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1 Introduction

The motivation for this paper is the numerical solution of time-dependent partial
differential equations on the real line. It continues an ongoing project of the present
authors, begun in (Iserles & Webb 2019b), which studied orthonormal systems Φ =
{ϕn}n∈Z in L2(R) which satisfy the differential-difference relation,

ϕ′n(x) = −bn−1ϕn−1(x) + bnϕn+1(x), n ∈ Z+, (1.1)

for some real, nonzero numbers {bn}n∈Z where bn−1 = 0. In other words, the differ-
entiation matrix of Φ is skew-symmetric, tridiagonal and irreducible. The virtues of
skew symmetry in this context are elaborated in (Hairer & Iserles 2016, Iserles 2016)
and (Iserles & Webb 2019b) – essentially, once Φ has this feature, spectral methods
based upon it typically allow for a simple proof of numerical stability and for the
conservation of energy whenever the latter is warranted by the underlying PDE. The
importance of tridiagonality is clear, since tridiagonal matrices lend themselves to
simpler and cheaper numerical algebra.

In this paper we generalise (1.1), allowing for a skew-Hermitian differentiation
matrix. In other words, we consider systems Φ of complex-valued functions such that

ϕ′n(x) = −bn−1ϕn−1(x) + icnϕn(x) + bnϕn(x), (1.2)

where {bn}n∈Z+
⊂ C and {cn}n∈Z+

⊂ R.
While the substantive theory underlying the characterisation of orthonormal sys-

tems in L2(R) with skew-Hermitian, tridiagonal, irreducible differentiation matrices
is a fairly straightforward extension of (Iserles & Webb 2019b), its ramifications are
new and, we believe, important. In Section 2 we establish this theory, characteris-
ing Φ as Fourier transforms of weighted orthogonal polynomials with respect to some
absolutely-continuous Borel measure dµ. This connection is reminiscent of (Iserles
& Webb 2019b) but an important difference is that dµ need not be symmetric with
respect to the origin: this affords us an opportunity to consider substantially greater
set of candidate measures.

An important issue is that, while the correspondence with Borel measures guar-
antees orthogonality and the satisfaction of (1.2), it does not guarantee completeness.
In general, once dµ is determinate and supported by the interval (a, b), completeness
is assured in the Paley–Wiener space PW(a,b)(R).

So far, the material of this paper represents a fairly obvious generalisation of (Iserles
& Webb 2019b). Furthermore, the operation of differentiation for functions on the
real line is defined without venturing into the complex plane. Indeed, it is legitimate
to challenge why we should allow our differentiation matrices to contain complex
numbers. After all, if skew-Hermitian framework is so similar to the (simpler!) skew-
symmetric one, why bother? The only possible justification is were (1.2) to confer
an advantage (in particular, from the standpoint of computational mathematics) in
comparison with (1.1). This challenge is answered in Section 3 , where we consider sets
Φ associated with generalised Laguerre polynomials, where (a, b) = (0,∞). We show
that a simple tweak to our setting assures the completeness of these Fourier–Laguerre
functions, which need be indexed over Z, rather than Z+.
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The Fourier–Laguerre functions in their full generality, while expressible in terms
of the Szegő–Askey polynomials, are fairly complicated. However, in the case of the
simple Laguerre measure dµ(x) = χ(0,∞)(x)e−x dx they reduce to the Malmquist–
Takenaka (MT) system

ϕn(x) =

√
2

π
in

(1 + 2ix)n

(1− 2ix)n+1
, n ∈ Z. (1.3)

The MT system has been discovered independently by Malmquist (1926) and Takenaka
(1926) and investigated by many mathematicians, in different contexts: approximation
theory (Bultheel & Carrette 2003, Bultheel, González-Vera, Hendriksen & Nj̊astad
1999, Higgins 1977, Weideman 1994), harmonic analysis (Eisner & Pap 2014, Pap &
Schipp 2015), signal processing (Wiener 1949) and spectral methods (Christov 1982).
Some of these references are aware of the original work of Malmquist and Takenaka,
while others reinvent the construct.

A remarkable property of the MT system (1.3) is that the computation of the
expansion coefficients

f̂n =

∫ ∞
−∞

f(x)ϕn(x) dx, n ∈ Z,

can be reduced, by an easy change of variables, to a standard Fourier integral. There-
fore the evaluation of f̂−N , . . . , f̂N−1 can be accomplished with the Fast Fourier Trans-
form (FFT) in O(N log2N) operations: this has been already recognised, e.g. in (Wei-
deman 1994). In Section 4 we characterise all systems Φ, indexed over Z, which tick
all of the following boxes:

• They are orthonormal and complete in L2(R),

• They have a skew-Hermitian, tridiagonal differentiation matrix, and

• Their expansion coefficients f̂−N , . . . , f̂N−1 can be approximated with a discrete
Fourier transform, hence computed in O(N log2N) operations with fast Fourier
transform.

We prove that, modulo a simple generalisation, the MT system is the only system
which bears all three features.

We wish to draw attention to (Iserles & Webb 2019a), a companion paper to
this one. While operating there within the original framework of (Iserles & Webb
2019b) – skew-symmetry rather than skew-Hermicity – we seek therein to charac-
terise orthonormal systems in L2(R) whose first N coefficients can be computed in
O(N log2N) operations. We identify there a number of such systems, all of which can
be computed by a mixture of fast cosine and fast sine transforms. Such systems are
direct competitors to the Malmquist–Takenaka system, discussed in this paper.
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2 Orthogonal systems with a skew-Hermitian differ-
entiation matrix

2.1 Skew-Hermite differentiation matrices and Fourier trans-
forms

The subject matter of this section is the determination of verifiable conditions equiva-
lent to the existence of a skew-Hermitian, tridiagonal, irreducible differentiation matrix
(1.2) for a system Φ = {ϕn}n∈Z+ which is orthonormal in L2(R).

