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Abstract

We explore a new asymptotic-numerical solver for the time-dependent wave
equation with an interaction term that is oscillating in time with a very high
frequency. The method involves representing the solution as an asymptotic series
in inverse powers of the oscillation frequency. Using these new schemes, high
accuracy is achieved at a low computational cost. The salient features of the
new approach are highlighted by a numerical example.

1 Introduction

In this paper, we consider the time-dependent wave equation [1]

∂2
t u(x, t) = ∂2

xu(x, t)− g(x, t)u(x, t) x ∈ R, t ≥ 0, (1.1)

where u(x, t) is the wavefunction and g(x, t) is a real-valued highly oscillatory term.
The initial and boundary conditions are

u(x, 0) = φ(x), x ∈ [−L,L],

∂tu(x, 0) = Φ(x), x ∈ [−L,L],

u(−L, t) = u(L, t)≡ 0, t ≥ 0,

∂tu(−L, t) = ∂tu(L, t)≡ 0, t ≥ 0.

Such equations are considered when computing scattering frequencies [7]. Highly
oscillatory interaction terms present a difficulty for numerical simulations as a small
time step and fine space discretisation are typically required to obtain an accurate
solution. The present contribution involves representing the solution as an asymptotic
series in inverse powers of the temporal oscillation frequency of g(x, t). The coefficients
of the terms in the series are independent of the oscillation frequency and hence, the
computational effort in determining these coefficients and the associated asymptotic
series is greatly reduced. The coefficients are determined from recursive or partial
differential equations and the solutions of the latter do not depend on the oscillation
frequency of g(x, t). Consequently, the proposed methods achieve high accuracies
despite using extremely large time steps. In principle, it might appear that the error
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of the computation is independent of the frequency of oscillation but, actually, the
situation is often even better! The more rapid the oscillation, the smaller the error
of the numerical scheme. An example illustrates salient features of underlying the
method.

Before we describe our numerical approach, it is important to discuss briefly the
well posedness of (1.1). This is a linear hyperbolic equation and, in general, we expect
it to be well posed, but it is always a good idea to conform this.

Letting v(x, t) = ∂tu(x, t), we obtain a first-order hyperbolic system

∂t

[
u
v

]
=

[
v

∂2
xu− gu

]
, (1.2)

with the above initial and boundary conditions. Denote by E the semigroup associated
with the wave equation – in other words, we consider the solution of the standard wave
equation

∂t

[
ũ
ṽ

]
=

[
ṽ
∂2
xũ

]
with the same initial conditions and zero Dirichlet boundary conditions by[

ũ(t)
ṽ(t)

]
= E(t)

[
ũ(0)
ṽ(0)

]
, t ≥ 0,

we recall that ‖E(t)‖ ≤ 1 in the H1 Sobolev norm on u, which is identical to the

standard L2 norm on

[
u
v

]
.

Applying the Duhamel principle to (1.2), we have[
u(t)
v(t)

]
= E(t)

[
u(0)
v(0)

]
−
∫ t

0

E(t− τ)

[
0

g(x, τ)u(x, τ)

]
dτ

therefore, by the integral form of the Grönwall Lemma and bearing in mind that
‖E(t)‖ ≤ 1,∥∥∥∥[u(t)

v(t)

]∥∥∥∥
≤
∥∥∥∥[u(0)
v(0)

]∥∥∥∥+

∥∥∥∥∫ t

0

E(τ)E(t− τ)

[
0 0

g(x, τ) 0

]
exp

(∫ t

τ

E(τ − ξ)
[

0 0
g(x, ξ) 0

]
dξ

)
dτ

∥∥∥∥
≤
∥∥∥∥[u(0)
v(0)

]∥∥∥∥+

∫ t

0

∥∥∥∥[ 0
g(x, τ)

]∥∥∥∥ exp

(
‖
∫ t

τ

E(τ − ξ)‖
∥∥∥∥[ 0
g(x, ξ)

]∥∥∥∥dξ

)
dτ

≤
∥∥∥∥[u(0)
v(0)

