O
(
h3
)
, ∂3

xV to an accuracy of O
(
h2
)

and ∂4
xV to an accuracy of O

(
h3
)
.

Quadrature. For the purpose of approximating the integrals, we can resort to
a variety of quadrature methods, among which Gauss–Legendre quadratures are the
most popular due to their high orders of accuracy. For instance, all these integrals can
be approximated to O

(
h7
)

accuracy using Gauss–Legendre quadrature at the knots

τk = h(1 + k
√

3/5)/2, k = −1, 0, 1, with the weights wk = 5
18h,

4
9h,

5
18h (Davis &

Rabinowitz 1984). 3

Approximation of line integrals. Under σ = 1, the line integrals µj,k(h) and
their derivatives appearing in Θ4 can be approximated to O

(
h7
)

accuracy by using

2Here we suggest finite differences instead of spectral collocation since the potential is usually
less oscillatory and more easily resolved than the wave function. Moreover, as we see shortly, lower
degrees of accuracy are required in some cases, allowing us to reduce costs.

3Recall that since these Magnus expansions are odd in h, the O
(
h6

)
Gauss-Legendre quadrature

automatically becomes O
(
h7

)
in this context.
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the weights wk,

µ0,0(h) ; w−1V (τ−1) + w0V (τ0) + w1V (τ1), (3.3)

∂xµ1,1(h) ; w−1B̃1(h, τ−1)KFD,4
1 V (τ−1) + w1B̃1(h, τ1)KFD,4

1 V (τ1), (3.4)

∂2
xµ2,1(h) ; w−1B̃2(h, τ−1)KFD,3

2 V (τ−1)

+w0B̃2(h, τ0)KFD,3
2 V (τ0) + w1B̃2(h, τ1)KFD,3

2 V (τ1), (3.5)

∂3
xµ1,3(h) ; w−1B̃1(h, τ−1)3KFD,2

3 V (τ−1)

+w0B̃1(h, τ0)3KFD,2
3 V (τ0) + w1B̃1(h, τ1)3KFD,2

3 V (τ1), (3.6)

∂4
xµ2,1(h) ; w−1B̃2(h, τ−1)KFD,3

4 V (τ−1)

+w0B̃2(h, τ0)KFD,3
4 V (τ0) + w1B̃2(h, τ1)KFD,3

4 V (τ1), (3.7)

where we note that since B̃1(h, τ0) = 0, the τ0 term does not appear in (3.4). We note
that, instead of (3.5) and (3.7), approximating µ2,1(h) first and then evaluating its
derivatives would be cheaper overall. However, as mentioned earlier, we attempt here
to provide a simple and clear procedure, not a fully optimised one.

For the order four Magnus expansion, Θ2, the first two terms (3.3) and (3.4)
suffice. However, since we need only O

(
h5
)

accuracy, we could do with just two
Gauss–Legendre knots.

Approximation of integrals over the triangle. For the integrals over the
triangle such as Λ [ψ]1,1(h), the appropriate weights can be found by substituting the

interpolant, ṽ(t) =
∑1
k=−1 `k(t)v(τk), where v is usually a derivative of the potential4

and where `k(t) are the Lagrange cardinal functions, `k(τj) = δj,k. Thus we discretise,

Λ [f ]a,b(h) ;

∫ h

0

∫ ζ

0

1∑
j=−1

1∑
k=−1

f(h, ζ, ξ)`j(ζ)`k(ξ)
[
KFD,r
a V (τj)

] [
KFD,r
b V (τk)

]
dξ dζ

=

1∑
j=−1

1∑
k=−1

wfjk
[
KFD,r
a V (τj)

] [
KFD,r
b V (τk)

]
, (3.8)

where we need to approximate derivatives of V to order r (under the scaling σ = 1,

r = 3 suffices for all Λ terms in Θ4 for O
(
h7
)

accuracy), and where wfjk are the weights
specific to f ,

wfjk =

∫ h

0

∫ ζ

0

f(h, ζ, ξ)`j(ζ)`k(ξ) dξ dζ.