Theorem 1 (Fourier characterisation for Φ) The set Φ = {ϕn}n∈Z+ ⊂ L2(R)
has a skew-Hermitian, tridiagonal, irreducible differentiation matrix (1.2) if and only
if

ϕn(x) =
eiθn

√
2π

∫ ∞
−∞

eixξpn(ξ)g(ξ) dξ, (2.1)

where P = {pn}n∈Z+
is an orthonormal polynomial system on the real line with respect

to a non-atomic probability measure dµ1, g is a square-integrable function which decays
superalgebraically fast as |ξ| → ∞, and {θn}n∈Z+ is a sequence of numbers in [0, 2π).
Furthermore, P , g, and {θn}n∈Z+

are uniquely determined by ϕ0, {cn}n∈Z+
, and

{bn}n∈Z+
2.

Remark 1 This theorem is a straightforward generalisation of (Iserles & Webb 2019b,
Thm. 6), which shows the same result but for real, irreducible skew-symmetric dif-
ferentiation matrices. The difference is that (1.2) is replaced by (1.1), dµ must be
even, g must have even real part and odd imaginary part, and θn is chosen so that
eiθn = (−i)n. We will prove sufficiency because it is elementary but enlightening, and
leave necessity and uniqueness for the reader to prove by modifying the proof in (Iser-
les & Webb 2019b). That proof depends on Favard’s theorem and properties of the
Fourier transform, and we wish to avoid it for the sake of brevity.

Proof Suppose that ϕn are given by the equation (2.1). Then by (Gautschi 2004,
Thm. 1.29) there exist real numbers {δn}n∈Z+ and positive numbers {βn}n∈Z+ such
that

ξpn(ξ) = βn−1pn−1(ξ) + δnpn(ξ) + βnpn+1(ξ), n ∈ Z+, (2.2)

where β−1 = 0 by convention.3 Differentiating under the integral sign and using the
above three-term recurrence, we obtain

ϕ′n(x) = iei(θn−θn−1)βn−1ϕn−1(x) + iδnϕn(x) + iei(θn−θn+1)βnϕn+1(x).

Set cn = δn and bn = iei(θn−θn+1)βn for n ∈ Z+. Then cn ∈ R and −bn−1 =
−(−i)ei(θn−θn−1)βn−1 = iei(θn−θn−1)βn−1, so that Φ satisfies equation (1.2). 2

1By this, we mean that dµ is Borel measure on the real line with total mass equal to 1, with all
its moments bounded and with a non-countable number of point of increase (for example all of R or
the interval [−1, 1]).

2We assume by convention that the leading coefficients of the elements of P are positive.
3This form (2.2) of the three-term recurrence relation for P ensures orthonormality of the under-

lying orthogonal polynomials.
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Theorems 2 and 3 are proved in (Iserles & Webb 2019b) for the real case, as in
equation (1.1). The proofs require minimal modification for them to apply to the
complex case, as in equation (1.2).

Theorem 2 (Orthogonal systems) Let Φ = {ϕn}n∈Z+
satisfy the requirements of

Theorem 1. Then Φ is orthogonal in L2(R) if and only if P is orthogonal with respect to
the measure |g(ξ)|2dξ. Furthermore, whenever Φ is orthogonal, the functions ϕn/‖g‖2
are orthonormal.

Theorem 3 (Orthogonal bases for a Paley–Wiener space) Let Φ = {ϕn}n∈Z+

satisfy the requirements of Theorem 2 with a measure dµ such that polynomials are
dense in L2(R; dµ). Then Φ forms an orthogonal basis for the Paley–Wiener space
PWΩ(R), where Ω is the support of dµ.

The key corollary of Theorem 3 is that for a basis Φ satisfying the requirements
of Theorem 2 to be complete in L2(R), it is necessary that the polynomial basis P is
orthogonal with respect to a measure which is supported on the whole real line.

2.2 Symmetries and the canonical form

Let Φ = {ϕn}n∈Z+
have a tridiagonal skew-Hermitian differentiation matrix as in

equation (1.2). Then the system Φ̃ = {ϕ̃n}n∈Z+
defined by

ϕ̃n(x) = Aei(ωx+κn)ϕn(Bx+ C), (2.3)

where ω,A,B,C, κn ∈ R and A,B 6= 0, also satisfies equation (1.2). We can show this
directly as follows.

ϕ̃′n(x) = ABei(ωx+κn)ϕ′n(Bx+ C) +Aiωei(ωx+κn)ϕn(Bx+ C)

= ABei(ωx+κn)[−bn−1ϕn−1(Bx+ C) + icnϕn(Bx+ C) + bnϕn+1(Bx+ C)]

+iωAei(ωx+κn)ϕn(Bx+ C)

= −Bei(κn−κn−1)bn−1ϕ̃n−1(x) + i(cn + ω)ϕ̃n(x) +Bei(κn−κn+1)bnϕ̃n+1(x)

= −b◦n−1ϕ̃n−1(x) + ic◦nϕ̃n(x) + b◦nϕ̃n+1(x),

where b◦n = Bei(κn−κn+1)bn and c◦n = cn + ω.
The parameters ω,A,B,C, κ0, κ1, κ2, . . . encode continuous symmetries in the space

of systems with a tridiagonal skew-Hermitian differentiation matrix. Note that these
symmetries also preserve orthogonality (but not necessarily orthonormality).

If the differentiation matrix is irreducible then these symmetries permit a unique
choice of κ0, κ1, . . . ensuring that bn is a positive real number for each n ∈ Z+. This
corresponds to modifying the choice of θn in Theorem 1 so that eiθn = in. It is therefore
possible for any given g and P to have a canonical choice of Φ, which satisfies bn > 0,
by taking

ϕn(x) =
in√
2π

∫ ∞
−∞

eixξpn(ξ)g(ξ) dξ.
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We can also produce a unique canonical orthonormal system from an absolutely
continuous measure dµ(ξ) = w(ξ)dξ on the real line, where w(ξ) decays superalge-
braically fast as |ξ| → ∞. Specifically, the functions

ϕn(x) =
in√
2π

∫ ∞
−∞

eixξpn(ξ)|w(ξ)| 12 dξ (2.4)

form an orthonormal system in L2(R) with a tridiagonal, irreducible skew-Hermitian
differentiation matrix with a positive superdiagonal. The system is dense in L2(R) if
P is dense in L2(R, w(ξ)dξ).