]∥∥∥∥+

∫ t

0

|g(x, τ)| exp

(∫ t

τ

|g(x, ξ)|dξ
)

dτ

which, provided that maxt≥0 ‖g( · , t)‖L∞(−L,L) is bounded, demonstrates that the
solution of (1.2) is uniformly L2-bounded in every compact interval t ∈ [0, T ]. Hence
well posedness.
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2 The proposed solution

We consider equation (1.1) with

g(x, t) =

∞∑
n=−∞

an(x, t)einωt.

where ω � 1 is the frequency of interest.
The first step is to rearrange the equation as in [1],

∂tu(x, t) = v(x, t),

∂tv(x, t) = ∂2
xu(x, t)− g(x, t)u(x, t). (2.1)

The initial and boundary conditions are given by

u(x, 0) = φ(x), x ∈ [−L,L],

v(x, 0) = Φ(x), x ∈ [−L,L],

u(−L, t) = u(L, t) ≡ 0, t ≥ 0,

v(−L, t) = v(L, t) ≡ 0, t ≥ 0.

To expand asymptotically, we assume that there exist functions p0,0(x, t), p1,0(x, t)
and pr,n(x, t), r ≥ 2, n ∈ Z, and q0,0(x, t) and qr,n(x, t), r ≥ 1, n ∈ Z such that

u(x, t) = p0,0(x, t) +
1

ω
p1,0(x, t) +

∞∑
r=2

1

ωr

∞∑
n=−∞

pr,n(x, t)einωt

and

v(x, t) = q0,0(x, t) +

∞∑
r=1

1

ωr

∞∑
n=−∞

qr,n(x, t)einωt. (2.2)

In other words, we expand u and v in modulated Fourier expansions [3]. Differentiating
term-by-term, we have

∂tu(x, t) = ∂tp0,0(x, t) +
1

ω

[
∂tp1,0(x, t) +

∞∑
n=−∞

inp2,n(x, t)einωt

]

+

∞∑
r=2

1

ωr

∞∑
n=−∞

(∂tpr,n(x, t) + inpr+1,n(x, t))einωt, (2.3)

∂tv(x, t) = ∂tq0,0(x, t) +

∞∑
n=−∞

inq1,n(x, t)einωt

+

∞∑
r=1

1

ωr

∞∑
n=−∞

(∂tqr,n(x, t) + inqr+1,n(x, t))einωt

∂2
xu(x, t) = ∂2

xp0,0(x, t) +
1

ω
∂2
xp1,0(x, t) +

∞∑
r=2

1

ωr

∞∑
n=−∞

∂2
xpr,n(x, t)einωt. (2.4)
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Once equations (2.2), (2.3) and (2.4) are substituted into (2.1), we have

∂tp0,0(x, t) +
1

ω

[
∂tp1,0(x, t) +

∞∑
n=−∞

inp2,n(x, t)einωt

]

+

∞∑
r=2

1

ωr

∞∑
n=−∞

[∂tpr,n(x, t) + inpr+1,n(x, t)]einωt

= q0,0(x, t) +

∞∑
r=1

1

ωr

∞∑
n=−∞

qr,n(x, t)einωt,

∂tq0,0(x, t) +

∞∑
n=−∞

inq1,n(x, t)einωt +

∞∑
r=1

1

ωr

∞∑
n=−∞

[∂tqr,n(x, t) + inqr+1,n(x, t)]einωt

= ∂2
xp0,0(x, t) +

1

ω
∂2
xp1,0(x, t) +

∞∑
r=2

1

ωr

∞∑
n=−∞

∂2
xpr,n(x, t)einωt (2.5)

−
∞∑

n=−∞
an(x, t)einωtp0,0(x, t)− 1

ω

∞∑
n=−∞

an(x, t)einωtp1,0(x, t)

−
∞∑
r=2

1

ωr

∞∑
n=−∞

∞∑
k=−∞

ak(x, t)pr,n−k(x, t)einωt.

We next define coefficients in two levels. Firstly we consider orders of magnitude
(inverse powers of ω – signified by the values of r), and then frequencies (values of n)
within each order of magnitude.

• The first level is when r = 0.

When n = 0 then

∂tp0,0(x, t) = q0,0(x, t),

∂tq0,0(x, t) = ∂2
xp0,0(x, t)− a0(x, t)p0,0(x, t). (2.6)

The initial and boundary conditions are

p0,0(x, 0) = φ(x), x ∈ [−L,L],

q0,0(x, 0) = Φ(x), x ∈ [−L,L],

p0,0(−L, t) = p0,0(L, t), t ≥ 0,

q0,0(−L, t) = q0,0(L, t), t ≥ 0.