The weights for the functions ψ,ϕ1, ϕ2, φ1 and φ2 that are required for the implemen-
tation of an order-six method have been provided in Appendix A. The method for
discretising the anti-commutators, as well as a particular recipe for approximating the
integrals and derivatives of the potential, is in place.

Remark 10 Having elaborated on the use of Gauss–Legendre quadratures in devel-
oping a specific scheme, we remind the reader that a major advantage of preserving
integrals throughout the workings in Section 2 is the flexibility of allowing alterna-
tive means for evaluating integrals and derivatives, including the possibility of exact
integration and derivation.

4For instance, v(t) = KFD,3
1 V (t) suffices in the approximation of Λ [ψ]1,1(h).
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3.3 Approximation of the exponential of a Magnus expansion.

After discretising Θ2(h) and Θ4(h), we are left with the task of approximating their
exponential in (2.3) in order to find the solution

u1 = exp(Θm(h))u0.

As discussed in Section 1.1, Lanczos iterations are a very effective, and perhaps the
most popular, means for approximating the exponential of a Magnus expansion. This
will be the approach adopted in this paper.

Approximation of the matrix vector product exp(Θp)u via Lanczos iterations re-
quires the evaluation of Θpv in each Lanczos iteration. So long as the number of steps
is reasonably small, the cost is dominated by the cost of evaluating Θpv.

Standard Magnus expansions feature nested commutators. In the method pre-
sented in Section 1.1, Θp features commutators nested to p− 1 levels. For a commu-
tator Cp that is nested to p levels, the cost of evaluating the matrix-vector product
Cpv grows exponentially with p. Consequently, the cost of Θpv in standard Magnus–
Lanczos schemes grows exponentially with the order of the scheme. In contrast our
commutator-free Magnus expansions feature a linearly growing number of non-nested
terms. As evident from (3.2), for instance our O

(
h7
)

method Θ4(h) is comprised of a
small number of terms. The approximation of Θ4v in each Lanczos iterations requires
us to compute

Θ4(h)v = Dθ0v + 1
2 (Dθ1K1 +K1Dθ1)v + 1

2 (Dθ2K2 +K2Dθ2)v + 1
2 (Dθ3K3 +K3Dθ3)v

= Dθ0v + 1
2

(
Dθ1F−1Dc1F + F−1Dc1FDθ1

)
v

+ 1
2

(
Dθ2F−1Dc2F + F−1Dc2FDθ2

)
v + 1

2

(
Dθ3F−1Dc3F + F−1Dc3FDθ3

)
v

= Dθ0v + 1
2

 3∑
j=1

DθjF−1Dcj

Fv + 1
2F
−1

 3∑
j=1

DcjFDθjv

 , (3.9)

which requires merely eight FFTs.

3.4 Features

Unitarity, norm preservation and stability. Note that our Magnus expansions
(2.21) and (2.28) are of the form

∑∞
k=0 ik+1 〈θk〉k for some θk, and it can be seen

that each term ik+1 〈θk〉k discretises to a skew-Hermitian form in (3.1) and (3.2),
respectively. The Magnus expansion, developed in this way preserves skew-Hermiticity
and its exponential therefore preserves unitarity. As mentioned in Section 1.1, this
is consistent with a central feature of quantum mechanics. Additionally, since the
exponential is unitary,

‖u1‖2 = ‖ exp (Θm(h))u0‖2 = ‖u0‖2,

and the norm of u is preserved. Consequently, unitarity guarantees stability of our
schemes under any scaling of h and ∆x.
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Height reduction. A very interesting feature of the symmetrised differential op-
erators (2.4) is the property of height reduction. We define the height of a symmetrised
differential operator as the highest index,

ht

 n∑
j=0

〈fj〉j

 = n, where fn 6= 0.