2.3 Computing Φ

We proved in (Iserles & Webb 2019b) that any system Φ of L2(R) ∩C∞(R) functions
that obey (1.1) obeys the relation

ϕn(x) =
1

b0b1 · · · bn−1

bn/2c∑
`=0

αm,`ϕ
(n−2`)
0 (x), n ∈ Z+, (2.5)

where

αn+1,0 = 1, αn+1,` = b2n−1αn−1,`−1 + αn,`, ` = 1 . . .

⌊
n+ 1

2

⌋
.

Our setting lends itself to similar representation, which follows from (1.2) by induction.

Lemma 4 The functions Φ consistent with (1.2) satisfy the relation

ϕn(x) =
1

b0b1 · · · bn−1

n∑
`=0

βn,`ϕ
(`)
0 (x), n ∈ Z+, (2.6)

where β0,0 = β1,1 = 1 , β1,0 = −ic0 and

βn+1,0 = b2n−1βn−1,0 − icnβn,0,

βn+1,` = βn,`−1 + b2n−1βn−1,` − icnβn,`, ` = 1, . . . , n+ 1

for n ∈ N.

Like (2.5), the formula (2.6) is often helpful in the calculation of ϕ1, ϕ2, . . . once
ϕ0 is known. The obvious idea is to compute explicitly the derivatives of ϕ0 and form
their linear combination (2.6), but equally useful is a generalisation of an approach
originating in (Iserles & Webb 2019b). Thus, Fourier-transforming (2.6),

ϕ̂n(ξ) =
ϕ̂0(ξ)

b0b1 · · · bn−1

n∑
`=0

βn,`(iξ)
`.

On the other hand, Fourier transforming (2.4), we have

ϕ̂n(ξ) = in|w(ξ)|1/2pn(ξ).
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Our first conclusion is that ϕ̂0(ξ) = |w(ξ)|1/2/p0. Moreover, comparing the two dis-
played equations,

1

b0b1 · · · bn−1

n∑
`=0

βn,`(iξ)
` =

in

p0
pn(ξ). (2.7)

The polynomials pn are often known explicitly. In that case it is helpful to rewrite
(2.6) in a more explicit form.

Lemma 5 Suppose that pn(ξ) =
∑n
`=0 pn,`ξ

`, n ∈ Z+. Then

ϕn(x) =
in

p0,0

n∑
`=0

(−i)`pn,`ϕ
(`)
0 (x), n ∈ Z+. (2.8)

Proof By (2.6), substituting the explicit form of pn in (2.7). 2

2.4 An example

The next section is concerned with the substantive example of a system Φ with a
skew-Hermitian differentiation matrix that originates in the Fourier setting once we
use a Laguerre measure. What, though, about other examples? Once we turn our
head to generating explicit examples of orthonormal systems in the spirit of this paper
and of (Iserles & Webb 2019b), we are faced with a problem: all steps in subsections
2.1–3 must be generated explicitly. Thus, we must choose an absolutely continuous
measure for which the recurrence coefficients in (2.2) are known explicitly, compute
explicitly {pn}n∈Z+

and either

• compute explicitly ϕ0(x) = (2π)−1/2p0

∫∞
−∞ |w(ξ)|1/2eixξ dξ and its derivatives,

subsequently forming (2.8) and manipulating it further into a user-friendly form,

or

• compute explicitly (2.4) for all n ∈ Z+.

Either course of action is restricted by the limitations on our knowledge of explicit fo-
mulæ of orthogonal polynomials for absolutely continuous measures (thereby exclud-
ing, for example, Charlier and Lommel polynomials, as well as the Askey–Wilson hier-
archy). Thus Hermite polynomials and their generalisations (Iserles & Webb 2019b),
Jacobi and Konoplev polynomials (Iserles & Webb 2019b), Carlitz polynomials (Iserles
& Webb 2019a) and, in the next section, Laguerre polynomials.

Herewith we present another example which, albeit of no apparent practical use,
by its very simplicity helps to illustrate our narrative. Let α ∈ R and consider dµ(ξ) =

e(ξ−α)2 dξ, a shifted Hermite measure. The underlying orthonormal set consists of

pn(x) =
1√

2nn!
√
π

Hn(x− α), n ∈ Z+,

therefore

ξpn(ξ) =

√
n

2
pn−1(ξ) + αpn(ξ) +

√
n+ 1

2
pn+1(ξ)
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– we deduce that bn =
√

(n+ 1)/2 and cn ≡ α in (1.2). Moreover,

ϕn(x) =
in√
2π

1√
2nn!
√
π

∫ ∞
−∞

Hn(ξ − α)e−(ξ−α)2/2−ixξ dξ =
e−x

2/2−iαx√
2nn!
√
π

Hn(x),

‘twisted’ Hermite functions. It is trivial to confirm that they satisfy (1.2) or derive
them directly from (2.8).

3 The Fourier–Laguerre basis

3.1 A general expression

A skew-Hermite setting allows an important generalisation of the narrative of (Iserles
& Webb 2019b), namely to Borel measures in the Fourier space which are not symmet-
ric. The most obvious instance is the Laguerre measure dµ(ξ) = χ(0,∞)(ξ)ξ

αe−ξ dξ,
where α > −1. The corresponding orthogonal polynomials are the (generalised) La-
guerre polynomials

L(α)
n (ξ) =

(1 + α)n
n!

1F1

[
−n;
1 + α;

ξ

]
=

(1 + α)n
n!

n∑
`=0

(−1)`
(
n

`

)
ξ`

(1 + α)`
, (3.1)

where (z)m = z(z+1) · · · (z+m−1) is the Pochhammer symbol and 1F1 is a confluent
hypergeometric function (Rainville 1960, p. 200). The Laguerre polynomials obey the
recurrence relation

(n+ 1)L
(α)
n+1(ξ) = (2n+ 1 + α− ξ)L(α)

n (ξ)− (n+ α)L
(α)
n−1(ξ).