When n 6= 0 then

q1,n(x, t) = − 1

in
an(x, t)p0,0(x, t).

Note that ω plays no role in the formation of p0,0 and q1,n.

• In the case r = 1,

∂tp1,0(x, t) = q1,0(x, t),

∂tq1,0(x, t) = ∂2
xp1,0(x, t)− a0(x, t)p1,0(x, t). (2.7)
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The initial and boundary conditions are

p1,0(x, 0) = 0, x ∈ [−L,L],

q1,0(x, 0) = −
∑
n 6=0

q1,n(x, 0), x ∈ [−L,L],

p1,0(−L, t) = p1,0(L, t), t ≥ 0,

q1,0(−L, t) = q1,0(L, t), t ≥ 0.

Moreover, for n 6= 0

q2,n(x, t) =
1

in
[−an(x, t)p1,0(x, t)− ∂tq1,n(x, t)] ,

p2,n(x, t) =
1

in
q1,n(x, t).

• For r = 2

∂tp2,0(x, t) = q2,0(x, t),

∂tq2,0(x, t) = ∂2
xp2,0(x, t)−

∑
k

ak(x, t)p2,−k(x, t),

alternatively

∂tq2,0(x, t) = ∂2
xp2,0(x, t)− a0(x, t)p2,0(x, t)−

∑
k 6=0

ak(x, t)p2,−k(x, t), (2.8)

with initial and boundary conditions

p2,0(x, 0) = −
∑
n 6=0

p2,n(x, 0), x ∈ [−L,L],

q2,0(x, 0) = −
∑
n 6=0

q2,n(x, 0), x ∈ [−L,L],

p2,0(−L, t) = p2,0(L, t), t ≥ 0,

q2,0(−L, t) = q2,0(L, t), t ≥ 0.

Once n 6= 0, the recursion is

q3,n(x, t) =
1

in

[
−∂tq2,n(x, t) + ∂2

xp2,n(x, t)−
∞∑

k=−∞

ak(x, t)p2,n−k(x, t)

]
,

p3,n(x, t) =
1

in
(q2,n(x, t)− ∂tp2,n(x, t)) .
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Generalisation for all r ≥ 1 is straightforward. The outcome, having truncated (2.2),
is the scheme

u(x, t) = p0,0(x, t) +
1

ω
p1,0(x, t) +

R∑
r=2

1

ωr

N∑
n=−N

pr,n(x, t)einωt,

v(x, t) = q0,0(x, t) +

R∑
r=1

1

ωr

N∑
n=−N

qr,n(x, t)einωt, (2.9)

where R ≥ 1 and N ≥ 1 are given – typically R is fairly small, while N must be
sufficiently large to encompass all relevant oscillating components of the solution.

At each stage we need to solve differential equations for pr,0 and q2,0, as well as
straightforward recursions for pr+1,n, qr+1,n, n 6= 0. In each case ω is absent from the
calculations: it reappears only once we assemble the pr,ns and qr,ns into the expansion
(2.2). Thus, unlike standard numerical methods, the behaviour of the solution is
immune to the frequency of oscillation.

It is essential to consider stability of standard numerical schemes for evolutionary
PDEs. In tandem with consistency, stability is equivalent to convergence by virtue
of the Lax Equivalence Theorem. This however is not the case with the numerical–
asymptotic methods of this paper, since they do not involve time-stepping in a usual
way. All we need is to ensure that the different PDEs that we need to solve along the
way, e.g. (2.6), (2.7) and (2.8), are themselves well posed – and this follows at once
from the well-posedness of (1.1) – and that they are discretised by stable numerical
methods.

3 An example

To illustrate the proposed approach, we consider equation (1.1), where the g(x, t) term
is

g(x, t) = x2 + ε cos(ωt)x2.

The spatial domain considered is [−L,L] and L = 10. The temporal domain of interest
is [0, T ] and T = 1. The initial and boundary conditions of the problem are

u(x, 0) = e−
x2

2 , ∂tu(x, 0) = 0,

u(±L, t) ≡ 0, t ≥ 0,

and
a0(x) = x2, a1(x) =

ε

2
x2, a−1(x) =

ε

2
x2.