Thus the height is the degree of this differential operator. It can be seen from the
reduction rules (2.6) (formally proven in a separate publication (Singh 2015)) that
each commutator reduces height by one,

ht ([〈f〉k , 〈g〉l]) ≤ k + l − 1,

for all f, g 6= 0 and k, l ∈ N0.
Norm of commutators. Since the differentiation matrices scale as Kk = O

(
Nk
)

(where N is the number of grid points) and, upon discretisation, 〈f〉k = O
(
Nk
)
, the

height of a term is a proxy for the norm upon discretisation. Consequently, height
reduction leads to reduction of the norm of commutators,

‖[〈f〉k , 〈g〉l]‖2 = O
(
Nk+l−1

)
,

which is smaller (by one power of N) than the naive commutator estimate

‖[〈f〉k , 〈g〉l]‖2 ≤ 2‖〈f〉k‖2 ‖〈g〉l‖2 = O
(
Nk+l

)
.

Thus, the Magnus expansion is smaller in norm than naive commutator bounds sug-
gest. This property has also been noted by (Hochbruck & Lubich 2002), although here
it arises directly from algebraic observations.

Consequence for Lanczos iterations. Since the number of iterations in Lanczos
exponentiation needs to be larger than the spectral radius of the exponent Θm before
the superlinear decay of error kicks in, the reduction in spectral radius of the Magnus
expansion leads to reduction of cost. In particular, it means that we can take larger
time steps without making ‖Θm(h)‖2 too large.

4 Numerical Examples

The initial condition for our numerical experiments is a Gaussian wavepacket

u0(x) = (δπ)−1/4 exp
(
(−(x− x0)2)/(2δ)

)
, x0 = −2.5, δ = 0.2,

sitting in the left well of a double well potential,

VD(x) = x4 − 20x2.

We take [−10, 10] as our spatial domain and [0, 5] as our temporal domain. When we
allow the wave function to evolve under VD, it remains largely confined to the left well
at the final time, T = 5 (see Figure 4.2, top left). Superimposing a time dependent
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Figure 4.2: [top row] The initial condition u0 evolves to uD under the influence of
VD (left), to uS under VS (centre) and to uE and uM under VE and VM, respectively
(right). The potential VD is scaled down for ease of presentation. [bottom row]
Corresponding evolution of energies.

excitation to the potential, we are able to exert control on the wave function. In
Figure 4.2 (top centre and right) we show the influence of two excitations of the form
f(t)x with the choices f(t) = 10 S10,T (t) and f(t) = −25 E100(t), where

Sω,T (t) = sin((πt/T )2) sin(ωt), Eω,T (t) = exp(2 sin(ωt))− 1.

The effective time-varying potentials in these cases are

VS(x, t) = VD(x) + 10 S10,T (t)x, VE(x, t) = VD(x)− 25 E100(t)x,

respectively. Since the potentials are available in their analytic form, we use analytic
derivatives in our implementation. The integrals were approximated via three Gauss–
Legendre knots, as outlined in Section 3.2. In principle we can also use analytic
or asymptotic approximations for the integrals. Potential accuracy advantages of
resorting to analytic approximations should become evident by comparing with a
higher degree quadrature – for this purpose we also present results using eleven Gauss–
Legendre knots.

Mean field approximation (VM). The excitation in VS features a low frequency
oscillation at ω = 10, while VE has a higher frequency oscillation, ω = 100. In the
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limit ω → ∞ the effect of the potential function can be approximated by a mean
field potential5 and it is worth finding out to what extent this approximation suffices

for VE. Since
∫ 5

0
E100(t) dt ≈ 6.45083, the (time-independent) mean field potential is

roughly

VM(x) = VDW(x)− 32.25415x.

In Figure 4.2 (top right) it is evident that the mean field solution uM(T ) is not a
sufficiently accurate approximation to uE(T ), and at ω = 100 we do require a solution
via high-order Magnus based methods.

Magnus–expm. In the numerical experiments presented in this section, order
four and six traditional Magnus expansions are denoted by M4 and M6, respectively,
while the corresponding commutator-free Magnus expansions are denoted by C4 and
C6, respectively. The order four methods use two Gauss–Legendre quadrature knots,
while order six methods use three knots. All these methods use 180 spatial grid points
and are exponentiated using Matlab’s expm. We present the errors for these Magnus–
expm methods in order to study the error inherent in the Magnus expansion separately
from the error due to Lanczos iterations.