First, however, we need to recast them in a form suitable to the analysis of Section 2
– specifically, we need to renormalise them so that they are orthonormal and so that
the coefficient of ξn in pn is positive. Since

‖L(α)
n ‖2 =

∫ ∞
0

ξα[L(α)
n (ξ)]2e−ξ dξ =

Γ(n+ 1 + α)

n!

(Rainville 1960, p. 206) and the sign of ξn in (3.1) is (−1)n, we set

pn(ξ) = (−1)n

√
n!

Γ(n+ 1 + α)
L(α)
n (ξ), n ∈ Z+.

We deduce after simple algebra that

bn = βn =
√

(n+ 1)(n+ 1 + α), cn = δn = 2n+ 1 + α

in (1.2) and (2.2). (bn = βn because the latter is real and positive.)
To compute Φ we note that, letting τ = ( 1

2 − ix)ξ, (2.4) yields

ϕ0(x) =
1√

2πΓ(1 + α)

∫ ∞
0

ξα/2e−ξ/2+iξx dx
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=
1√

2π(1 + α)

2α/2+1

(1− 2ix)α/2+1

∫ ∞
0

τα/2e−τ dτ

=
1√
2π

Γ(1 + 1
2α)√

Γ(1 + α)

(
2

1− 2ix

)1+α/2

.

It now follows by simple induction that

ϕ
(`)
0 (x) =

i`√
2π

Γ(`+ 1 + 1
2α)√

Γ(1 + α)

(
2

1− 2ix

)̀ +1+α/2

, ` ∈ Z+.

Moreover,

pn(ξ) = (−1)n

√
n!

Γ(n+ 1 + α)
(1 + α)n

n∑
`=0

(−1)`ξ`

`!(n− `)!(1 + α)`

=

√
n!Γ(n+ 1 + α)

Γ(1 + α)

n∑
`=0

(−1)n−`ξ`

`!(n− `)!(1 + α)`
,

therefore

pn,` =

√
n!Γ(n+ 1 + α)

Γ(1 + α)

(−1)n−`

`!(n− `)!(1 + α)`
, ` = 0, . . . , n

and substitution in (2.8) gives

ϕn(x) =
(−i)n√

2π

√
n!Γ(n+ 1 + α)

Γ(1 + α)

(
2

1− 2ix

)1+α
2
n∑
`=0

Γ(`+ 1 + 1
2α)

`!(n− `)!(1 + α)`

(
2

1− 2ix

)̀

=
(−i)n√

2π

√
Γ(n+ 1 + α)

n!

Γ(1 + α
2 )

Γ(1 + α)

(
2

1− 2ix

)1+α
2

2F1

[
−n, 1 + 1

2α;
1 + α;

2

1− 2ix

]
.

The identity,

2F1

[
−n, b;
c;

z

]
=

(c− b)n
(c)n

2F1

[
−n, b;
b− c− n+ 1;

1− z
]
,

(Olver, Lozier, Boisvert & Clark 2010, 15.8.7), implies that we have

ϕn(x) =
(−i)n√

2π

α2
α
2 Γ(n+ α

2 )√
n!Γ(n+ 1 + α)

(
1

1− 2ix

)1+α
2

2F1

[
−n, 1 + 1

2α;
1− 1

2α− n;
− 1 + 2ix

1− 2ix

]
.

It is now clear that ϕn is proportional to (1−2ix)−1−α/2 times a polynomial of degree
n in the expression (1 + 2ix)/(1− 2ix) i.e.

ϕn(x) = (−i)n
√

2

π

(
1

1− 2ix

)1+α
2

Π(α)
n

(
1 + 2ix

1− 2ix

)
, (3.2)

where Π
(α)
n is a polynomial of degree n. Using the substitution x = 1

2 tan θ
2 for

θ ∈ (−π, π), which implies (1 + 2ix)/(1 − 2ix) = eiθ, the orthonormality of the basis
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Φ can be seen to imply that {Πn}n∈Z+
are in fact orthogonal polynomials on the unit

circle (OPUC) with respect to the weight

W (θ) = cosα
θ

2
.

To be clear, this means that for all n,m ∈ Z+,

1

2π

∫ π

−π
Π

(α)
n (eiθ)Π(α)

m (eiθ) cosα
θ

2
dθ = δn,m.

These polynomials are related to the Szegő–Askey polynomials (Olver et al. 2010,

18.33.13), {φ(λ)
n }n∈Z+

, which satisfy

1

2π

∫ π

−π
φ

(λ)
n (eiθ)φ(λ)

m (eiθ) (1− cos θ)λ dθ = δn,m,

by the relation Π
(α)
n (z) ∝ φ(α2 )

n (−z). The Szegő–Askey polynomials are known to sat-

isfy a Delsarte–Genin relationship to the Jacobi polynomials P
(α−1

2 ,− 1
2 )

n and P
(α+1

2 , 12 )
n

due to the symmetry of the weight of orthogonality (Szegő 1975, p. 295), (Olver et al.
2010, 18.33.14). Specifically,

e−niθΠ
(α)
2n (eiθ) = AnP

(α−1
2 ,− 1

2 )
n (cos θ) + iBn sin θP

(α+1
2 , 12 )

n−1 (cos θ) ,

e(1−n)iθΠ
(α)
2n−1(eiθ) = CnP

(α−1
2 ,− 1

2 )
n (cos θ) + iDn sin θP

(α+1
2 , 12 )

n−1 (cos θ) ,

for some real constants {An, Bn, Cn, Dn}n∈Z+
. It is therefore possible to express the

functions Φ in terms of Jacobi polynomials; this is something we will not pursue here,
but could be of interest for further research. In what follows we will restrict ourselves
to the case α = 0, which is extremely simple.

We are not aware if this connection between the general Laguerre polynomials and
Szegő–Askey polynomials (and hence Jacobi polynomials) via the Fourier transform
has been acknowledged before in the literature.

3.2 The Malmquist–Takenaka system

The expression (3.2) comes into its own once we let α = 0, namely consider the ‘simple’

Laguerre polynomials Ln. Now W (θ) ≡ 1 and so Π
(α)
n (z) = zn. We have bn = n+ 1,

cn = 2n+ 1 and the hypergeometric function simplifies to unity,

ϕn(x) =

√
2

π
in

(1 + 2ix)n

(1− 2ix)n+1
, n ∈ Z+.