As we note in the sequel, the time independence of an is not a fundamental restriction
– by employing Magnus expansions [4, 6] the approach can also be applied at no
additional expense when the an terms are time-dependent. For this example, matching
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the asymptotic terms, we arrive at the explicit equations:

p0,0(x, t) = e−
x2

2 cos(t),

q0,0(x, t) = −e−
x2

2 sin(t),

q1,1(x, t) = −1

i

εx2

2
e−

x2

2 cos(t),

q1,−1(x, t) =
1

i

εx2

2
e−

x2

2 cos(t),

p1,0(x, t) = 0,

q2,1(x, t) =
εx2

2
e−

x2

2 sin(t),

q2,−1(x, t) = −εx
2

2
e−

x2

2 sin(t),

p2,1(x, t) =
εx2

2
e−

x2

2 cos(t),

p2,−1(x, t) =
εx2

2
e−

x2

2 cos(t),

and, finally, the two partial differential equations that we need to solve numerically,

∂tp2,0(x, t) = q2,0(x, t),

∂tq2,0(x, t) = ∂2
xp2,0(x, t)− a0(x)p2,0(x, t)− a1(x)p2,−1(x, t)− a−1(x)p2,1(x, t).

The above equations are solved using the Strang splitting method [8] for time propa-
gation, while employing the Fourier spectral method for the spatial derivative.

The structure of the equations enables efficient computation of the exponential
terms. Two different splitting approaches may be employed. In the first case[

p2,0(x, h)
q2,0(x, h)

]
= Ω(x, h)

[
p2,0(x, 0)
q2,0(x, 0)

]
+

∫ h

0

Ω(x, h− τ)

[
0

f(x, τ)

]
dτ +O

(
h3
)
.

where

f(x, t) = − [a−1(x)p2,1(x, t) + a1(x)p2,−1(x, t)] = −ε
2

2
x4e−

x2

2 cos(t),

and Ω(x, t) approximates the flow of the equations up to O
(
h3
)

using a Strang split-
ting,

Ω(x, t) = e
A
2 teBte

A
2 t,

A =

[
0 1

−a0(x) 0

]
, B =

[
0 0
∂2
x 0

]
.

Note that in the case that a0 is time-dependent, sampling it at midpoint of the interval
(i.e. at t/2) suffices for O

(
t3
)

= O
(
h3
)

accuracy. Effectively, this amounts to a
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second order Magnus expansion on the vector field A(s) + B where the quadrature∫ t
0
(A(s) +B) ds is approximated by t(A(t/2) +B). The exponential of this expansion

is then approximated via a Strang splitting.
The integral in this scheme is computed using Gaussian–Legendre integration. The

error in the splitting method is O
(
h3
)

so the order of the Gaussian quadrature should
be selected bearing this in mind. For the present example, the following fourth-order
Gauss–Legendre points are selected

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
.

This completes the description of the first of the proposed asymptotic schemes for this
example, which we will denote as A1.

Alternatively, following [2, 5], a Strang splitting can be applied directly to
p2,0(x, r)′

q2,0(x, s)′

r′

s′

 =


q2,0(x, s)

0
0
1

+


0

∂2
xp2,0(x, r)− a0(x)p2,0(x, r) + f(x, r)

1
0

 ,
after expanding the system using auxiliary time variables s and r.

There are three parts to the implementation of each step of this splitting. Start-
ing with r = s = t, only one of the time variables r and s advances in each step,
while the other remains frozen. Effectively, in the first part p2,0(x, t) is advanced to
p2,0(x, t1/2) = p2,0(x, t)+ h

2 q2,0(x, t), where t1/2 = t+h/2. This is followed by q2,0(x, t)
advancing to

q2,0(x, t+ h) = q2,0(x, t) + h
[
∂2
xp2,0(x, t1/2)− a0(x)p2,0(x, t1/2) + f(x, t1/2)

]
,

followed by a repetition of the first part, which involves the advancement of p2,0(x, t1/2)

to p2,0(x, t + h) = p2,0(x, t1/2) + h
2 q2,0(x, t + h). The resulting method, denoted A2,

does not involve the Strang splittings in the integral and is computationally more
efficient – requiring only two Fast Fourier Transforms (FFTs) per time step.