Higher accuracy quadratures. In a high frequency regime, we encounter more
oscillations per time step and three quadrature knots can be inadequate for approx-
imating the integrals adequately. In such cases, we can expect to see a considerable
advantage when using analytic integrals, asymptotic approximations or higher accu-
racy quadratures. This behaviour is exbhibited in Figure 4.4, where our order six
integral preserving Magnus expansion C6 is seen to have a much higher accuracy than
the standard Magnus expansion M6, particularly when combined with a higher ac-
curacy approximation to the integrals. In this case, we resort to 11 Gauss–Legendre
quadratures, denoted by the postfix G11. Analytic integrals could possibly improve the
accuracy further, as could highly oscillatory quadrature methods (Deaño, Huybrechs
& Iserles 2018), which can be easily transplanted to this setting.

Magnus–Lanczos. In Figure 4.3 (right) and Figure 4.4 (right) we show the errors
in exponentiating the order six commutator-free and standard Magnus expansions via
50, 20 and 10 Lanczos iterations respectively. The Magnus–Lanczos schemes with n
Lanczos iterations are denoted with the postfix Ln. It is evident from these figures that
exponentiation of Magnus expansions via Lanczos iterations requires either a larger
number of Lanczos iterations or smaller time steps before we achieve the accuracy
inherent in the Magnus expansion (i.e. the accuracy of brute force exponentiation,
M6 and C6).

Figures 4.3 (right) and 4.4 (right) suggest that there is scope for improvement in
the efficient exponentiation of Magnus expansions, particularly when it comes to large
time steps, which can be crucial for long term integration. In particular, it is worth
exploring whether Zassenhaus splittings confer an advantage here.

The convergence of Lanczos approximation to the exponential can be very sensitive
to the degree of spatial discretisation. M6L50H, in Figure 4.3 was run using 1024 grid
points. Not only are the Lanczos iterations more expensive in this case, but the
convergence also occurs much later. In general we need more iterations since the
spectral radius of the Magnus expansion is larger (growing quadratically with finer

5Effectively the first and trivial Magnus expansion Θ1.
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spatial resolution).
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Figure 4.3: [Low oscillation regime (VS)]: When applied to the low oscillatory
regime of VS, the order four and order six commutator-free Magnus expansions, C4

and C6, have a similar error as the standard Magnus expansions, M4 and M6. Not
much difference is made in this case (VS) by considering higher-order quadrature. On
the left we use a Strang splitting (exponential midpoint rule) with 1024 grid points
and 5× 107 time steps as a reference. As we can see, the errors saturate around 10−8,
which is the accuracy of this reference solution. For the other two plots we use M6

with 180 grid points and 2× 105 time steps.

Remark 11 Note that, for potentials of the form V (x, t) = V0(x) + f(t)x, the terms
involving µ1,1(h), µ2,1(h) and µ3,1(h) all vanish. This property, however, has not been
exploited in the results presented here.

5 Conclusions

In this paper we have presented the derivation of integral-preserving, commutator-
free Magnus–Lanczos methods (of arbitrarily high orders) for the computation of the
Schrödinger equation featuring time-dependent potentials (1.1) under the atomic scal-
ing, h̄ = 1. In particular, we have presented the 4th and 6th order methods ((2.21)
and (2.28–2.29), respectively) and analysed their complexity in terms of the number
of FFTs required in each Lanczos iteration (see (3.9)).

We find that the number of FFTs is much smaller than for standard Magnus ex-
pansions where commutators appear explicitly – our sixth-order method, for instance,
requires merely 8 FFTs for each Lanczos iteration. This speedup is evident in numeri-
cal experiments (see Figure 4.5, where we find that our method is roughly 7 to 9 times
faster than standard Magnus–Lanczos methods). Moreover, the number of FFTs can
be shown to grow linearly with the order of the method we seek, so that the 8th order
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Figure 4.4: [Highly oscillatory regime (VE)]: In the highly oscillatory regime of
VE, we also include the 11 Gauss–Legendre quadrature knots versions of C4 and C6,
which are labeled with the postfix G11. A significant difference is made in this case
(VE) by considering higher-order quadrature. Analytic expressions for integrals could
be beneficial in such cases. On the left we use a Strang splitting (exponential midpoint
rule) with 512 grid points and 108 time steps as a reference. For the other two plots
we use M6 with 180 grid points and 2× 105 time steps for the reference solution.

method in this class of methods would require 10 FFTs and have a more pronounced
speedup over the standard Magnus expansion of order 8.