Alternatively to using (2.8), we may apply a formula for the Laplace transform of
Laguerre polynomials,∫ ∞

0

Ln(ξ)e−xi/2+ixξ dξ = − (1 + 2ix)n

(1− 2ix)n+1
, n ∈ Z+.
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(Olver et al. 2010, 18.17.34).
By Theorem 3, these functions are dense in the Paley–Wiener space PW [0,∞)(R).

To obtain a basis for the whole of L2(R), we must add to this a basis for PW(−∞,0](R).
The obvious way to do so is to consider the same functions as above, but for the
orthogonal polynomials with respect to χ(−∞,0](ξ)e

ξ dξ, which are precisely Ln(−ξ),
n ∈ Z+. Using the Laplace transform again, this leads to the functions

ϕ̃n(x) =
(−i)n√

2π

∫ 0

−∞
eixξ Ln(−ξ) e

ξ
2 dξ =

(−i)n√
2π

∫ ∞
0

e−ixξ Ln(ξ) e−
ξ
2 dξ

= (−1)n+1in
√

2

π

(1− 2ix)n

(1 + 2ix)n+1
.

Letting ϕn = ϕ̃−n−1, n ≤ −1, we obtain the Malmquist–Takenaka system (1.3).
As a matter of historical record, Malmquist (1926) and Takenaka (1926) considered

a more general system of the form

Bn(z) =

√
1− |θn|2

1− θnz
ψn(z), B−n(z) = Bn(1/z), n ∈ Z+,

where ψn(z) =
∏n−1
k=0(z − θk)/(1 − θkz) is a finite Blaschke product and |θk| < 1,

k ∈ Z+. The nature of the questions they have asked was different – essentially, they
proved that the above system is a basis (which need not be orthogonal) of H2, the
Hardy space of complex analytic functions in the open unit disc. In our case the
θk ≡ 2i are all the same and outside the unit circle, yet it seems fair (and consistent
with, say, (Pap & Schipp 2015)) to call (1.3) a Malmquist–Takenaka system.

Fig. 3.1 displays the real and imaginary parts of few Malmquist–Takenaka func-
tions.

Let us dwell briefly on the properties of (1.3).

• The system is dense in L2(R), because standard Laguerre polynomials are dense
in L2((0,∞), e−ξ dξ) and {Ln(−ξ)}n∈Z+

is dense in L2((−∞, 0), eξ dξ).

• All the functions ϕn are uniformly bounded,

|ϕn(x)| =
√

2

π

1√
1 + 4x2

, x ∈ R.

• The differentiation matrix,

D =



. . .
. . .

. . . −5i −2
2 −3i −1

1 −i 0
0 i 1
−1 3i 2

−2 5i
. . .

. . .
. . .


, (3.3)
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Figure 3.1: Real (in blue) and imaginary (in red) parts of the MT functions ϕn for

n = −3, . . . , 2. The envelope of ±(2/π)
1
2 (1+4x2)−

1
2 is also plotted, as a dashed purple

line.

is skew-Hermitian, tridiagonal and reducible – specifically, D−1,1 = D1,−1 = 0
and the matrix decomposes into two irreducible ‘chunks’, corresponding to n ≤
−1 and n ≥ 0.

While (3.3) follows from our construction, it can be also proved directly from
(1.3):

ϕ′n(x) = in
√

2

π

[
2in

(1 + 2ix)n−1

(1− 2ix)n+1
+ 2i(n+ 1)

(1 + 2ix)n

(1− 2ix)n+2

]
= in+1

√
2

π

(1 + 2ix)n−1

(1− 2ix)n+2
[2n(1− 2ix) + 2(n+ 1)(1 + 2ix)]

= in+1

√
2

π

(1 + 2ix)n−1

(1− 2ix)n+2
(4n+ 2 + 4ix),

while

−nϕn−1(x) + (2n+ 1)iϕn(x) + (n+ 1)ϕn+1(x)

= in+1

√
2

π

(1 + 2ix)n−1

(1− 2ix)n+2
[n(1− 2ix)2 + (2n+ 1)(1 + 4x2) + (n+ 1)(1 + 2ix)2]

12



= in+1

√
2

π

(1 + 2ix)n−1

(1− 2ix)n+2
(4n+ 2 + 4ix).

• The MT system obeys a host of identities that make it amenable for implemen-
tation in spectral methods. The following were identified by Christov,

ϕm(x)ϕn(x) =
1√
2π

[ϕm+n(x)− iϕm+n+1(x)], m, n ∈ Z+, (3.4)

xϕ′n(x) = −n
2

iϕn−1(x)− 1

2
ϕn(x)− n+ 1

2
ϕn+1(x), n ∈ Z

(Christov 1982) and the following is apparently new,

4i

1 + 4x2
ϕn(x) = −ϕn−1(x) + 2ϕn(x) + ϕn+1(x), n ∈ Z.

In particular, (3.4) implies that

∞∑
m=−∞

f̂mϕm(x)

∞∑
n=−∞

ĥnϕn(x)

=
1√
2π

∞∑
n=−∞

[ ∞∑
m=−∞

f̂m(ĥn−m − iĥn−m−1)

]
ϕn(x),

allowing for an easy multiplication of expansions in the MT basis.

3.3 Expansion coefficients

Arguably the most remarkable feature of the MT system is that expansion coefficients
can be computed very rapidly indeed. Thus, let f ∈ L2(R). Then

f(x) =

∞∑
n=−∞

f̂nϕn(x) where f̂n =

∫ ∞
−∞

f(x)ϕn(x) dx, n ∈ Z.