The solution with the asymptotic methods A1 and A2 is computed as follows

Uasym = p0,0(x, t) +
1

ω
p1,0(x, t) +

1

ω2

(
p2,−1(x, t)e−iωt + p2,0(x, t) + p2,1(x, t)eiωt

)
.

Table 1 compares the accuracy and costs of the proposed method A2 with the
sixth-order method Φ11

[6] proposed in [1], and a direct application of Strang splitting

to (2.1). The reference solution is computed using Φ11
[6] with 104 time steps. The

number of spatial grid points is M = 100 for all computations.
When ε = 1, the error for A2 should be O

(
ω−3

)
for sufficiently small h. In practice,

we already see this behaviour for very large time steps in Table 1 – merely two to four
time steps are adequate for reaching the asymptotic accuracy.

This highlights the low costs of the proposed schemes, which is particularly ap-
pealing in the context of large ω. For ω = 10, the asymptotic accuracy (∼ 10−3) is
achieved in four FFTs (2 time steps) by A2 but requires more than 44 FFTs in the
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N 1 2 4 8 16 32
h 1.0000 0.5000 0.2500 0.1250 0.0625 0.0313

Number Φ11
[6] 22 44 88 176 352 704

of Strang 2 4 8 16 32 64
FFTs A2 2 4 8 16 32 64

Error Φ11
[6] 4.8e-01 6.4e-01 6.9e-02 4.1e-01 2.0e-02 3.1e-06

ω = 100 Strang 1.3e+00 7.3e-01 7.0e-01 7.0e-01 1.1e+00 1.6e-04
ε = 1 A2 1.4e-04 1.9e-05 5.9e-06 2.9e-06 2.3e-06 2.1e-06

Error Φ11
[6] 2.3e-01 1.0e-02 2.7e-05 5.9e-07 9.6e-09 1.5e-10

ω = 10 Strang 4.3e-01 4.2e-01 1.3e-02 2.2e-03 5.3e-04 1.3e-04
ε = 1 A2 1.6e-02 4.5e-03 3.5e-03 3.3e-03 3.3e-03 3.2e-03

Table 1: [Large time steps] Error and cost comparison for the methods Φ11
[6], Strang,

and the second of the proposed asymptotic methods, denoted A2. N is the number of
time steps (h = T/N , T = 1), while the number of FFTs required per step of Φ11

[6],
Strang and A2 are 22, 2 and 2, respectively.

context of Φ11
[6]. For ω = 100, the asymptotic accuracy (∼ 10−6) is achieved in 16

FFTs in contrast to 704 FFTs for Φ11
[6].

In contrast to the sixth-order accuracy of Φ11
[6], however, smaller time steps do not

increase accuracy in the case of A2 once the asymptotic accuracy is achieved. Thus,
once very high accuracy solutions are required for moderate to small ω, the method
Φ11

[6] remains an appealing candidate. Of course, once we desire higher accuracy, we
are perfectly free to use a numerical-asymptotic solver (2.9) incorporating larger R.

Figures 3.1 and 3.2 compare the accuracy and efficiency of asymptotic methods
A1 and A2 with Φ11

[6] and Strang splitting of (2.1). These results are as expected as
the pr,n(x, t) are functions of ε. Hence, the error is reduced for ε < 1 and increased
for ε > 1.

Note that the error with respect to the reference solution is computed as the L1

error,

err =
2L

M

M∑
k=1

|Uref(xk, t)− Uasym(xk, t)|.

where M is the number spatial grid points.

4 Comments

We have described in this paper an asymptotic-numerical approach for the solution
of wave equations with external high-oscillatory forcing. The results indicate that for
large values of ω, the proposed method is significantly superior to the method reported
in [1] or similar traditional time-stepping numerical methods. A major advantage
of the proposed approach is that it works equally well regardless of the frequency
of oscillation: this represents the main advantage of asymptotic analysis over more
conventional time-stepping methods.
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Figure 3.1: [Accuracy] Error as a function of time step size, h. Top row displays
results for ω = 100 and bottom row for ω = 10.
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