A concrete example of discretising the integrals via Gauss–Legendre quadrature
is also presented in (3.3–3.8). However, as stressed throughout, one of the major
advantages of our approach is the flexibility of choosing the method for approximating
the integrals at the very last stage. This is likely to prove highly beneficial in the case
of highly oscillatory potentials.

To illustrate this advantage, we present a numerical example featuring a highly
oscillatory potential, VE, in Section 4. Here we find that our order-six Magnus ex-
pansion using three Gauss–Legendres knots is roughly six times more accurate than
the standard Magnus expansion. This is improved significantly by resorting to eleven
Gauss–Legendre knots, resulting in the accuracy being roughly 80 times higher than
the standard Magnus expansion (see Figure 4.4). It should be possible to improve upon
the accuracy and cost further by using analytic integrals, asymptotic approximations
or specialised highly-oscillatory quadrature.

We remind the reader that the accuracy inherent in the Magnus expansion (as
evident via direct exponentiation) is only reflected in the Magnus–Lanczos methods
when combined with a sufficient number of Lanczos iterations (see Figure 4.3 (right)
and Figure 4.4 (right)). This is not much of a constraint when we need high accuracy
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Figure 4.5: [Computational Time (VS, VE)]: The absence of nested commutators
in our commutator-free Magnus expansions results in a significant improvement in
computational time of a corresponding Magnus–Lanczos scheme (C6L50 is roughly 7
to 9 times faster here than M6L50). This effect becomes more pronounced once we
consider higher-order Magnus expansions.

but can afford to work with moderately large to small time steps since a reasonable
number of Lanczos iterations suffices in this regime. However, in applications where
cost constraints trump accuracy requirements and necessitate significantly larger time
steps, the number of Lanczos iterations required might become a concern. In these
regimes, asymptotic splittings such as symmetric Zassenhaus might be found to be
more effective than Lanczos iterations for the exponentiation of Magnus expansions.
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A Quadrature weights

Once we have the values of V at the set of knots K, the integrals over the triangle
can be approximated via (3.8),

Λ [f ]a,b(h) ;
∑
j∈K

∑
k∈K

wfjk [KaV (τj)] [KbV (τk)] or
∑
j∈K

∑
k∈K

wfjk
[
∂a
xV (τj)

] [
∂b
xV (τk)

]
,

depending on whether exact derivatives ∂axV and ∂bxV are available or not (in the
latter case we resort to numerical differentiation via Ka and Kb). As usual, boldface
denotes a vector of values resulting from spatial discretisation. The weights required
for three Gauss–Legendre quadrature knots for the functions ψ,ϕ1, ϕ2, φ1 and φ2 are

wψ =

(
h

6

)3
 1

63

 −139 26 239
26 −304 26
239 26 −139

+ 5

√
3

5

 0 0 −1
0 0 0
1 0 0

,
wϕ1 =

2

7

(
h

6

)4

 −11 −62 136

190 −128 190
136 −62 −11

+

√
3

5

 175 58 −170
222 0 −222
170 −58 −175

,
wϕ2 = 2

(
h

6

)4

 −5 −14 10
−2 −32 −2
10 −14 −5

+
1

7

√
3

5

 145 134 −90
−46 0 46
90 −134 −145

,
wφ1 =

2

7

(
h

6

)4

 −17 160 −143
−92 184 −92
−143 160 −17

+ 6

√
3

5

 25 −34 30
−16 0 16
−30 −34 −25

,
wφ2 =

(
h

6

)4
6

 3 0 −3
−4 8 −4
−3 0 3

+
4

7

√
3

5

 25 −2 40
−48 0 48
−40 2 −25

.