We do not dwell here on speed of convergence except for brief comments in subsec-
tion 3.4 – this is a nontrivial issue and, while general answer is not available, there is
wealth of relevant material in (Weideman 1994). Our concern is with efficient algo-

rithms for the evaluation of f̂n for −N ≤ n ≤ N − 1.
The key observation is that

ϕn(x) = in
√

2

π

1

1− 2ix

(
1 + 2ix

1− 2ix

)n
and the term on the right is of unit modulus. We thus change variables

1 + 2ix

1− 2ix
= eiθ, −π < θ < π, (3.5)
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in other words x = 1
2 tan θ

2 and, in the new variable

ϕn(x) = in
√

2

π
ei(n+ 1

2 )θ cos
θ

2
, n ∈ Z.

We deduce that

f̂n =
(−i)n√

2π

∫ π

−π

(
1− i tan

θ

2

)
f

(
1

2
tan

θ

2

)
e−inθ dθ, n ∈ Z, (3.6)

a Fourier integral. Two immediate consequences follow. Firstly, the convergence of
the coefficients as |n| → ∞ is dictated by the smoothness of the modified function

F (θ) =

(
1− i tan

θ

2

)
f

(
1

2
tan

θ

2

)
, −π < θ < π.

Secondly, provided F is analytic, (3.6) can be approximated to exponential accuracy
by a Discrete Fourier Transform4 and this, in turn, can be computed rapidly with Fast
Fourier Transform (FFT): the first N coefficients require O(N log2N) operations.

Proposition 6 (Fast approximation of coefficients) The truncated MT system
{ϕn}N−1

n=−N is orthonormal with respect to the discrete inner product.

〈f, g〉n =
π

N

2N∑
j=1

f (xj) g (xj)(1 + 4x2
j ),

where

xj =
1

2
tan

θj
2
, j = 1, 2, . . . , N,

and θ1, . . . , θ2N are equispaced points in the periodic interval [−π, π] (such that θj −
θj−1 = π/N). The coefficients of a function f in the span of {ϕn}N−1

n=−N are exactly
equal to

〈f, ϕN 〉 = 〈f, ϕn〉N = (−i)n
√
π

2

1

2N

2N∑
j=1

f(xj)(1− 2ixj)e
−inθj , (3.7)

and can be computed simultaneously in O(N log2N) operations using FFT.

Proof Let k, ` be integers satisfying −N ≤ k, ` ≤ N − 1. Then

〈ϕ`, ϕk〉N =
1

2N

2N∑
j=1

(
1 + 2ixj
1− 2ixj

)̀ −k
.

If k = ` then this is clearly equal to 1. Otherwise, using equation (3.5), we see that,

〈ϕ`, ϕk〉N =
1

2N

2N∑
j=1

ei(`−k)θj .

4The approximation remains valid – but less accurate – for F ∈ Ck(−π, π).

14



Summing the geometric series, since θj − θj−1 = π/N we have

〈ϕ`, ϕk〉N = ei(`−k)θ1
1

2N

1− e2πi(k−`)

1− eπi(k−`)/N = 0.

This proves that {ϕn}N−1
n=−N forms an orthonormal basis with respect to the inner

product 〈 · , · 〉N . It follows that 〈f, h〉 = 〈f, h〉N for all f and h in the span of
{ϕn}N−1

n=−N . Inserting h(x) = ϕn(x) into the expression for the discrete inner product
and then using equation (3.5) yields (3.7). 2

3.4 Speed of convergence

Theorem 7 Let f ∈ L2(R). The generalised Fourier coefficients satisfy

〈f, ϕn〉 = O
(
ρ−|n|

)
, (3.8)

for some ρ > 1 if and only if the function t 7→ (1− 2it)f(t) can be analytically contin-
ued to the set

Cρ = C \
(
Drρ(aρ) ∪ Drρ(aρ)

)
where C is the Riemann sphere consisting of the complex plane and the point at infinity,
and Dr(a) is the disc with centre a ∈ C and radius r > 0, with

aρ =
i

2

ρ+ ρ−1

ρ− ρ−1
, rρ =

1

ρ− ρ−1
.

Proof See (Weideman 1995) and (Boyd 1987). 2

As was noted by Weideman, for exponential convergence we require f to be analytic
at infinity, which is of meagre practical use. An example for a function f of this kind
is

f(x) =
1

1 + x2
(3.9)

Since f is a meromorphic function with singularities at ±i, we obtain exponential
decay with ρ = 3 – this is evident from the explicit expansion

1

1 + x2
= −
√

2π

−1∑
n=−∞

(−i)n

3−n
ϕn(x) +

√
2π

∞∑
n=0

(−i)n

3n+1
ϕn(x),

whose proof we leave to the reader. This is demonstrated in Fig.3.2, where we display

the errors
∣∣∣f(x)−

∑N
n=0 f̂nϕn(x)

∣∣∣ for N = 10, 20, 30 and 40. Compare this with

Fig. 3.3, where we have displayed identical information for an expansion in Hermite
functions. Evidently, MT errors decay at an exponential speed, while the error for
Hermite functions decreases excruciatingly slowly as N increases.

Meromorphic functions, however, are hardly at the top of the agenda when it comes
to spectral methods. In particular, in the case of dispersive hyperbolic equations we are
interested in wave packets – strongly localised functions, exhibiting double-exponential
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Figure 3.2: MT errors for example (3.9) with N = 10, 20, 30, 40.

decay away from an envelope within which they oscillate rapidly. An example (with
fairly mild oscillation) is the function

f(x) = e−x
2

cos(10x). (3.10)

Since f has an essential singularity at the endpoints, there is no ρ > 1 so that (3.8)
holds – in other words, we cannot expect exponentially-fast convergence. We report
errors for MT and Hermite functions in Figs 3.4 and 3.5 respectively for N = 10, 40, 70
and 100: definitely, the convergence of MT slows down (part of the reason is also the
oscillation) but it still is superior to Hermite functions.

The general rate of decay of the error (equivalently, the rate of decay of |f̂|n|| for
n � 1 for analytic functions and the MT system) is unknown, although (Weideman
1995) reports interesting partial information, which we display in Table 1 (taken from
(Weideman 1995)). The rate of decay does not seem to follow simple rules. For some
functions the rate of decay is spectral (faster than a reciprocal of any polynomial),
yet sub-exponential. For other functions it is polynomial (and fairly slow). Fig. 3.6
exhibits MT errors for f(x) = sinx/(1 + x2) and N = 20, 40, 60, 80: evidently it is in

16



Figure 3.3: Hermite function errors for example (3.9) with N = 10, 20, 30, 40.

line with Table 1. It is fascinating that such a seemingly minor change to (3.9) has
such far-reaching impact on the rate of convergence. This definitely calls for further
insight.

Future paper will address the rate of approximation of wave packets by both the
MT basis and other approximation schemes.

4 Characterisation of mapped and weighted Fourier
bases

The most pleasing feature of the MT basis is that the coefficients can be expressed as
Fourier coefficients of a modified function. They can then be approximated using the
Fast Fourier Transform. Are there other orthogonal systems like this?

Let us consider all orthonormal systems Φ = {ϕn}n∈Z in L2(R) with a tridiagonal
skew-Hermitian differentiation matrix such that for all f ∈ L2(R), the coefficients
are equal to the classical Fourier coefficients of k(θ)f(h(θ)), −π < θ < π, for some
functions k and h (with a possible diagonal scaling by {γn}n∈Z). Specifically, we
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Figure 3.4: MT errors for example (3.10) with N = 10, 40, 70, 100.

consider the ansatz

〈f, ϕn〉 = γn

∫ π

−π
e−inθk(θ)f(h(θ)) dθ, n ∈ Z. (4.1)

We assume that h : (−π, π)→ R is a differentiable function which is strictly increasing
and onto, whose derivative is a measurable function. This implies the existence of a
differentiable, strictly increasing inverse function H : R → (−π, π). The chain rule
implies h′(θ)H ′(h(θ)) ≡ 1 (so that H ′ is also a measurable function). The function
k is assumed to be a complex-valued L2(−π, π) function (which makes the integral in
(4.1) well defined). The constants γn are complex numbers. We assume nothing more
about k, h and γn in this section (but deduce considerably more).

Making the change of variables x = h(θ) yields,

〈f, ϕn〉 =

∫ ∞
−∞

γne−inH(x)k(H(x))H ′(x)f(x) dx. (4.2)

For this to hold for all f ∈ L2(R), we must have

ϕn(x) = γnK(x)einH(x), (4.3)
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Figure 3.5: Hermite function errors for example (3.10) with N = 10, 40, 70, 100.

where K(x) = H ′(x)k(H(x)).
How does this fit in with the MT basis? In the special case of Malmquist–Takenaka

we have

h(θ) =
1

2
tan

θ

2
, H(x) = 2tan−1(2x),

k(θ) = 1− i tan
θ

2
, K(x) =

√
2

π

1

1− 2ix
,

γn = (−i)n.

We prove the following theorem which characterises the Malmquist–Takenaka system
as (essentially) the only one of the kind described by equation (4.3).

Theorem 8 All systems Φ = {ϕn}n∈Z of the form (4.3), such that

1. Φ is orthonormal in L2(R),

2. Φ has a tridiagonal skew-Hermitian differentiation matrix as in equation (1.2),
but indexed by all of Z,
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Table 1: The rate of decay of the coefficients f̂n in an MT approximation of different
functions.

f(x) f̂n
1

1 + x4
O
(
ρ−|n|

)
, ρ = 1 +

√
2

e−x
2 O

(
e−3|n|2/3/2

)
sechx O

(
e−2|n|1/2

)
sinx

1 + x2
O
(
|n|−5/4

)
sinx

1 + x4
O
(
|n|−9/4

)
are of the form

ϕn(x) = γn

√
|Imλ|
π

eiωx (λ− x)
n+δ(

λ− x
)n+δ+1

(4.4)

where ω, δ ∈ R, λ ∈ C \ R and γn ∈ C such that |γn| = 1 for all n ∈ Z. The
differentiation matrix in the case where γn = (−i)n, Imλ = 1

2 and ω = 0 has the terms

bn = n+ δ + 1, cn = 2(n+ δ) + 1, n ∈ Z. (4.5)

Proof Let us derive some necessary consequences of orthonormality of Φ by ap-
plying the change of variables x = h(θ) to the inner product.∫ ∞

−∞
ϕn(x)ϕm(x) dx = γnγm

∫ ∞
−∞
|K(x)|2ei(m−n)H(x) dx (4.6)

= γnγm

∫ π

−π
h′(θ)|K(h(θ))|2ei(m−n)θ dθ. (4.7)

Orthogonality implies that the function θ 7→ h′(θ)|K(h(θ))|2 is orthogonal to θ 7→ eikθ

for all k ∈ Z \ {0}. It is therefore a constant function. This constant is positive
since h is strictly increasing and K is not identically zero. Normality of the basis

implies that |γn|2 =
[
2πh′(θ)|K(h(θ))|2

]−1
, which is a constant independent of n. We

can absorb this constant into K and assume that |γn| = 1 for all n ∈ Z. Therefore,
h′(θ)|K(h(θ))|2 ≡ 1/(2π), which is equivalent to |K(x)|2 = H ′(x)/(2π).

Since ϕ0(x) = γ0K(x) and ϕ0 is infinitely differentiable (because it is proportional
to the inverse Fourier transform of a superalgebraically decaying function g), we deduce
that K must be infinitely differentiable. The relationship H ′(x) = 2π|K(x)|2 therefore
implies that H is infinitely differentiable; in particular H ′′(x) = 4πRe

[
K ′(x)K(x)

]
.

Furthermore, there exists an infinitely differentiable function κ : R→ R such that

K(x) = eiκ(x)

√
H ′(x)

2π
.

Let us derive more necessary consequences by taking into account the tridiagonal
skew-Hermitian differentiation matrix. For all n ∈ Z,

K ′(x)γneinH(x) +K(x)γninH ′(x)einH(x)
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Figure 3.6: MT errors for f(x) = sinx/(1 + x2) with N = 20, 40, 60, 80.

= −bn−1K(x)γn−1ei(n−1)H(x) + icnγnK(x)einH(x) + bnK(x)γn+1ei(n+1)H(x).

Note that K ′(x) =
[
iκ′(x) + H′′(x)

2H′(x)

]
K(x), so dividing through by K(x)γnieinH(x) leads

to

κ′(x) = cn − nH ′(x) + βn−1e−iH(x) + βneiH(x) + i
H ′′(x)

2H ′(x)
,

where βn = −ibnγn+1/γn (here we use the fact that γ−1
n = γn). Without loss of

generality, we can assume that βn ∈ R for all n because the symmetries discussed in
subsection 2.2 allow us to choose {γn}n∈Z (because they are all of the form eiκn for
real numbers {κn}n∈Z).

Since κ and H are real-valued functions and cn and βn are real for all n ∈ Z,
equating real and imaginary parts yields

κ′(x) = cn − nH ′(x) + (βn + βn−1) cosH(x) (4.8)

0 = (βn − βn−1) sinH(x) +
H ′′(x)

2H ′(x)
(4.9)
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It follows that βn − βn−1 is a constant which is independent of n, so we can write
a = 2(βn − βn−1) for some real constant a and equation (4.9) becomes

H ′′(x) = −aH ′(x) sinH(x),

which, after integrating with respect to x, becomes

H ′(x) = a cosH(x) + b

for some real constant b. Since H maps R onto (−π, π) in a strictly increasing manner,
by the monotone convergence theorem we must have H ′(±π) = 0. This implies a = b,
so using the formula cos θ + 1 = 2 cos2(θ/2), we obtain,

1

2
H ′(x) sec2 H(x)

2
= a.

Integrating with respect to x, we get

tan
H(x)

2
= ax+ c

for some real constant c. Hence there exist real constants A and B such that

H(x) = 2 arctan(Ax+B). (4.10)

By the symmetry considerations in subsection 2.2, we can assume A = 2 and B = 0.
All that remains is to determine K(x), which can be done by determining κ(x). Taking
n = 0 in equation (4.8) gives us

κ′(x) = c0 + (β0 + β−1) cos(2 arctan(2x)). (4.11)

The antiderivative of cos(2 arctan(2x)) is arctan(2x) − x, so there exist (new) real
constants a, b and c such that

κ(x) = ax+ 2b arctan(2x) + c.

The symmetry considerations in subsection 2.2 allow us to assume that a = c = 0.
We therefore deduce that up to symmetries described in subsection 2.2,

ϕn(x) =

√
2

π

1√
1 + 4x2

ei(n+b)2 arctan(2x) =

√
2

π

(1 + 2ix)
n+b− 1

2

(1− 2ix)
n+b+ 1

2

. (4.12)

Letting δ = b− 1
2 and adding in the symmetries discussed in subsection 2.2 shows that

the system Φ must necessarily be of the form in equation (4.4). To complete the proof
we must turn to the question of sufficiency. A derivation exactly as in subsection 3.2
but with n replaced by n+ δ verifies the explicit form of the coefficients (4.5). 2
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5 Concluding remarks

The subject matter of this paper is the theory of complex-valued orthonormal systems
in L2(R) with a tridiagonal, skew-Hermitian differentiation matrix. On the face of it,
this is a fairly straightforward generalisation of the work of (Iserles & Webb 2019b).
Yet, the more general setting confers important advantages. In particular, it leads in a
natural manner to the Malmquist–Takenaka system. The latter is an orthonormal sys-
tem of rational functions, which we have obtained from Laguerre polynomials through
the agency of the Fourier transform. The MT system has a number of advantages
over, say, Hermite functions, which render it into a natural candidate for spectral
methods for the discretization of differential equations on the real line. It allows for
an easy calculus, because MT expansions can be straightforwardly multiplied. Most
importantly, the calculation of the first N expansion coefficients can be accomplished,
using FFT, in O(N log2N) operations. Moreover, the MT system is essentially unique
in having the latter feature.

The FFT, however, is not the only route toward ‘fast’ computation of coefficients in
the context of orthonormal systems on L2(R) with skew-Hermitian or skew-symmetric
differentiation matrices. In (Iserles & Webb 2019a) we characterised all such real
systems (thus, with a skew-symmetric differentiation matrix) whose coefficients can be
computed with either Fast Cosine Transform, Fast Sine Transform or a combination of
the two, again incurring an O(N log2N) cost. We prove there that there exist exactly
four systems of this kind.

The connections laid out in Section 3 between the Fourier–Laguerre functions
and the Szegő–Askey polynomials (and hence Jacobi polynomials via the Delsarte–
Genin transformation), are suggestive of a possible generalisation of Theorem 8 on the
characterisation of the MT basis. It may be possible to characterise all systems which
are orthonormal, have a tridiagonal skew-Hermitian differentiation matrix, and which
are of the form

ϕn(x) = Θ(x)Πn

(
eiH(x)

)
,

where Θ ∈ L2(R), H maps the real line onto (−π, π), and {Πn}n∈Z+
is a system of

orthogonal polynomials on the unit circle. The expansion coefficients for a function in
such a basis are equal to expansion coefficients of a mapped and weighted function in
the orthogonal polynomial basis {Πn}n∈Z+ . The Fourier–Laguerre bases, in particular
the MT basis, are certainly within this class of functions, but one can ask if there are
more.

From a practical point of view, it is worth noticing that while the MT basis ele-
ments decay like |x|−1 as x→ ±∞, the Fourier-Laguerre functions decay like |x|−1−α/2

where α > −1 is the parameter in the generalised Laguerre polynomial. For the ap-
proximation of functions with a known asymptotic decay rate it may be advantageous
to use a basis with the same decay rate.

The jury is out on which is the ‘best’ orthonormal L2(R) system with a skew-
Hermitian (or skew-symmetric) tridiagonal differentiation matrix and whose first N
coefficients can be computed in O(N log2N) operations. While some considerations
have been highlighted in (Iserles & Webb 2019a), probably the most important factor
is the speed of convergence. Approximation theory in L2(R) is poorly understood and
much remains to be done to single out optimal orthonormal systems for different types
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of functions. Partial results, e.g. in (Ganzburg 2018, Weideman 1994), indicate that
the speed of convergence of such systems is a fairly delicate issue.
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